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A novel fast detection algorithm
for depression based on
3-channel EEG signals
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Medically unexplained symptoms (MUS) are an emerging field in current
research. Among middle-aged and elderly patients, most MUS symptoms are
mainly caused by depression, but early symptoms do not meet the international
somatization standards, which delays treatment. Therefore, developing a rapid
auxiliary diagnosis method is of great significance. This paper proposes a novel
model for identifying depression based on 3-channel electroencephalogram
(EEG) signals from the prefrontal lobe of the human brain. For the collected
resting-state EEG signals, variational mode decomposition (VMD) is first used for
signal decomposition, and the power spectrum is employed to select intrinsic
mode function (IMF) components. After extracting energy features via sample
entropy, LightGBM is adopted for classification, with a classification accuracy of
97.42%. Through comparative experiments, the model proposed in this paper
achieves a balance between high accuracy and timeliness. This is conducive to
the development of a depression detection system based on portable real-time
electroencephalography (EEG), and provides a solution for EEG signal devices
in real-time depression detection and pre-triage of patients with Medically
Unexplained Symptoms (MUS).
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1 Introduction

The general undifferentiated symptoms refer to pain, fatigue, gastrointestinal and
cardiovascular symptoms, which are known as medically unexplained symptoms (MUS),
which are very common in elderly people and healthcare patients (Leiknes et al,
2007; Kurita et al., 2012; Steinbrecher et al., 2011; Claassen-van Dessel et al., 2018).
These symptoms are generally harmless to the human body, but in recent years, many
studies have shown that mental illnesses such as depression often present with medically
unexplained symptoms, which may affect their treatment outcomes (Hung et al., 2019;
Huijbregts et al., 2010; Simon et al., 1999; Mergl et al., 2007; Barsky et al., 2005; Harris
et al., 2009).

Somatic symptom disorder is one of the common mental disorders, with an incidence
of ~6% in the general population, particularly among retired or widowed elderly people
(Wittchen et al., 2011). According to the diagnostic definition of somatic disorders in the
International Classification of Diseases, 10th Edition (ICD-10) (DiSantostefano, 2009),
at least six medically unexplained somatic symptoms in two different organ systems,
persisting for more than 2 years, are required for a diagnosis of somatic disorder. However,
the prevalence of somatic disorder is not high, accounting for only 0.4% in the general
population (Creed and Barsky, 2004; de Waal et al., 2004; Fink et al., 2004). Due to the
low incidence, many patients with medically unexplained symptoms are often overlooked
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by hospitals. Meanwhile, studies have shown that many patients
with medically unexplained symptoms have some degree of
physical impairment but do not meet the strict criteria for somatic
symptom disorder, thus failing to receive appropriate treatment
(Mayou et al, 2005; Gureje and Reed, 2016). Additionally,
regarding fatigue, edema, and unexplained pain as a single
condition poses challenges for many professional physicians,
mainly because doctors cannot make quantitative judgments based
on descriptions (Leiknes et al., 2006; McFarlane et al., 2008; Sharpe
etal., 2006), leading to significant differences in diagnostic opinions
among physicians.

Among medically unexplained symptoms, most patients have
mental illnesses such as depression. In patients with mild
depression, who are in a long-term state of low mood, symptoms
are relatively mild and show a certain degree of somatization.
These patients have no obvious symptoms and are classified as
having medically unexplained symptoms. However, due to the
inability to confirm the etiology, patients may fail to receive proper
treatment, potentially developing into severe depression and even
suicidal ideation. Based on the statistical analysis of medical
records of elderly patients admitted to our hospital in the past
5 years, as shown in Figure I, among a total of 198 middle-
aged and elderly patients with medically unexplained symptoms
(MUS) admitted, this patient group initially presented with MUS
symptoms such as fatigue. Through long-term disease follow-
up, the final medically confirmed results showed that 22.7%
of the patients had somatization disorder, 21.2% had grade 3
hypertension, 19.2% had sleep disorder of a certain degree, 14.1%
had hyperlipidemia, 13.1% had anxiety and anxiety disorder.
From the data analysis, nearly 35.8% of the patients initially
presented with symptoms such as fatigue of unknown cause, which
is likely to be an early manifestation of somatization disorder
caused by anxiety and depression. However, according to the
quantitative criteria for depression, these patients did not fall into
the category of depression in the early stage, which may easily delay
treatment. Currently, the most conventional detection method for
depression is psychological questionnaires, but it has subjectivity,

I Somatization Disorder

I Hypertension, Grade 3 (Very High Risk)
I Sleep Disorder/Insomnia

[ Hyperlipidemia

[ Anxiety State/Anxiety Disorder

I Others

22.7%

9.7%

13.1% .

19.2%

21.2%

FIGURE 1
Distribution map of diagnostic results in 198 MUS patients.

Frontiersin Neuroscience

10.3389/fnins.2025.1651762

and due to patients’ potential concealment and resistance to
psychological questionnaires, accurate diagnostic results are often
difficult to obtain (Wang et al., 2023). Therefore, in recent years,
electroencephalogram (EEG) signals, as an auxiliary diagnostic tool
for mental illnesses, have become a research hotspot.

