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Introduction: Early diagnosis of Alzheimer’s disease (AD) remains challenging
due to the high similarity among AD, mild cognitive impairment (MCI), and
cognitively normal (CN) individuals, as well as confounding factors such as
population heterogeneity, label noise, and variations in imaging acquisition.
Although multimodal neuroimaging techniques like MRI and PET can provide
complementary information, current approaches are limited in multimodal
fusion and multi-scale feature aggregation.
Methods: We propose a novel multimodal diagnostic framework, Alzheimer’s
Disease Multi-View Multimodal Diagnostic Network (ADMV-Net), to enhance
recognition accuracy across all AD stages. Specifically, a dual-pathway Hybrid
Convolution ResNet module is designed to fuse global semantic and local
boundary information, enabling robust three-dimensional medical image
feature extraction. Furthermore, a Multi-view Fusion Learning mechanism,
which comprises a Global Perception Module, a Multi-level Local Cross-
modal Aggregation Network, and a Bidirectional Cross-Attention Module, is
introduced to efficiently capture and integrate multimodal features from multiple
perspectives. Additionally, a Regional Interest Perception Module is incorporated
to highlight brain regions strongly associated with AD pathology.
Results: Extensive experiments on public datasets demonstrate that ADMV-
Net achieves 94.83% accuracy and 95.97% AUC in AD versus CN classification,
significantly outperforming mainstream methods. The framework also shows
strong discriminative capability and excellent generalization performance in
multi-class classification tasks.
Discussion: These findings suggest that ADMV-Net effectively leverages
multimodal and multi-view information to improve the diagnostic accuracy of
AD. By integrating global, local, and regional features, the framework provides
a promising tool for assisting early diagnosis and clinical decision-making in
Alzheimer’s disease. The implementation code is publicly available at https://
github.com/zhaoxinyu-1/ADMV-Net.

KEYWORDS

Alzheimer’s disease, multimodal fusion, Multi-view learning, cross-modal attention,
neuroimaging

1 Introduction

Alzheimer’s disease (AD) is an irreversible neurodegenerative disorder (Hu et al., 2023)
characterized primarily by memory decline, cognitive impairment, and loss of daily living
abilities. With the acceleration of global aging, the number of AD patients is rapidly
increasing, with projections indicating that the global patient population will reach 139
million by 2050, imposing substantial economic and psychological burdens on both society
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and individuals (Alzheimer’s Disease, 2023). Early diagnosis is
crucial for delaying disease progression, improving patients’ quality
of life, and reducing stress on families and society.

Neuroimaging techniques such as structural magnetic
resonance imaging (sMRI) and positron emission tomography
(PET) can capture abnormal changes in the brain (Damulina
et al., 2020), making them essential tools for AD diagnosis.
In recent years, deep learning technologies have achieved
breakthroughs in this field, particularly excelling in multimodal
data processing. Under end-to-end training (Choudhury et al.,
2024), these techniques leverage neural network backpropagation
to learn data-driven representations associated with pathology,
thereby reducing the need for manual feature engineering. In AD
diagnosis research, single-modal approaches suffer from limited
information and cannot comprehensively reflect the complexity
of the disease, resulting in insufficient sensitivity and specificity
for early identification and precise diagnosis (Fjell et al., 2010).
Consequently, multimodal approaches have emerged as an effective
solution. By integrating information from different modalities such
as sMRI and PET, these methods can more comprehensively reflect
pathological changes and improve diagnostic accuracy (Chen et al.,
2023).

In recent years, multimodal feature fusion has achieved
significant progress in neuroimaging analysis. Sparse graph
optimization (Liang et al., 2024) and transfer learning (Ramani
et al., 2024) Wu et al. (2022) have improved classification
performance, while integration of cognitive tests with genetic
factors (Zhang et al., 2024), refined ROI selection (Lei et al., 2024),
and volumetric segmentation (You et al., 2023) have enhanced
analytical precision. Tang et al. (2024a) proposed CEFM combined
with ECSA, which significantly enhanced AD feature recognition
capability, and Jia et al. (2024) constructed a multimodal global-
local fusion framework that effectively integrated clinical tabular
data with MRI information. MLCA (Wan et al., 2023), CBAM
(Woo et al., 2018), and slice-level (Chen et al., 2022), multi-
patch (Ye et al., 2024), and 3D multi-head attention (Huang
et al., 2024) mechanisms have improved model sensitivity to
important features by focusing on key regions. Cross-modal
long-range dependency modeling based on Transformers (Tang
et al., 2024b)(Alinsaif, 2025) has enriched multi-scale feature
representation, while harmonic wavelet regional pyramids (Liu
et al., 2023b), kernel attention fusion (Pei et al., 2022), and the
combination of self-attention pooling with graph convolution
(Sang and Li, 2024) have enhanced perception of complex patterns.
Dynamic balancing strategies [HAMF (Lu et al., 2024), WMCL-
HN (Yu et al., 2025)] and multi-scale convolutional ensemble
learning (Yan et al., 2025) have optimized model performance, and
BiFPN (Tan et al., 2020) has achieved efficient fusion of hierarchical
features from different modalities. However, most methods still
rely on simple concatenation or weighting and fail to fully exploit
complementary information between modalities, leaving room for
improvement in fusion depth.

To address the aforementioned issues, this paper proposes
a multi-view multimodal Alzheimer’s disease diagnostic model—
ADMV-Net. This framework first extracts global semantic and local
boundary features in parallel from sMRI and PET images through a
dual-pathway Hybrid Convolution ResNet (HCNet). Subsequently,

we design a Multi-view Fusion Learning (MVFL) mechanism to
capture complementary information from global, local, and latent
views, significantly enhancing feature representation. Finally, we
utilize a Regional Interest Perception Module (RIPM) to construct
a brain region weight matrix that identifies key brain regions
associated with Alzheimer’s disease. The main contributions of this
paper include:

1. We propose a novel multi-view multimodal fusion model
that effectively integrates three-dimensional imaging data from
PET, GM, and WM modalities to improve diagnostic accuracy
for AD.

