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Introduction: Resting-state electroencephalogram (EEG) presents a promising 
biometric modality due to its inherent liveness detection and resistance to 
spoofing, addressing critical vulnerabilities in conventional systems. However, 
its deployment faces fundamental trade-offs among accuracy, robustness, and 
hardware efficiency, particularly concerning optimal electrode configuration, 
discriminative feature extraction, and classifier generalization.
Methods: To address these challenges, this study systematically evaluates thirteen 
entropy measures—including spectral entropy (SpEn), refined composite multiscale 
entropy, fuzzy entropy, and sample entropy (SaEn) etc.—alongside six classifiers 
(Quadratic Discriminant Analysis (QDA), Random Forests and Support Vector 
Machines etc.) for person authentication. Using 32-channel EEG recordings from 
26 healthy participants under rigorous leave-one-out cross-validation (LOOCV), 
we quantified the impact of electrode selection and feature-classifier pairing.
Results: Key findings demonstrate: QDA classifier achieved peak performance 
of 96.8% accuracy using 30 electrodes. Critically, a streamlined 9-electrode 
portable configuration retained 96.1% accuracy, demonstrating robust 
performance with reduced hardware requirements. SpEn measure exhibited 
superior biometric discriminability compared with other entropy measures, 
exceeding SaEn by 13.8 percentage points.
Conclusion: These results advance the design of portable EEG biometric devices 
while highlighting entropy features’ scalability.
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1 Introduction

Person authentication, verifying an identity claim through 1:1 biometric matching against 
stored templates, faces growing demands for enhanced security, privacy, and convenience. 
Conventional biometrics [e.g., fingerprint (Crouse et al., 2015), hand geometry (Bera et al., 2015), 
iris textures (Kumar and Passi, 2010)] and voice patterns (Pal and Saha, 2015) exhibit well-
documented vulnerabilities including spoof susceptibility, template aging, and postmortem 
misuse risks. In contrast, electroencephalogram (EEG) signals offer inherent advantages as a 
biometric modality: spoofing resistance due to the non-replicable nature of neural dynamics, 
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automatic postmortem invalidation, and continuous liveness monitoring 
capabilities (Billeci et al., 2013; Unnisa et al., 2025). These advantages, 
position EEG as a compelling biometric modality for next-generation 
security systems.

However, the transition of EEG-based authentication from 
laboratory environments to real-world deployment faces significant 
practical constraints (Unnisa et al., 2025). First, environmental fragility 
plagues resting-state EEG protocols—the dominant approach for its 
operational convenience (Di et al., 2019; Wang et al., 2016). Although 
passive acquisition of neural signatures avoids cognitive burdens (Kim 
and Kim, 2019; Waili et  al., 2019), these protocols exhibit higher 
susceptibility to motion artifacts and ambient noise than stimulus-driven 
paradigms, critically compromising signal-to-noise ratios (SNR) in 
uncontrolled environments. For instance, Suppiah et  al. (2016) 
demonstrated that even basic state transitions (eyes open/closed) 
introduce significant intra-subject variability in single-channel systems.

Second, hardware-accuracy tradeoffs impose scalability constraints 
(Carrión-Ojeda et al., 2021). Electrode count directly governs spatial 
resolution and system complexity: while high-density electrode arrays 
(64 + channels) achieve excellent discriminative performance, they incur 
prohibitive costs and operational complexity that hinder scalability 
(Barayeu et al., 2020). Conversely, consumer-grade devices (typically ≤16 
channels) sacrifice accuracy for practical usability (Zhang et al., 2023). 
Necessitating application-specific optimization between performance 
and practicality (Kawala-Janik et al., 2015; Wu and Zhao, 2023).

The third challenge involves feature selection and classifier 
construction. Feature extraction challenges arise from EEG’s inherent 
nonlinearity and non-stationarity. Feature extraction from EEG signals 
can be performed in the temporal, spatial, and spectral domains, each 
offering distinct insights into the underlying neural activity (Ramzan and 
Dawn, 2023). In the time domain, autoregressive (AR) models are 
commonly used to extract features, while power spectral density (PSD) 
(Wang et al., 2019) and wavelet-based methods are employed in the 
frequency domain. Despite the utility of these methods, many traditional 
approaches may not fully capture the rich information in EEG signals. 
Entropy measures address this gap by quantifying signal uncertainty and 
complexity, offering robust analytical frameworks for EEG (Tenev et al., 
2025; Yang et al., 2025). Recent research has explored advanced feature 
extraction techniques, such as entropy-based methods and time-
frequency analysis, to improve the accuracy and robustness of 
EEG-based biometric systems (Hernández-Álvarez et al., 2022; Min 
et al., 2017; Vella et al., 2017). Multivariate Multiscale Entropy (MvMSE) 
captures the complexity of EEG signals across both temporal scales and 
spatial electrodes, enabling the characterization of spatiotemporal 
complexity profiles in multivariate signals (Lewandowska et al., 2023). 
Multivariate dispersion entropy (MvDPE) can simultaneously capture 
temporal dynamics and inter-channel interactions, providing stable 
estimates even for short time series (Azami et al., 2019). Through various 
variants including wavelet entropy, Shannon entropy, generalized Escort-
Tsallis entropy, and Rényi entropy, these entropy measures effectively 
quantify signal complexity, providing new perspectives for deeply 
understanding and utilizing the individual characteristics of EEG signals.

