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Background: Optimisation of Deep Brain Stimulation (DBS) settings is a key 
aspect in achieving clinical efficacy in movement disorders, such as the 
Parkinson’s disease. Modern techniques attempt to solve the problem through 
data-intensive statistical and machine learning approaches, adding significant 
overhead to the existing clinical workflows. Here, we  present a geometry-
based optimisation approach for DBS electrode contact and current selection, 
grounded in routinely collected MRI data, well-established tools (Lead-DBS) and 
optionally, clinical review records.
Methods: The pipeline, packaged in a cross-platform tool, uses lead 
reconstruction data and simulation of Volume of Tissue Activated (VTA) to 
estimate the contacts in optimal position relative to the target structure, and 
suggests optimal stimulation current. The tool then allows further interactive 
user optimisation of the current settings. Existing electrode contact evaluations 
can be optionally included in the calculation process for further fine-tuning and 
adverse effect avoidance.
Results: Based on a sample of 174 implanted electrode reconstructions 
from 87 Parkinson’s disease patients, we  demonstrate that our algorithm’s 
DBS parameter settings are more effective in covering the target structure 
(Wilcoxon p < 5e-13, Hedges’ g > 0.94) and minimising electric field leakage 
to neighbouring regions (p < 2e-10, g > 0.46) compared to expert parameter 
settings. Retrospective analysis of a limited subset (n = 50) predicts comparable 
improved motor outcomes with expert settings (g = 0.05–0.08, p = 0.09–1), 
suggesting potential for similar clinical efficacy, pending prospective validation.
Conclusion: The proposed automated method for optimisation of the DBS 
electrode contact and current selection shows promising results and is readily 
applicable to existing clinical workflows. We demonstrate that the algorithmically 
selected contacts perform better than manual selections according to electric 
field calculations, without the iterative optimisation procedure.
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Introduction

Deep Brain Stimulation (DBS) is a treatment method for late-
stage Parkinson’s disease (PD), aiming to minimise symptoms (Hariz 
and Blomstedt, 2022). It involves precise electrical stimulation that 
aims to modulate aberrant neural activity. Despite its clinical success, 
DBS parameters have to be optimised for each patient, leading to 
complex, empirical adjustments over several clinical visits. As a 
result, traditional DBS optimisation protocols are time-intensive, 
costly and burdensome for patients (Picillo et al., 2016; Volkmann 
et al., 2006).

Modern optimisation approaches attempt to resolve these issues 
through machine learning methods, such as autoencoder-based 
feature extraction and probabilistic models (Boutet et al., 2021; Qiu 
et al., 2024; Roediger et al., 2022). These methods excel in predicting 
the optimal stimulation parameters based on complex datasets, 
including functional magnetic resonance imaging (fMRI) response 
maps. However, their accuracy often comes at the cost of explainability, 
which may limit their adoption in clinical settings, where 
recommendations require a clear reasoning. Additionally, these 
techniques frequently rely on large-scale, high-dimensional datasets, 
which can be  resource-intensive and clinically impractical. More 
specifically, the most recent approaches require machine learning 
models to be  pretrained or additional pre-computed data; this 
requirement can be a discriminant analysis model (Boutet et al., 2021), 
a multilayer perceptron (Qiu et al., 2024), a collection of pre-compiled 
statistical models (Roediger et al., 2022), or fibre tract modelling and 
an additional, NEURON-based simulation step (Peña et al., 2018). For 
instance, imaging and electrophysiology-driven methods using 
connectomic modelling or advanced imaging modalities, such as 
functional MRI, have shown promise in guiding DBS programming 
but often require data not routinely collected in standard clinical 
workflows, including task-based or resting-state fMRI scans, 
connectomic reconstructions, or specialised electrophysiological 
recordings (Shah et al., 2023; Hines et al., 2024; Santyr et al., 2024).

Older works have explored biophysical modelling driven by 
imaging data to optimise DBS parameters, leading to explainable 
recommendations. The proposed pipelines for implementing this 
approach rely on either custom-coded FEM solutions (Anderson 
et al., 2018) or commercial visualisation software, used with fixed 
currents (Waldthaler et al., 2021), and operate in a manual or semi-
manual manner. Similarly, sweet spot-guided algorithms have been 
developed to suggest contacts and amplitudes based on predefined 
empirical regions in the Subthalamic Nucleus (STN), using Volume of 
Tissue Activataed (VTA) approximations within Lead-DBS 
(Nordenström et al., 2022); however, these may depend on cohort-
derived sweet spots and simplified spherical models, potentially 
limiting adaptability to individual patient anatomy.

