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Tuberous sclerosis complex,
epilepsy, and the
microbiota-gut-brain axis: a pilot
study of shared and divergent
microbial signatures
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Objective: Tuberous sclerosis complex (TSC) presents with a broad clinical
spectrum. While some individuals exhibit mild symptoms, most experience
seizures and neuropsychiatric comorbidities. Emerging evidence suggests
that both genetic and environmental factors, including gut microbiota, may
influence epilepsy susceptibility. The microbiota—gut—brain axis (MGBA) is a
key communication pathway through which intestinal microbes impact the
central nervous system. Although the role of the MGBA in the pathogenesis of
neurological diseases, particularly seizures, has been explored in both animal
models and humans, data specific to TSC are lacking.

Methods: In this exploratory study, we assessed whether individuals with
TSC (n = 15) display a distinct gut microbial signature using V3-V4 16S rRNA
sequencing. Their profiles were compared with two control groups: 18 children
with epilepsy (EPI) and 12 age- and sex-matched healthy controls (HC). Stool
short-chain fatty acid (SCFA) levels and dietary intake were also evaluated.
Results: No significant differences were observed among the three groups
in dietary intake, SCFA and branched-chain fatty acid (BCFA) levels, or alpha-
diversity. Beta-diversity analysis showed a non-significant trend toward
clustering of TSC and EPI samples, indicating a shared microbial profile distinct
from HC. Taxonomic analysis revealed a reduction in Firmicutes—particularly
the Ruminococcaceae family and the genus Gemmiger—in both TSC and EPI
groups, consistent with epilepsy-associated dysbiosis. Notably, the TSC group
showed a specific enrichment in Akkermansiaceae, a feature also reported in
other neurodevelopmental disorders such as CDKL5 deficiency disorder and
cerebral palsy.

Significance: These preliminary findings suggest that gut microbiota alterations
may contribute to neuroinflammatory processes linked to epileptogenesis and
comorbidities in TSC. Further studies are needed to validate these results and
explore microbiota-based therapeutic strategies aimed at improving outcomes
and quality of life for individuals with TSC and their caregivers.
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Highlights

« This is the first study to investigate the possible role of gut
microbial communities in Tuberous Sclerosis Complex (TSC),
with a specific focus on epilepsy

o We compared the gut microbiota profile of patients with TSC
with those of subjects with epilepsy and healthy controls

« Both TSC and epilepsy groups showed a depletion in Gemmiger
and Faecalibacterium, taxa associated with anti-inflammatory
functions and butyrate production.

« While many microbial alterations were shared, the TSC group
showed increased Akkermansiaceae, a genus implicated in other
neurological disorders.

o These preliminary results highlight the need for larger studies to
confirm findings and clarify the microbiota-gut-brain axis
role in TSC.

1 Introduction

Tuberous sclerosis (TSC) is a rare genetic, autosomal-dominant,
multisystem disease (Crino et al., 2006), with an incidence of
approximately 1 case per 6,000-10,000 live births (Henske et al., 2016).

TSC is caused by mutations in the TSCI or TSC2 genes encoding
for hamartin and tuberin, respectively. These proteins form a complex
that regulates the mammalian/mechanistic target of rapamycin
(mTOR), and the hyperactivation of mTOR, caused by loss of TSCI or
TSC2, is involved in the formation of benign tumors. Therefore,
patients with TSC (pwTSC; Laplante and Sabatini, 2012) may develop
benign tumors in several organs, including kidneys (Neumann et al.,
1998), lungs (Vicente et al., 2004), heart (Jozwiak et al., 2005), and
central nervous system (CNS; Gomez et al., 1999). Lesions in the CNS,
such as cortical tubers and subependymal astrocytomas, may cause
intellectual disability (ID) and behavioral disorders. Indeed, most
individuals exhibit tuberous-sclerosis-associated neuropsychiatric
disorders (TANDs) during their lives, and children have an increased
risk of developing Autism Spectrum Disorder (ASD; Sparagana and
Roach, 2000). TSC is associated with epilepsy in 70-90% of patients,
frequently manifesting with medication-resistant seizures (White
etal,, 2001; Chu-shore et al., 2010; Curatolo et al., 2015; Vignoli et al.,
2013). While seizures are generally thought to originate from cortical
tubers, marked by dysmorphic neurons and giant cells, the exact
mechanism of epileptogenesis in TSC remains complex and not fully
understood (Rastin et al., 2023).

