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Objective: Tuberous sclerosis complex (TSC) presents with a broad clinical 
spectrum. While some individuals exhibit mild symptoms, most experience 
seizures and neuropsychiatric comorbidities. Emerging evidence suggests 
that both genetic and environmental factors, including gut microbiota, may 
influence epilepsy susceptibility. The microbiota–gut–brain axis (MGBA) is a 
key communication pathway through which intestinal microbes impact the 
central nervous system. Although the role of the MGBA in the pathogenesis of 
neurological diseases, particularly seizures, has been explored in both animal 
models and humans, data specific to TSC are lacking.
Methods: In this exploratory study, we  assessed whether individuals with 
TSC (n = 15) display a distinct gut microbial signature using V3–V4 16S rRNA 
sequencing. Their profiles were compared with two control groups: 18 children 
with epilepsy (EPI) and 12 age- and sex-matched healthy controls (HC). Stool 
short-chain fatty acid (SCFA) levels and dietary intake were also evaluated.
Results: No significant differences were observed among the three groups 
in dietary intake, SCFA and branched-chain fatty acid (BCFA) levels, or alpha-
diversity. Beta-diversity analysis showed a non-significant trend toward 
clustering of TSC and EPI samples, indicating a shared microbial profile distinct 
from HC. Taxonomic analysis revealed a reduction in Firmicutes—particularly 
the Ruminococcaceae family and the genus Gemmiger—in both TSC and EPI 
groups, consistent with epilepsy-associated dysbiosis. Notably, the TSC group 
showed a specific enrichment in Akkermansiaceae, a feature also reported in 
other neurodevelopmental disorders such as CDKL5 deficiency disorder and 
cerebral palsy.
Significance: These preliminary findings suggest that gut microbiota alterations 
may contribute to neuroinflammatory processes linked to epileptogenesis and 
comorbidities in TSC. Further studies are needed to validate these results and 
explore microbiota-based therapeutic strategies aimed at improving outcomes 
and quality of life for individuals with TSC and their caregivers.
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Highlights

	•	 This is the first study to investigate the possible role of gut 
microbial communities in Tuberous Sclerosis Complex (TSC), 
with a specific focus on epilepsy

	•	 We compared the gut microbiota profile of patients with TSC 
with those of subjects with epilepsy and healthy controls

	•	 Both TSC and epilepsy groups showed a depletion in Gemmiger 
and Faecalibacterium, taxa associated with anti-inflammatory 
functions and butyrate production.

	•	 While many microbial alterations were shared, the TSC group 
showed increased Akkermansiaceae, a genus implicated in other 
neurological disorders.

	•	 These preliminary results highlight the need for larger studies to 
confirm findings and clarify the microbiota-gut-brain axis 
role in TSC.

1 Introduction

Tuberous sclerosis (TSC) is a rare genetic, autosomal-dominant, 
multisystem disease (Crino et  al., 2006), with an incidence of 
approximately 1 case per 6,000–10,000 live births (Henske et al., 2016).

TSC is caused by mutations in the TSC1 or TSC2 genes encoding 
for hamartin and tuberin, respectively. These proteins form a complex 
that regulates the mammalian/mechanistic target of rapamycin 
(mTOR), and the hyperactivation of mTOR, caused by loss of TSC1 or 
TSC2, is involved in the formation of benign tumors. Therefore, 
patients with TSC (pwTSC; Laplante and Sabatini, 2012) may develop 
benign tumors in several organs, including kidneys (Neumann et al., 
1998), lungs (Vicente et al., 2004), heart (Jóźwiak et al., 2005), and 
central nervous system (CNS; Gomez et al., 1999). Lesions in the CNS, 
such as cortical tubers and subependymal astrocytomas, may cause 
intellectual disability (ID) and behavioral disorders. Indeed, most 
individuals exhibit tuberous-sclerosis-associated neuropsychiatric 
disorders (TANDs) during their lives, and children have an increased 
risk of developing Autism Spectrum Disorder (ASD; Sparagana and 
Roach, 2000). TSC is associated with epilepsy in 70–90% of patients, 
frequently manifesting with medication-resistant seizures (White 
et al., 2001; Chu-shore et al., 2010; Curatolo et al., 2015; Vignoli et al., 
2013). While seizures are generally thought to originate from cortical 
tubers, marked by dysmorphic neurons and giant cells, the exact 
mechanism of epileptogenesis in TSC remains complex and not fully 
understood (Rastin et al., 2023).