In recent years, significant advancements in neuroimaging
techniques, such as positron emission tomography (PET), magnetic
resonance imaging (MRI), and electroencephalography (EEG),
have enabled noninvasive studies of brain functions and related
disorders (De la Salle et al., 2016). However, the cost of PET and
MRI equipment is prohibitive, requiring specialized personnel for
operation (Ehman et al., 2017). PET involves the use of radioactive
tracers, which increases safety risks and costs (Zhang et al., 2024).
Moreover, due to the excessively high costs of PET and MRI,
as well as the requirement for professional personnel to conduct
interpretation, EEG has become a common technical method
for depression detection owing to its advantages such as non-
invasiveness and ease of operation (Klooster et al., 2023). The EEG
activities in the 8, 0, «, and B frequency bands of patients with
depression are usually higher than those in the normal control
group, and the o and S frequency bands contain more depression-
related EEG information than the low-frequency § and 6 bands
(Hasanzadeh et al., 2020). Many scholars have also studied the
effects of drugs, environment, religious beliefs, etc., on the brain
waves of depressed patients (Berger et al., 2021; Akbari et al,
2021; Zuchowicz et al., 2019; Cao et al., 2019; Grieve et al., 2019;
Panier et al., 2020; Feldmann et al., 2018; Bachmann et al., 2018).
Mohammadiand Moradi (2021) found through detecting four EEG
bands that the Alpha band is closely related to the severity of
depression. Nusslock et al. (2018) demonstrated the influence of
prefrontal EEG asymmetry on the EEG diagnosis of depression.
Zhu et al. (2019) achieved multimodal depression diagnosis by
combining EEG and eye movement. These studies focus on the
selection of recording locations and EEG frequency bands, and
many researchers have also made corresponding contributions in
feature extraction.

The identification of depression using EEG signals mainly
consists of two aspects: feature extraction and classification models.
In terms of feature extraction, it is mainly divided into time-
domain and frequency-domain methods. Time-domain methods
mainly include techniques such as multiscale principal component
analysis, intrinsic time-scale decomposition, linear discriminant
analysis, and adjacent component analysis, which are used to
analyze EEG time series and extract time-frequency features
(Malviya and Mal, 2023). In terms of the frequency domain, Zhang
et al. proposed a model combining Wavelet Packet Decomposition
(WPD) and Variational Mode Decomposition (VMD) for the
extraction of frequency-domain features from EEG signals (Zhang
et al, 2024). Alhalaseh and Alasasfeh (2020) applied empirical
mode decomposition (EMD) and VMD filters to clean EEG signals
and further classified the emotions from EEG signals using entropy
and Higuchi’s fractal dimension as features. In terms of model
classification, many scholars have also made contributions. El-
Dahshan et al. (2024) utilized recurrence plots to obtain deep
features from PPV signals and demonstrated that recurrence plots
can effectively identify periodicity in signals. Siuly et al. (2024)
employed the wavelet scattering transform (WST) method to
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extract time-frequency features of EEG signals, demonstrating the
superiority of time-frequency domain features in EEG analysis.
Cai et al. (2018) distinguished depression patients from normal
controls by fusing different EEG data sources, and the KNN
classifier used achieved the highest classification accuracy of 86.98%
after fusing multi-source data. Fan et al. (2020) used high-density
128-channel EEG and long and short-term memory network
strategy based on convolution to diagnose depression, and the
proposed model reached the accuracy of 83.47%. Aydemir et al.
(2021) used wavelet and melamine pattern to extract features of
EEG signals of patients with depression, and used KNN and SVM
classifiers for classification to obtain high automatic recognition
accuracy. Cai et al. (2020) proposed a new autism EEG signal
conversion method, which used a combination of local binary
patterns and short-time Fourier transform to generate the spectral
features of the signal, and used a lightweight neural network for
training, the resulting model can be used to aid in the diagnosis of
autism. Most traditional research methods use 128-channel brain
electrodes to collect as many brain channel signals as possible,
which leads to huge computational complexity and is not conducive
to real-time monitoring of depression patients. In recent years,
many researchers have focused on the prefrontal brain, selecting
FP1, FP2, and FPZ signals as the signal sources. Although certain
effects have been achieved, there are still limitations. This is because
the prefrontal data has fewer signal channels, which is more
susceptible to data fluctuations. Meanwhile, EEG signals inherently
contain a large number of redundant features. Therefore, removing
as many EEG redundant features as possible while maintaining
high real-time performance remains a highly challenging problem.
Therefore, the main innovations of this paper are as follows:

1) A sample entropy feature is proposed to describe the difference
between EEG signals of depression patients and normal
individuals. As an energy feature, entropy can effectively
characterize the complexity changes of myoelectric signals.

2) A redundant signal elimination strategy combining Variational
Mode Decomposition (VMD) and power spectrum is proposed.
By decomposing EEG signals via VMD and selecting Intrinsic
Mode Functions (IMFs) through power spectrum analysis, this
approach helps eliminate redundant features in EEG signals.
Combined with the LightBGM classification model, it achieves
high accuracy and provides a feasible scheme for real-time
monitoring of depression patients.

