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Background: Optimisation of Deep Brain Stimulation (DBS) settings is a key
aspect in achieving clinical efficacy in movement disorders, such as the
Parkinson'’s disease. Modern techniques attempt to solve the problem through
data-intensive statistical and machine learning approaches, adding significant
overhead to the existing clinical workflows. Here, we present a geometry-
based optimisation approach for DBS electrode contact and current selection,
grounded in routinely collected MRI data, well-established tools (Lead-DBS) and
optionally, clinical review records.

Methods: The pipeline, packaged in a cross-platform tool, uses lead
reconstruction data and simulation of Volume of Tissue Activated (VTA) to
estimate the contacts in optimal position relative to the target structure, and
suggests optimal stimulation current. The tool then allows further interactive
user optimisation of the current settings. Existing electrode contact evaluations
can be optionally included in the calculation process for further fine-tuning and
adverse effect avoidance.

Results: Based on a sample of 174 implanted electrode reconstructions
from 87 Parkinson’s disease patients, we demonstrate that our algorithm’s
DBS parameter settings are more effective in covering the target structure
(Wilcoxon p < 5e-13, Hedges' g > 0.94) and minimising electric field leakage
to neighbouring regions (p < 2e-10, g > 0.46) compared to expert parameter
settings. Retrospective analysis of a limited subset (n = 50) predicts comparable
improved motor outcomes with expert settings (g = 0.05-0.08, p = 0.09-1),
suggesting potential for similar clinical efficacy, pending prospective validation.
Conclusion: The proposed automated method for optimisation of the DBS
electrode contact and current selection shows promising results and is readily
applicable to existing clinical workflows. We demonstrate that the algorithmically
selected contacts perform better than manual selections according to electric
field calculations, without the iterative optimisation procedure.
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deep brain stimulation, optimisation, MRI, Parkinson'’s disease, subthalamic nucleus,
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Introduction

Deep Brain Stimulation (DBS) is a treatment method for late-
stage Parkinson’s disease (PD), aiming to minimise symptoms (Hariz
and Blomstedt, 2022). It involves precise electrical stimulation that
aims to modulate aberrant neural activity. Despite its clinical success,
DBS parameters have to be optimised for each patient, leading to
complex, empirical adjustments over several clinical visits. As a
result, traditional DBS optimisation protocols are time-intensive,
costly and burdensome for patients (Picillo et al., 2016; Volkmann
et al., 2006).

Modern optimisation approaches attempt to resolve these issues
through machine learning methods, such as autoencoder-based
feature extraction and probabilistic models (Boutet et al., 2021; Qiu
etal., 2024; Roediger et al., 2022). These methods excel in predicting
the optimal stimulation parameters based on complex datasets,
including functional magnetic resonance imaging (fMRI) response
maps. However, their accuracy often comes at the cost of explainability,
which may limit their adoption in clinical settings, where
recommendations require a clear reasoning. Additionally, these
techniques frequently rely on large-scale, high-dimensional datasets,
which can be resource-intensive and clinically impractical. More
specifically, the most recent approaches require machine learning
models to be pretrained or additional pre-computed data; this
requirement can be a discriminant analysis model (Boutet et al., 2021),
a multilayer perceptron (Qiu et al., 2024), a collection of pre-compiled
statistical models (Roediger et al., 2022), or fibre tract modelling and
an additional, NEURON-based simulation step (Pefia et al., 2018). For
instance, imaging and electrophysiology-driven methods using
connectomic modelling or advanced imaging modalities, such as
functional MRI, have shown promise in guiding DBS programming
but often require data not routinely collected in standard clinical
workflows, including task-based or resting-state fMRI scans,
connectomic reconstructions, or specialised electrophysiological
recordings (Shah et al., 2023; Hines et al., 2024; Santyr et al., 2024).