The microbiota-gut–brain axis (MGBA) has recently been widely 
investigated in the etiopathogenesis of epilepsy, both in animal models 
and human studies (Zhang et al., 2025; da Silva et al., 2025; Ceccarani 
et  al., 2021; Riva et  al., 2025). Intestinal microorganisms may 
contribute to seizure onset and medication resistance through various 
mechanisms, including the promotion of a basal inflammatory state 
(Zhao et al., 2023), altering gastrointestinal barrier homeostasis, and 
the production of a wide range of bioactive metabolites (Wells et al., 
2017). Gut bacteria produce both neuroactive compounds, such as 
tryptophan, serotonin, and dopamine, which can reach the central 

nervous system through the bloodstream or influence neurons in the 
enteric nervous system (Stilling et  al., 2014) and other relevant 
metabolites such as short-chain fatty acids (SCFAs; Wells et al., 2017). 
These latter, particularly butyric acid, exert diverse effects that may 
be  relevant to epilepsy, including epigenetic modulation, 
neuroprotection, and both local and systemic anti-inflammatory 
actions (Kalkan et  al., 2025). By influencing neuronal excitability, 
synaptic plasticity, and inflammatory pathways, SCFAs could 
contribute to seizure mitigation and improved neurological outcomes 
(Yan et al., 2025).

Since pathogenic variants alone cannot account for the broad 
spectrum of clinical manifestations in pwTSC, in this pilot study, 
we investigated whether the gut microbiota might contribute to the 
severity of comorbidities, particularly seizure occurrence, through the 
gut-brain axis.

2 Materials and methods

2.1 Cohort enrollment

We enrolled individuals who had been diagnosed with TSC 
disorder at the Department of Child Neuropsychiatry of the ASST 
Santi Paolo e Carlo and of the GOM Niguarda. As a control group, 
we included healthy controls, age- and sex-matched, and subjects with 
drug-susceptible (DSE) or drug-resistant epilepsy (DRE). We excluded 
individuals who had used antibiotics or probiotics within 1 month 
before the study, and subjects who presented metabolic diseases or 
infectious diseases at enrollment. The study was approved by the Local 
Ethics Committee (protocol number 2016/ST/199, 28 July 2016). 
Written informed consent was obtained from parents and/or legal 
guardians of the enrolled patients/healthy subjects.

Caregivers were asked to fill out a 3-day dietary survey. The diary 
included three consecutive days, one of which was during the 
weekend. Dietary food records were processed using a commercially 
available software (MètaDieta, METEDA srl, Italy). Anthropometric 
evaluation completed the nutritional survey. The stool transition time 
was estimated by the Bristol Stool Form Scale (BSFS; Lewis and 
Heaton, 1997).

2.2 Fecal short-chain fatty acid 
quantification

SCFAs were extracted by homogenizing 200 mg of stool in 1 mL 
of water. From 300 μL of homogenate, 700 μL of water, 200 μL of 
orthophosphoric acid (85%), and 100 μL of internal standard 
(2-ethylbutyric acid, 20 mM) were added. The mixture was extracted 
with 500 μL diethyl ether/heptane (1:1) and centrifuged for 5 min to 
recover the organic phase. Acetic, propionic, isobutyric, butyric, and 
isovaleric acids were quantified by GC–MS (GC 8860 System-MSD 
5977C, Agilent) using a DB-WAX Ultra Inert column. Compound 
identity was verified with pure standards by comparing retention 
times and MS spectra. Calibration standards (5–0.3125 mM) were 
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extracted alongside samples using 2-ethylbutyric acid as the internal 
standard. Data were processed with MassHunter software (Agilent).

2.3 Microbial DNA extraction and 16S rRNA 
gene sequencing of human gut microbiota

Bacterial genomic DNA from stool samples was extracted using 
the Spin Stool DNA Kit (Stratec Molecular, Berlin, Germany) as 
described by Di Fede et al. (2021). DNA concentration was measured 
with the DNA High Sensitivity Qubit kit (ThermoFisher Scientific, 
Waltham, MA, United States). The V3–V4 regions of the bacterial 16S 
rRNA gene were sequenced by Macrogen (Seoul, Republic of Korea) 
following the Illumina 16S Metagenomic Sequencing Library 
Preparation protocol (Illumina, San Diego, CA, United States).

