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Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,
*The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang,
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Gamma oscillations (30-100 Hz), as a rhythmic neuronal activity within the central
nervous system, play a pivotal role in the initiation, progression, and therapeutic
management of pain. By synthesizing relevant experimental and clinical evidence,
this review examines pain-induced alterations in gamma oscillations across cortical
regions and surveys recent gamma oscillation-based therapeutic interventions for pain
management. Gamma oscillations in key cortical areas—including the somatosensory
cortices, prefrontal cortex, anterior cingulate cortex, orbitofrontal cortex, and
insula—are significantly modulated by pain. Therapeutic approaches encompass
pharmacological agents (e.g.,, morphine, ketamine) and non-pharmacological
modalities (e.g., electroacupuncture, transcutaneous electrical nerve stimulation).
Emerging therapies such as virtual reality and music-based analgesia offer novel
mechanistic insights. However, current research faces limitations, including prevalent
insufficient sample sizes. Future research should leverage Al to conduct real-
world studies, establish electroencephalogram databases, and investigate the
role of gamma oscillations in disease pathology. This will advance precision pain
management and optimize therapeutic outcomes for patients.
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1 Introduction

Pain, as an evolutionarily conserved defense alarm, is ubiquitous in daily life and
particularly prevalent in medical practice. It induces multifaceted impairments encompassing
both physical and emotional domains, such as cognitive dysfunction, depression, sleep
disturbances, social disabilities, and diminished motor skills (Antunes et al., 2024). The
International Association for the Study of Pain currently defines pain as ‘an unpleasant sensory
and emotional experience associated with, or resembling that associated with, actual or
potential tissue damage (Raja et al., 2020). Because the perception and management of pain
rely on the higher neural centers, research predominantly focuses on alterations in the central
nervous system. Neural oscillations represent rhythmic or repetitive neuronal activities within
this system, generated through diverse mechanisms primarily driven by interactions between
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TABLE 1 The association between GBO activity and pain has been robustly evidenced across diverse conditions.

Pain characteristics GBO dynamics

Tonic Pain

A positive relationship between pain intensity and GBOs.

Ongoing pain

A positive association between ongoing pain intensity and prefrontal GBOs.

Chronic Inflammatory Pain

The increased gamma activity occurred mainly at electrodes over primary somatosensory cortices.

Chronic neuropathic pain

Enhanced gamma activity located mainly over the prefrontal cortex (PFC) and cerebellar areas, the enhanced gamma power

was positively correlated with pain intensity.

Generalized hyperalgesia likely play a causal role.

Enhancement in high gamma oscillatory activities in the anterior cngulate cortex (ACC) has been shown to be important and

Pain sensitivity

the high pain sensitivityT was inversely correlated with the relative power of GBOs in the bilateral insula, posterior cingulate

cortex (PCC), and primary motor cortex regions.

Acute pain

The power at gamma frequency band increased.

Brief thermo-nociceptive

Brief thermo-nociceptive stimuli elicit high-frequency GBOs in the insula.

individual neurons or neuronal networks (Kim and Davis, 2020).
Accumulating clinical evidence demonstrates that distinct oscillatory
patterns and their inter-regional synchrony play pivotal roles in pain
processing (Tan et al., 2021), such as facilitating the integration and
encoding of nociceptive information.

Pain-related neural oscillations span a broad frequency spectrum,
ranging from infraslow fluctuations (<0.1 Hz) through theta, alpha,
and beta bands up to gamma band oscillations (GBOs; Ploner et al.,
2017). GBOs (30-100 Hz) are ubiquitously distributed throughout the
brain, endowing neurons with millisecond temporal precision (Kim
and Davis, 2020). These oscillations integrate features of sensory stimuli
by generating synchrony across discrete cortical regions (Whittington
et al,, 1998). The generation of GBO primarily involves interactions
between gamma-aminobutyric acid-ergic (GABAergic) parvalbumin-
positive (PV) interneurons, or between PV interneurons and pyramidal
cells (Buzsaki and Wang, 2012), with their frequency and patterning
being stringently governed by GABAergic kinetics (Traub et al., 1996).