2 Materials and methods

2.1 Data description

This experiment utilized a public dataset, namely the MODMA
dataset (Mohammadi and Moradi, 2021), which was established by
the Second Hospital of Lanzhou University. This dataset mainly
consists of 55 participants, including a total of 26 outpatients
diagnosed with depression (15 males and 11 females; aged 16-
56 years), and 29 healthy controls (19 males and 10 females;
aged 18-55 years). All MDD patients received a structured Mini-
International Neuropsychiatric Interview (MINI) that met the
diagnostic criteria for major depression of the Diagnostic and
Statistical Manual of Mental Disorders (DSM) based on the
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FIGURE 2
Location of frontal lobe EEG signal acquisition (Mohammadi and
Moradi, 2021).

DSM-IV. The dataset adopts a three-lead full-brain coverage
EEG experimental protocol. According to the international 10-
20 system electrode placement standard, three positioning points
are selected on the forehead for electrode placement, with their
specific pasting positions shown in the Figure 2. All subjects
completed the Mini-Mental State Examination (MMSE) with the
assistance of professional psychologists as a preliminary screening
for depressive tendencies. If participants were at high risk of
depression, they were required to additionally complete the Patient
Health Questionnaire-9 (PHQ-9) to assess depression severity,
while all basic information was collected. Candidate subjects
were comprehensively determined to meet the experimental
requirements based on self-rating scale data and inclusion criteria.
Eligible subjects completed head cleaning under staff guidance
and then wore detection equipment in a standard experimental
environment. It should be specifically noted that: all subjects must
not have taken any psychotropic drugs within 2 weeks before
the experiment, and must not have other mental illnesses or
organic brain injuries (such as epilepsy). Female subjects with
depression must confirm that they are not pregnant. Meanwhile,
the following conditions are excluded: lactating women, those
taking contraceptives, individuals with a history of alcohol or
psychotropic drug abuse/dependence within the past year, and
individuals who have suffered abuse.

2.2 Sample entropy

Sample Entropy (SE) is a method proposed by Richman (2011)
in 2000 to measure the complexity of time series. According to
the principle and formula of sample entropy, a higher entropy
value of a time series indicates greater complexity; conversely, a
lower entropy value implies higher autocorrelation of the time
series. In recent years, entropy has emerged as a novel method
for evaluating the complexity and irregularity of EEG signals
in individuals with Depressive Disorder. Increased EEG signal
entropy has been observed in patients with DDD, which indicates
enhanced complexity and reduced predictability of brain activity
(Chen et al., 2020; Cukié et al., 2020). The integration of this
information-theoretic approach is regarded as a promising method
for the assessment and monitoring of clinical depression (Murphy
et al., 2020).
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1) A set of  -dimensional  vectors X(gq) =
{X(q),X(q +1),..X(q+k— 1)}are constructed in order
from a time series with a data quantity of Q, where
4=12,...,Q—k+1.

2) Calculate the distance d; = max Hx(i +g) —x(G— g)!]
between the K -dimensional vector X(i) and other vectorsX(j),
wherej=1,2,.,Q—k+1,g=0,1,...k— 1,i #j.

3) For a given sequence, define the number of d;j < r,(r > 0) as
B;. The probability of matching K points is Bf‘(r), whose mean
isB¥(r), and the formula is:

B(r) = Bi/(Q—k+1) (1)
L 1 Q—k+1 ;

i=1

4) Increase the dimension K by 1, and repeat steps 1-3 to obtain
BKF1(r) The estimated value of sample entropy is:

SampEn(k,7,Q) = —In [Bk+l(r)/3k(7’)] (3)

In the formula: r- similarity tolerance.

2.3 Variational mode decomposition

Variational Mode Decomposition (Dragomiretskiy and Zosso,
2013) is a novel adaptive signal decomposition technique. It
is a non-recursive method that decomposes a multi-component
signal into an ensemble of band-limited intrinsic mode functions
(IMFs), also known as modes or components, with specific
sparsity properties.

The key advantages of VMD include its ability to adaptively
decompose non-stationary and non-linear signals, its robustness to
noise and sampling, and its capability to handle different types of
signals, including those with closely spaced frequency components.
VMD has found successful applications in various fields, such as
biomedical signal processing, fault diagnosis, and financial time
series analysis. The main steps of VMD are as follows:

1) The original signal x (¢) can be directly defined as:

K
x(t) =) we(b) (4)
k=1

2) For each mode function, the single-sided spectrum of the
analysis signal can be obtained through Hilbert transform.

[ (#) + L Juk(t) (5)
wt
Where § (¢) is the Dirac function and k is the number of
modes to be decomposed.

3) For each mode function uy(t), the basic frequency band
after each modal spectrum modulation can be obtained by
aliasing the exponential terme/k‘of the center frequency
wycorresponding to the mode function uy(f).

(150 + Lty ©)
wt
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4) The bandwidth of each mode signal is estimated using the
Gaussian smoothing method, which solves the variational
problem under constraints. The objective function is:

. ) 2
iy o {5 K| 080+ L (o)) + 7% |

s.t. Z up=f @
k

Where {u;} = {uy,...... uh{or) = {or, .. ... wy },0¢ is
the partial derivative with respect to t,fis the original complex
signal before decomposition.