The microbiota-gut-brain axis (MGBA) has recently been widely
investigated in the etiopathogenesis of epilepsy, both in animal models
and human studies (Zhang et al., 2025; da Silva et al., 2025; Ceccarani
et al, 2021; Riva et al, 2025). Intestinal microorganisms may
contribute to seizure onset and medication resistance through various
mechanisms, including the promotion of a basal inflammatory state
(Zhao et al., 2023), altering gastrointestinal barrier homeostasis, and
the production of a wide range of bioactive metabolites (Wells et al.,
2017). Gut bacteria produce both neuroactive compounds, such as
tryptophan, serotonin, and dopamine, which can reach the central
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nervous system through the bloodstream or influence neurons in the
enteric nervous system (Stilling et al., 2014) and other relevant
metabolites such as short-chain fatty acids (SCFAs; Wells et al., 2017).
These latter, particularly butyric acid, exert diverse effects that may
be relevant to epilepsy, including epigenetic modulation,
neuroprotection, and both local and systemic anti-inflammatory
actions (Kalkan et al., 2025). By influencing neuronal excitability,
synaptic plasticity, and inflammatory pathways, SCFAs could
contribute to seizure mitigation and improved neurological outcomes
(Yan et al., 2025).

Since pathogenic variants alone cannot account for the broad
spectrum of clinical manifestations in pwTSC, in this pilot study,
we investigated whether the gut microbiota might contribute to the
severity of comorbidities, particularly seizure occurrence, through the
gut-brain axis.

2 Materials and methods
2.1 Cohort enrollment

We enrolled individuals who had been diagnosed with TSC
disorder at the Department of Child Neuropsychiatry of the ASST
Santi Paolo e Carlo and of the GOM Niguarda. As a control group,
we included healthy controls, age- and sex-matched, and subjects with
drug-susceptible (DSE) or drug-resistant epilepsy (DRE). We excluded
individuals who had used antibiotics or probiotics within 1 month
before the study, and subjects who presented metabolic diseases or
infectious diseases at enrollment. The study was approved by the Local
Ethics Committee (protocol number 2016/ST/199, 28 July 2016).
Written informed consent was obtained from parents and/or legal
guardians of the enrolled patients/healthy subjects.

Caregivers were asked to fill out a 3-day dietary survey. The diary
included three consecutive days, one of which was during the
weekend. Dietary food records were processed using a commercially
available software (MetaDieta, METEDA srl, Italy). Anthropometric
evaluation completed the nutritional survey. The stool transition time
was estimated by the Bristol Stool Form Scale (BSES; Lewis and
Heaton, 1997).

2.2 Fecal short-chain fatty acid
quantification

SCFAs were extracted by homogenizing 200 mg of stool in 1 mL
of water. From 300 pL of homogenate, 700 pL of water, 200 pL of
orthophosphoric acid (85%), and 100 pL of internal standard
(2-ethylbutyric acid, 20 mM) were added. The mixture was extracted
with 500 pL diethyl ether/heptane (1:1) and centrifuged for 5 min to
recover the organic phase. Acetic, propionic, isobutyric, butyric, and
isovaleric acids were quantified by GC-MS (GC 8860 System-MSD
5977C, Agilent) using a DB-WAX Ultra Inert column. Compound
identity was verified with pure standards by comparing retention
times and MS spectra. Calibration standards (5-0.3125 mM) were
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extracted alongside samples using 2-ethylbutyric acid as the internal
standard. Data were processed with MassHunter software (Agilent).

2.3 Microbial DNA extraction and 16S rRNA
gene sequencing of human gut microbiota

Bacterial genomic DNA from stool samples was extracted using
the Spin Stool DNA Kit (Stratec Molecular, Berlin, Germany) as
described by Di Fede et al. (2021). DNA concentration was measured
with the DNA High Sensitivity Qubit kit (ThermoFisher Scientific,
Waltham, MA, United States). The V3-V4 regions of the bacterial 16S
rRNA gene were sequenced by Macrogen (Seoul, Republic of Korea)
following the Illumina 16S Metagenomic Sequencing Library
Preparation protocol (Illumina, San Diego, CA, United States).