2. We introduce a dual-path feature extraction structure, HCNet,
which achieves efficient fusion of global semantic and
local boundary information, thereby improving the feature
representation of three-dimensional medical images.

3. We design a multi-view fusion learning module, MVFL, which
captures diverse features from multiple perspectives through
global, local, and latent learning modules, further strengthening
feature representation.

4. We used a brain region weight matrix to learn the importance of
different brain regions.

2 Materials and methods

2.1 Dataset and preprocessing

The study utilized paired T1-weighted MRI and PET scan
data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Petersen et al., 2010) and the Australian Imaging,
Biomarkers and Lifestyle Study of Ageing (AIBL) (Selvaraju et al.,
2017) databases. The ADNI database included 339 participants
with Alzheimer’s Disease (AD), 473 participants classified as
Cognitively Normal (CN), and 525 participants identified with
Mild Cognitive Impairment (MCI), with female ratios of 50.16%,
49.28%, and 52.6%, and average ages of 75.23, 74.98, and 75.11
years, respectively. The AIBL study comprised 82 participants
with AD, 105 participants with CN, and 95 participants with
MCI, with female ratios of 50.36%, 51.24%, and 49.99%, and
average ages of 73.56, 72.26, and 74.41 years, respectively.
All subjects underwent both sMRI and PET examinations,
with the ADNI dataset specifically including FDG-PET and
PIB-PET imaging.

We employed SPM and CAT tools to perform rigorous
preprocessing of MRI and PET data to ensure quality consistency.
MRI preprocessing included unified voxel resampling, slice timing
correction, head motion correction, normalization to standard
space, and tissue segmentation (GM, WM, and CSF), followed by
extraction of GM and WM. The PET data preprocessing pipeline
involved MRI alignment, spatial normalization, skull stripping, and
smoothing to optimize signal quality. Based on functional relevance
considerations, we used the AAL116 template to divide the whole
brain into 116 anatomically and functionally defined ROIs and
selected the first 90 ROIs (excluding cerebellar regions) as the final
analysis targets.
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FIGURE 1

The overall architecture of ADMV-Net. The diagram depicts the primary structural components of the model and the corresponding data processing
workflow, illustrating the overall strategy for multimodal feature extraction and fusion.

2.2 Experimental setup and evaluation
metrics

Our experiments were conducted in a Linux environment
equipped with dual NVIDIA RTX 4090 GPUs and 120GB
memory, implemented using Python 3.10 and Torch 2.2.0.
Model training employed a stochastic gradient descent optimizer
with an initial learning rate of 0.001 and dynamic adjustment
using a cosine annealing strategy. Network training parameters
were set with a batch size of 16 and a total of 40 training
epochs.To assess the statistical significance of performance
differences between methods, we conducted paired t-tests for all
comparative experiments.

Models were trained separately for three classification tasks
(AD vs CN, AD vs MCI, CN vs MCI), and ten-fold cross-
validation was employed to ensure result reliability. Evaluation
metrics included accuracy (ACC), sensitivity (SEN), specificity
(SPEC), area under the receiver operating characteristic curve
(AUC), and balanced accuracy (BAC).

ACC = TP + TN
TP + TN + FP + FN

(1)

SEN = TP
TP + FN

(2)

SPEC = TN
TN + FP

(3)

BAC = SEN + SPEC
2

(4)

Where TP represents the number of correctly identified positive
samples, FP represents the number of negative samples incorrectly
classified as positive, FN represents the number of positive samples
incorrectly classified as negative, and TN represents the number of
correctly identified negative samples.

2.3 ADMV-Net framework

To address the common challenge of insufficient multimodal
fusion in AD diagnosis, this study proposes a multi-view
multimodal Alzheimer’s disease diagnostic model, ADMV-Net.
Existing approaches predominantly rely on simple concatenation
or weighted aggregation, which are limited in their ability to
simultaneously capture global macroscopic patterns, local key
region features, and cross-modal semantic relationships. Moreover,
population heterogeneity, label noise, and scanner/site differences
further diminish fusion effectiveness and model generalizability. In
response, ADMV-Net models inter-modality feature relationships
from global, local, and semantic perspectives, incorporating
a dynamic brain region weighting mechanism to significantly
enhance diagnostic performance. The overall framework is
illustrated in Figure 1.

2.4 Hybrid convolution ResNet(HCNet)

With the widespread adoption of deep learning in medical
image analysis, classic network architectures such as ResNet have
become mainstream choices for multimodal feature extraction.
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FIGURE 2

The workflow of HCNet. The dual-path convolutional structure processes global and boundary features separately and fuses them through an
adaptive mechanism.

However, traditional convolutional networks exhibit notable
limitations when handling three-dimensional medical images.
On one hand, standard convolutions struggle to capture precise
anatomical boundaries. On the other hand, existing network
designs fail to effectively balance global semantic information with
local structural details. To address these challenges, we propose
the Hybrid Convolution ResNet (HCNet). HCNet achieves efficient
feature fusion and representation optimization through three
parallel pathways.

Specifically, the Standard Convolution Path (SCP) builds a
large receptive field by stacking deep multi-scale features, indirectly
modeling global semantic information; the Semantic Difference-
guided Path (SDP) introduces a deep feature map G as a diffusion
guide, regulating local feature propagation around boundaries to
enhance the perception of ambiguous structural interfaces. The
third, a direct mapping path, preserves the integrity of input
features to prevent information loss. The detailed architecture is
illustrated in Figure 2.

The SCP is based on 3D convolution combined with
Batch Normalization and ReLU activation to extract spatial
contextual relationships, responsible for capturing macroscopic
features and global semantic information. The SDP focuses on
overcoming the limitations of standard convolutions in precisely
describing boundary regions, accurately characterizing ambiguous
interfaces between anatomical structures. Functioning as a “push”
mechanism, the SDP reduces boundary uncertainty between
classes. This module simulates a nonlinear anisotropic diffusion
process, extracting edge features through explicit and implicit
differential kernels, while leveraging deep semantic guidance to
enhance boundary representation.