The association between GBO activity and pain has been robustly
evidenced across diverse conditions, including but not limited to:
short-term acute pain (Zhou et al., 2018; Tiemann et al., 2010; Liu et al.,
2015), persistent pain (Schulz et al., 2015; Peng et al., 2014), chronic
pain (Cardoso-Cruz et al., 2013), as well as pain sensitivity (Hsiao et al.,
2020) and tolerance (Zhou et al., 2020), etc., as summarized in Table 1.

Significant findings have emerged regarding the attributes of GBO
in pain processing. Specifically, GBO amplitude demonstrates a close
correlation with perceived pain intensity (Gross et al., 2007) and
reliably predicts interindividual variations in pain sensitivity (Hsiao
etal.,, 2020). Through time-frequency analysis of electroencephalogram
(EEG) signals, Lyu et al. identified two distinct consecutive GBO
components implicated in pain processing. The early-latency GBO
amplitude showed positive correlations with both intensity and
unpleasantness ratings, while the emotion-modulation effect (negative

Abbreviations: ACC, anterior cngulate cortex; DBS, deep brain stimulation; EEG,
electroencephalogram; GABA, gamma-aminobutyric acid; GBO, gamma band
oscillation; NAc, nucleus accumbens; NMDA, N-methyl-D-aspartate; PCC,
Posterior Cingulate Cortex; PFC, prefrontal cortex; PV, parvalbumin-positive; S1,
primary somatosensory cortices; S2, secondary somatosensory cortices; TENS,

transcutaneous electrical nerve stimulation; VR, virtual reality.
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vs. positive contexts) of late-latency GBO amplitude positively
correlated with pain unpleasantness (Lyu et al., 2022).

However, the effects of GBO are broad and not limited to pain.
GBOs have been extensively recorded across broad cortical and
subcortical regions, including but not limited to visual, auditory,
somatosensory, motor (Ichim et al., 2024) and olfactory cortices, thereby
playing roles in accurately perceiving the types of odors (Yang et al.,
2022), the successful formation and retrieval of episodic memory
(Griffiths and Jensen, 2023), and the fine calibration of motor
movements, etc. (Tamas et al., 2018). They also have feedback effects on
stimuli such as vision, hearing, and attention, and can be modulated by
auditory (Schadow et al., 2007), visual (Holt et al., 2024), attentional
(Tiesinga and Sejnowski, 2009), and even olfactory stimuli (Neville and
Haberly, 2003). Their effects include, but are not limited to: A distinct
dependence between sound intensity and GBOs (Schadow et al., 2007).
Enhanced oscillatory power driven by auditory beat stimuli (Anjos et al.,
2024). Strong and locally synchronized 20-70 Hz oscillatory responses
triggered by visual stimuli (Gray and Prisco, 1997). Increased high GBO
activity with heightened directed attention (Hauck et al., 2007), etc.

It is feasible to regulate GBOs through their important roles in
vision, hearing, attention, and other areas to achieve therapeutic goals,
and certain results have already been achieved. For example, in the
case of Alzheimer’s disease, researchers have found that optogenetic
activation of PV interneurons at 40 Hz, which induces robust GBOs
has also been shown to reduce amyloid load in 5XFAD mice
(Adaikkan et al.,, 2019). Another study used light flickering to induce
GBOs and found that gamma frequency light flickering enhanced the
transport of amyloid precursor protein to the plasma membrane,
reducing -amyloid load in Alzheimer’s disease (Shen et al., 2022).

GBOs are generated by the interaction between excitatory neurons
and inhibitory neurons within a brain region (Ichim et al., 2024). PV
neurons inhibit excitatory pyramidal cells through rapid firing and
electrical synapses (Druga et al., 2023). GABA, as the primary
inhibitory neurotransmitter, is released to activate GABAa receptors,
suppressing the activity of excitatory neurons. This process confines
neuronal firing within a narrow time window, ultimately giving rise
to gamma rhythmicity (Milicevic et al., 2023). The core mechanism of
GBO formation is shown in Figure 1.