Amplicon sequence variants (ASVs) were identified using the
DADA?2 pipeline (v1.18.0) for read filtering, trimming, and denoising,
and downstream analyses were conducted in R with the phyloseq
package (v1.34.0) and custom scripts (Callahan et al., 2016). Alpha
diversity was assessed using Chaol, Shannon, Observed species, and
Faith’s PD metrics, while beta diversity was analyzed with weighted
and unweighted UniFrac distances and visualized by PCoA (Lozupone
etal., 2011). Taxonomic assignment was performed using the 8-mer
classifier of the RDP database (release 11.5; Wang et al., 2007) and the
GTDB 16S rRNA database (release r207; Parks et al., 2022).

2.4 Statistical analysis

Non-categorical variables were expressed as mean + SD, and
relative abundances as percentages. Group comparisons for alpha- and
beta-diversity and taxonomic data were performed using the Kruskal-
Wallis test with Dunn’s post-hoc correction. Co-abundance matrices
were generated using Pearson’s correlation and Ward’s hierarchical
clustering. Integration of diet, fatty acids, and microbial genera was
conducted via sparse discriminant analysis using a classic PLS
algorithm. Unless otherwise stated, p-values were Benjamini-
Hochberg adjusted, with significance set at p < 0.05.

3 Results
3.1 Cohort description

We enrolled 15 individuals with TSC (“I'SC” group; mean age
8.2 + 5.5, 8 males), including 13 with pathogenic variants in TSC2 and
1 with a pathogenic variant in TSCI. In one patient, no pathogenic
variant was identified. Among individuals with TSC, 6 had drug-
resistant seizures, while in 8 patients, seizures were under control. All
patients with DRE were on 2-3 anti-seizure medications (ASMs), and
patients with DSE were on monotherapy resulting in a total of 14/15
(93%) patients receiving ASMs. One TSC individual did not
experience epilepsy. None of the pwTSC included in the study were
on everolimus. Besides epilepsy, 7 individuals showed ID, 4 ASD, and
1 attention-deficit/hyperactivity disorder (ADHD).

As control groups, we collected stool samples from 12 healthy
controls (“HC” group; mean age 9.1 + 4.6, 5 males) and 18 subjects
with epilepsy (“EPI” group; mean age 12.9 + 6.0, 8 males), 8 with DRE
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and 10 with DSE, all undergoing ASMs. Among children with DRE,
3 had ID and 1 ASD; no child with DSE presented with ID or
neurodevelopmental disorder. Due to the small cohort, in the analyses
we did not divide TSC and EPI individuals according to medication
response; therefore, our final dataset consisted of 12 HC, 15 TSC,
and 18 EPL.

According to the Bristol Stool Form Scale (BSFC), none of the
enrolled children were severely constipated or experiencing diarrhea.

3.2 Nutritional evaluation

Since diet is recognized as one of the key factors shaping the gut
microbiota (Zmora et al., 2018), caregivers were asked to complete a
3-day food diary to assess the intake of micro- and macronutrients in
the enrolled subjects.

The food diary analysis revealed a reduced daily energy intake in
TSC subjects (TSC vs. HC, not significant; TSC vs. EPI, p = 0.005),
although all values remained within the range recommended by Italian
national guidelines (Italian Society of Human Nutrition (SINU), 2024).
At the macronutrient level, no statistically significant differences were
observed between the TSC and HC groups. However, the EPI group
showed a higher intake of protein, lipids, and saturated fats (in grams)
compared to the TSC group (p=0.009, p=0.004, and p=0.038,
respectively). Despite these findings, no significant differences were
observed among the groups in protein, lipid, carbohydrate, or dietary
fiber intake when macronutrients were assessed as a percentage of total
energy intake. Macronutrient values - except for fats, which were elevated
across all groups - aligned with Italian national recommendations
[Italian Society of Human Nutrition (SINU), 2024]. A detailed table of
diet evaluation is provided in the Supplementary Table S1.