Specifically, the iterative update formula of the SCP is given by:

F̂t+1
p =

∑
pe∈δp

h
(∥∥Gpe − GP

∥∥2
)
·
(

Ft
pe − Ft

p

)
(5)

Ft+1 = λ · Ft + ν · F̂t+1 (6)

Where, Ft denotes the feature map at the t iteration, G represents
the semantic guidance feature from the deep decoder, h(.) is
a learnable nonlinear mapping function, δp denotes the local
neighborhood centered at position P, and λ and ν are adjustable
weighting parameters.

Finally, the features extracted by SCP and SDP are adaptively
fused and combined with those from the direct mapping path,
integrating contextual information with boundary-guided cues to
enhance the model’s representation of ambiguous boundaries.

In ADMV-Net, we employ four HCNet modules to extract
feature representations at different hierarchical levels. These
multi-level feature maps not only demonstrate the model’s
capability to progressively capture global semantics and boundary
details but also provide a rich foundation of multi-scale
representations for subsequent modules. The resulting set of
features {H1

g , H1
W , H1

P, . . . , H4
g , H4

W , H4
P} serves as the input to the

MVFL module, enabling multi-view fusion modeling.

2.5 Global Perception Module

In the task of multimodal Alzheimer’s disease diagnosis,
modeling global semantic information is crucial for capturing
the brain’s overall pathological features. However, the spatial
resolution loss in deep features extracted by existing models often
leads to blurred macroscopic semantic information. Additionally,
global correlation patterns across multimodal data are difficult
to model effectively through a single pathway. To address these
issues, we propose the Global Perception Module (GPM). This
module efficiently models global features across multimodal data
by leveraging long-range dependency modeling and an adaptive
fusion mechanism.
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Specifically, we take the output of the last layer of the feature
extraction network ,H4

g , H4
w and H4

P as the input data. The GPM
first applies a 3D convolution for shallow feature extraction,
resulting in a feature map F. Next, the key and value of F are
fed into a Multi-Head Attention layer, where they interact with
F’s query to perform attention calculations and obtain enhanced
features. Inspired by Yuan et al. (2021) and Zeng et al. (2022),
we use depthwise separable convolution (DWConv) during feature
modeling to capture local features and positional information,
while removing explicit positional encoding.

Additionally, after the addition operation, H4
g , H4

w and H4
P

are fed into the Window Attention module to prevent feature
shift between different branches. Here, “feature shift” refers to
differences in the distributions of features from different modalities
or scales, which can cause one branch to dominate during fusion
and thus disrupt overall consistency. The addition operation
provides initial alignment, while the sliding-window mechanism of
Window Attention adaptively models local interactions, effectively
mitigating such shifts and enhancing feature representation with
relatively low computational cost.

It is noteworthy that multimodal fusion is influenced not only
by biases introduced by confounding factors such as age, sex,
scanner manufacturer, and imaging parameters, which can create
spurious correlations and reduce model transferability, but also
by potential statistical dependencies across different data sources
arising from shared biological or pathological mechanisms,
measurement procedures, or preprocessing steps. These
dependencies further compromise the independence between
modalities and the effectiveness of fusion strategies. To mitigate
these effects, we introduce RegBN (Ghahremani Boozandani
and Wachinger, 2023) prior to feature fusion. RegBN is a
regularization-based batch normalization method specifically
designed for multimodal data, which removes the need for
learnable parameters. This not only simplifies the training and
inference pipelines but also helps stabilize feature distributions
across modalities.Overall, the data processing workflow of the
GPM can be represented as:

Fg = FFN
(

WA(H4
g + H4

w + H4
P)H4′

g H4′
w H4′

p

)
(7)

Where, WA(.) denotes the window attention mechanism, while,
H4

′
g , H4

′
w , and H4′

p represent the features processed through multi-
head attention and RegBN, respectively. The processing procedure
is described by Equation 8:

⎧⎪⎪⎨
⎪⎪⎩

H4′
g = MHA(H4

g )

H4′
w = RegBN(H4′

g , MHA(H4
w))

H4′
p = RegBN(H4′

w , MHA(H4
p))

(8)

Finally, the features fused by the Feed-Forward Network (FFN)
are flattened and output as the global fusion featuresFg ∈ R

c4 .The
overall architecture is shown in Figure 3.

2.6 Multi-level Local Cross-modal
Aggregation Module

In multimodal fusion tasks, MRI and PET modalities exhibit
significant complementarity in local detail information. To further
enhance the interaction of local information between modalities,
we propose the Multi-level Local Cross-modal Aggregation
Module (MLCA). This module integrates features from the first
three residual blocks to achieve multi-scale semantic fusion.
Additionally, it employs a bidirectional pathway and a learnable
weighting mechanism to enable deep coupling of local information.
The overall architecture is illustrated in Figure 4.

MLCA comprises three main components: (1) Channel
alignment, (2) bidirectional feature interaction and reconstruction,
and (3) cross-scale fusion and aggregation.

In the Channel alignment stage, the initial fusion features from
MRI and PET are denoted as H1, H2, H3 ∈ R

d4×h4×w4×c4 .
These features are projected into a unified 128-channel
space via 3D convolutions to eliminate channel dimensional
inconsistencies across modalities while preserving the original
spatial structures. The aligned feature set is thus expressed as
Hi ∈ R

d4×h4×w4×128, i = 1, 2, 3.
The bidirectional feature interaction and reconstruction stage

follows, wherein a dual-path mechanism–comprising top-down
and bottom-up pathways–is employed to propagate and refine
features across scales. To facilitate cross-scale integration and
detailed enhancement, cross-scale weighted fusion nodes are
introduced at each level. The output of each fusion node is
formulated as:

Fout =
∑

i wi.U(Fi)∑
i wi + ε

(9)

Where, Fi represents the input features from different scales or
directions, Wi is the learnable positive weight parameter, U(.)
denotes the upsampling or downsampling operation, and ε is the
stability factor.