In this study, we  propose an open-source, cross-platform, 
GUI-based pipeline for stimulation parameter programming (i.e., 
electrode contact and current selection) that can be directly optimised 
through electric field calculations and its overlap with the targeted 
structure, based entirely on anatomical data from imaging and 
geometry principles. Our approach integrates magnetic resonance 
imaging (MRI) with a processing pipeline building upon well-
documented DBS simulation tools to optimise DBS parameters in a 
manner that is minimally demanding in terms of data requirements, 
while incorporating input from personalised clinical evaluations.

Our processing pipeline utilises established processing tools: 
the Lead-DBS (Horn and Kühn, 2015) reconstruction of the 
implant, to derive the geometry of individual electrode contacts and 
the target structure of the stimulation, and OSS-DBS (Butenko 
et al., 2020) to perform fast, adjustable calculations of the reach of 
the electric field into the target structure. Clinical evaluations of the 
patient’s response to individual electrode contact and current 
selection during the initial clinical visit can be optionally integrated 
into the optimization procedure. Importantly, we prioritise simple 
user interaction, only requiring a reconstruction of the implant (in 
Lead-DBS format) and clinical evaluation of the electrode contacts 
and currents, if available.

We are evaluating our method using retrospective clinical data 
targeting the motor (dorso-lateral) subregion of the STN, which is a 
common target with demonstrated involvement in generating 
Parkinson’s Disease symptoms (Hacker et al., 2023; Vitek et al., 2022). 
This single-patient approach contrasts with prevailing machine 
learning-based methods by prioritising clinical utility, computational 
efficiency, with a lower setup and manual operation barrier compared 
to prior imaging-based methods, and robust integration with existing 
clinical data collection and basic reconstruction workflows.

Materials and methods

Patients and data

This study uses data from 104 patients with Parkinson’s disease 
who underwent bilateral implantation of deep brain stimulation 
electrodes (Medtronic 3,389, Medtronic B33 series, or Abbott 6,172), 
targeting the STN. In total, MRI data from 104 patients were 
processed, with 87 patients also having corresponding clinical review 
information and at least one hemisphere with documented stimulation 
settings. This yielded 174 implantation instances meeting all inclusion 
criteria for direct comparison.

All participants provided written informed consent to participate 
in the study upon enrolment. The study was approved by Ethics 
Committee of the General University Hospital in Prague (case number 
59/18) and conducted in alignment with the Declaration of Helsinki. 
The data were sourced retrospectively from records of the iTEMPO 
department of the Neurology clinic, General University Hospital in 
Prague. For this dataset, the (average ± standard deviation) age at PD 
onset was 45 ± 8.6 (n = 64), and the age at DBS surgery was 56.2 ± 8.8 
(n = 87). The surgeries for the DBS implants were performed between 
2007 and 2023. A discrepancy between the numbers of patients with 
a PD onset record compared to the DBS surgery record is noted, due 
to incomplete reporting for some patients (hospital transfers).

We incorporated clinical evaluations of electrode contacts, done 
during initial stimulation setup at a clinical visit after implantation. 
The records indicated that the clinical review was performed in four 
contact group configurations per hemisphere: (i) individually 
activated edge contacts, (ii) separately tested middle non-directional 
contacts, or two groups of three radially arranged directional 
contacts in the case of directional leads. These groups were 
stimulated across incremental current levels ranging from 0.5 mA to 
4.0 mA in 0.5 mA steps, with assessments focused on clinical 
improvement in rigidity, akinesia, and tremor, as well as thresholds 
for adverse effects.
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Statistical analyses were conducted using the SciPy and Pingouin 
libraries, with Bonferroni-corrected Wilcoxon signed-rank tests for 
pairwise comparisons.