These findings collectively suggest that interventions specifically
targeting GBOs hold promise for alleviating pain symptoms and
related disorders, underscoring the unique research value of GBOs
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FIGURE 1

The primary mechanisms underlying the formation of GBO. Pyramidal neurons send excitatory signals through synapses to PV GABAergic neurons.
Within PV neurons, electrical activity triggers hyperpolarization, converting these signals into inhibitory outputs. These inhibitory signals propagate back
to the pyramidal neurons via synaptic feedback. Simultaneously, they spread to nearby pyramidal neurons through electrical and chemical synapses,
amplifying local inhibition. Additionally, these signals project to distal brain regions for broader neural modulation. The figure was created with BioGDP.

com (Jiang et al., 2025), and Scidraw.io.

compared to other neural oscillatory bands. Additionally, we highlight
age-dependent variations in pain processing linked to cortical
maturation. Studies have identified significant age-related differences
in pain tolerance (Lautenbacher, 2012), with experimental data
demonstrating that such tolerance positively correlates with prefrontal
functional capacity. Notably, individuals with impaired prefrontal
function exhibit increased GBOs characterized by a more dispersed
spatial pattern. Furthermore, Noxious stimuli evoke gamma-
frequency oscillations in both infants and adults. However, infants
display markedly delayed gamma response onset (>500 ms post-
stimulus), contrasting sharply with the immediate (<200 ms) and
sustained (up to 2.5 s) GBOs observed in adults (Fabrizi et al., 2016;
Price, 2000). Cortical functions in infants appear to engage wider
cortical areas and evoke broader interactions across brain regions
compared to adults. If the differences in GBOs across different cortical
regions can be understood, optimal analgesic methods could
be chosen during pain management.

This article reviews research on the cortical areas influenced by
GBOs under pain conditions and the associated pain relief measures.

2 The cortical regions affected by
pain-induced GBOs

Many cortical regions are involved in processing information
related to pain. The current pain processing pathways are the medial
pathway, lateral pathway, and descending pathway. The medial
pathway primarily involves the dorsal ACC and anterior insula,
encoding the unpleasantness and distress of pain (Rainville et al.,
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1997; Price, 2000). The lateral pathway primarily involves the
somatosensory cortex, handling the discrimination and sensation of
pain (Flor et al., 1995; Bushnell et al., 2013). The descending pathway
includes the pregenual ACC, periaqueductal gray, hypothalamus, and
others (Kong et al.,, 2010), responsible for stress-mediated pain
inhibition (Yilmaz et al., 2010) and placebo analgesia (Eippert et al.,
2009). GBOs play a role or have been observed in multiple cortical
regions, and due to the close relationship between the two, we review
the cortical regions affected by pain-induced GBOs. The changes of
GBOs in the relevant cerebral cortex are shown in Figure 2.

The primary somatosensory cortices (S1) and secondary
somatosensory cortices (S2) predominantly process sensory
discrimination, providing critical information regarding pain
duration, intensity, and spatial localization. These regions also
contribute significantly to the recognition and memorization of
noxious events (Schnitzler and Ploner, 2000). Studies by Gross et al.
have shown that selective nociceptive stimulation induces GBOs
between 60 and 95 Hz in S1 (Gross et al., 2007). Yue et al. revealed
robust temporal and phase coupling between superficial S1 layers
and epidural GBOs (Yue et al., 2020). Notably, optogenetically
induced GBOs in S1 enhance nociceptive sensitivity and evoke
aversive avoidance behaviors (Tan et al., 2019).

S2 and posterior insular cortex likely constitute primary neural
hubs that mediate attentional modulation of behavioral pain responses
and subjective pain experience encoding (Lorenz and Garcia-Larrea,
2003). Studies have shown that pain-induced GBOs within S2 and
insular regions are intrinsically modulated by directed attention
(Lorenz and Garcia-Larrea, 2003). Betti et al. has specifically clarified
this internal regulation that directly observing others’ pain elicits
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FIGURE 2

The left panelillustrates key cortical regions where GBOs occur, with areas exhibiting enhanced GBOs specifically highlighted (e.g. ACC, anterior
cingulate cortex; PFC, prefrontal cortex; OFC, orbitofrontal cortex; S1, primary somatosensory cortices; S2, secondary somatosensory cortices; PAG,
periagueductal gray). The right panel provides a topographic mapping of these regions on a brain outline, further indicating cortical areas modulated
by non-pharmacological interventions. Brain silhouette were sourced from https://scidraw.io/.

significantly enhanced GBO synchronization (33-90 Hz) in the
observer’s sensorimotor system (Betti et al., 2009).