Older works have explored biophysical modelling driven by
imaging data to optimise DBS parameters, leading to explainable
recommendations. The proposed pipelines for implementing this
approach rely on either custom-coded FEM solutions (Anderson
et al., 2018) or commercial visualisation software, used with fixed
currents (Waldthaler et al., 2021), and operate in a manual or semi-
manual manner. Similarly, sweet spot-guided algorithms have been
developed to suggest contacts and amplitudes based on predefined
empirical regions in the Subthalamic Nucleus (STN), using Volume of
Tissue Activataed (VTA) approximations within Lead-DBS
(Nordenstrom et al., 2022); however, these may depend on cohort-
derived sweet spots and simplified spherical models, potentially
limiting adaptability to individual patient anatomy.

In this study, we propose an open-source, cross-platform,
GUI-based pipeline for stimulation parameter programming (i.e.,
electrode contact and current selection) that can be directly optimised
through electric field calculations and its overlap with the targeted
structure, based entirely on anatomical data from imaging and
geometry principles. Our approach integrates magnetic resonance
imaging (MRI) with a processing pipeline building upon well-
documented DBS simulation tools to optimise DBS parameters in a
manner that is minimally demanding in terms of data requirements,
while incorporating input from personalised clinical evaluations.
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Our processing pipeline utilises established processing tools:
the Lead-DBS (Horn and Kiihn, 2015) reconstruction of the
implant, to derive the geometry of individual electrode contacts and
the target structure of the stimulation, and OSS-DBS (Butenko
et al., 2020) to perform fast, adjustable calculations of the reach of
the electric field into the target structure. Clinical evaluations of the
patient’s response to individual electrode contact and current
selection during the initial clinical visit can be optionally integrated
into the optimization procedure. Importantly, we prioritise simple
user interaction, only requiring a reconstruction of the implant (in
Lead-DBS format) and clinical evaluation of the electrode contacts
and currents, if available.

We are evaluating our method using retrospective clinical data
targeting the motor (dorso-lateral) subregion of the STN, which is a
common target with demonstrated involvement in generating
Parkinson’s Disease symptoms (Hacker et al., 2023; Vitek et al., 2022).
This single-patient approach contrasts with prevailing machine
learning-based methods by prioritising clinical utility, computational
efficiency, with a lower setup and manual operation barrier compared
to prior imaging-based methods, and robust integration with existing
clinical data collection and basic reconstruction workflows.

Materials and methods
Patients and data

This study uses data from 104 patients with Parkinson’s disease
who underwent bilateral implantation of deep brain stimulation
electrodes (Medtronic 3,389, Medtronic B33 series, or Abbott 6,172),
targeting the STN. In total, MRI data from 104 patients were
processed, with 87 patients also having corresponding clinical review
information and at least one hemisphere with documented stimulation
settings. This yielded 174 implantation instances meeting all inclusion
criteria for direct comparison.

All participants provided written informed consent to participate
in the study upon enrolment. The study was approved by Ethics
Committee of the General University Hospital in Prague (case number
59/18) and conducted in alignment with the Declaration of Helsinki.
The data were sourced retrospectively from records of the iTEMPO
department of the Neurology clinic, General University Hospital in
Prague. For this dataset, the (average + standard deviation) age at PD
onset was 45 + 8.6 (n = 64), and the age at DBS surgery was 56.2 + 8.8
(n = 87). The surgeries for the DBS implants were performed between
2007 and 2023. A discrepancy between the numbers of patients with
a PD onset record compared to the DBS surgery record is noted, due
to incomplete reporting for some patients (hospital transfers).

We incorporated clinical evaluations of electrode contacts, done
during initial stimulation setup at a clinical visit after implantation.
The records indicated that the clinical review was performed in four
contact group configurations per hemisphere: (i) individually
activated edge contacts, (ii) separately tested middle non-directional
contacts, or two groups of three radially arranged directional
contacts in the case of directional leads. These groups were
stimulated across incremental current levels ranging from 0.5 mA to
4.0 mA in 0.5 mA steps, with assessments focused on clinical
improvement in rigidity, akinesia, and tremor, as well as thresholds
for adverse effects.
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Statistical analyses were conducted using the SciPy and Pingouin
libraries, with Bonferroni-corrected Wilcoxon signed-rank tests for
pairwise comparisons.