MRI data processing

Pre-operative (3 T) and post-operative (1.5 T) MRI images (Nifti 
format) were imported into the Lead-DBS toolbox (Horn and Kühn, 
2015), for atlas co-registration (using the SPM method; Friston et al., 
2007), normalisation (using the ANTs method; Avants et al., 2008 with 
SyN nonlinear transform and mutual information metric), subcortical 
brainshift correction (Schönecker et  al., 2009), and electrode 
reconstruction performed manually in Lead-DBS. The reconstructions 
were performed and validated by an expert neurologist.

All subsequent volume and coordinate processing was done after 
conversion back to the native patient space for each subject.

Optimisation method

The proposed method, outlined below, consists of two steps: (i) 
contact selection based on the spatial configuration of the STN and 
the stimulation lead, and (ii) current selection, based on modelling of 
the Volume of Tissue Activated (VTA). In the second step, two 
variants of the method were evaluated: (a) geometry-based method 
only, and (b) a variant considering the clinical review with test 
stimulation in addition to the geometry-based method. The method 
is available as a standalone python-based GUI tool 
(Supplementary Figure S2; Mikroulis, 2025).

Contact selection

Geometry score
To identify the optimal contacts, we  calculated their spatial 

relationship to the centre of mass of the motor subregion of the 
STN. Two geometric features were considered for each contact: (i) the 
Euclidean distance to the motor STN centroid, and (ii) the rotation 
angle between the contact and the centroid, relative to the electrode 
axis (for directional contacts). As these metrics differ in scale and 
units, they were independently ranked from lowest to highest across 
all contacts. The ranks were then summed to yield a geometry-based 
score for each contact ,geometry Cs . For non-directional electrodes, and 
for edge contacts on directional electrodes where rotation is 
undefined, only distance was used; in such cases, a nominal angle of 
90° was assigned to preserve consistency across contact types.

Clinical review-based score
The clinical review data only contained coarse contact groups 

(radially distributed directional contacts were evaluated as a single 
contact, making up a total of four coarse contacts in all types of 
electrodes). The clinical review thus evaluated four contact groups in 
all lead types.

The clinical evaluation data contained rigidity , ,rigidity i Cs , 
akinesia , ,akinesia i Cs , and tremor , ,tremor i Cs  scores, on a scale of 
integers ranging from zero (no symptoms) to six for each current 
setting at each contact group, along with notes where stimulation 
adverse effects occurred. In cases where a range between successive 

integers was noted as a score, it was transcribed as their average (for 
instance, a symptom score range of “2–3” was transcribed as “2.5” 
for the analysis). The total clinical score ,i Cs  for every current step i 
and coarse contact C  was calculated from the rigidity, akinesia, and 
tremor scores:

	 = + +, , , , , , ,i C rigidity i C akinesia i C tremor i Cs s s s

An improvement is denoted by a decreasing clinical score sum, 
compared to the clinical score sum at the previous current step. The 
current steps starting from the first adverse effect occurrence were 
excluded from the evaluation.

The difference of the total clinical score was evaluated for 
successive current steps, i (up to the last adverse effect-free current 
step, I ) and scaled by the number of current steps divided with the 
upper bound of possible current steps ( =max 8I  for our dataset) to 
prioritise faster improvements (with lower currents) and with the 
same linear scaling for all contacts, independently of the number of 
recorded current steps. The cumulative sum of the scaled differences 
was calculated for every current step, and scaled by the initial total 
clinical score (current step = 0i , with no current applied):

	

( )
δ

−
=

 −
− − 

 
=
∑ , 1,

max1
,

0,

11
I

i C i C
i

I C
C

is s
I

s

with lower negative values of δ ,I C meaning greater improvement.
The best improvement for every contact was compared to the 

average of the improvements of all four contacts:
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The clinical review scaling factor κ  was calculated by scaling the 
improvements of each contact to add up to 1, and calculating their 
ratio over ¼ (which would be their value if all four contacts achieved 
the same non-zero improvement):

	

β
β

κ =
∑

, 1
4

C

CC
coarse C

Since the clinical review performed in the clinical centre makes 
no distinction between the directional contacts (c) for every group of 
contacts C , the same value was used for all included 
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For the non-directional electrodes, the coarse evaluation contacts 
correspond to the physical contacts, so the same values were used:

	 κ κ− =, ,non directional c coarse C

Depending on the electrode type (directional or non-directional), 
κ ,c  was set to κ ,directional c or κ − ,non directional c  respectively.