Finally, in the cross-scale aggregation stage, all the fused local
features are normalized to a fixed size of 4 × 4 × 4 through global
adaptive pooling and then flattened into a one-dimensional vector
to form the final local fusion feature Fm ∈ R

4.

2.7 Bilinear Contextual Attention Module
(BCAM)

Although existing multimodal feature fusion methods have
shown great potential in Alzheimer’s disease detection tasks, they
often overlook deep interactions between modalities, ignoring
latent information. To address this issue, we propose the BCAM
to enhance latent feature representation and improve the model’s
classification performance, as illustrated in Figure 5.

The BCAM begins by performing local and global average
pooling on the input features to capture both regional details
and overall modality information. After flattening the pooled
features, they pass through 1D convolutions for channel dimension
compression and weight allocation, thereby implementing a
channel-level attention mechanism.
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FIGURE 3

The workflow of GPM. Modeling of multimodal global semantics through multi-head attention and window mechanisms.

The features are then reshaped to their original dimensions
and normalized to the [0,1] interval using the Sigmoid function,
producing both local and global attention weights. BCAM employs
a dynamic weight fusion strategy to integrate features from various
receptive fields. The fused attention map is upsampled to restore
its spatial dimensions and then multiplied element-wise with the
original features to enhance the key regional information while
suppressing redundant features.

After feature enhancement, BCAM introduces a cross-modal
interaction mechanism to capture potential correlation patterns
between modalities via an outer product operation, thus revealing
deep semantic relationships between the modalities.

To reduce computational complexity, we first perform LAP
(Local Average Pooling), GAP (Global Average Pooling), and
flatten operations onH4

p , H4
g and H4

w to obtain the dimensionality-

reduced scale features Hge
p ,Hge

g ,Hge
w ∈ R

c4× da
2 . Subsequently, by

fusing these two sets of features, we acquire the interactive feature
representation Hge

1 ,Hge
2 ,Hge

3 ∈ R
c4× da

2 × da
2 .

Hge
1 (t) = Fouter

(
Hge

p (t), Hge
g (t)

)
(10)

Hge
2 (t) = Fouter

(
Hge

g (t), Hge
w (t)

)
(11)

Hge
3 (t) = Fouter

(
Hge

p (t), Hge
w (t)

)
(12)

After the outer product operation, the three sets of fused
features are summed. Following this, they are pooled and

L2-normalized to obtain the latent feature representation that
encapsulates cross-modal correlations.

Fb = ∣∣∣∣sumpooling(Hge
1 + Hge

2 + Hge
3 )

∣∣∣∣
2 ∈ R

c4 (13)

Finally, the features Fg ,Fm, and Fb are concatenated and
reshaped to form the fused feature representation Fc ∈ R

c4 .

2.8 Regional Interest Perception Module
(RIPM)

As a typical stage-progressive neurodegenerative disease, AD
exhibits distinct patterns of brain region changes at different stages,
which are crucial for early diagnosis and intervention (Qiu et al.,
2024). To address this, we employ the Regional Interest Perception
Module (RIPM) to identify key brain regions, as shown in Figure 6.

In the implementation, we set the number of iterations to t
and initialize the brain region weight matrix ωi ∈ R

1×90. Through
t iterations, the importance weights of different brain regions
are dynamically adjusted to continuously optimize the weights.
In the feature processing stage, the multimodal fusion feature
yc ∈ R

2 is first dimensionally transformed to generate multimodal
classification features and initial Region of Interest (ROI) features
R0 ∈ R

1×90. Subsequently, yc is feature-transformed to generate the
hidden feature ŷR

c ∈ R
1×90.

To deeply capture the interaction information between ROIs,
we use the query weight matrix WQ

R ∈ R
90×90, key weight matrix
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FIGURE 4

The workflow of MLCA. It fuses local features from different modalities layer by layer and strengthens important feature regions through a weighting
mechanism.

WK
R ∈ R

90×90, and value weight matrix WV
R ∈ R

90×90. By
performing linear mapping with ỹR

c and R0, we obtain QR ∈ R
c4×90,

KR ∈ R
c4×90, VR ∈ R

c4×90, calculated as follows:

QR = WQ
R ỹR

c , KR = WK
R R0, VR = WV

R R0 (14)

Subsequently, the ROI weight matrix is continuously updated
using a Gated Recurrent Unit (GRU).

Rh =
(

softmax
((

ωprevQR) (
ωprevKR)T

))
∗ ωprevVR (15)

ωi = FGRU (RT
h , wT

prev) (16)

After t rounds of iterative updates, the final salient brain
region feature Rh ∈ R

1×90 is obtained. Rh is linearly mapped to
generate the final ROI feature R̃ ∈ R

90. Further, R̃ is dimensionally

transformed to obtain yr
c ∈ R

2, which is then weighted and
fused with the multimodal classification feature yc to form the
final classification feature ŷc ∈ R

2. By dynamically adjusting
the importance weights of different brain regions, this approach
provides a more effective research strategy for salient brain region
extraction and multimodal feature optimization.

3 Results

3.1 Optimal iteration number analysis

To determine the optimal interpretability parameters of
ADMV-Net across the three classification tasks, we systematically
evaluated the effect of the number of iterations in the RIPM
module on both model performance and the stability of
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FIGURE 5

The workflow of BCAM. Latent features are obtained using the outer product operation.

FIGURE 6

The workflow of RIPM. The module dynamically adjusts the importance weights of different brain regions through t iterations to identify key brain
regions.

brain region weights, with the results presented in Table 1.
From a quantitative interpretability perspective, the AD
vs CN and MCI vs CN tasks achieved peak performance
at seven iterations, indicating that a moderate number of
iterations allows RIPM to effectively capture inter-regional
brain interaction patterns while maintaining biologically
plausible weight distributions. By comparison, the AD vs
MCI task indicates that excessive iterations may introduce
noise features unrelated to disease pathology, thereby reducing
the biological interpretability of the model. Based on these
quantitative analyses, we employed the corresponding optimal
number of iterations for each task, ensuring that the RIPM
module provides stable and reliable weight assignments for each
brain region, thus offering clinicians quantitative insights into
region-specific importance.