5) For the above variational problem, the solution process
is as follow: The quadratic penalty factor « and the
Lagrangian multiplication operator A(f) are introduced into
Equation 7 to transform the constrained variational problem
into an unconstrained variational problem. The hyperparameter
penalty factor o mainly ensures the reconstruction accuracy
of the signal, while A(f) maintains the strictness of the
constraint conditions. Therefore, Equation 4 is expanded into
the Lagrangian expression as follows:

L({ue), (wrh 1) = a; 150 + L (o) -

+ < M0, f(1) = Y w0 > (®)
k

Use the alternating direction of the multiplier to calculate

Equation 8 and continuously optimize by alternating and iteratively

ntl a)k"“,)»k”“to obtain the optimal solution of

n+1

updating uy
Equation 8. Among them,u "™ can be transformed into the

frequency domain through Fourier transform, and we can get:
ﬁZH (w) = argminfa Hja)[[l + sgn(w + wg)] - (o + wi)] ||

ti,ureX
A f [
. 1))

+ f(w)—zui(w)+7 } ©)

! 2

Where X is the constraint condition of i, uy that is, D ug = f;
the purpose of the quadratic penalty factor « is mainly to reduce the

AN
signal interference of Gaussian noise;)(w) is the tolerance of the
entire noise signal, which is mainly used to ensure that the signal

after decomposition is not distorted;fA () is the Fourier transform
of f(w), tij(w) is the Fourier transform of uy(t).

Equation 9 can be transformed into the frequency domain
through Fourier transform, and then the solution of ﬁzﬂ(w) can
be obtained as:

f(w)—;axwww

it (@) = (10)

14+ 20(w — a)k)2

In our proposed method, VMD is used to decompose the EEG
signal into its intrinsic mode or component, which can then be
used for component selection using the power spectrum, avoiding
interference from redundant information.
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2.4 LightGBM

Light Gradient Boosting Machine (LightGBM) is a highly
efficient implementation of the gradient boosting decision tree
(GBDT) algorithm, proposed by Ke et al. to address the limitations
of traditional GBDT in handling large-scale datasets, such as
high computational complexity and slow training speed [1].
Distinguished by two core optimization strategies—Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB)-LightGBM achieves significant improvements in training
efficiency while maintaining or enhancing prediction accuracy,
making it widely applied in fields like machine learning,
data mining, and biomedical signal analysis (e.g., EEG-based
depression detection).

2.4.1 Gradient-based one-side sampling (GOSS)

GOSS focuses on sampling instances with large gradients
(critical for model update) while retaining a small proportion
of instances with small gradients to preserve the overall data
distribution. Specifically, during each iteration:

a. Sort training instances by the absolute value of their gradients in
descending order.

b. Select the top a x 100% instances (large-gradient samples) as
core samples.

¢. Randomly sample b x 100% instances from the remaining (1-
a) x 100% instances (small-gradient samples) and multiply
their gradients by a weight factor 1%“ to compensate for the
sampling bias.

2.4.2 Objective function

The objective function of LightGBM follows the gradient
boosting framework, combining a loss function and a
regularization term to prevent overfitting. For the t-th iteration,

the objective function is defined as:

o0 =31 (yz., 50 4 ﬂ(xi)) + Q) (1)
i=1

where n is the number of training instances, y; is the true label of

the i-th instance, 5}51—1) is the predicted value of the i-th instance
after t — 1 iterations,Q(f;) is the regularization term for the t-th

tree, defined as:

T
1
Q) =yT+ 2 > w
j=1

(12)

Here, T is the number of leaves in the t-th tree, w; is the score
of the j-th eaf, and y, X are regularization parameters.

2.5 Proposed recognize model

The algorithm flowchart selected in this paper is shown in
Figure 3. First, three-channel EEG signals are collected through
the human prefrontal lobe. The collected signals undergo feature
extraction via Variational Mode Decomposition (VMD), and
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appropriate feature components are calculated by combining the
power spectrum. Finally, sample entropy is calculated for the
obtained feature components. After obtaining the entropy features,
they are fed into the LightBGM network for classification to
ultimately determine whether the subject is in a depressive state or
a depressive patient. The block diagram of its algorithm is shown in
the Figure 4a.

As can be seen from Figure 4a, after inputting the original
EEG signals, they are first decomposed using Variational Mode
Decomposition (VMD) to obtain a total of 4 Intrinsic Mode
Function (IMF) feature components. These four components
undergo sample entropy feature extraction, and the resulting
features are finally input into LightGBM for classification.

3 Experiments

3.1 VMD signal decomposition and IMF
component selection

Considering the strong correlation between the prefrontal
lobe and emotional processes, as well as mental illnesses,
electroencephalogram (EEG) signals were collected via three
electrodes. A common EEG acquisition device has three electrodes
(Fpl, Fpz, and Fp2) on the prefrontal lobe. Data were recorded
in a room free of loud noise and strong magnetism. Participants
kept their eyes closed until their EEG signals were observed to be
relatively stable, after which we began 90-s data acquisition, the
sampling frequency is 250 Hz. In the processing of the MODMA
dataset, the original hexadecimal data were first converted into
decimal data. Then, the signals were filtered with a 1 Hz high-pass
and 45 Hz low-pass finite impulse response (FIR) filter. Finally,
the dataset used an adaptive noise canceller to eliminate eye-
blink artifacts, thereby obtaining the noise-removed EEG signal
data. The resulting EEG signals are shown in Figure 5, where HC
represents healthy subjects and MDD represents major depressive
disorder patients.