3.3 Biodiversity assessment of gut
microbial community

Microbiota profiling was performed through V3-V4 16S rRNA
gene-targeted sequencing. After quality filtering processes, we obtained
a mean count of 31,953 (+/— 5,840) reads per sample. Sequencing
depth was set to the lowest sequenced sample (n = 18,216 reads), to
compensate for the sequencing unevenness of the samples and to
provide a consistent minimum amount for the downstream analysis.

Alpha-diversity analyses (Figure 1A) did not indicate significant
differences between the HC, TSC, and EPI groups for both species
richness and biodiversity.

Similarly, beta-diversity analysis (Figures 1B,C) fails to reveal
significant differences in terms of microbiota dissimilarity between the
cohorts. However, Weighted Unifrac distance (panel C) showed a
trend toward distinct clusters between HC and TSD (raw
p-value = 0.035, adj p-value = 0.105) and to a lesser extent between
HC and EPI (raw p-value = 0.074, adj p-value = 0.111).

When detailing the taxonomy phylogenetic levels among the
three studied groups (Figure 2), we observed a significant decrease in
the Firmicutes relative abundances within the TSC and EPI groups
compared to healthy controls (50.1% HC vs. 33.6% TSC, adj
p =0.015;50.1% HC vs. 38.0% EPI, adj p = 0.044). In agreement, the
Firmicutes/Bacteroidota ratio was reduced in TSC and EPI groups
(Figure 2A).
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FIGURE 1

Microbiota biodiversity characterization. Panel A: box plots of alpha-diversity metrics across the three groups. No statistically significant differences
were observed in the Observed Species (p = 0.820, p = 0.735, and p = 0.587 for HC vs. TSC, HC vs. EPI, TSC vs. EPI, respectively), Chaol (p = 0.820 for
all the analyses), Shannon (p = 0.820, p = 0.723, and p = 0.587), and PD Whole Tree (p = 0.781, p = 0.819, and p = 0.667) indexes. Panels B,C: principal
coordinate analysis (PCoA) plots display beta-diversity among the three groups. Panel B depicts the unweighted Unifrac matrix of dissimilarity, while
Panel C shows the weighted Unifrac metric. The first and third principal coordinates are reported for both measures. All comparisons between

Among Firmicutes, the Ruminococcaceae family (Figure 2B) was
found to be significantly reduced in both clinical groups compared to
the HC subjects (32.6% HC vs. 16.6% EPI, p = 0.014; 32.6% HC vs.
16.1% TSC, p=0.015). It is worth noticing that, although not
significantly, the Bacteroidaceae family reported lower relative
abundances within the HC group (13.3% in HC vs. 15.8% TSC and
16.9% EPI), while the Oscillospiraceae family was observed to
be consistently higher in the EPI group (6.8% vs. 2.3% HC and 3.0%
TSC). At the genus level (Figure 2C), we found HC microbial
communities to be characterized by higher levels of Gemmiger (20.4%
HC vs. 10.5% EPI, p=0.043; 10.3% TSC, p=0.073; Figure 2D),
Blautia_A (1% HC vs. 0.6% EPI, p = 0.010) Faecalibacterium (11.9% HC
vs.5.5% TSC, p = 0.118; Figure 2G). Subjects with TSC, compared to the
EPI, showed higher abundances of Bifidobacterium (Figure 2E),
Prevotella, and Akkermansia (Figure 2H) spp. Subjects with EPI, on the
other hand, had consistently higher abundance of Bacteroides,
Phocaeicola, and Faecousia (Figure 2F). Taxonomy data is extensively
detailed in Supplementary Table S2.
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Co-abundance relationships among the bacterial genera in HC,
TSC, and EPI groups are reported in Figure 3. The progression from
HC to EPI to TSC illustrates a gradient of microbial network disruption:
while HC maintains robust and interconnected microbial communities,
EPI patients exhibit moderate disruption, and pwTSC show significant
fragmentation. The hierarchical cluster analysis identified three
Co-Abundance Groups (CAGs) in HC and TSC, and two CAGs in the
EPI group. All CAGs clustered differently between groups but showed
comparable compositions. HC revealed two CAGs of bacteria positively
related: one comprising the butyrate producers Roseburia and CAG-83
(belonging to the Oscillospiraceae), and the second dominated by
Bacteroidia (Bacteroides and Phoecaeicola) and by Gemmiger, the most
depleted taxon in both TSC and EPI. Akkermansia and
Faecalibacterium, on the other hand, group together within a third HC
CAG. TSC also presented three CAGs: one dominated by
Bifidobacterium and Akkermansia, both enriched in TSC, plus
Faecousia and Ruminococcus. This CAG is negatively related to the
second, encompassing Faecalibacterium (strongly depleted), Roseburia,
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FIGURE 2
Taxonomy analysis. Panel A: boxplot of the ratio between the abundance of Bacteroidota and Firmicutes phyla in the three groups. Mean ratios (SD) are
HC 6.23 (6.98), TSC 3.93 (2.84), EPI 3.85 (4.18). Panel B: Taxonomy analysis at family level of the gut microbiota in HC, TSC, and EPI groups. Panel C:
relative abundance of bacteria genera. Only taxa with a mean relative abundance > 0.01 in at least one of the two experimental groups have been
reported. See Supplementary Table S2 for the full list and statistics. Panel D—H: Gardner-Altman estimation plots for, respectively, the genera Gemmiger
(D), Bifidobacterium (E), Faecousia (F), Faecalibacterium (G), Akkermansia (H). The upper parts of the plots depict the groups’ abundances and
distribution among the single samples; the lower parts report TSC and EPI average differences and effect sizes with respect to the HC group (set as 0).