Schulz et al. established a positive correlation between pain
intensity and GBOs during tonic pain. Furthermore, they
demonstrated that GBOs in the medial PFC selectively encode the
subjective perception of persistent pain (Schulz et al., 2015).
Xuezhu Li et al. implanted electrodes in four pain related regions
such as ACC, orbitofrontal cortex, and S1, and found that the
power of the GBO was increased by applying harmful laser
stimulation (Li et al., 2017).

ACC and insula are activated during pain anticipation or
attentional engagement. Empathy—characterized by the capacity to
understand others through shared intentions, emotions, and
sensations (Preston and Waal, 2002)—engages pain empathy networks
primarily involving the anterior insula and ACC (Hein and Singer,
2008). Ortega et al. discovered that during natural sleep in
unanesthetized mice, somatosensory inputs from noxious versus
innocuous stimuli differentially project to S1 and ACC, evoking
complex transient and sustained responses across three frequency
bands including GBOs (Sandoval Ortega et al., 2024). Furthermore,
systemic hyperalgesia induces enhanced GBOs in the ACC (Kenefati
etal., 2023).

Time-frequency analysis of EEG reveals that noxious stimuli elicit
significant enhancement of GBOs in the insular cortexl (Liberati et al.,
2018). Experimental evidence further confirms that activation of the
anterior insula scales proportionally with magnitude ratings of both
painful and visual stimuli (Baliki et al., 2009). Notably, patients with
fibromyalgia exhibit persistent peak overactivation within the GBO
across the left anterior insular cortex, primary motor cortex, and S1
(Lim et al., 2016).

Frontiers in Neuroscience

3 Therapeutic regulation of GBOs

Current approaches to pain management encompass diverse
therapeutic modalities, broadly categorized into pharmacological and
non-pharmacological interventions. Mounting evidence recognizing the
role of neural oscillations in neurological disorders which frequently
manifest pain symptoms has spurred scientific interest in correlating
specific pain phenotypes with GBOs to identify novel therapeutic targets.

3.1 Pharmacological modulators

Morphine has a strong analgesic effect and is suitable for various
types of pain, so it is widely used (Wang et al., 2023). Whittington
demonstrated that morphine activates u-opioid receptors, leading to
concentration-dependent modulation of network oscillations. At
20-50 pM concentrations, morphine induced a slight increase in
population spike frequency during oscillations. Conversely, at higher
concentrations (100-200 pM), it reduced the number of population
spikes while increasing the prevalence of small amplitude high-frequency
oscillations. They concluded that both morphine and S-endorphin
impair GBOs within neuronal networks and their associated long-range
synchrony (Whittington et al., 1998). Tramadol, another widely
prescribed centrally acting opioid analgesic, elicits a marginal reduction
in gamma-band power during wakefulness while enhancing GBOs
during non-rapid eye movement sleep states (Koncz et al., 2021).

The endocannabinoid system plays a critical role in pain
modulation. Delta-9-tetrahydrocannabinol has been demonstrated to
increase GBO power in the anterior nucleus accumbens (NAc) while
decreasing gamma power in the posterior shell region of the NAc. This
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bidirectional modulation correlates with its mechanism of inducing
both rewarding and aversive effects via p- and x-opioid receptors,
respectively (Norris et al., 2019).

The ablation and antagonism of N-methyl-D-aspartate (NMDA)
receptors on PV neurons have been demonstrated to induce GBOs
(Pinault, 2008; Korotkova et al., 2010). Ketamine, as an NMDA
receptor antagonist, produces sedation, analgesia, and dissociation at
low doses, while eliciting profound unconsciousness with
antinociception at high doses (Adam et al., 2024). Notably, it exerts
analgesic effects under both acute and chronic administration
regimens (Noppers et al., 2010; Ye et al., 2018). Ketamine is currently
used as a treatment for depression (Zanos and Gould, 2018), where
pain constitutes a common comorbidity (Sheng et al., 2017).

Intriguingly, however, studies demonstrate that ketamine elicits
GBOs in EEG recordings. The underlying mechanism involves
ketamine’s disruption of the slow-unblock kinetics of NMDA receptor
channels, which reduces interneuron activity and consequently
This
conventional analgesic approaches that typically suppress GBOs

induces disinhibition. effect paradoxically contradicts
(Slovik et al., 2017). Additional regulatory mechanisms may exist—for
instance, research by Adam et al. reveals that ketamine disrupts and
alters the excitatory-inhibitory balance, thereby modifying neuronal
states. This discrepancy warrants further investigation (Adam
etal., 2024).