Combined score
For each contact, a coefficient based on the clinical scaling factor 

κc , expressed as ( )κ+ −1 1 c  (to centre it around 1, with greater 
improvements approaching 0), was added to the geometry score 

,geometry Cs  with 50% weight, according to:

	
( )( )κ= ⋅ + ⋅ + − ⋅, ,

1 1 1 1
2 2c geometry c c geometry cS s s

Based on the value of the combined score cS , the contacts with the 
two to three lowest scores were selected. The third contact was added 
for directional leads, only if (a) its score was tied with the second 
contact, or (b) if the score difference between the second and third was 
smaller than that between the first and second contacts and also 
smaller than the score of the top-ranked contact.

For the non-directional electrodes, the selection was restricted to 
the two best contacts. The second contact was added if its score 
difference from the first contact was smaller than the first contact’s score.

VTA modelling and overlap
The volume of activated tissue was calculated using OSS-DBS v2 

(Butenko et al., 2020), at an electric field threshold of 200 mV/mm 
(Brown, 2017). The standalone OSS-DBS was preferred over the 
default Lead-DBS-integrated methods since it allows more flexibility 
in iterative settings modification for contacts and currents, and 
operates in the patient-specific native space, which eliminates 
discrepancies introduced by co-registration. For the simulated 
stimulations, the standard recommended settings were used 
(monopolar stimulation, 130 Hz, 60 μs pulse trains; Picillo et  al., 
2016; Volkmann et al., 2006). The VTA was calculated as a mesh by 
thresholding the electric field magnitude. The default solver iteration 
limit was increased to 5,000 steps, to avoid non-converging runs. The 
default OSS-DBS behaviour of generating a “success” file was disabled 
to allow multithreading.

The coordinates of the electrode contacts (including subcortical 
refinement/brainshift corrections) were retrieved from the 
pre-processed Lead-DBS reconstruction files. The DISTAL atlas 
(Ewert et al., 2018) was used, since it includes the histological labels 
necessary to calculate precise electric fields, as well as STN parcellation 
into the motor, associative and limbic subregions. Similarly, the 
coordinates of the STN subregions were retrieved from the 
pre-processed Lead-DBS native-space coordinates files. The electric 
fields were generated directly by OSS-DBS in VTK format.

To calculate VTA overlap with STN subregions, the coordinate 
sets provided by Lead-DBS were converted into convex hulls using the 
Delaunay method. Overlap metrics were computed as (i) the 
proportion of STN subregion mesh intersecting the VTA (motor, 
limbic and associative), and (ii) the fraction of VTA mesh intersecting 
the motor STN region.

Current selection
Next, the following current selection was performed for the set of 

contacts, pre-selected in the previous step, using VTA calculation and 
its overlap with STN subregions.

To estimate the stimulation current needed, an initial VTA was 
calculated for a 4 mA current ( initialI ), which typically covers a 
substantial portion of the motor STN subregion and represents a 
typical upper-bound from a clinical perspective. The selected electric 
field threshold (200 mV/mm) was divided with the median electric 
field over the motor STN, to derive a scaling factor for the initial 
current accounting for conductivity variations in the 

medium:
	

 
=   

 , .

threshold
suggested initial

median initial

EI I
E

The median field magnitude was preferred over the average as a 
more robust measure for field intensity distributions with large spikes 
(for example, cases where the electrode may be located too close to the 
target region). The current was rounded to the closest 0.1 mA. For the 
single current selection, if the selected current was lower than 1 mA, 
1 mA was selected, and clipped at 3.5 mA if it exceeded that value.

The final result consists of the contact and current selection, and 
the overlap of the VTA with motor and non-motor areas. An 
important output in judging the contact and current selection efficacy 
is the fraction of the VTA that is contained within the motor 
subregion. Additionally, we calculate the current-normalised values 
for these overlaps, to gauge the efficacy of the contact selection.