Phoecaeicola, and Prevotella, while the third CAG comprises Dialister,
Alistipes, Bacteroides, and Gemmiger. The EPI microbial community
presented only two CAGs, of which only one was characterized by
significant positive co-abundances that included both depleted,
Roseburia and Faecalibacterium, and increased genera, i.e., Alistipes.

3.4 Microbial metabolite analysis

content was similar in the three enrolled groups. In agreement, no
significant differences were found in acetate (p = 0.453), propionate
(p =0.291), and butyrate (p = 0.902), as well as in the branched-chain
fatty acids (BCFAs) Isobutyrate (p = 0.113) and Isovalerate (p = 0.064;
see Supplementary Figure S1).

3.5 Diet-metabolomic-microbiome
interactions

Changes in the relative abundance of microbial species, combined

with a diet that influences substrate availability, can lead to variations
in the production and release of microbial metabolites. Total SCFA
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To explore links among diet, gut microbiota, and microbial
metabolites, we integrated diet-metabolite-microbiota data using
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Co-abundance correlation analysis at genus level for HC, TSC, and EPI subjects. For each group, only taxa with relative abundance >0.01 are listed.
Pearson’s correlation R values range from —1 (negative correlation, blue) to 1 (positive, red). Yellow, blue, and green hierarchical clusters represent
different Co-Abundant Groups (CAGs). Asterisks (*) report statistical significance (adj p < 0.05).

sparse discriminant analysis (Figure 4). The block correlation analysis In recent years, the gut microbiota has garnered increasing
revealed key associations: Faecalibacterium, reduced in both EPTand  interest in the field of neuroscience, although its role although its role
TSC groups, correlated negatively with BCFAs and total lipids but  in epilepsy is still in its early stages, several promising findings have
positively with total fiber. Conversely, BCFAs were positively  already emerged (Ceccarani et al., 2021; Riva et al., 2025; Zhu et al.,
associated with Faecousia (enriched in EPI subjects) and protein ~ 2024). Indeed, alterations in microbiota composition have been
intake, reflecting fermentation-derived production. Bifidobacterium,  reported in individuals with epilepsy as well as in certain animal
slightly increased in TSC in an individual-dependent manner, = models (Zhu et al., 2024). Both preclinical and clinical studies suggest
correlated negatively with propionate, which was lowest in  that modulating the gut microbiota may have antiseizure effects,
TSC. Gemmiger, characteristic of the HC microbiota, correlated  highlighting its potential not only as a biomarker but also as a
positively with carbohydrate intake. therapeutic target (Gong et al., 2021; He et al.,, 2017; Gomez-Eguilaz
et al., 2018). For instance, recent studies demonstrated the beneficial
] ) effect of probiotics as an adjunctive treatment in drug-resistant