MRI data processing

Pre-operative (3 T) and post-operative (1.5 T) MRI images (Nifti
format) were imported into the Lead-DBS toolbox (Horn and Kiihn,
2015), for atlas co-registration (using the SPM method; Friston et al.,
2007), normalisation (using the ANTs method; Avants et al., 2008 with
SyN nonlinear transform and mutual information metric), subcortical
brainshift correction (Schonecker et al, 2009), and electrode
reconstruction performed manually in Lead-DBS. The reconstructions
were performed and validated by an expert neurologist.

All subsequent volume and coordinate processing was done after
conversion back to the native patient space for each subject.

Optimisation method

The proposed method, outlined below, consists of two steps: (i)
contact selection based on the spatial configuration of the STN and
the stimulation lead, and (ii) current selection, based on modelling of
the Volume of Tissue Activated (VTA). In the second step, two
variants of the method were evaluated: (a) geometry-based method
only, and (b) a variant considering the clinical review with test
stimulation in addition to the geometry-based method. The method
python-based GUI
(Supplementary Figure S2; Mikroulis, 2025).

is available as a standalone tool

Contact selection

Geometry score

To identify the optimal contacts, we calculated their spatial
relationship to the centre of mass of the motor subregion of the
STN. Two geometric features were considered for each contact: (i) the
Euclidean distance to the motor STN centroid, and (ii) the rotation
angle between the contact and the centroid, relative to the electrode
axis (for directional contacts). As these metrics differ in scale and
units, they were independently ranked from lowest to highest across
all contacts. The ranks were then summed to yield a geometry-based
score for each contact s geopmetry,c: For non-directional electrodes, and
for edge contacts on directional electrodes where rotation is
undefined, only distance was used; in such cases, a nominal angle of
90° was assigned to preserve consistency across contact types.

Clinical review-based score

The clinical review data only contained coarse contact groups
(radially distributed directional contacts were evaluated as a single
contact, making up a total of four coarse contacts in all types of
electrodes). The clinical review thus evaluated four contact groups in
all lead types.

The clinical evaluation data contained rigidity sngdity.i,c>
akinesia Sgkinesia,i,c> and tremor Syeporic scores, on a scale of
integers ranging from zero (no symptoms) to six for each current
setting at each contact group, along with notes where stimulation
adverse effects occurred. In cases where a range between successive
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integers was noted as a score, it was transcribed as their average (for
instance, a symptom score range of “2-3” was transcribed as “2.5”
for the analysis). The total clinical score s; ¢ for every current step i
and coarse contact C was calculated from the rigidity, akinesia, and
tremor scores:

Si,C = Srigidity,i,C t Sakinesia,i,C t Stremor,i,C

An improvement is denoted by a decreasing clinical score sum,
compared to the clinical score sum at the previous current step. The
current steps starting from the first adverse effect occurrence were
excluded from the evaluation.

The difference of the total clinical score was evaluated for
successive current steps, i (up to the last adverse effect-free current
step, I') and scaled by the number of current steps divided with the
upper bound of possible current steps (I, =8 for our dataset) to
prioritise faster improvements (with lower currents) and with the
same linear scaling for all contacts, independently of the number of
recorded current steps. The cumulative sum of the scaled differences
was calculated for every current step, and scaled by the initial total
clinical score (current step i =0, with no current applied):

i(si,c _Si—l,c)[l—;_l]

_ il max
Src=

S0,C

with lower negative values of 57 ¢ meaning greater improvement.
The best improvement for every contact was compared to the
average of the improvements of all four contacts:

mind; ¢
i

i N—
ZZC=OZ§i’C
1

The clinical review scaling factor x was calculated by scaling the
improvements of each contact to add up to 1, and calculating their
ratio over % (which would be their value if all four contacts achieved
the same non-zero improvement):

Bc
2

Kcoarse,C =

»J;\»—‘%
a

Since the clinical review performed in the clinical centre makes
no distinction between the directional contacts (c) for every group of
used for all included

contacts C, the same value was

directional contacts:

Kcoarse,0,¢ =0
Kcoarse,1>€ E|:1>3:|
Kcoarse,2>C €[4>6_

Kcoarse,3:€ =7

Kdirectional,c =
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For the non-directional electrodes, the coarse evaluation contacts
correspond to the physical contacts, so the same values were used:

Knon—directional,c = Kcoarse,C

Depending on the electrode type (directional or non-directional),

K¢s was set to Kdirectional,c or Knon—directional,c respectively.