3.2 Multi-fold loss curve analysis

Through analysis of loss curves from multi-fold cross-
validation, as shown in Figure 7, we found that the loss change
trends across different folds remain consistent on both the
large-scale ADNI dataset and the smaller AIBL dataset, strongly
validating the stability of the method and reliability of the results.

3.3 Ablation experiment results

3.3.1 Feature extraction network ablation
To comprehensively evaluate HCNet’s performance in 3D

medical image feature extraction, we conducted performance
tests for three classification tasks on both ADNI and AIBL
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TABLE 1 Performance comparison across different tasks and datasets.

Task ADNI AIBL

1 3 5 7 9 1 3 5 7 9

AD vs. CN 94.52±3.83 93.87±3.26 94.05±5.48 94.83±2.76 93.64±2.76 94.85±4.33 93.46±2.66 94.37±3.62 95.26±3.84 93.35±5.27

MCI vs. CN 72.15±4.34 71.19±3.58 71.84±3.49 72.71±3.17 71.77±3.17 78.38±5.86 77.95±4.23 77.64±5.51 78.64±8.62 77.51±4.43

AD vs. MCI 85.91±3.24 83.96±5.47 83.35±4.43 85.66±4.47 83.17±3.82 89.27±4.31 88.45±5.74 88.72±3.36 88.95 ± 6.24 87.82 ± 4.25

Best results are bolded.

FIGURE 7

Loss Curves for different tasks.

datasets. Results in Table 2 show that HCNet achieved optimal
performance in AD vs CN tasks across both datasets. In the more
challenging MCI vs CN and AD vs MCI tasks, HCNet achieved
the highest accuracy (72.77% and 85.81%, respectively) and
sensitivity (72.69% and 89.27%, respectively), demonstrating good
generalization capability. Although its specificity was slightly lower
than CMUNEX, HCNet still maintained significant advantages
in overall performance. In contrast, ResNet18 and DWConv
showed relatively unstable performance, further highlighting
HCNet’s advantages in identifying MCI patients. The statistical
test results indicate that the improvements of HCNet in
the main performance indicators are significant. To more
intuitively demonstrate the comprehensive performance of each
model across evaluation metrics, we created the radar chart
shown in Figure 8. The area size in the chart reflects the
overall performance of the model across four metrics: ACC,
SEN, SPEC, and AUC, with larger areas indicating better
model performance.

3.3.2 Module ablation
To validate the effectiveness of each component in ADMV-

Net, we conducted systematic ablation experiments, with the results

presented in Table 3. Analysis of the individual contributions
of each module indicates that the GPM module, through
its multi-head self-attention mechanism, establishes long-range
dependencies. Combined with the brain region weighting of RIPM,
it achieved 92.43% ACC and 94.57% AUC in the AD vs CN task,
demonstrating the foundational role of global semantic awareness.
The MLCA module, leveraging bidirectional feature interaction for
deep cross-scale local information aggregation, further enhanced
performance when integrated with RIPM, reaching 93.25% ACC
and 94.68% AUC. The BCAM module, which explores latent
inter-modality associations via outer product operations, achieved
91.95% ACC with RIPM alone, but its deep semantic modeling
capabilities became evident in subsequent module combinations.

The synergistic effects between modules were more
pronounced. The combined configuration of GPM and MLCA
(GPM+MLCA+RIPM) increased performance to 94.73% ACC
and 94.95% AUC, with SEN reaching 95.56%, fully demonstrating
the complementarity between global and local features. Similarly,
the combination of GPM and BCAM (GPM+BCAM+RIPM)
achieved 93.86% ACC, highlighting the effective integration of
global awareness and latent feature learning. Critical ablation
experiments showed that removing RIPM from the three core
modules (GPM+MLCA+BCAM) led to a decrease in performance
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TABLE 2 Performance comparison of different feature extraction networks on the three classification tasks.

Task ADNI AIBL

ResNet18 DWConv CMUNEX HCNet ResNet18 DWConv CMUNEX HCNet

AD vs. CN ACC 88.34 ± 6.42 86.7 ± 7.29 88.5 ± 4.83 94.83 ± 2.76 90.2 ± 1.3.25 86.3 ± 5.64 92.33 ± 3.65 95.26 ± 3.84

SEN 86.72 ± 7.41 87.54 ± 7.26 90.43 ± 7.63 94.07 ± 4.95 90.87 ± 4.53 89.64 ± 6.21 92.58 ± 4.29 94.74 ± 5.66

SPEC 88.65 ± 4.63 85.44 ± 8.58 91.32 ± 3.07 93.76 ± 4.24 91.34 ± 6.37 87.56 ± 5.28 94.07 ± 2.58 94.81 ± 2.97

AUC 90.27 ± 5.62 88.31 ± 6.34 91.42 ± 4.34 95.97 ± 2.63 92.84 ± 3.65 86.49 ± 6.26 93.78 ± 5.24 95.43 ± 4.54

p-value p <0.001 p <0.001 p <0.001 - p <0.001 p <0.001 p <0.001 -

MCI vs. CN ACC 64.37 ± 4.34 62.29 ± 4.85 67.52 ± 8.62 72.77 ± 3.17 70.51 ± 6.74 66.85 ± 10.37 74.33 ± 3.66 78.46 ± 8.62

SEN 45.79 ± 15.43 50.74 ± 8.86 48.24 ± 17.62 72.69 ± 5.34 76.43 ± 5.42 77.79 ± 6.44 82.35 ± 4.26 80.73 ± 4.19

SPEC 73.24 ± 5.26 65.87 ± 6.52 76.49 ± 9.24 76.41 ± 7.53 73.18 ± 4.33 74.56 ± 9.26 72.33 ± 6.37 78.34 ± 6.75

AUC 76.93 ± 2.77 63.48 ± 5.42 70.39 ± 6.17 76.84 ± 3.92 75.26 ± 5.56 71.67 ± 7.27 78.45 ± 5.11 83.21 ± 6.44

p-value p <0.001 p <0.001 p <0.001 - p <0.001 p <0.001 p <0.001 -

AD vs. MCI ACC 76.82 ± 2.77 75.46 ± 11.52 82.34 ± 7.68 85.81 ± 3.24 86.52 ± 4.39 78.66 ± 14.31 85.74 ± 5.79 89.27 ± 4.31