4 Discussion epilepsy (Gomez-Eguilaz et al., 2018; El-Sharkawy et al., 2024).
TSC is associated with epilepsy in 70-90% (Curatolo et al., 2015;
To our knowledge, this is the first study investigating the possible ~ Vignoli et al., 2013) and can cause developmental epileptic
contribution of the gut microbial communities to the neurological ~ encephalopathy due to early onset epilepsy and associated
features of TSC, especially regarding epilepsy. neurodevelopmental disorders (Jozwiak et al., 2025) and undoubtedly
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linked to the genetic substrate underlying the disorder (Ng et al.,
2022). Generally, patients carrying TSC2 pathogenic variants, as the
majority of the subjects enrolled in the present study, present a more
severe phenotype, characterized by a higher number of tubers, earlier
age at seizure onset, and higher prevalence of ID (Curatolo et al.,
2023). Nevertheless, the clinical phenotype may show a high
variability, and recent preclinical studies and human reports have
suggested a possible role of inflammatory processes, particularly the
activation of microglia, increased expression of pro-inflammatory
cytokines, as well as aberrant mTOR-mediated immune responses, in
the development and progression of neurological symptoms in pwTSC
(Kaur et al., 2021; Xie et al., 2020; Fuso et al., 2016; Balthazard et al.,
2025; Gruber et al., 2022).

A recent study in a Tsc2”~ mouse model showed that deficiency
of the TSC2 gene causes different gut microenvironments, which may
be linked to decreased connectivity and sociability. Furthermore, after
a treatment with dietary curcumin, the abundance of certain bacterial
taxa was greatly increasedand corresponded to increased myelination
and white matter plasticity, contributing to improved sociability in
Tsc2*~ mice (Hsieh et al., 2024).

In this study, we characterized the gut microbiota of individuals
with TSC and compared it to age- and sex-matched neurotypical
controls and individuals with non-TSC epilepsy. A dietary survey was
conducted to control for environmental influences, revealing no major
differences among groups. Likewise, SCFA and BCFA levels did not
differ significantly between groups.

Alpha-diversity metrics, which reflect the biodiversity within each
sample, revealed no significant differences in species evenness or
richness among the study groups. Regarding beta-diversity, although
the differences did not reach statistical significance, we observed a
trend toward clustering of TSC and EPI individuals, distinct from HC,
consistent with existing literature suggesting an epilepsy-associated
gut dysbiosis (Peng et al., 2018).

The taxonomic analysis highlighted a depletion of Firmicutes in
both TSC and EPI, resulting in a decrease of F/B ratio, in agreement
with literature studies (Zhu et al., 2024; Ceccarani et al., 2021). In our
cohort, the observed decrease in Firmicutes appears to be primarily
driven by a reduction in the Ruminococcaceae family, and at the genus
level, by Gemmiger, and to a lesser extent, Faecalibacterium spp.
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Gemmiger has recently been identified as a biomarker of a healthy gut
microbiota, noted for its anti-inflammatory properties. Together with
Faecalibacterium and Roseburia, Gemmiger defines the three
co-abundance groups (CAGs) identified in the healthy control group
and considered beneficial due to their health-promoting activities
(Forbes et al., 2018; Borghi et al., 2024), primarily through the
production of SCFAs (Kircher et al., 2022). Notably, all three taxa are
capable of producing butyrate - a metabolite known for its wide-ranging
positive effects - including the ability to mitigate epileptogenic stimuli
in rodent models by reducing oxidative stress and neuroinflammation
(Adebayo et al., 2025; Li et al., 2021).