Propofol, an intravenous anesthetic agent, induces loss of
by GABAa

hyperpolarizing inhibition of pyramidal neurons (Brown et al., 2011).

consciousness enhancing receptor-mediated
It has been thought to have analgesia enhancing properties due to
activation of the GABAa receptor, a mechanism that may counteract
the pronociceptive systems (Chidambaran et al., 2015). Propofol used
commonly for the induction and maintenance of anesthesia,
procedural, and critical care sedation in children (Chidambaran
etal., 2015).

The functionality of PV interneurons is regulated by determinants
of synaptic plasticity. For instance, SynCAML1 is specifically expressed
in hippocampal PV neurons and participates in excitatory mossy fiber
inputs from pyramidal neurons to PV interneurons in the
hippocampus. Sevoflurane downregulates SynCAMI1 expression, and
the reduction in mossy fiber inputs impedes GBO generation (Zhao
et al., 2023). Similarly, mefloquine downregulates electrical synapses

TABLE 2 The effects of each drug on GBOs.

10.3389/fnins.2025.1656588

composed of Connexin 36 in the ACC, mediating attenuated GBO
and thereby alleviating neuropathic pain (Chen et al., 2016).

Lappaconitine, a potent analgesic extracted from the roots of
natural Aconitum genus plants, demonstrates effective pain relief in
its derivatives—Lappaconitine hydrobromide and Lappaconitine
trifluoroacetate—on Sprague-Dawley rats subjected to noxious laser
stimuli. Both derivatives significantly suppress nocifensive behaviors
and reduce the amplitude of laser-evoked potentials, particularly in
the GBO component. Compared with Lappaconitine hydrobromide,
Lappaconitine trifluoroacetate exerts a more pronounced inhibitory
effect on GBO magnitude and resting-state spectral power (Teng
etal., 2021).

The anesthetic a-Chloralose enhances GABAa receptor function.
Patch-clamp recordings demonstrated that a-Chloralose potentiates
GABAergic leak currents and prolongs the decay constant of
spontaneous inhibitory postsynaptic currents, thereby suppressing
hippocampal GBO (Wang et al., 2008). It has been employed widely
as an animal anesthetic in the laboratory setting (Holzgrefe
etal., 1987).

Mitragyna speciosa (Kratom), employed as a traditional remedy
for alleviating depression and pain, has gained increasing popularity
in Europe and North America. Buckhalter’s experimental evaluation
of kratoms effects on neuronal oscillations and analgesia revealed that
both high and low doses produced analgesic effects. Repeated
administration of a low dose downregulated beta rhythms and
elevated gamma power in the cingulate cortex, while repeated high-
dose kratom selectively suppressed high-gamma power in the PFC
and enhanced coherence of electrical activities across multiple brain
regions (Buckhalter et al., 2021).

The effects of each drug on GBOs are shown in Table 2.

3.2 Non-pharmacological interventions

Non-pharmacological approaches represent effective alternatives
for pain alleviation. Compared to pharmacological interventions—
particularly opioids—they significantly reduce addiction risks. In
nations with stringent psychotropic drug regulations, these methods
offer a safer therapeutic alternative. Research has further elucidated
their mechanistic pathways associated with gamma rhythm.

Drug Modulating effects

Morphine Disrupts gamma oscillations in neuronal networks

Naloxone Elevates gamma oscillations, enhancing awareness of pain worsening after opioid blockade.

Tramadol Acute tramadol slightly reduces gamma power during wakefulness, while increases it during non-REM sleep
Delta-9-THC Increases GBO power in anterior NAc, decreases gamma power in posterior NAc shell region

Ketamine Increases cortical gamma power with power of GBOs

Propofo Elevates gamma power in anterior/posterior cingulate cortex and enhances functional gamma connectivity between these regions
Sevoflurane Reduces GBOs with decreased synCAMI expression in PV interneurons and diminished PV phenotype
Mefloquine Modulates GBOs and synaptic plasticity in anterior cingulate cortex

Lappaconitine Significantly reduces laser-evoked potential amplitudes in GBO

a-Clorazepate Suppresses hippocampal GBOs

Mitragyna speciosa Repeated low-dose kratom administration suppresses beta/low-gamma power in cingulate cortex
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Stimulation of the dorsal root ganglion is a neuromodulation
intervention particularly ideal for alleviating localized chronic pain
conditions. In a clinical study by Morgalla, nine patients diagnosed
with chronic neuropathic pain underwent dorsal root ganglion
stimulation therapy. The results demonstrated a significant reduction
in numeric rating scale on the painful limb, accompanied by a marked
decrease in resting-state gamma power within the 30-45 Hz range
(Morgalla et al., 2024).