A GUI tool for parameter setting

The aforementioned method is implemented as a Python-based 
GUI (Supplementary Figure S2) app (Mikroulis, 2025) and provides 
the recommended settings in CSV format. These results include the 
contact selections (for up to three directional contacts in Medtronic 
B33-series and Abbott 617x leads, by default), the current estimates 
for the 200 mV/mm median electric field threshold in the motor STN, 
and the corresponding overlaps with the STN subregions as fractions. 
Additionally, to facilitate exploration of the space of possible 
parameter settings by the user, the VTAs for four more currents (0.8, 
1.6, 2.4, 3.2 mA) can be optionally calculated (for a total of up to six 
current—VTA pairs). The resulting parameters, including subregion 
overlaps, are interpolated using a cubic spline fit over the range of 0.5 
to 4 mA for the three subregions of the STN and presented in an 
interactive window. An additional assisting tool highlights a range of 
current values to optimise motor STN coverage against VTA outside 
the motor STN subregion, limbic STN coverage, and associative STN 
coverage, using a selectable minimum percentage of the corresponding 
harmonic mean range (over the entire current range).

Output evaluation

The contact and current settings, suggested by the proposed 
method, were compared against the clinical DBS settings used by 
patients. As most patients were followed longitudinally, often with 
multiple adjustments over time, only the earliest complete set of 
stimulation parameters was analysed to minimise confounding 
effects from disease progression, electrode drift, or current 
increases. For patients programmed using voltage-controlled 

https://doi.org/10.3389/fnins.2025.1661987
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Mikroulis et al.� 10.3389/fnins.2025.1661987

Frontiers in Neuroscience 05 frontiersin.org

stimulation, current values were derived using the recorded 
electrode impedance. In cases involving interleaved stimulation, 
the effective current was calculated as a weighted average based on 
the duty cycle duration, pulse duration, and frequency of 
each setting.

The contact selection between the two methods (algorithm-
based and clinical settings) was compared with a Jaccard index. For 
each implanted electrode, the cross-method Jaccard index was 
calculated from the ratio of coinciding contacts selected by both 
methods over the set of all selected contacts by either method. For 
directional contacts, all the subcontacts were considered for 
this calculation.

Outcome prediction

Motor symptom improvement was estimated using a subset of 
patients (n = 50) who underwent UPDRS-III evaluation of DBS 
efficacy within 3 years post-surgery. Of these, a smaller group 
(n = 18) had their first UPDRS-III assessment conducted during the 
same visit in which DBS settings were first recorded (6–12 months 
postoperatively), while the remaining patients had delayed 
assessments occurring 1 to 3 years after surgery. For each patient, 
the relative motor improvement was calculated using paired 
UPDRS-III scores with stimulation turned on and off during the 
same visit:

	

−: :

:

DBS off DBS on

DBS off

score score
score

Two related variables were used to predict the improvement: (i) 
normalised motor-STN coverage as a measure of contact selection 
effectiveness, and (ii) current (mA) as a measure of stimulation 
strength affecting the size of the VTA.

A random forest regression model was trained using a maximum 
tree depth of seven splits, as performance plateaued beyond depth six 
and showed no further improvement at depths eight or nine. To 
reduce variance and stabilise predictions, the model was configured 
with 5,000 estimators.

Results

Output overview

In total, the algorithm was evaluated on 174 implantations from 
87 patients. Figure  1 shows examples of the resulting stimulation 
settings, visualized using VTA approximation in Lead-DBS 
(Figures 1A,B), or directly using the thresholded electric field data 
from OSS-DBS (Figures  1C,D, see 3D models in the 
Supplementary material).

Comparison with clinical settings

The contact selection was assessed in comparison to the clinical 
settings, in two different scenarios: (a) without any clinical 

information, and (b) using clinical review data (weighted at 50%). 
The contact selection overlapped in approximately 80% of the cases 
(Figures  2A,B). To quantify the overlaps, for each implant, a 
Jaccard index was calculated between the expert-selected contacts 
and the algorithm-selected contacts (expressed as the intersection 
of the two contact sets over their union). This quantification 
showed slightly increased partial overlaps with the expert contact 
selections when the clinical review information was used 
(Figure 2C).