Amplicon sequence variants (ASVs) were identified using the 
DADA2 pipeline (v1.18.0) for read filtering, trimming, and denoising, 
and downstream analyses were conducted in R with the phyloseq 
package (v1.34.0) and custom scripts (Callahan et al., 2016). Alpha 
diversity was assessed using Chao1, Shannon, Observed species, and 
Faith’s PD metrics, while beta diversity was analyzed with weighted 
and unweighted UniFrac distances and visualized by PCoA (Lozupone 
et al., 2011). Taxonomic assignment was performed using the 8-mer 
classifier of the RDP database (release 11.5; Wang et al., 2007) and the 
GTDB 16S rRNA database (release r207; Parks et al., 2022).

2.4 Statistical analysis

Non-categorical variables were expressed as mean ± SD, and 
relative abundances as percentages. Group comparisons for alpha- and 
beta-diversity and taxonomic data were performed using the Kruskal–
Wallis test with Dunn’s post-hoc correction. Co-abundance matrices 
were generated using Pearson’s correlation and Ward’s hierarchical 
clustering. Integration of diet, fatty acids, and microbial genera was 
conducted via sparse discriminant analysis using a classic PLS 
algorithm. Unless otherwise stated, p-values were Benjamini–
Hochberg adjusted, with significance set at p < 0.05.

3 Results

3.1 Cohort description

We enrolled 15 individuals with TSC (“TSC” group; mean age 
8.2 ± 5.5, 8 males), including 13 with pathogenic variants in TSC2 and 
1 with a pathogenic variant in TSC1. In one patient, no pathogenic 
variant was identified. Among individuals with TSC, 6 had drug-
resistant seizures, while in 8 patients, seizures were under control. All 
patients with DRE were on 2–3 anti-seizure medications (ASMs), and 
patients with DSE were on monotherapy resulting in a total of 14/15 
(93%) patients receiving ASMs. One TSC individual did not 
experience epilepsy. None of the pwTSC included in the study were 
on everolimus. Besides epilepsy, 7 individuals showed ID, 4 ASD, and 
1 attention-deficit/hyperactivity disorder (ADHD).

As control groups, we collected stool samples from 12 healthy 
controls (“HC” group; mean age 9.1 ± 4.6, 5 males) and 18 subjects 
with epilepsy (“EPI” group; mean age 12.9 ± 6.0, 8 males), 8 with DRE 

and 10 with DSE, all undergoing ASMs. Among children with DRE, 
3 had ID and 1 ASD; no child with DSE presented with ID or 
neurodevelopmental disorder. Due to the small cohort, in the analyses 
we did not divide TSC and EPI individuals according to medication 
response; therefore, our final dataset consisted of 12 HC, 15 TSC, 
and 18 EPI.

According to the Bristol Stool Form Scale (BSFC), none of the 
enrolled children were severely constipated or experiencing diarrhea.

3.2 Nutritional evaluation

Since diet is recognized as one of the key factors shaping the gut 
microbiota (Zmora et al., 2018), caregivers were asked to complete a 
3-day food diary to assess the intake of micro- and macronutrients in 
the enrolled subjects.

The food diary analysis revealed a reduced daily energy intake in 
TSC subjects (TSC vs. HC, not significant; TSC vs. EPI, p = 0.005), 
although all values remained within the range recommended by Italian 
national guidelines (Italian Society of Human Nutrition (SINU), 2024). 
At the macronutrient level, no statistically significant differences were 
observed between the TSC and HC groups. However, the EPI group 
showed a higher intake of protein, lipids, and saturated fats (in grams) 
compared to the TSC group (p = 0.009, p = 0.004, and p = 0.038, 
respectively). Despite these findings, no significant differences were 
observed among the groups in protein, lipid, carbohydrate, or dietary 
fiber intake when macronutrients were assessed as a percentage of total 
energy intake. Macronutrient values - except for fats, which were elevated 
across all groups  - aligned with Italian national recommendations 
[Italian Society of Human Nutrition (SINU), 2024]. A detailed table of 
diet evaluation is provided in the Supplementary Table S1.