Deep brain stimulation (DBS), a neurosurgical intervention widely
adopted for movement disorders such as Parkinson’s disease, has now
been utilized as a therapeutic approach to alleviate refractory pain of
diverse etiologies. Pereira demonstrated that DBS targeting the dorsal
periaqueductal and periventricular gray reduces gamma power through
increased release of endogenous opioids, correlating with significant pain
relief. Administration of the opioid receptor antagonist naloxone
alongside DBS antagonized the DBS-induced reduction in GBO
indicating heightened perceptual sensitivity to pain exacerbation under
opioid blockade (Pereira et al., 2013). Despite the existence of multiple
anatomical targets beyond dorsal periaqueductal and periventricular
gray—including cortical regions such as the anterior cingulate—a
notable paucity of research persists in this domain (Boccard et al., 2015).

Research by Mark P. Jensen et al. revealed that transcranial direct
current stimulation induced a small but statistically significant
reduction in GBO. They proposed that this reduction mediates
analgesic effects by attenuating or interrupting attentional processes
or intra-cerebral communication. However, no significant linear
association was identified between changes in GBO activity and
alterations in pain intensity (Jensen et al., 2013).

Transcutaneous electrical nerve stimulation (TENS) is a
noninvasive, cost-effective, and safe analgesic technique employed to
alleviate both acute and chronic pain (Kara et al., 2010). High-
frequency TENS can reduce enhanced GBO activity following
induced tonic pain in healthy volunteers, demonstrating a decrease in
total gamma power (Ebrahimian et al., 2018).

In a study by Hauck et al. investigating acupuncture’s effect on
experimental pain induced by laser radiant heat stimulation, EEG
revealed significantly greater attenuation of pain-related GBO in the
bilateral PFC, S1, midcingulate cortex, and insula during acupuncture
intervention. The authors propose that acupuncture may modulate
pain through a shift in the interaction of different cortical sensory,
limbic and executive networks with the default mode network and the
autonomic nervous system (Hauck et al., 2017).

Interestingly, through the innovative modification of applying
microcurrents between adjacent needles in traditional Chinese
acupuncture, an emerging electroacupuncture therapy has been
developed. This technique precisely integrates the principles of both
acupuncture and TENS, thereby providing enhanced therapeutic
efficacy. Consequently, clinical feedback from Chinese hospitals
indicates that electroacupuncture is more favorably received compared
to either modality used alone. Ding explored the relationship between
electroacupuncture and acute postoperative pain, revealing that GBO
alterations serve as biomarkers of pain modulation. Application of
electroacupuncture corrects aberrant elevations in the amplitude of
three oscillatory bands including gamma, thereby effectively
alleviating painful hypersensitivity (Ding et al., 2023). Although the
mechanism by which electroacupuncture modulates neural
oscillations to produce analgesic effects remains to be fully elucidated,
it has been extensively studied in the context of cerebrovascular
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accidents, Alzheimer’s disease, and pain disorders (Li et al., 2021).
Considerable insights have been gained particularly regarding its
modulation of neurotransmitters such as GABA, providing valuable
implications for further research.

Rustamov investigated whether attentional processes facilitate
pain inhibition in patients with irritable bowel syndrome. The
experiment revealed that both heterotopic noxious counterstimulation
and selective attention reduced pain-related high-gamma power in the
sensorimotor cortex, ACC, and left dorsolateral (Rustamov
et al., 2020).

Neurofeedback behavioral therapy, as a neuromodulation-based
approach, serves as a long-term analgesic therapy (Moshkani Farahani
et al., 2014). Research by Hamed et al. revealed that GBOs are
modulated by neurofeedback, with enhancement in power observed
across four neural oscillation bands—including GBOs—in the frontal
regions (Hamed et al., 2022).