The VTAs generated with the algorithm-selected contacts and 
current outperformed the manual expert settings in terms of motor 
STN coverage (Hedges’ g > 0.94, Wilcoxon p < 5e-13) and VTA 
containment within the motor STN (g > 0.46, p < 2e-10; 
Figures  3A,C—detailed breakdown presented in 
Supplementary Table S1). Although the algorithm-selected currents 
were similar to the expert settings (Supplementary Table S1), 
we  evaluated the relative efficacy of the contact selection by 
normalising the calculated VTA overlap with the motor-STN 
subregion (Figure 3B), and the portion of the calculated VTA within 
motor-STN boundaries (Figure 3D), dividing with the algorithm-
selected currents, and compared them with the corresponding motor 
STN and VTA fractions when using the expert-selected settings—also 
normalised by the current indicated in the expert settings. For both 
comparisons we observed an improvement in terms of the normalised 
overlaps over the expert settings. The difference was particularly 
pronounced for the motor STN coverage (Hedges’ g > 0.79, p < 2e-20), 
and smaller for the VTA containment within the motor STN (g > 0.07, 
p < 0.03). The inclusion of clinical review data had a minor influence 
on these measures (motor STN coverage: g = 0.17, VTA containment: 
g = 0.19).

Predicted improvement

To evaluate the potential benefit of the calculated settings on 
patient outcomes, we compiled a subset of 50 patients with a recorded 
DBS evaluation using UPDRS-III in the first 3 years after surgery. An 
improvement ratio was calculated from the difference of UPDRS-III 
scores with DBS stimulation on vs. DBS stimulation off, normalised 
by the DBS-off score. To estimate the predicted improvement 
associated with the calculated settings, we trained a random forest 
regressor using two predictors: current-normalised motor STN 
coverage (reflecting contact selection effectiveness), and the 
stimulation current applied.

The regressor predicted the observed improvements with 
MSE = 0.0095, R2 = 0.692 (Supplementary Figure S1A). Predicted 
improvement scores were comparable between clinical (median: 39.5%) 
and algorithm-derived settings (36.2% without clinical review data—
39.0% with clinical review data, n = 174; see Supplementary Figure S1B). 
This predicted similarity between clinical and algorithm-derived 
settings was consistent regardless of whether clinical review data were 
incorporated, with Hedges’ g ranging from 0.05 to 0.08 and Wilcoxon 
p-values between 0.096 and 1 (Supplementary Figure S1B). We noted, 
however, a minor (g = 0.12) but statistically significant difference 
(p = 0.004) between the predicted improvements of the two algorithm-
derived setting sets, with the incorporation of the clinical review 
information yielding slightly increased predicted improvements, closer 
to the expert-selected clinical settings.
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Discussion

The method developed here aims to provide a faster and accurate 
alternative to the trial-and-error approach of manual DBS 
programming. Following existing guidelines and practices (Picillo 
et al., 2016), we prioritise monopolar stimulation settings. While the 
selected contacts could also be employed in bipolar configurations––
potentially enhancing electric field steering and expanding target 
coverage––this would require additional considerations regarding 
contact polarity. Accurate polarity assignment typically depends on 
detailed neuroanatomical (through tractography, at minimum) or 
electrophysiological data, or necessitates further clinical evaluation, 
which fall outside the scope of this automated approach with minimal 
data inputs.

Increased contact selection accuracy

Contact selection performance was evaluated by normalising the 
overlap between the calculated VTA and the motor STN by the 
stimulation current, yielding a measure of motor STN coverage per 
mA. The algorithm-derived settings demonstrated a small but 
statistically significant increase in current-normalised motor STN 
activation compared to clinically selected contacts. This suggests that 
the proposed method identifies more effective contact 
configurations––at a given implant position––for selectively targeting 
the motor subregion of the STN.

Similarly, we calculated the motor-STN and VTA overlap as a 
fraction of the VTA, also normalised with the current. Comparing 
this variable between manually selected clinical settings and the 

FIGURE 1

Visualisation of the VTA for clinically selected, patient settings and algorithm-selected settings. (A,B) Visualisation of the VTA approximation by Lead-
DBS, using (A) patient settings and (B) algorithm-selected settings (red: VTA approximation, light orange: STN, cyan: motor subregion of the STN). (C,D) 
Visualisation of the VTA estimated by OSS-DBS at a minimum field intensity of 200 mV/mm, with the same settings as (A,B), using (C) patient and 
(D) algorithm-selected settings (cyan: VTA estimate, pink: motor STN subregion, purple: overlap).
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calculated settings showed that a larger portion of the VTA (per 
current unit) is contained within the target region (motor STN) 
when using the calculated settings compared to the manually 
adjusted settings. This significantly reduces electric field leakage in 
the milieu, by containing more of the high-intensity area within the 
target region.