First, the data of each group were decomposed by VMD.
The Variational Mode Decomposition (VMD) method is adopted
mainly because the EEG activities in the §, 0, o, and B frequency
bands of patients with depression are generally higher than those
of the normal control group. Moreover, the & and B frequency
bands contain more depression-related EEG information than the
low-frequency & and 6 bands. Therefore, decomposing the EEG
signal into different frequency bands via VMD can effectively
filter out interference from other frequency bands and ensure the
validity of the signal. The VMD technique was used to decompose
the non-stationary EMG signals into multiple frequency-band-
limited IMFs, making each decomposed component easier to
distinguish for emotion state classification. Taking the HC data as
an example, parameter enumeration and optimization of the VMD
algorithm were performed to obtain five groups of components.
The decomposition results are shown in Figure 6. The characteristic
components after VMD decomposition can more obviously reflect
the variation trends of EEG signals at different frequencies, and the
variation characteristics of EEG can be retained by extracting the
effective fluctuation information of each modal component.
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In this work, frequency analysis was conducted to determine
the primary IMFs. Figure 7 shows the sample power diagrams of
the primary IMFs. Since the frequency distribution of IMF5 differs
significantly from that of the remaining components, only IMF1-
IMF4 were selected as the primary IMF components for feature
extraction. Additionally, it can be clearly observed from the power
spectrograms that although the signal is decomposed into multiple
groups of IMFs, highly discriminative information is retained only
in a few IMFs. IMF2 and IMF3 exhibit higher energy density, while
IMF1 and IMF4 have relatively lower energy content.

After obtaining the IMFs, we extracted sample entropy features
from the main IMFs. This feature can effectively characterize the
changes in EEG complexity and avoid Gaussian noise interference.
After extracting the sample entropy features, since there are three
channels in total, each channel is decomposed into 4 IMF channels,
and sample entropy features are extracted, we finally obtained 12
feature vectors.

3.2 Influence of learning rate on model
accuracy

To ensure the accuracy of evaluation results, this paper uses
Accuracy, Precision, Recall, F1-Score, Confusion Matrix, and
average time consumption (T) as evaluation indicators for the
lower limb gait phase recognition method. Here, TP represents
the number of samples correctly predicted as positive by the
model, FN represents the number of positive samples incorrectly
predicted as negative by the model, FP represents the number of
samples incorrectly predicted as positive by the model, and TN
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represents the number of samples incorrectly predicted as negative
by the model.

TP+ TN

Accuracy = (13)
TP+ TN + FP + FN
. P
Precision = ———— (14)
TP + FP
TP
Recall = —— 15
T TPr RN (15)
2 - Precision - Recall
Fl —score = ———————— (16)
Precision + Recal
The average recognition time evaluates the real-time

performance of the model by calculating the recognition time of
each sample.

1 n

T_;Xi:ti,z_l,Z,...,N (17)

To optimize the parameters of the LightGBM classifier model,
an enumeration method was used to search for optimal parameter
combinations of different numbers of leaves and learning rates,
thereby determining the best values of hyperparameters. The
influence of model hyperparameters on the classifier’s accuracy
is shown in Table 1. It can be seen from the table that the
highest classification accuracy is achieved with the parameters of
a maximum number of leaves of 50 and a learning rate of 0.01.
Therefore, this set of hyperparameters will be used for subsequent
model training and testing.

To verify the generalization ability of the model, the test set
data without cross-validation was used for model inspection, and
the model accuracy is shown in Table 2.
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Combined with Table 2, it can be seen that after 5-fold
cross-validation, the accuracy of the model adopted in this
paper on each fold of the test set remains above 97.27%, with
an average recognition accuracy of 97.42%. Among them, the
fifth fold of data achieves the highest accuracy, while the third
fold of data has relatively the lowest accuracy. The model
exhibits good stability, and the accuracy on the test set can
distinguish data of different categories, further verifying the
effectiveness of the model. To fully exploit and utilize the
temporal features in the training set and enhance the model’s
generalization ability, the trained model is applied to the test set for
evaluation, and the confusion matrix shown in Figure 8 is obtained.
The confusion matrix can intuitively reflect the classification
performance of the model under various categories, where HC
represents healthy subjects and MDD represents major depressive
disorder patients.
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As shown in Figure 8, the recognition accuracy of each phase
in the test set is above 97.42%. During the learning process, the
model needs to effectively extract and classify features from a
large number of complex and interleaved features, but the overall
recognition accuracy is high. Similar features in some data may
lead to misjudgments. The experimental results in this paper show
that the model can accurately determine the emotional state of
the population, providing a universal judgment basis for related
applications. Therefore, the effectiveness of the model using EEG
signals for depression recognition is verified.