SEN 85.37 ± 4.68 80.21 ± 9.75 86.25 ± 4.37 89.27 ± 4.86 90.38 ± 4.22 83.61 ± 9.87 93.24 ± 2.88 92.16 ± 3.62

SPEC 78.16 ± 9.29 79.57 ± 12.11 85.53 ± 7.25 85.46 ± 3.79 83.25 ± 3.26 76.54 ± 9.15 80.46 ± 2.17 82.4 ± 9.15

AUC 84.56 ± 6.64 76.78 ± 9.82 88.49 ± 6.44 88.93 ± 3.42 83.59 ± 6.42 78.89 ± 7.16 85.48 ± 5.62 87.66 ± 4.39

p-value p <0.001 p <0.001 p <0.001 - p <0.001 p <0.001 p <0.001 -

Best results are bolded.

FIGURE 8

Radar charts illustrating the performance of HCNet and other comparative models on different classification tasks across the ADNI and AIBL datasets.
(a) AD vs CN task; (b) AD vs MCI task; (c) MCI vs CN task.
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TABLE 3 Performance comparison of ablation results in the three classification tasks.

Task GPM MLCA BCAM RIPM ACC SEN SPEC AUC p-value

� � 92.43 ± 2.62 92.74 ± 3.32 91.71 ± 3.92 94.57 ± 2.48 p <0.001

� � 93.25 ± 2.81 92.62 ± 2.15 93.85 ± 3.98 94.68 ± 1.86 p <0.001

� � 91.95 ± 4.34 92.73 ± 3.58 92.74 ± 3.66 93.88 ± 3.72 p <0.001

AD vs. CN � � � 94.73 ± 4.36 95.56 ± 5.24 95.11 ± 2.84 94.95 ± 3.62 p <0.05

� � � 93.86 ± 8.34 94.08 ± 6.56 94.15 ± 7.59 94.66 ± 5.81 p <0.001

� � � 92.04 ± 7.62 93.93 ± 9.27 93.65 ± 6.24 94.72 ± 6.34 p <0.001

� � � 93.59 ± 4.78 93.96 ± 3.61 93.55 ± 3.17 94.22 ± 2.39 p <0.001

� � � � 94.83 ± 2.76 94.07 ± 4.95 93.76 ± 4.24 95.97 ± 2.62 -

� � 70.94 ± 3.04 70.53 ± 4.32 75.43 ± 5.62 74.26 ± 3.83 p <0.001

� � 71.26 ± 2.78 72.01 ± 3.64 76.31 ± 3.87 75.88 ± 4.52 p <0.05

� � 70.65 ± 4.82 70.16 ± 7.63 75.02 ± 8.34 74.22 ± 7.61 p <0.001

MCI vs CN � � � 72.09 ± 3.16 71.74 ± 2.89 76.54 ± 3.42 76.34 ± 5.58 p <0.001

� � � 71.34 ± 5.24 71.56 ± 6.17 75.73 ± 6.35 75.70 ± 6.42 p <0.001

� � � 71.33 ± 4.51 70.95 ± 7.33 76.73 ± 6.35 75.73 ± 6.42 p <0.01

� � � 71.48 ± 3.02 71.86 ± 5.36 76.34 ± 5.47 75.25 ± 3.64 p <0.001

� � � � 72.77 ± 3.17 72.69 ± 5.34 76.41 ± 7.53 76.84 ± 3.92 -

� � 81.64 ± 4.67 85.93 ± 6.22 82.48 ± 5.32 86.39 ± 4.02 p <0.001

� � 83.70 ± 3.95 84.76 ± 11.74 83.73 ± 4.55 87.56 ± 5.64 p <0.01

� � 81.48 ± 8.82 85.01 ± 8.61 83.29 ± 7.73 87.13 ± 2.83 p <0.05

AD vs MCI � � � 83.95 ± 5.67 86.22 ± 4.37 83.56 ± 10.95 86.74 ± 5.58 p <0.001

� � � 82.32 ± 6.73 89.36 ± 5.94 84.16 ± 4.58 88.42 ± 2.85 p <0.001

� � � 84.25 ± 7.62 87.45 ± 7.42 83.82 ± 6.74 87.94 ± 5.62 p <0.01

� � � 83.58 ± 2.89 87.26 ± 6.43 84.07 ± 3.85 86.27 ± 4.16 p <0.001

� � � � 85.81 ± 3.24 89.27 ± 4.86 84.66 ± 3.79 88.93 ± 3.42 -

Best results are bolded.

to 93.59% ACC and 94.22% AUC, underscoring the key role of
brain region weighting.

When the complete model integrated all four components, it
achieved optimal performance across all tasks: 94.83% ACC and
95.97% AUC for AD vs CN, 72.77% ACC and 76.84% AUC for
MCI vs CN, and 85.81% ACC and 88.93% AUC for AD vs MCI.
These results fully validate the effectiveness of the multi-view fusion
architecture and the complementary synergistic contributions of
its components.

3.4 Comparison experiment

3.4.1 Cross-dataset validation
To validate the cross-dataset generalization capability of

ADMV-Net, we designed rigorous cross-validation experiments.
After training the model on the ADNI dataset, we tested it
on the AIBL dataset to evaluate the model’s adaptability and
stability across different datasets. To balance potential bias between
sensitivity (SEN) and specificity (SPEC) caused by different
data distributions, we introduced balanced accuracy (BAC) as a
core evaluation metric. Experimental results shown in Table 4

demonstrate that ADMV-Net not only achieved the highest
accuracy (ACC) and area under the curve (AUC) across all
three tasks (92.37%/94.51%, 71.66%/74.86%, and 90.78%/88.07%,
respectively), but also consistently outperformed other comparative
methods on the BAC metric, fully demonstrating its strong
discriminative capability and consistency across different cognitive
impairment classification tasks. A more intuitive representation
is shown in Figure 9, which displays a heatmap of BAC for
different models, where colors closer to blue-green indicate
better performance.