While the aforementioned physical therapies achieve analgesia by
directly acting on pain-affected body parts or through conscious
interventions, earlier discussions have noted that a series of sensory
stimuli can also modulate neural oscillations. This suggests that
leveraging auditory and visual signals may open new avenues for pain
treatment. Virtual reality (VR) has emerged as a non-pharmacological
adjuvant for pain management. Li demonstrated that distinct neural
mechanisms, including gamma rhythms, underlie VR-induced
analgesia (Li et al., 2023). Further observations revealed that the
intensity of VR immersion positively correlates with pre-stimulus
GBO enhancement, with significantly greater pain reduction during
multisensory experiences. This is attributed to VR’s multisensory
integration, which more effectively distracts attention compared to
unimodal visual or auditory stimuli, thereby reducing pain intensity
and unpleasantness perception. Notably, the experimental sequence—
administering immersion prior to pain stimulation—deviates from
real-world scenarios and may impact the validity of the conclusions.

Music can profoundly influence subjects’ emotional states and
attentional focus, and is now frequently employed as an experimental
stimulus in various analgesic studies (Dobek et al., 2014; Warth et al.,
2018). Current research has partially elucidated its engagement with
pain pathways (Garza-Villarreal et al., 2015). Guo demonstrated that
sad music exhibits superior analgesic efficacy, attributed to enhanced
beta-band oscillations and GBOs at O2 and P4 electrodes (Guo et al.,
2020). However, the study has considerable limitations: the selection
of simulated pain types was singular, personality factors significantly
confounded the results, and the sample size of 40 participants was
markedly inadequate. The cortical regions where GBOs are modulated
by non-pharmacological interventions are shown in Figure 2.

The effects of each treatment on GBOs are shown in Table 3.

4 Research challenges and future
directions

Pain constitutes an essential life experience that permeates human
existence, with its perception representing a complex neurobiological
phenomenon. Neural oscillations—rhythmic neuronal activities
within the central nervous system—play a pivotal role in this process.
GBOs ubiquitously distributed across cortical and subcortical regions
are intrinsically linked to fundamental cognitive functions including
attention, memory, and executive control. As synthesized in this
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TABLE 3 The effects of each treatment on GBOs.

10.3389/fnins.2025.1656588

Intervention Modulatory effect

Dorsal Root Ganglion Stimulation Reduced resting-state gamma power

DBS Increased endogenous opioid release and decreased gamma power

Transcranial direct current stimulation A small but statistically significant reduction in GBO

TENS Reduced enhanced gamma-band activity following tonic pain

Acupuncture Reduced GBOs in bilateral PFC, S1, midcingulate cortex, and insula

Electroacupuncture Attenuated amplitudes of three oscillations (including gamma), alleviated painful hypersensitivity, and restored gamma rhythm
power

Attention Modulation Selective attention reduced pain-related high-gamma power in sensorimotor cortex, ACC, and left dorsolateral PFC

Neurofeedback Therapy Enhanced power across four bands (including gamma) in frontal regions

VR Increased pre-stimulus spontaneous GBOs

Sad Music Higher gamma-band amplitude in parietal regions correlates with sad emotion valence, while occipital gamma amplitude stems
from selective attention

review, GBOs demonstrate robust associations with pain  bands with functionally distinct roles, GBOs fundamentally

pathophysiology, exemplified by the positive correlation between
gamma power and subjective pain intensity. Critically, these
oscillations serve as biomarkers for diverse pain conditions, such as
chronic neuropathic pain and persistent back pain.

The therapeutic landscape targeting GBOs encompasses diverse
modalities, ranging from pharmacological agents (e.g., ketamine,
tramadol, and propofol) to non-pharmacological interventions (e.g.,
electroacupuncture, dorsal root ganglion stimulation, VR, and TENS).
This diversity provides a framework to rationally harness GBOs in
pain-prominent disorders, evolving beyond their role as biomarkers
to serve as objective metrics for analgesic efficacy evaluation, and
novel targets for analgesic development.