Taken together, the differences in these two variables show better 
selective activation of the target area (motor STN in this case) when 
using the calculated contact selection.

Discrepancies with the clinical settings

Exact matches occurred in only nine implantation instances 
without clinical review input and in 10 instances when clinical review 

data were included, due to the procedural difference in contact 
selection between the two methods. The algorithm, with the settings 
used in this study, selects up to three sub-contacts out of a maximum 
of eight (in the case of directional electrodes). The clinicians, however, 
predominantly select entire (sub-)contact groups, matching the 
clinical review resolution. Thus, the only perfectly matching cases are 
limited to non-directional electrodes where up to two (out of four) 
contacts are selected by both methods.

The algorithm’s current selection strategy aims to achieve a 
median electric field intensity in the target structure equal to the VTA 
threshold, optimising stimulation precision. This approach yields 
similar or better absolute coverage of the motor STN compared to 
manually adjusted clinical settings, and current-normalised analyses 
reveal greater efficiency per unit of current. To mitigate potential 
under-estimation or over-estimation of the current with the automated 

FIGURE 2

Contact selection similarity between expert-selected patient settings and algorithm-selected settings. (A,B) Partial overlap in the algorithm’s contact 
selection with the expert-selected contacts, based on the Jaccard index between these two contact sets per implant, (A) without the integration of 
clinical review information and (B) with the integration of the clinical review information. (C) Empirical cumulative distribution of the Jaccard indices 
between expert and algorithm contact selections, when using (blue) and not using (orange) the clinical review data.
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method and allow further fine-tuning, we provide an additional tool 
to facilitate exploration of different currents and their effects on STN 
subregion coverage.

Comparison with alternative methods

Most recently proposed methods for initial DBS settings 
optimisation aim to improve the patient outcome directly (Boutet 
et al., 2021; Qiu et al., 2024; Roediger et al., 2022) or approximate a 
desired volume of tissue activation (Connolly et  al., 2021), using 
statistics from large patient data pools. By contrast, our method aims 
to optimise the stimulation of brain structures (STN in this instance) 
modulating the symptoms of the disease. Among data-driven 
methods, our approach most closely aligns with the StimFit toolbox 
(Roediger et al., 2022), which also leverages patient-specific MRI data 
for automated DBS programming.

Our predicted improvement, predicted to be similar to expert 
settings based on retrospective analysis, is also comparable with the 
non-inferiority to standard care achieved by the StimFit solution 
(Roediger et  al., 2023). However, our method introduces a few 
advantages: it integrates clinical review data when available, explicitly 
targets the motor subregion of the STN to optimise motor symptom 
control and operates without the need for pre-trained statistical 
models––substantially reducing computational and data 
acquisition demands.

Another closely related anatomy-guided approach is the sweet 
spot-guided algorithm proposed by Nordenström et al. (2022), which 
uses Lead-DBS for lead reconstruction and VTA overlap with an 
empirical sweet spot (derived from prior cohorts) to suggest lead levels, 
contacts, and effect thresholds for rigidity reduction. While this method 
provides interpretable suggestions via a Matlab/Lead-DBS-based GUI, 
it relies on approximations like spherical VTA models for speed, which 
may affect precision. Our pipeline builds on similar foundations but 

FIGURE 3

Comparison of calculated settings (with or without clinical lead contact review information) to the expert-selected patient settings. (A) coverage of the 
motor STN, using algorithm-selected settings (with and without clinical review integration) and expert-selected contacts (patient settings), (B) current-
normalised coverage of the motor STN using algorithm-selected settings (contacts and currents—with and without clinical review integration) and 
expert-selected settings (patient settings), (C) fraction of the VTA contained within the motor STN using algorithm-selected settings (contacts and 
currents—with and without clinical review integration) and expert-selected settings (patient settings), (D) current-normalised VTA contained within the 
motor STN using algorithm-selected settings (contacts and currents—with and without clinical review integration) and expert-selected settings (patient 
settings). Wilcoxon test p-values are indicated for paired comparisons.
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opts for direct targeting of the motor STN centroid from atlas-based 
parcellation, relying on OSS-DBS for higher-resolution electric field 
modelling, and incorporating multi-symptom clinical reviews, enabling 
further patient-specific fine-tuning without predefined sweet spots.