Combined score

For each contact, a coeflicient based on the clinical scaling factor
K., expressed as 1+(1 - I(C) (to centre it around 1, with greater
improvements approaching 0), was added to the geometry score
S geometry,c With 50% weight, according to:

1 1
Sc = 5 ' SgEOmeﬂ)’,C +5 ' (1 + (1 K )) ’ Sgeometry,c

Based on the value of the combined score S, the contacts with the
two to three lowest scores were selected. The third contact was added
for directional leads, only if (a) its score was tied with the second
contact, or (b) if the score difference between the second and third was
smaller than that between the first and second contacts and also
smaller than the score of the top-ranked contact.

For the non-directional electrodes, the selection was restricted to
the two best contacts. The second contact was added if its score
difference from the first contact was smaller than the first contact’s score.

VTA modelling and overlap

The volume of activated tissue was calculated using OSS-DBS v2
(Butenko et al., 2020), at an electric field threshold of 200 mV/mm
(Brown, 2017). The standalone OSS-DBS was preferred over the
default Lead-DBS-integrated methods since it allows more flexibility
in iterative settings modification for contacts and currents, and
operates in the patient-specific native space, which eliminates
discrepancies introduced by co-registration. For the simulated
stimulations, the standard recommended settings were used
(monopolar stimulation, 130 Hz, 60 ps pulse trains; Picillo et al.,
2016; Volkmann et al., 2006). The VTA was calculated as a mesh by
thresholding the electric field magnitude. The default solver iteration
limit was increased to 5,000 steps, to avoid non-converging runs. The
default OSS-DBS behaviour of generating a “success” file was disabled
to allow multithreading.

The coordinates of the electrode contacts (including subcortical
refinement/brainshift corrections) were retrieved from the
pre-processed Lead-DBS reconstruction files. The DISTAL atlas
(Ewert et al., 2018) was used, since it includes the histological labels
necessary to calculate precise electric fields, as well as STN parcellation
into the motor, associative and limbic subregions. Similarly, the
coordinates of the STN subregions were retrieved from the
pre-processed Lead-DBS native-space coordinates files. The electric
fields were generated directly by OSS-DBS in VTK format.

To calculate VTA overlap with STN subregions, the coordinate
sets provided by Lead-DBS were converted into convex hulls using the
Delaunay method. Overlap metrics were computed as (i) the
proportion of STN subregion mesh intersecting the VTA (motor,
limbic and associative), and (ii) the fraction of VTA mesh intersecting
the motor STN region.
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Current selection

Next, the following current selection was performed for the set of
contacts, pre-selected in the previous step, using VTA calculation and
its overlap with STN subregions.

To estimate the stimulation current needed, an initial VTA was
calculated for a 4 mA current (Iiyitigr), which typically covers a
substantial portion of the motor STN subregion and represents a
typical upper-bound from a clinical perspective. The selected electric
field threshold (200 mV/mm) was divided with the median electric
field over the motor STN, to derive a scaling factor for the initial
conductivity variations in the

Ethreshold

current accounting for

medium: Isuggested = Linitial
median,initial.

The median field magnitude was preferred over the average as a
more robust measure for field intensity distributions with large spikes
(for example, cases where the electrode may be located too close to the
target region). The current was rounded to the closest 0.1 mA. For the
single current selection, if the selected current was lower than 1 mA,
1 mA was selected, and clipped at 3.5 mA if it exceeded that value.

The final result consists of the contact and current selection, and
the overlap of the VTA with motor and non-motor areas. An
important output in judging the contact and current selection efficacy
is the fraction of the VTA that is contained within the motor
subregion. Additionally, we calculate the current-normalised values
for these overlaps, to gauge the efficacy of the contact selection.