Recently published research demonstrated that active epilepsy in
individuals with TSC is associated with elevated levels of GFAP
compared to those with TSC but without epilepsy. This finding was
confirmed in an external validation cohort and was also accompanied
by increased levels of pro-inflammatory cytokines, including IL-17A,
IL-17C, and TNF-a (Peng et al., 2018). Different microbial taxa in the
gut exert either pro-inflammatory or anti-inflammatory effects and
have been reported to modulate both local and systemic inflammation.
Notably, Faecalibacterium and Roseburia are the most frequently
reported for dampening the inflammation (Zhu et al., 2024). Their
ability to modulate the Th17/Treg balance toward a more tolerogenic
profile relies on their production of butyrate and its histone deacetylase
(HDAC) inhibitory activity (Zhou et al., 2018).

Most of the alterations described in this exploratory study, including
the above-mentioned depletion in Gemmiger and Faecalibacterium,
were shared between TSC and EPI groups, suggesting that epilepsy may
be the common underlying factor. However, some distinctions were
noted: the TSC group exhibited an enrichment of Akkermansiaceae
compared to both HC and EPI groups, while the EPI group showed a
decreased relative abundance of Blautia_A and Faecousia. Increased
abundance of Akkermansia, which to a lesser extent also involves the
EPI group, has been observed in other neurological disorders, including
epilepsy itself (Ceccarani et al., 2021), multiple sclerosis (Jangi et al.,
2016), Alzheimer’s disease, and Parkinson’s disease (Fang et al., 2021).
In the TSC group, Akkermansia was positively related to Bifidobacterium,
one of the CAGs. In contrast, in the HC group, Akkermansia was
associated with Faecalibacterium, suggesting potential alterations in the
microbial network dynamics between taxa.
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We observed a significant reduction of the genus Blautia in the
EPI group compared with HC. Blautia includes species with diverse
metabolic properties and, in turn, effects on human health (Liu et al.,
2021), but the V3-V4 sequencing of the 16S rRNA gene does not
identification of the depleted
underestimating the potential role in epilepsy. The EPI group was

allow for precise species,
characterized by an enrichment of Faecousia, a recently described
taxon belonging to the Oscillospiraceae family, with predicted
capabilities for starch utilization and production of SCFAs (Hitch
et al., 2025). Although Oscillospiraceae is generally considered a
beneficial family, the significance of this finding remains difficult to
interpret given the limited current knowledge (Yang et al., 2021).
Considering the whole spectrum of TANDs, many individuals with
TSC in our cohort showed ID and/or neurodevelopmental disorder
(ASD or ADHD). ASD is characterized by a distinct intestinal bacterial
signature, and neuroinflammation has been proposed as an underlying
mechanism. Indeed, increased intestinal permeability may pave the way
to neuroinflammation via cytokines, leading to synaptic dysfunction
and failure of microglia maturation (Hsiao et al., 2013). The bacterial
phyla most frequently associated with higher inflammatory cytokine
levels in ASD children are Prevotella, Bacteroidetes, and Bifidobacterium
(Morton et al., 2023). Intriguingly, these genera were also enriched in
our TSC group compared to HC and EPI, highlighting shared microbial
signatures potentially associated with specific clinical features.

5 Limitations and future directions

These preliminary findings, although derived from a small cohort,
provide an important first step in clarifying the role of the microbiota—
gut-brain axis (MGBA) in TSC. Larger, multi-center studies will
be essential to confirm these results and to enable subgroup analyses
based on epilepsy-related factors (e.g., duration, type and number of
antiseizure medications) as well as neuropsychiatric profiles, which
may yield more nuanced insights.

The sample size, while sufficient to identify broad trends, may
limit the detection of more subtle associations. To ensure transparency,
results close to conventional significance thresholds are reported with
exact p-values and descriptive statistics.

Methodologically, the use of V3-V4 16S rRNA sequencing
provides valuable taxonomic insight but restricts resolution at the
genus level and does not capture microbial functional activity.

The gut microbiota plays a powerful role in shaping inflammation,
which through the gut-brain axis may fuel epileptogenesis and worsen
neurological symptoms in TSC. Given that the gut microbiota is both
accessible and modifiable, investigating its potential role could offer
promising avenues for the development of more personalized and
effective treatments. Future studies with larger cohorts, longitudinal
sampling, and multi-omics approaches will be necessary to confirm
and expand upon these preliminary findings.
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