3.3 Comparative experiments

To further verify the effectiveness and superiority of

the proposed method, this subsection conducts horizontal
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FIGURE 5
EEG data of HC and MDD individuals (a) HC data. (b) MDD data.
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comparisons using algorithms that have achieved excellent results
in emotion recognition and pattern recognition in recent years.
The comparative methods cover both machine learning and deep
learning approaches, all trained and tested on the same dataset. The
comparison methods cover machine learning and deep learning
methods, all of which are trained and tested on the same dataset. In
terms of dataset division, we perform a sliding window on 90-s data
samples with a length of 1 s, resulting in 4,950 samples. The dataset
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is segmented at 1-s intervals, mainly because there are many factors
that ultimately affect the occurrence of MUS. A large proportion
of these factors are caused by somatization and depression. This
paper only discusses the technical means for preliminary screening
of depression. With only one second of data, it can effectively
determine whether an individual suffers from depression, thereby
realizing the front-end triage of undifferentiated disorders, quickly
screening out depressed patients from normal individuals, and
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Time/ms

improving the diagnostic efficiency. However, due to certain
feature similarity between adjacent sliding windows, using the
conventional 7:3 random division of samples in machine learning
may easily lead to similarity between some samples in the test set
and training set. Therefore, we divide the 4,950 samples according
to the time dimension, with the first 50% of the samples as the
training set and the last 50% as the test set. From the training set,
70% is extracted for training and 30% for validation. To ensure
the effectiveness of the model, all input sample data undergo
VMD component decomposition and sample entropy feature
extraction. In this study, we used a laptop with an Intel i5-12400F
@2.5 GHz CPU and an NVIDIA RTX 3060 GPU as the hardware
environment. The software environment consists of Python with
PyTorch 2.2.2. The algorithm comparison results are shown in
Table 3.

For the CNN-LSTM model, in terms of network structure,
we adopted a network structure where a 3-layer CNN network
is connected in series with LSTM. Here, the “3 layers” refer
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to 3 modules, and each module includes a 3 x 3 convolution,
regularization, a ReLU layer, and a global pooling layer, as shown
in Figure 4b. We chose to use the Adam optimizer, set the learning
rate to 0.001, set the total number of epochs to 100, and set the batch
size to 64. The loss function used is the cross-entropy loss function.
For the CNN-BiLSTM model, we only performed bidirectional
processing on the LSTM model, and the remaining parameters are
the same as those of the CNN-LSTM model. The experimental
results show that the method proposed in this paper achieves the
best performance in classification, with an average recognition
accuracy of 97.42%, significantly superior to other comparative
algorithms. In terms of model parameters, this method only has
0.32 M parameters, far lower than other deep learning algorithms,
demonstrating its lightweight advantage.

In machine learning methods, relying on manually extracted
features inevitably leads to partial loss of EEG features, directly
limiting the model accuracy of traditional algorithms such as SVM
and RF. However, the machine learning algorithm LightGBM,
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FIGURE 7
Power spectrum analysis of EEG three channel signals using IMF. (a) Channell. (b) Channel2. (c) Channel3.

TABLE 1 Model accuracy results under different hyperparameters.

Number of leaves

30.0 40.0

0.01 94.98 95.68 96.39 96.45 97.78 97.28
0.005 94.15 95.54 96.44 96.78 97.56 97.16
0.001 92.82 94.45 95.38 95.87 96.45 97.05
0.0005 92.68 93.87 94.96 95.22 96.35 97.04
0.0001 92.69 94.21 94.54 95.12 96.15 96.85

with its efficient decision tree mechanism, can not only achieve
high classification accuracy but also maintain extremely small
model parameters under the same EEG feature input, reflecting the
effectiveness of lightweight models in feature utilization.

In the field of deep learning, 3-layerCNN-LSTM and 3-
layerCNN-BILSTM  models
compared with traditional machine learning methods by fusing the

improve classification accuracy
temporal features of EEG signals, which verifies the critical impact

of signal temporal information on classification performance.
The training loss is shown in Figure 9. It can be seen from
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TABLE 2 5 fold cross validation model testing accuracy.

Indicator Acc/% Pre/% Re/% F1/%
parameters

Flod 1 97.56£031 | 97194028 | 97.38+024 | 97.43+021
Flod 2 97354027 | 97234022 | 97244021 | 97.314+0.19
Flod 3 97274023 | 97164017 | 97254018 | 97.18 +0.20
Flod 4 97344028 | 97214023 | 97324025 | 97.26 +0.22
Flod 5 97.58£026 | 97464021 | 9748+023 | 97.43+022
Average 97424027 | 97254022 | 97334022 | 97.334+021