This review highlights the promising analgesic efficacy of both
VR and music-based interventions, wherein GBOs play an integral
role in their underlying neuromodulatory mechanisms. These
approaches represent a paradigm shift in the therapeutic
application of GBOs for pain management. While traditional
non-pharmacological therapies predominantly rely on acupuncture
and electrical stimulation, emerging strategies utilizing photo-
acoustic stimuli to entrain GBOs have demonstrated considerable
success. Current evidence suggests that physical signal-based
neuromodulation targeting neural oscillations holds unprecedented
potential for mechanistic exploration and clinical translation. This
review synthesizes evidence on GBO-mediated analgesia across
pharmacological and non-pharmacological therapies. Nevertheless,
current research exhibits significant limitations, including:
Insufficient standardization of experimental pain conditions when
evaluating oscillatory responses to interventions. Methodological
heterogeneity in quantifying GBOs (e.g., power versus
amplitude metrics).

This systematic review has identified multiple pharmacologic
and non-pharmacologic therapies that exert analgesic effects
through GBO modulation. However, significant limitations persist
in current GBO research. First, numerous studies simplistically
attribute analgesia efficacy to gross GBO alterations, while
overlooking critical inconsistencies in directional trends of
waveform parameters—including spatial topography, amplitude,
power spectral density, and peak frequency—across experimental
paradigms. Although neural oscillations are classified by frequency
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represent artificially defined rhythmic activities (30-100 Hz) that
encode heterogeneous neural functions spanning pain subtypes
and non-pain processes. Functionally distinct GBOs exhibit
divergent patterns across these multidimensional attributes, which
cannot be accurately discerned through human visual inspection.
EEG, capturing direct neuroelectrical dynamics with high temporal
resolution, remains the optimal modality for investigating
oscillatory mechanisms. Integrating EEG data with Al-driven
machine learning enables.

Systematic investigation of location- and phenotype-specific
pain signatures. Extraction of discriminative waveform features.
Development of diagnostic algorithms balancing specificity (>85%)
and sensitivity (>90%). This approach facilitates mechanistic
exploration beyond pain states to include emerging analgesics and
neuromodulatory interventions. Quantifying intervention-induced
gamma dynamics across cortical regions provides. Precision
guidance for clinical treatment selection. Mechanistic biomarkers
for novel analgesic development. Establishing an evidence-based
framework for therapeutic innovation.

Second, a critical schism exists between pharmacological and
non-pharmacological research paradigms. Pharmacological studies
emphasize molecular pathways while neglecting neuroanatomical
correlates, whereas non-pharmacological research focuses on local
EEG dynamics without mechanistic depth. This disconnect
precludes identification of shared mechanistic pathways for cross-
modality analysis, confining efficacy assessments to macro-level
outcomes—an approach that proves insufficient. In clinical
practice, combined pharmacological and neuromodulatory
therapies are frequently employed to enhance analgesic outcomes.
However, the absence of comparative mechanistic data forces such
combinations to rely predominantly on clinicians’ empirical
judgment rather than evidence-based medical principles, often
failing to yield optimal regimens. Compounding this challenge, the
vast heterogeneity in pain phenotypes and underlying mechanisms
necessitates mechanism-targeted matching between specific pain
entities and therapeutic modalities, which constitutes a critical
determinant for selecting first-line clinical strategies.

Finally, the prevalent limitation of small sample sizes merits critical
attention. Given the methodological complexity of inducing targeted
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pain states in animal or human subjects prior to intervention, most
studies are constrained to cohorts ranging from as few as 4 to several
dozen participants. While such sample sizes may demonstrate proof-
of-concept under current constraints, they remain inadequate for
generating robust, statistically powered conclusions. To establish high-
grade evidence per evidence-based medicine standards, large-scale
multicenter randomized controlled trials are imperative. However,
practical challenges arise: the non-life-threatening nature of most
chronic pain conditions and patients” preserved activities of daily living
limit willingness for prolonged hospitalization. Consequently,
standardized monitoring and intervention delivery prove difficult to
implement. Large-scale longitudinal real-world studies represent a
viable alternative pathway, leveraging digital phenotyping to capture
ecological treatment responses across extended observation periods.

Furthermore, current research has not fully elucidated the causal
relationship between GBOs and pain. Most literature focuses on the
unidirectional causality where pain induces neural oscillations.
However, emotions such as depression and empathic responses can
also lead to somatic pain (Hein and Singer, 2008; Dudeney et al,,
2024), with somatization in depression serving as a classic
manifestation. This evidence suggests a bidirectional causality between
the two phenomena.

In summary, while GBO research has established a rich foundation
for pain therapeutics, these methodological limitations necessitate
paradigm-shifting approaches.
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