3.3 Biodiversity assessment of gut 
microbial community

Microbiota profiling was performed through V3-V4 16S rRNA 
gene-targeted sequencing. After quality filtering processes, we obtained 
a mean count of 31,953 (+/− 5,840) reads per sample. Sequencing 
depth was set to the lowest sequenced sample (n = 18,216 reads), to 
compensate for the sequencing unevenness of the samples and to 
provide a consistent minimum amount for the downstream analysis.

Alpha-diversity analyses (Figure 1A) did not indicate significant 
differences between the HC, TSC, and EPI groups for both species 
richness and biodiversity.

Similarly, beta-diversity analysis (Figures  1B,C) fails to reveal 
significant differences in terms of microbiota dissimilarity between the 
cohorts. However, Weighted Unifrac distance (panel C) showed a 
trend toward distinct clusters between HC and TSD (raw 
p-value = 0.035, adj p-value = 0.105) and to a lesser extent between 
HC and EPI (raw p-value = 0.074, adj p-value = 0.111).

When detailing the taxonomy phylogenetic levels among the 
three studied groups (Figure 2), we observed a significant decrease in 
the Firmicutes relative abundances within the TSC and EPI groups 
compared to healthy controls (50.1% HC vs. 33.6% TSC, adj 
p = 0.015; 50.1% HC vs. 38.0% EPI, adj p = 0.044). In agreement, the 
Firmicutes/Bacteroidota ratio was reduced in TSC and EPI groups 
(Figure 2A).
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Among Firmicutes, the Ruminococcaceae family (Figure 2B) was 
found to be significantly reduced in both clinical groups compared to 
the HC subjects (32.6% HC vs. 16.6% EPI, p = 0.014; 32.6% HC vs. 
16.1% TSC, p = 0.015). It is worth noticing that, although not 
significantly, the Bacteroidaceae family reported lower relative 
abundances within the HC group (13.3% in HC vs. 15.8% TSC and 
16.9% EPI), while the Oscillospiraceae family was observed to 
be consistently higher in the EPI group (6.8% vs. 2.3% HC and 3.0% 
TSC). At the genus level (Figure  2C), we  found HC microbial 
communities to be characterized by higher levels of Gemmiger (20.4% 
HC vs. 10.5% EPI, p = 0.043; 10.3% TSC, p = 0.073; Figure  2D), 
Blautia_A (1% HC vs. 0.6% EPI, p = 0.010) Faecalibacterium (11.9% HC 
vs. 5.5% TSC, p = 0.118; Figure 2G). Subjects with TSC, compared to the 
EPI, showed higher abundances of Bifidobacterium (Figure  2E), 
Prevotella, and Akkermansia (Figure 2H) spp. Subjects with EPI, on the 
other hand, had consistently higher abundance of Bacteroides, 
Phocaeicola, and Faecousia (Figure 2F). Taxonomy data is extensively 
detailed in Supplementary Table S2.

Co-abundance relationships among the bacterial genera in HC, 
TSC, and EPI groups are reported in Figure 3. The progression from 
HC to EPI to TSC illustrates a gradient of microbial network disruption: 
while HC maintains robust and interconnected microbial communities, 
EPI patients exhibit moderate disruption, and pwTSC show significant 
fragmentation. The hierarchical cluster analysis identified three 
Co-Abundance Groups (CAGs) in HC and TSC, and two CAGs in the 
EPI group. All CAGs clustered differently between groups but showed 
comparable compositions. HC revealed two CAGs of bacteria positively 
related: one comprising the butyrate producers Roseburia and CAG-83 
(belonging to the Oscillospiraceae), and the second dominated by 
Bacteroidia (Bacteroides and Phoecaeicola) and by Gemmiger, the most 
depleted taxon in both TSC and EPI. Akkermansia and 
Faecalibacterium, on the other hand, group together within a third HC 
CAG. TSC also presented three CAGs: one dominated by 
Bifidobacterium and Akkermansia, both enriched in TSC, plus 
Faecousia and Ruminococcus. This CAG is negatively related to the 
second, encompassing Faecalibacterium (strongly depleted), Roseburia, 