Figure 7 that Multi-Attention Convolutional Neural Network
(MACNN) converges relatively slower than both CNN-LSTM and
the proposed algorithm in this paper, and its final accuracy is also
lower than the proposed algorithm. Meanwhile, in terms of time
consumption, the MACNN algorithm takes longer. However, the
proposed algorithm further breaks through the limitation of a
single feature dimension through a multi-scale feature extraction
strategy. In horizontal comparison, although the performance
effect is slightly lower than that of 3CNN-Bilstm, it is stronger than
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3CNN-Bilstm in terms of model lightweight and computational
time. In summary, the proposed method shows significant
advantages in three dimensions: classification accuracy, number
of parameters and recognition time, and provides a more practical
solution for the classification of depression based on EEG signals.
A one-way analysis of variance was used to measure the
significant difference level between the comparative methods and
the proposed method. As shown in Figure 10, there are significant
differences (p < 0.001) between the proposed method and other
comparative methods, These comparison algorithms have lower
model recognition accuracy than the proposed method on the same
dataset, with only 3CNN-BiLSTM being slightly higher than the
algorithm in this paper by 0.3%. However, as can be seen from
Table 3, the computation time of 3CNN-BiLSTM is 2.9 ms, while
that of the algorithm in this paper is only 2.23 ms. Considering both

HCH

Predicte type

T
MDD

HC

True type

FIGURE 8
Classification confusion matrix.

10.3389/fnins.2025.1651762

accuracy and timeliness, the algorithm in this paper has certain
effectiveness in this classification task.

3.4 Ablation and feature selection
experiments

To further screen the influence of features and verify the
effectiveness of each layer in the proposed model, we conducted
ablation experiments, and the results are shown in Table 4.

In terms of dataset division, to avoid the situation where
the dataset has high feature similarity due to sliding windows,
we divided the entire sample into two parts in a ratio of 5:5.
The first 50% of the total sample dataset is the training set,
and the latter 50% is the test set. Meanwhile, we extracted
70% from the training set for model training, and 30% from
the test set as the test set for the model. First, we used the

5 —— CNN-LSTM
’ —— CNN-BiLSTM
—— MACNN
4l LightGBM
231
Q
—
24
1 -
I
0 T T T T T T
0 20 40 60 80 100
enpoch
FIGURE 9
Training loss curves of CNN-LSTM, CNN-BiLSTM and LightGBM.

TABLE 3 Comparison results of accuracy performance of different recognition methods.

Accuracy/% Precision/% Recall/% F1-Score/% T/ms Para/M
SVM 89.29 4 0.01 89.71 4 0.01 89.32 4 0.01 89.19 4 0.01 1.86 024
RF 90.68 = 0.02 90.67 % 0.02 90.68 % 0.02 90.71 % 0.02 1.52 0.25
LightGBM 93.78 4 0.02 93.62 4 0.03 93.72 4 0.01 93.64 % 0.02 0.06 0.02
2CNN-LSTM 95.23 + 0.24 95.18 + 0.35 95.26 + 0.24 95.13 £ 0.36 252 2.74
3CNN-LSTM 97.1240.34 97.15 4 0.32 97.12 4 0.32 97.10 +0.36 2.82 318
2CNN - BiLSTM 93.89 4 0.44 93.77 4 0.46 93.87 +0.38 93.69 + 0.48 236 2.87
3CNN - BiLSTM 97.72 4 0.54 97.77 4 0.59 97.72 4 0.54 97.73 + 0.56 2,90 338
MACNN 96.78 % 0.34 96.53 & 0.32 96.51 4 0.21 96.47 + 0.33 2.80 3.15
Our method 97.42 +0.27 97.25 4 0.22 97.33 +0.22 97.33 +0.21 223 0.32
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Significance testing and comparative results of different recognition
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TABLE 4 Results of ablation experiments and feature selection.

Indicator Acc/% Pre/% Re/% F1/%
parameters

lightGBM 93.78 £ 0.02 93.62 £ 0.03 93.72 £ 0.01 93.64 £ 0.02!
+RawData

lightGBM 95.27 £0.25 95.32£0.22 95.18 £0.20 95.23 £0.18
+VMD

lightGBM 97.42 £0.27 97.25£0.22 97.33 £0.22 97.33 £0.21
+VMD +

Sample entropy

lightGBM 96.58 £ 0.18 96.37 £0.21 96.41 £ 0.15 96.53 £ 0.16,
+VMD + RMS

lightGBM 96.28 + 0.16 96.18 £ 0.17 96.16 + 0.14 96.13 £ 0.12
+VMD + PSD

original EEG data without any feature extraction and input it
into the lightGBM model, achieving an accuracy of 93.78%. This
is because there is a certain difference between patients and
healthy people in binary classification data. Then, we added VMD
for modal decomposition of the model, where K = 4. Each
channel obtained 4 modal decomposition vectors, and then 12-
dimensional features were input into the model for classification.
Multiple measurements showed a classification accuracy of 95.27%.
Finally, after adding the sample entropy, the overall accuracy
increased by 2.15%, which proves the effectiveness of the sample
entropy feature.

To further verify the effectiveness of the features, we selected
three common features, namely the sample entropy feature,
RMS, and PSD feature. After VMD decomposition into 12-
dimensional vector data, we performed a sliding window with
a window length of 20 data points, extracted feature vectors,
and input them into the model for recognition. Tests showed
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that the sample entropy feature was slightly higher than the
RMS and PSD features, thus proving the effectiveness of
the model.

4 Discussion

Generalized undifferentiated symptoms refer to pain, fatigue,
gastrointestinal, cardiovascular, and other symptoms that cannot
be fully explained by MUS, which are very common in the
elderly population. Combined with case analysis, we found that
these medically unexplainable phenomena often occur in middle-
aged and elderly people, mainly caused by mental illnesses, with
depression being the most common condition.