A GUI tool for parameter setting

The aforementioned method is implemented as a Python-based
GUI (Supplementary Figure S2) app (Mikroulis, 2025) and provides
the recommended settings in CSV format. These results include the
contact selections (for up to three directional contacts in Medtronic
B33-series and Abbott 617x leads, by default), the current estimates
for the 200 mV/mm median electric field threshold in the motor STN,
and the corresponding overlaps with the STN subregions as fractions.
Additionally, to facilitate exploration of the space of possible
parameter settings by the user, the VTAs for four more currents (0.8,
1.6, 2.4, 3.2 mA) can be optionally calculated (for a total of up to six
current—VTA pairs). The resulting parameters, including subregion
overlaps, are interpolated using a cubic spline fit over the range of 0.5
to 4 mA for the three subregions of the STN and presented in an
interactive window. An additional assisting tool highlights a range of
current values to optimise motor STN coverage against VTA outside
the motor STN subregion, limbic STN coverage, and associative STN
coverage, using a selectable minimum percentage of the corresponding
harmonic mean range (over the entire current range).

Output evaluation

The contact and current settings, suggested by the proposed
method, were compared against the clinical DBS settings used by
patients. As most patients were followed longitudinally, often with
multiple adjustments over time, only the earliest complete set of
stimulation parameters was analysed to minimise confounding
effects from disease progression, electrode drift, or current
increases. For patients programmed using voltage-controlled
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stimulation, current values were derived using the recorded
electrode impedance. In cases involving interleaved stimulation,
the effective current was calculated as a weighted average based on
the duty cycle duration, pulse duration, and frequency of
each setting.

The contact selection between the two methods (algorithm-
based and clinical settings) was compared with a Jaccard index. For
each implanted electrode, the cross-method Jaccard index was
calculated from the ratio of coinciding contacts selected by both
methods over the set of all selected contacts by either method. For
directional contacts, all the subcontacts were considered for
this calculation.

Outcome prediction

Motor symptom improvement was estimated using a subset of
patients (n = 50) who underwent UPDRS-III evaluation of DBS
efficacy within 3 years post-surgery. Of these, a smaller group
(n = 18) had their first UPDRS-III assessment conducted during the
same visit in which DBS settings were first recorded (6-12 months
postoperatively), while the remaining patients had delayed
assessments occurring 1 to 3 years after surgery. For each patient,
the relative motor improvement was calculated using paired
UPDRS-III scores with stimulation turned on and off during the
same visit:

SCOTeDRS:off —~SCOTEDBS:0n

SCOTepBS:off

Two related variables were used to predict the improvement: (i)
normalised motor-STN coverage as a measure of contact selection
effectiveness, and (ii) current (mA) as a measure of stimulation
strength affecting the size of the VTA.

A random forest regression model was trained using a maximum
tree depth of seven splits, as performance plateaued beyond depth six
and showed no further improvement at depths eight or nine. To
reduce variance and stabilise predictions, the model was configured
with 5,000 estimators.

Results
Output overview

In total, the algorithm was evaluated on 174 implantations from
87 patients. Figure 1 shows examples of the resulting stimulation
settings, visualized using VTA approximation in Lead-DBS
(Figures 1A,B), or directly using the thresholded electric field data
from OSS-DBS (Figures 1C,D, see 3D models in the
Supplementary material).

Comparison with clinical settings

The contact selection was assessed in comparison to the clinical
settings, in two different scenarios: (a) without any clinical

Frontiers in Neuroscience

10.3389/fnins.2025.1661987

information, and (b) using clinical review data (weighted at 50%).
The contact selection overlapped in approximately 80% of the cases
(Figures 2A,B). To quantify the overlaps, for each implant, a
Jaccard index was calculated between the expert-selected contacts
and the algorithm-selected contacts (expressed as the intersection
of the two contact sets over their union). This quantification
showed slightly increased partial overlaps with the expert contact
selections when the clinical review information was used
(Figure 2C).