FIGURE 1

Microbiota biodiversity characterization. Panel A: box plots of alpha-diversity metrics across the three groups. No statistically significant differences 
were observed in the Observed Species (p = 0.820, p = 0.735, and p = 0.587 for HC vs. TSC, HC vs. EPI, TSC vs. EPI, respectively), Chao1 (p = 0.820 for 
all the analyses), Shannon (p = 0.820, p = 0.723, and p = 0.587), and PD Whole Tree (p = 0.781, p = 0.819, and p = 0.667) indexes. Panels B,C: principal 
coordinate analysis (PCoA) plots display beta-diversity among the three groups. Panel B depicts the unweighted Unifrac matrix of dissimilarity, while 
Panel C shows the weighted Unifrac metric. The first and third principal coordinates are reported for both measures. All comparisons between 
experimental groups were not significant.
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Phoecaeicola, and Prevotella, while the third CAG comprises Dialister, 
Alistipes, Bacteroides, and Gemmiger. The EPI microbial community 
presented only two CAGs, of which only one was characterized by 
significant positive co-abundances that included both depleted, 
Roseburia and Faecalibacterium, and increased genera, i.e., Alistipes.

3.4 Microbial metabolite analysis

Changes in the relative abundance of microbial species, combined 
with a diet that influences substrate availability, can lead to variations 
in the production and release of microbial metabolites. Total SCFA 

content was similar in the three enrolled groups. In agreement, no 
significant differences were found in acetate (p = 0.453), propionate 
(p = 0.291), and butyrate (p = 0.902), as well as in the branched-chain 
fatty acids (BCFAs) Isobutyrate (p = 0.113) and Isovalerate (p = 0.064; 
see Supplementary Figure S1).

3.5 Diet-metabolomic-microbiome 
interactions

To explore links among diet, gut microbiota, and microbial 
metabolites, we  integrated diet–metabolite–microbiota data using 

FIGURE 2

Taxonomy analysis. Panel A: boxplot of the ratio between the abundance of Bacteroidota and Firmicutes phyla in the three groups. Mean ratios (SD) are 
HC 6.23 (6.98), TSC 3.93 (2.84), EPI 3.85 (4.18). Panel B: Taxonomy analysis at family level of the gut microbiota in HC, TSC, and EPI groups. Panel C: 
relative abundance of bacteria genera. Only taxa with a mean relative abundance > 0.01 in at least one of the two experimental groups have been 
reported. See Supplementary Table S2 for the full list and statistics. Panel D–H: Gardner-Altman estimation plots for, respectively, the genera Gemmiger 
(D), Bifidobacterium (E), Faecousia (F), Faecalibacterium (G), Akkermansia (H). The upper parts of the plots depict the groups’ abundances and 
distribution among the single samples; the lower parts report TSC and EPI average differences and effect sizes with respect to the HC group (set as 0).
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sparse discriminant analysis (Figure 4). The block correlation analysis 
revealed key associations: Faecalibacterium, reduced in both EPI and 
TSC groups, correlated negatively with BCFAs and total lipids but 
positively with total fiber. Conversely, BCFAs were positively 
associated with Faecousia (enriched in EPI subjects) and protein 
intake, reflecting fermentation-derived production. Bifidobacterium, 
slightly increased in TSC in an individual-dependent manner, 
correlated negatively with propionate, which was lowest in 
TSC. Gemmiger, characteristic of the HC microbiota, correlated 
positively with carbohydrate intake.

4 Discussion

To our knowledge, this is the first study investigating the possible 
contribution of the gut microbial communities to the neurological 
features of TSC, especially regarding epilepsy.

In recent years, the gut microbiota has garnered increasing 
interest in the field of neuroscience, although its role although its role 
in epilepsy is still in its early stages, several promising findings have 
already emerged (Ceccarani et al., 2021; Riva et al., 2025; Zhu et al., 
2024). Indeed, alterations in microbiota composition have been 
reported in individuals with epilepsy as well as in certain animal 
models (Zhu et al., 2024). Both preclinical and clinical studies suggest 
that modulating the gut microbiota may have antiseizure effects, 
highlighting its potential not only as a biomarker but also as a 
therapeutic target (Gong et al., 2021; He et al., 2017; Gómez-Eguílaz 
et al., 2018). For instance, recent studies demonstrated the beneficial 
effect of probiotics as an adjunctive treatment in drug-resistant 
epilepsy (Gómez-Eguílaz et al., 2018; El-Sharkawy et al., 2024).