Currently, the main medical diagnostic tool for depression
is psychological scales, which are highly subjective. Additionally,
patients’ resistance to psychological scales leads to inaccurate
judgments. Therefore, EEG signals, as a more objective evaluation
criterion, have been widely used in the diagnosis of mental
diseases. Conventional detection using 128-channel EEG signals
provides relatively complete data features but cannot meet real-
time detection requirements. Considering the strong correlation
between the prefrontal lobe and emotional processes as well
as mental illnesses, three electrodes (Fpl, Fpz, and Fp2) were
selected on the prefrontal lobe for measurement. This significantly
reduces data volume and improves calculation speed, but the
collected data may suffer from decreased judgment accuracy due
to incomplete features. Therefore, a new algorithm is needed to
improve classification accuracy.

In terms of feature extraction, we chose to decompose
EEG signals using VMD and optimized parameters through
enumeration to obtain five groups of components as shown
in the figures. Since the frequency distribution of IMF5 differs
significantly from the remaining components, only IMF1-IMF4
were selected as the main IMF components for feature extraction.
Power spectral density was calculated for these five groups of
components, revealing that effective feature components are stored
in a small number of IMF components. Therefore, we selected the
first four components as input features, resulting in a total of 12
groups of feature vectors from three channels. Sample entropy was
calculated for these feature vectors to obtain the input features for
the model.

After inputting the features into the LightGBM classification
model, we considered the impact of learning rate and number of
leaves on model classification accuracy. As shown in Table 1, the
model achieved the highest classification accuracy with a maximum
number of leaves set to 50 and a learning rate of 0.01. To further
verify the model’s generalization ability, Table 2 shows that after
5-fold cross-validation, the accuracy of the model proposed in
this paper on each fold of the test set remained above 97.58%,
with an average recognition accuracy of 97.42%. Among them, the
fourth fold of data achieved the highest accuracy, while the first
fold had relatively the lowest accuracy. Therefore, the proposed
model exhibits good stability, and its accuracy on the test set
can distinguish data of different categories, further verifying the
model’s effectiveness.

In the comparative experiments, we selected mainstream
machine learning and deep learning algorithms for comparison.
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The experimental results in Table 3 show that the proposed method
achieves the best classification performance, with an average
recognition accuracy of 97.42% and a total time consumption
of 2.23 ms. Considering both timeliness and accuracy, it is
superior to other algorithms. Although deep learning models
have slightly higher accuracy, their complexity leads to longer
time consumption. Therefore, to realize engineering applications,
the lightweight algorithm proposed in this paper has high
application value.

Therefore, the classification model proposed in this paper
balances accuracy and real-time performance, and is superior
to other common depression detection algorithms, providing a
solid foundation for the application of EEG signals in depression
emotion detection. In this paper, 1 s of EEG data is used for
pre-triage of patients with Medically Unexplained Symptoms to
rule out psychological factors such as somatization and depression,
which can effectively improve the efficiency of medical diagnosis.
Meanwhile, the algorithm proposed in this paper enhances the real-
time performance of detection. Although individual differences
may lead to a slight decrease in the accuracy of the algorithm, as
a front-end module for pre-triage, it provides a solution for EEG
signal devices in real-time depression detection and pre-triage of
MUS patients.

5 Conclusions

MUS is one of the emerging fields in current research.
Among middle-aged and elderly patients, most MUS symptoms
are mainly caused by depression. However, because the symptoms
do not meet the international diagnostic criteria for depression
somatization, doctors cannot make an effective judgment on
depression. This may delay treatment time, thereby exacerbating
depression and threatening lives. In current research, many
scholars hope to judge whether one suffers from depression
through EEG signals. However, due to the complexity of EEG
signals, their susceptibility to noise pollution, the need for a large
number of channels to collect, and the long computation time, the
application of EEG in depression diagnosis is limited. To improve
the applicability of EEG in the diagnosis of depression, this paper
proposes a deep learning model for diagnosing depression using
three-channel electroencephalogram (EEG) signals. The signal is
decomposed by variational mode decomposition (VMD), and
the number of intrinsic mode functions (IMFs) is determined
by power spectrum analysis, thereby enhancing the feature
dimension of the model. Sample entropy is used to extract features
from the collected information, and a classification accuracy of
97.42% 1is finally achieved. Through 5-fold cross-validation, the
model is significantly superior to other traditional algorithms,
demonstrating certain generalization ability.

The fast detection algorithm proposed in this paper uses
only 3 channels. While pursuing high timeliness, it acquires a
small amount of data and contains a small number of EEG
features. To achieve high classification accuracy, we use the VMD
algorithm for decomposition, thereby upgrading the 3-channel data
to 12 dimensions, and use sample entropy for feature extraction
to increase the feature dimension of the signal, thus achieving
high classification accuracy. This strategy further breaks through
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the limitation of a single feature dimension, achieves the best
recognition performance in horizontal comparison, and balances
the requirements of model stability and lightweight. Therefore, the
algorithm proposed in this paper provides a solution for real-time
depression monitoring using EEG signal equipment.
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