3.4.2 Model comparison
To comprehensively evaluate the effectiveness of the proposed

method, we conducted a systematic comparison with state-
of-the-art approaches across three classification tasks. The
experimental results are presented in Table 5. In the AD
vs CN task, ADMV-Net achieved an accuracy (ACC) of
94.83% and an area under the ROC curve (AUC) of 95.97%,
outperforming the current best-performing model, Diamond,
which attained 92.37% and 94.53%, respectively. Furthermore,
sensitivity (SEN) and specificity (SPEC) reached 94.67% and
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TABLE 4 Cross-dataset validation results.

Task Method ACC SEN SPEC BAC AUC p-value

OLFG 80.35 78.62 83.49 81.06 86.83 p <0.001

AD vs CN MDLNet 78.46 83.75 83.37 83.56 85.69 p <0.001

Diamond 86.74 89.53 92.58 91.06 93.26 p <0.001

ADMV-Net 92.37 93.44 92.41 92.93 94.51 -

OLFG 62.87 72.67 65.34 69.11 69.74 p <0.001

MCI vs CN MDLNet 56.39 68.58 73.64 70.60 68.58 p <0.001

Diamond 70.28 71.82 70.28 71.05 71.42 p <0.001

ADMV-Net 71.66 72.14 69.05 71.11 74.86 -

OLFG 78.43 85.25 82.32 83.79 79.77 p <0.001

AD vs MCI MDLNet 79.05 76.91 78.43 77.67 74.68 p <0.001

Diamond 87.72 91.63 80.79 86.21 86.12 p <0.001

ADMV-Net 90.78 91.59 83.61 87.60 88.07 -

ADNI as the training set and AIBL as the test set (best results are bolded).

FIGURE 9

Heatmaps of BAC scores for different models in cross-dataset validation. The closer the color is to blue-green, the better the model’s performance.

93.76%, respectively, indicating that the model not only
improves overall classification accuracy but also maintains a
low false-positive rate.

In terms of computational efficiency, ADMV-Net also
demonstrated substantial advantages. The model comprises only
11.04 million parameters, markedly fewer than OLFG’s 34.25M
and Diamond’s 24.53M, while requiring 18.95 GFLOPs, far lower
than OLFG’s 133.47 GFLOPs. This computational efficiency
enhances the feasibility of deploying ADMV-Net on standard
clinical hardware, enabling support for real-time clinical decision-
making. For visual illustration, Figure 10 presents the ROC curves

of the models, where a larger area under the curve indicates
superior performance.

In the more challenging MCI vs CN task, ADMV-Net
continued to exhibit strong discriminative capability and stability,
achieving an ACC of 72.77%, AUC of 76.84%, and SPEC of
76.41%, thereby validating its effectiveness for early screening of
mild cognitive impairment. In the AD vs MCI task, the model
maintained leading performance with ACC and AUC values
of 85.81% and 88.93%, respectively, and achieved a favourable
balance between SEN (89.27%) and SPEC (84.56%), further
demonstrating its robust performance in distinguishing different
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TABLE 5 Performance comparison with state-of-the-art methods.

Task Method ACC SEN SPEC AUC #Param(M) FLOPs(G) p-value

OLFG 86.24 ± 6.47 81.98 ± 9.64 89.93 ± 7.64 90.28 ± 4.46 34.25 135.47 p <0.001

AD vs CN MDLNet 88.42 ± 3.59 85.69 ± 4.15 89.73 ± 3.53 92.64 ± 3.12 10.97 21.43 p <0.001

Diamond 92.37 ± 3.27 94.58 ± 2.61 94.04 ± 4.22 93.53 ± 3.24 24.53 97.62 p <0.001

ADMV-Net 94.83 ± 2.76 94.67 ± 4.95 93.76 ± 4.24 95.97 ± 2.63 11.04 18.95 -

OLFG 68.59 ± 4.72 55.38 ± 10.53 68.02 ± 9.35 70.94 ± 6.77 34.25 134.52 p <0.001

MCI vs CN MDLNet 70.64 ± 4.51 74.25 ± 6.37 74.88 ± 5.79 75.36 ± 5.78 10.96 21.73 p <0.001

Diamond 70.56 ± 5.43 70.11 ± 6.59 73.45 ± 5.14 73.89 ± 6.73 24.54 98.65 p <0.001

ADMV-Net 72.77 ± 3.17 72.69 ± 5.34 76.41 ± 7.53 76.84 ± 3.94 11.02 19.44 -

OLFG 81.29 ± 4.66 81.12 ± 4.47 82.16 ± 5.03 84.34 ± 3.94 34.31 135.78 p <0.001

AD vs MCI MDLNet 81.36 ± 7.35 83.56 ± 6.28 84.73 ± 6.75 82.39 ± 6.57 10.96 22.55 p <0.001

Diamond 80.91 ± 3.83 90.64 ± 4.74 82.26 ± 5.18 82.17 ± 4.86 24.57 97.73 p <0.001

ADMV-Net 85.81 ± 3.24 89.27 ± 4.86 84.56 ± 3.79 88.93 ± 3.42 11.04 18.82 -

Best results are bolded.

FIGURE 10

ROC curves of different models for the three classification tasks. (a) AD vs CN task; (b) MCI vs CN task; (c) AD vs MCI task.

stages of cognitive impairment and highlighting its potential for
clinical application.

4 Discussion

4.1 Model performance and core
advantages

Based on the comprehensive experimental
results from Tables 2–5, ADMV-Net demonstrates
significant performance advantages in multimodal
Alzheimer’s disease diagnostic tasks. These advantages
are primarily reflected in the following three
synergistic improvements.