TSC is associated with epilepsy in 70–90% (Curatolo et al., 2015; 
Vignoli et  al., 2013) and can cause developmental epileptic 
encephalopathy due to early onset epilepsy and associated 
neurodevelopmental disorders (Jóźwiak et al., 2025) and undoubtedly 

FIGURE 3

Co-abundance correlation analysis at genus level for HC, TSC, and EPI subjects. For each group, only taxa with relative abundance >0.01 are listed. 
Pearson’s correlation R values range from −1 (negative correlation, blue) to 1 (positive, red). Yellow, blue, and green hierarchical clusters represent 
different Co-Abundant Groups (CAGs). Asterisks (*) report statistical significance (adj p < 0.05).
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linked to the genetic substrate underlying the disorder (Ng et  al., 
2022). Generally, patients carrying TSC2 pathogenic variants, as the 
majority of the subjects enrolled in the present study, present a more 
severe phenotype, characterized by a higher number of tubers, earlier 
age at seizure onset, and higher prevalence of ID (Curatolo et al., 
2023). Nevertheless, the clinical phenotype may show a high 
variability, and recent preclinical studies and human reports have 
suggested a possible role of inflammatory processes, particularly the 
activation of microglia, increased expression of pro-inflammatory 
cytokines, as well as aberrant mTOR-mediated immune responses, in 
the development and progression of neurological symptoms in pwTSC 
(Kaur et al., 2021; Xie et al., 2020; Fuso et al., 2016; Balthazard et al., 
2025; Gruber et al., 2022).

A recent study in a Tsc2+/− mouse model showed that deficiency 
of the TSC2 gene causes different gut microenvironments, which may 
be linked to decreased connectivity and sociability. Furthermore, after 
a treatment with dietary curcumin, the abundance of certain bacterial 
taxa was greatly increasedand corresponded to increased myelination 
and white matter plasticity, contributing to improved sociability in 
Tsc2+/− mice (Hsieh et al., 2024).

In this study, we characterized the gut microbiota of individuals 
with TSC and compared it to age- and sex-matched neurotypical 
controls and individuals with non-TSC epilepsy. A dietary survey was 
conducted to control for environmental influences, revealing no major 
differences among groups. Likewise, SCFA and BCFA levels did not 
differ significantly between groups.

Alpha-diversity metrics, which reflect the biodiversity within each 
sample, revealed no significant differences in species evenness or 
richness among the study groups. Regarding beta-diversity, although 
the differences did not reach statistical significance, we observed a 
trend toward clustering of TSC and EPI individuals, distinct from HC, 
consistent with existing literature suggesting an epilepsy-associated 
gut dysbiosis (Peng et al., 2018).

The taxonomic analysis highlighted a depletion of Firmicutes in 
both TSC and EPI, resulting in a decrease of F/B ratio, in agreement 
with literature studies (Zhu et al., 2024; Ceccarani et al., 2021). In our 
cohort, the observed decrease in Firmicutes appears to be primarily 
driven by a reduction in the Ruminococcaceae family, and at the genus 
level, by Gemmiger, and to a lesser extent, Faecalibacterium spp. 

Gemmiger has recently been identified as a biomarker of a healthy gut 
microbiota, noted for its anti-inflammatory properties. Together with 
Faecalibacterium and Roseburia, Gemmiger defines the three 
co-abundance groups (CAGs) identified in the healthy control group 
and considered beneficial due to their health-promoting activities 
(Forbes et  al., 2018; Borghi et  al., 2024), primarily through the 
production of SCFAs (Kircher et al., 2022). Notably, all three taxa are 
capable of producing butyrate - a metabolite known for its wide-ranging 
positive effects - including the ability to mitigate epileptogenic stimuli 
in rodent models by reducing oxidative stress and neuroinflammation 
(Adebayo et al., 2025; Li et al., 2021).

Recently published research demonstrated that active epilepsy in 
individuals with TSC is associated with elevated levels of GFAP 
compared to those with TSC but without epilepsy. This finding was 
confirmed in an external validation cohort and was also accompanied 
by increased levels of pro-inflammatory cytokines, including IL-17A, 
IL-17C, and TNF-α (Peng et al., 2018). Different microbial taxa in the 
gut exert either pro-inflammatory or anti-inflammatory effects and 
have been reported to modulate both local and systemic inflammation. 
Notably, Faecalibacterium and Roseburia are the most frequently 
reported for dampening the inflammation (Zhu et al., 2024). Their 
ability to modulate the Th17/Treg balance toward a more tolerogenic 
profile relies on their production of butyrate and its histone deacetylase 
(HDAC) inhibitory activity (Zhou et al., 2018).