The VTAs generated with the algorithm-selected contacts and
current outperformed the manual expert settings in terms of motor
STN coverage (Hedges g > 0.94, Wilcoxon p < 5e-13) and VTA
containment within the motor STN (g> 046, p< 2e-10;
3A,C—detailed
Supplementary Table S1). Although the algorithm-selected currents

Figures breakdown presented in
were similar to the expert settings (Supplementary Table SI),
we evaluated the relative efficacy of the contact selection by
normalising the calculated VTA overlap with the motor-STN
subregion (Figure 3B), and the portion of the calculated VTA within
motor-STN boundaries (Figure 3D), dividing with the algorithm-
selected currents, and compared them with the corresponding motor
STN and VTA fractions when using the expert-selected settings—also
normalised by the current indicated in the expert settings. For both
comparisons we observed an improvement in terms of the normalised
overlaps over the expert settings. The difference was particularly
pronounced for the motor STN coverage (Hedges’ g > 0.79, p < 2e-20),
and smaller for the VTA containment within the motor STN (g > 0.07,
p <0.03). The inclusion of clinical review data had a minor influence
on these measures (motor STN coverage: g = 0.17, VTA containment:
g=0.19).

Predicted improvement

To evaluate the potential benefit of the calculated settings on
patient outcomes, we compiled a subset of 50 patients with a recorded
DBS evaluation using UPDRS-IIT in the first 3 years after surgery. An
improvement ratio was calculated from the difference of UPDRS-III
scores with DBS stimulation on vs. DBS stimulation off, normalised
by the DBS-off score. To estimate the predicted improvement
associated with the calculated settings, we trained a random forest
regressor using two predictors: current-normalised motor STN
coverage (reflecting contact selection effectiveness), and the
stimulation current applied.

The regressor predicted the observed improvements with
MSE =0.0095, R*=0.692 (Supplementary Figure S1A). Predicted
improvement scores were comparable between clinical (median: 39.5%)
and algorithm-derived settings (36.2% without clinical review data—
39.0% with clinical review data, n = 174; see Supplementary Figure S1B).
This predicted similarity between clinical and algorithm-derived
settings was consistent regardless of whether clinical review data were
incorporated, with Hedges’ g ranging from 0.05 to 0.08 and Wilcoxon
p-values between 0.096 and 1 (Supplementary Figure S1B). We noted,
however, a minor (g=0.12) but statistically significant difference
(p = 0.004) between the predicted improvements of the two algorithm-
derived setting sets, with the incorporation of the clinical review
information yielding slightly increased predicted improvements, closer
to the expert-selected clinical settings.
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FIGURE 1

Visualisation of the VTA for clinically selected, patient settings and algorithm-selected settings. (A,B) Visualisation of the VTA approximation by Lead-
DBS, using (A) patient settings and (B) algorithm-selected settings (red: VTA approximation, light orange: STN, cyan: motor subregion of the STN). (C,D)
Visualisation of the VTA estimated by OSS-DBS at a minimum field intensity of 200 mV/mm, with the same settings as (A,B), using (C) patient and

(D) algorithm-selected settings (cyan: VTA estimate, pink: motor STN subregion, purple: overlap).

Discussion

The method developed here aims to provide a faster and accurate
alternative to the trial-and-error approach of manual DBS
programming. Following existing guidelines and practices (Picillo
etal., 2016), we prioritise monopolar stimulation settings. While the
selected contacts could also be employed in bipolar configurations——
potentially enhancing electric field steering and expanding target
coverage——this would require additional considerations regarding
contact polarity. Accurate polarity assignment typically depends on
detailed neuroanatomical (through tractography, at minimum) or
electrophysiological data, or necessitates further clinical evaluation,
which fall outside the scope of this automated approach with minimal
data inputs.

Frontiers in Neuroscience

Increased contact selection accuracy

Contact selection performance was evaluated by normalising the
overlap between the calculated VTA and the motor STN by the
stimulation current, yielding a measure of motor STN coverage per
mA. The algorithm-derived settings demonstrated a small but
statistically significant increase in current-normalised motor STN
activation compared to clinically selected contacts. This suggests that
identifies

configurations——at a given implant position——for selectively targeting

the proposed method more effective contact
the motor subregion of the STN.