In feature extraction, traditional 3D convolution methods
(Kim et al., 2024; Gao et al., 2023; Pandey et al., 2024)
struggle to balance global semantic information with local
details in medical image processing. To address this issue, we
propose a dual-pathway convolution structure, HCNet. This

structure captures global semantic and local edge information
through parallel channels, effectively resolving this contradiction
and significantly improving the accuracy and completeness of
feature representation.

Regarding multimodal fusion strategies, existing research
primarily employs simple feature concatenation or weighted
averaging methods (Lin et al., 2017; Liu et al., 2023a;
Bravo-Ortiz et al., 2024), which fail to fully exploit deep
complementary information between different modalities. To
address this limitation, we designed the MVFL mechanism,
which performs interactive fusion of sMRI and PET features
from three views: global (GPM), local (MLCA), and latent
association (BCAM). Ablation experiments validated the
effectiveness of MVFL in consistently improving model
performance and enhancing fine-grained cognitive difference
capture capabilities, demonstrating the advantages of
multi-view fusion.

Furthermore, to enhance model interpretability, we utilize
RIPM to automatically learn brain region weight matrices through
a data-driven approach, highlighting key brain regions associated
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with disease and reducing dependence on traditional population-
based statistical region-of-interest methods (Kwon, 2023; Qiao
et al., 2022; Cao et al., 2017).

4.2 Performance comparison and method
evaluation

Compared to current mainstream methods, ADMV-Net
demonstrates significant advantages across all tasks. Specifically,
in the AD vs CN task, our model improves accuracy from
Diamond’s (Li et al., 2024) 92.37% to 94.83%, while AUC also
increases from 94.53% to 95.97%. In the more challenging MCI
vs CN task, ADMV-Net continues to outperform methods such
as OLFG and MDLNet, fully demonstrating the sensitivity of the
multi-view fusion strategy to subtle cognitive differences. More
importantly, cross-dataset validation shows that under the ADNI
training and AIBL testing setup, ADMV-Net maintains leading
performance, indicating good adaptability to changes in data
distribution. Notably, some studies (Chen et al., 2025; Zhang et al.,
2023) indicate that validation on only a single dataset without
cross-dataset validation fails to comprehensively assess model
generalization capability, thereby limiting application potential
in real-world scenarios. In contrast, the cross-dataset validation
employed in this paper further highlights ADMV-Net’s advantages
in model robustness and practicality.By analyzing the model’s
misclassification cases, we observed that the primary failure modes
of ADMV-Net are concentrated around borderline cases. In the
AD vs MCI task, misclassifications predominantly occurred for
early-stage AD patients (misidentified as MCI) and late-stage
MCI patients (misidentified as AD). In the MCI vs CN task,
errors were mainly associated with the identification of mild MCI
patients, aligning closely with the known challenges in clinical
diagnosis. These findings underscore the inherent difficulty of early
Alzheimer’s disease detection and provide valuable guidance for
future model refinement.

4.3 Clinical implications

ADMV-Net demonstrates considerable potential for clinical
application. By leveraging both sMRI and PET data, the method
can significantly enhance the accuracy of early Alzheimer’s
disease diagnosis, particularly in distinguishing AD patients from
cognitively normal individuals (CN). This capability enables
clinicians to identify high-risk individuals at an earlier stage,
allowing timely intervention and potentially improving patient
prognosis. Moreover, the RIPM module further highlights
the importance of specific brain regions, providing clinicians
with a clearer understanding of the model’s decision-making
rationale, thereby increasing confidence in diagnostic outcomes
and supporting informed clinical decision-making. Collectively,
these advantages suggest that ADMV-Net is not only suitable for
early diagnosis but can also assist in long-term disease monitoring,
tracking disease progression, and evaluating treatment efficacy,
offering a more comprehensive resource for clinical management.

4.4 Research limitations and future
prospects

While this study has achieved promising results, several
limitations remain that warrant further improvement. First, the
analysis was based solely on sMRI and PET modalities, a
choice primarily motivated by data availability and methodological
comparability. Nonetheless, other imaging modalities, such as
fMRI and DTI, offer valuable insights into functional network
dynamics and white matter structural connectivity, which are
also critical for the early detection of Alzheimer’s disease. Future
work will aim to extend multimodal integration and multi-omics
fusion to achieve a more precise and comprehensive modelling of
disease mechanisms.

Second, the current validation relied exclusively on the publicly
available ADNI and AIBL datasets. Although these datasets are
of high quality and well-standardized, they may not fully capture
the complexity of real-world clinical settings. In future studies,
we plan to conduct multicentre clinical validation, incorporating
both retrospective analyses and prospective studies to evaluate the
model’s performance in practical diagnostic workflows, thereby
enhancing the robustness and clinical applicability of ADMV-Net.

Finally, this study employed cross-sectional data analysis,
focusing on the static differentiation of distinct cognitive states.
While effective in distinguishing AD, MCI, and CN conditions, it
lacks dynamic modelling of disease progression. Future research
will integrate longitudinal data to track multimodal imaging
changes over time, enabling the development of predictive models
for disease progression and providing guidance on optimal timing
for clinical interventions.

5 Conclusion

The ADMV-Net model proposed in this study demonstrates
excellent performance in multimodal Alzheimer’s disease
diagnostic tasks, effectively fusing complementary information
from MRI and PET while enhancing feature representation
through multi-view mechanisms and accurately identifying
key brain regions. Experimental results show that ADMV-
Net outperforms existing advanced methods across multiple
classification tasks, achieving 94.83% accuracy and 95.97% AUC
in AD versus CN classification tasks, with good generalization
capability and robustness. This model not only achieves important
technical breakthroughs and proposes innovative solutions in
multi-view fusion and feature extraction, but also provides strong
technical support for early AD diagnosis and clinical applications.
In the future, we will continue to deepen related research and
promote further development and application of multimodal deep
learning in the field of neurodegenerative disease diagnosis.
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