Most of the alterations described in this exploratory study, including 
the above-mentioned depletion in Gemmiger and Faecalibacterium, 
were shared between TSC and EPI groups, suggesting that epilepsy may 
be the common underlying factor. However, some distinctions were 
noted: the TSC group exhibited an enrichment of Akkermansiaceae 
compared to both HC and EPI groups, while the EPI group showed a 
decreased relative abundance of Blautia_A and Faecousia. Increased 
abundance of Akkermansia, which to a lesser extent also involves the 
EPI group, has been observed in other neurological disorders, including 
epilepsy itself (Ceccarani et al., 2021), multiple sclerosis (Jangi et al., 
2016), Alzheimer’s disease, and Parkinson’s disease (Fang et al., 2021). 
In the TSC group, Akkermansia was positively related to Bifidobacterium, 
one of the CAGs. In contrast, in the HC group, Akkermansia was 
associated with Faecalibacterium, suggesting potential alterations in the 
microbial network dynamics between taxa.

FIGURE 4

Circular plot for dietary macronutrient (red block), key metabolites (green block), microbial genera (blue block) data integration, with a |r| = 0.4 
correlation cutoff. Positive associations are depicted with red lines, negative ones in light blue. External blue, gray, and orange lines represent the 
features’ expression in EPI, TSC, and HC, respectively.
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We observed a significant reduction of the genus Blautia in the 
EPI group compared with HC. Blautia includes species with diverse 
metabolic properties and, in turn, effects on human health (Liu et al., 
2021), but the V3–V4 sequencing of the 16S rRNA gene does not 
allow for precise identification of the depleted species, 
underestimating the potential role in epilepsy. The EPI group was 
characterized by an enrichment of Faecousia, a recently described 
taxon belonging to the Oscillospiraceae family, with predicted 
capabilities for starch utilization and production of SCFAs (Hitch 
et  al., 2025). Although Oscillospiraceae is generally considered a 
beneficial family, the significance of this finding remains difficult to 
interpret given the limited current knowledge (Yang et al., 2021).

Considering the whole spectrum of TANDs, many individuals with 
TSC in our cohort showed ID and/or neurodevelopmental disorder 
(ASD or ADHD). ASD is characterized by a distinct intestinal bacterial 
signature, and neuroinflammation has been proposed as an underlying 
mechanism. Indeed, increased intestinal permeability may pave the way 
to neuroinflammation via cytokines, leading to synaptic dysfunction 
and failure of microglia maturation (Hsiao et al., 2013). The bacterial 
phyla most frequently associated with higher inflammatory cytokine 
levels in ASD children are Prevotella, Bacteroidetes, and Bifidobacterium 
(Morton et al., 2023). Intriguingly, these genera were also enriched in 
our TSC group compared to HC and EPI, highlighting shared microbial 
signatures potentially associated with specific clinical features.

5 Limitations and future directions

These preliminary findings, although derived from a small cohort, 
provide an important first step in clarifying the role of the microbiota–
gut–brain axis (MGBA) in TSC. Larger, multi-center studies will 
be essential to confirm these results and to enable subgroup analyses 
based on epilepsy-related factors (e.g., duration, type and number of 
antiseizure medications) as well as neuropsychiatric profiles, which 
may yield more nuanced insights.

The sample size, while sufficient to identify broad trends, may 
limit the detection of more subtle associations. To ensure transparency, 
results close to conventional significance thresholds are reported with 
exact p-values and descriptive statistics.

Methodologically, the use of V3-V4 16S rRNA sequencing 
provides valuable taxonomic insight but restricts resolution at the 
genus level and does not capture microbial functional activity.

The gut microbiota plays a powerful role in shaping inflammation, 
which through the gut-brain axis may fuel epileptogenesis and worsen 
neurological symptoms in TSC. Given that the gut microbiota is both 
accessible and modifiable, investigating its potential role could offer 
promising avenues for the development of more personalized and 
effective treatments. Future studies with larger cohorts, longitudinal 
sampling, and multi-omics approaches will be necessary to confirm 
and expand upon these preliminary findings.
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