Similarly, we calculated the motor-STN and VTA overlap as a
fraction of the VTA, also normalised with the current. Comparing

this variable between manually selected clinical settings and the
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FIGURE 2

Contact selection similarity between expert-selected patient settings and algorithm-selected settings. (A,B) Partial overlap in the algorithm’s contact
selection with the expert-selected contacts, based on the Jaccard index between these two contact sets per implant, (A) without the integration of

clinical review information and (B) with the integration of the clinical review information. (C) Empirical cumulative distribution of the Jaccard indices
between expert and algorithm contact selections, when using (blue) and not using (orange) the clinical review data.

calculated settings showed that a larger portion of the VTA (per
current unit) is contained within the target region (motor STN)
when using the calculated settings compared to the manually
adjusted settings. This significantly reduces electric field leakage in
the milieu, by containing more of the high-intensity area within the
target region.

Taken together, the differences in these two variables show better
selective activation of the target area (motor STN in this case) when
using the calculated contact selection.

Discrepancies with the clinical settings

Exact matches occurred in only nine implantation instances
without clinical review input and in 10 instances when clinical review

Frontiers in Neuroscience

data were included, due to the procedural difference in contact
selection between the two methods. The algorithm, with the settings
used in this study, selects up to three sub-contacts out of a maximum
of eight (in the case of directional electrodes). The clinicians, however,
predominantly select entire (sub-)contact groups, matching the
clinical review resolution. Thus, the only perfectly matching cases are
limited to non-directional electrodes where up to two (out of four)
contacts are selected by both methods.

The algorithm’s current selection strategy aims to achieve a
median electric field intensity in the target structure equal to the VTA
threshold, optimising stimulation precision. This approach yields
similar or better absolute coverage of the motor STN compared to
manually adjusted clinical settings, and current-normalised analyses
reveal greater efficiency per unit of current. To mitigate potential
under-estimation or over-estimation of the current with the automated
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normalised coverage of the motor STN using algorithm-selected settings (contacts and currents—with and without clinical review integration) and
expert-selected settings (patient settings), (C) fraction of the VTA contained within the motor STN using algorithm-selected settings (contacts and
currents—with and without clinical review integration) and expert-selected settings (patient settings), (D) current-normalised VTA contained within the
motor STN using algorithm-selected settings (contacts and currents—with and without clinical review integration) and expert-selected settings (patient
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method and allow further fine-tuning, we provide an additional tool
to facilitate exploration of different currents and their effects on STN
subregion coverage.

Comparison with alternative methods

Most recently proposed methods for initial DBS settings
optimisation aim to improve the patient outcome directly (Boutet
etal, 2021; Qiu et al., 2024; Roediger et al., 2022) or approximate a
desired volume of tissue activation (Connolly et al., 2021), using
statistics from large patient data pools. By contrast, our method aims
to optimise the stimulation of brain structures (STN in this instance)
modulating the symptoms of the disease. Among data-driven
methods, our approach most closely aligns with the StimFit toolbox
(Roediger et al., 2022), which also leverages patient-specific MRI data
for automated DBS programming.
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Our predicted improvement, predicted to be similar to expert
settings based on retrospective analysis, is also comparable with the
non-inferiority to standard care achieved by the StimFit solution
(Roediger et al., 2023). However, our method introduces a few
advantages: it integrates clinical review data when available, explicitly
targets the motor subregion of the STN to optimise motor symptom
control and operates without the need for pre-trained statistical
models—-substantially reducing computational and data
acquisition demands.

Another closely related anatomy-guided approach is the sweet
spot-guided algorithm proposed by Nordenstrom et al. (2022), which
uses Lead-DBS for lead reconstruction and VTA overlap with an
empirical sweet spot (derived from prior cohorts) to suggest lead levels,
contacts, and effect thresholds for rigidity reduction. While this method
provides interpretable suggestions via a Matlab/Lead-DBS-based GUI,
it relies on approximations like spherical VTA models for speed, which

may affect precision. Our pipeline builds on similar foundations but
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opts for direct targeting of the motor STN centroid from atlas-based
parcellation, relying on OSS-DBS for higher-resolution electric field
modelling, and incorporating multi-symptom clinical reviews, enabling
further patient-specific fine-tuning without predefined sweet spots.