Other state-of-the-art approaches, such as Bayesian optimisation 
and particle swarm optimisation, have been proposed to efficiently 
explore the stimulation parameter space. Bayesian optimisation has 
been applied to reduce the number of required trials by iteratively 
minimising rigidity based on prior clinical responses (Louie et al., 
2021), while particle swarm optimisation method was designed to 
address complex electrode configurations with segmented leads, and 
optimise stimulation amplitudes (Peña et al., 2018).

However, these techniques are primarily outcome-driven and do 
not currently provide structural substrate-centric metrics or predicted 
improvement values, limiting the feasibility of direct comparison with 
our anatomy-based method. Similarly, multimodal biomarker-guided 
methods, like that of Shah et al. (2023), combine resting/movement-
state LFPs with imaging to predict clinical efficacy and side-effect 
thresholds, achieving ~90% accuracy in optimal contact selection but 
requiring intraoperative electrophysiological data not routinely 
available in our workflow. Connectomic-based programming, as in 
Hines et al. (2024), optimises pathway recruitment using detailed 
axonal models, yielding 43.5% UPDRS-III improvements, but requires 
advanced computational resources compared to our simulation-
focused approach. fMRI-driven algorithms, such as Santyr et  al. 
(2024), demonstrate non-inferior motor outcomes to standard care in 
a blinded trial but rely on functional scans, contrasting our emphasis 
on routine anatomical MRI for broad clinical accessibility.

Limitations

The method relies on pre-operative and post-operative MRI data. 
Since the brain structures are directly derived from the pre-operative 
images and the electrode position is derived from the post-operative 
scan, the output is sensitive to the time delay between pre- and post-
operative inputs. Increased time intervals between the pre-operative 
MRI scans and the post-operative scans may introduce errors both in 
electrode localisation relative to the target structures, due to random 
electrode drifts, as well as changes in the localisation of the brain 
structures themselves, as a result of ageing or disease progression. This 
is expected to progressively reduce the accuracy of the method for 
long-term parameter adjustments, without error corrections for the 
MRI inputs.

Our method considers two parameters: contact selection, and 
current selection. Multiple additional parameters have to be assigned 
by the clinicians, including frequency of stimulation, pulse width/
shape, possible interleaved stimulations, and bipolar settings. Most of 
these parameters are usually preset to well-documented values, and 
are only changed later in the decision process, if necessary (Picillo 
et  al., 2016). Accordingly, we  prioritised the most time-intensive 
component of initial DBS programming: contact and current selection.

In the case of current estimation, our method targets the centroid 
of the motor STN subregion while applying predefined lower and 
upper bounds to ensure clinical plausibility. Thus, the suggested 
current values should be interpreted as an informed starting point 
rather than definitive therapeutic settings.

Additionally, in the present study, the input of the clinical review 
data was weighed equally with the geometry-based calculation. This 
may be  unsuitable if the clinical review information is highly 
prioritised, for instance, to ensure a minimum stimulation 
effectiveness or minimising side effects. In such scenarios, increasing 
the weighting of clinical inputs may enhance the method’s alignment 
with clinical priorities and patient-specific therapeutic goals. 
Furthermore, future prospective studies with standardised side-
effect logging could correlate non-motor STN coverage with specific 
adverse effects.

Finally, this study was retrospective in nature, with predicted 
motor improvement derived from a subset of patients—limited by 
digitised records availability—who had early UPDRS-III evaluation 
records following DBS implantation. Although the predicted 
outcomes are consistent with those reported by comparable 
methods (i.e., similar to expert settings), a prospective clinical trial 
will be necessary to validate the effectiveness of this approach with 
greater certainty.

Conclusion

This study presents a personalised, interpretable method for DBS 
parameter selection that leverages routinely acquired anatomical 
imaging and optionally available clinical evaluation data.

By integrating patient-specific MRI with clinical evaluation data 
and established DBS modelling tools, we demonstrate a significant 
improvement in targeting the motor subregion of the STN compared 
to expert settings, and predict similar improvements in clinical 
outcomes. This represents a promising patient-specific, low-overhead 
improvement over common clinical standard practice, aiming to 
accelerate the initial DBS optimisation steps close to their optimal 
state for targeting PD motor symptoms.
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