Other state-of-the-art approaches, such as Bayesian optimisation
and particle swarm optimisation, have been proposed to efficiently
explore the stimulation parameter space. Bayesian optimisation has
been applied to reduce the number of required trials by iteratively
minimising rigidity based on prior clinical responses (Louie et al.,
2021), while particle swarm optimisation method was designed to
address complex electrode configurations with segmented leads, and
optimise stimulation amplitudes (Pena et al., 2018).

However, these techniques are primarily outcome-driven and do
not currently provide structural substrate-centric metrics or predicted
improvement values, limiting the feasibility of direct comparison with
our anatomy-based method. Similarly, multimodal biomarker-guided
methods, like that of Shah et al. (2023), combine resting/movement-
state LFPs with imaging to predict clinical efficacy and side-effect
thresholds, achieving ~90% accuracy in optimal contact selection but
requiring intraoperative electrophysiological data not routinely
available in our workflow. Connectomic-based programming, as in
Hines et al. (2024), optimises pathway recruitment using detailed
axonal models, yielding 43.5% UPDRS-III improvements, but requires
advanced computational resources compared to our simulation-
focused approach. fMRI-driven algorithms, such as Santyr et al.
(2024), demonstrate non-inferior motor outcomes to standard care in
a blinded trial but rely on functional scans, contrasting our emphasis
on routine anatomical MRI for broad clinical accessibility.

Limitations

The method relies on pre-operative and post-operative MRI data.
Since the brain structures are directly derived from the pre-operative
images and the electrode position is derived from the post-operative
scan, the output is sensitive to the time delay between pre- and post-
operative inputs. Increased time intervals between the pre-operative
MRI scans and the post-operative scans may introduce errors both in
electrode localisation relative to the target structures, due to random
electrode drifts, as well as changes in the localisation of the brain
structures themselves, as a result of ageing or disease progression. This
is expected to progressively reduce the accuracy of the method for
long-term parameter adjustments, without error corrections for the
MRI inputs.

Our method considers two parameters: contact selection, and
current selection. Multiple additional parameters have to be assigned
by the clinicians, including frequency of stimulation, pulse width/
shape, possible interleaved stimulations, and bipolar settings. Most of
these parameters are usually preset to well-documented values, and
are only changed later in the decision process, if necessary (Picillo
et al., 2016). Accordingly, we prioritised the most time-intensive
component of initial DBS programming: contact and current selection.

In the case of current estimation, our method targets the centroid
of the motor STN subregion while applying predefined lower and
upper bounds to ensure clinical plausibility. Thus, the suggested
current values should be interpreted as an informed starting point
rather than definitive therapeutic settings.
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Additionally, in the present study, the input of the clinical review
data was weighed equally with the geometry-based calculation. This
may be unsuitable if the clinical review information is highly
prioritised, for instance, to ensure a minimum stimulation
effectiveness or minimising side effects. In such scenarios, increasing
the weighting of clinical inputs may enhance the method’s alignment
with clinical priorities and patient-specific therapeutic goals.
Furthermore, future prospective studies with standardised side-
effect logging could correlate non-motor STN coverage with specific
adverse effects.

Finally, this study was retrospective in nature, with predicted
motor improvement derived from a subset of patients—limited by
digitised records availability—who had early UPDRS-III evaluation
records following DBS implantation. Although the predicted
outcomes are consistent with those reported by comparable
methods (i.e., similar to expert settings), a prospective clinical trial
will be necessary to validate the effectiveness of this approach with
greater certainty.

Conclusion

This study presents a personalised, interpretable method for DBS
parameter selection that leverages routinely acquired anatomical
imaging and optionally available clinical evaluation data.

By integrating patient-specific MRI with clinical evaluation data
and established DBS modelling tools, we demonstrate a significant
improvement in targeting the motor subregion of the STN compared
to expert settings, and predict similar improvements in clinical
outcomes. This represents a promising patient-specific, low-overhead
improvement over common clinical standard practice, aiming to
accelerate the initial DBS optimisation steps close to their optimal
state for targeting PD motor symptoms.
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