In EEG-based authentication, classification methods primarily 
include machine learning (ML) and deep learning (DL) approaches. 
Traditional machine learning techniques, such as support vector 
machines (SVM), random forests (RF), and K-nearest neighbors 
(KNN), are widely used due to their simplicity, interpretability, and 
computational efficiency. For instance, Kaewwit et al. (2017) integrated 

AR modeling, independent component analysis, and KNN classifiers 
reaching 92.7% accuracy under 10-fold cross-validation. Hernández-
Álvarez et al. (2022) achieved 91.1% accuracy using a RF approach. DL 
models, including convolutional neural networks (CNN), recurrent 
neural networks (RNN), long short-term memory (LSTM), and gated 
recurrent units (GRU), have emerged as a powerful tool for enhancing 
classification accuracy. For instance, the combination of CNN and 
LSTM models, as well as bidirectional LSTM with neural networks 
(BLSTM-NN), has demonstrated superior performance, with 
accuracies reaching 97.6%. Despite these advantages, DL models face 
challenges including high computational demands, substantial data 
requirements, and limited interpretability compared to ML alternatives.

Despite growing interest in EEG-based biometrics, the 
non-stationarity and non-linearity of EEG signals complicate feature 
extraction and classification, limiting practical deployment. Although 
prior studies improve accuracy, key gaps persist—including suboptimal 
feature selection, classifier robustness, and performance degradation 
with reduced electrodes. To address this, we  systematically evaluate 
entropy features and classifiers for resting-state EEG person 
authentication, aiming to balance practicality and high performance. Key 
contributions are: (1) Entropy Feature Evaluation: Thirteen entropy 
measures (e.g., approximate entropy (ApEn), refined composite 
multiscale entropy (RCMSE), fuzzy entropy (FuEn) and spectral entropy 
(SpEn) etc.) are assessed, revealing SpEn ‘s superior efficacy for short, 
noisy EEG data in distinguishing individuals. (2) Classifier 
Benchmarking: Six algorithms are tested, with QDA and ensemble 
methods showing consistent robustness under resting-state conditions. 
(3) Optimized Configuration: Using only nine electrodes and QDA, 
we achieve 96.1% accuracy (26-subject dataset, leave-one-out validation), 
enhancing reliability while minimizing hardware complexity.

The remainder of this paper is organized as follows. Section 1 
introduces the background, motivation, and research objectives. 
Section 2 details the methodology, including data acquisition, data 
preprocessing, entropy-based feature extraction, and classification 
algorithms. Section 3 presents the experimental results and 
performance analysis. Section 4 discusses the findings in the context 
of existing literature and highlights future research directions. Finally, 
Section 5 concludes the study and summarizes the key contributions.

2 Materials and methods

The experimental workflow follows five sequential phases: (1) 
EEG data acquisition, (2) preprocessing of raw recordings including 
artifact removal, (3) segmentation into fixed-length epochs, (4) 
development of a classification model using entropy-derived features 
(e.g., SaEn), and (5) performance evaluation of classifiers. This 
pipeline is schematically detailed in Figure 1. Each authentication trial 
constitutes a binary classification task: given a claimed identity, the 
system verifies whether a test EEG epoch matches the enrolled 
template for that individual (genuine user) or not (imposter).

2.1 Data acquisition

Twenty-six healthy adults (aged 18 to 24 years; 12 males and 14 
females) with no history of neurological disorders substance abuse 
history, or sleep abnormalities were recruited. The experiment was 
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approved by the Academic Ethics Committee in accordance with the 
Declaration of Helsinki. Written informed consent was obtained from all 
participants. Based on the experimental design requirements for EEG 
biometric authentication, participants were seated in a sound-attenuated, 
electromagnetically shielded room while maintaining an awake, eyes-
open state for 10 min to capture stable neural dynamics while minimizing 
fatigue-induced artifacts and standardizing data comparability with 
established resting-state EEG protocols (Polich, 2007), after which only 
the final 5 min were analyzed to ensure participants reached a stabilized 
resting baseline post-initial adaptation and exclude early-stage artifacts 
including electrode settling and transient alertness fluctuations (Shamlo 
et  al., 2015). EEG data were acquired using a 32-channel Ag/AgCl 
electrode cap (Brain Products GmbH) positioned according to the 10–20 
international system. The linked mastoids (A1/A2) served as reference 
electrodes to minimize frontal bias, enhance posterior signal fidelity, and 
reduce volume-conduction artifacts in temporal regions (Hu, 2017; Mu 
et al., 2017; Shamlo et al., 2015). Signals were digitized at 1000 Hz with 
24-bit resolution, while electrode impedances were maintained below 5 
kΩ throughout all recordings.

2.2 Data preprocessing

All EEG data processing was performed sequentially in MATLAB 
R2020a using EEGLAB toolbox and custom scripts. (1) Data first 
underwent 0.15 Hz high-pass filtering to eliminate baseline drift (2) 
Ocular artifacts were then corrected via Independent Component 
Analysis (ICA) using the extended Infomax algorithm, with 
components showing strong correlation ( r  > 0.7) with EOG channels 
being rejected. (3) Muscle artifacts were reduced through wavelet 
denoising (Daubechies-4 wavelet, 8–40 Hz range) using adaptive soft 
thresholding. (4) Powerline noise at 50 Hz was removed with a 
4th-order Butterworth notch filter (2-Hz bandwidth). Continuous data 
from the final 5 min were segmented into non-overlapping 1-s 
epochs—a duration chosen to balance entropy feature stability in the 

θ -band (requiring ≥3 cycles) and sensitivity to microstate dynamics 
(typically 80–120 ms per state). This pipeline yielded a final dataset of 
7,800 artifact-free epochs (300 epochs per subject across 26 subjects), 
processed within the Neuroscan Scan 4.3 environment. The 
experiments were conducted on a computer equipped with an Intel 
Core i7-7700K CPU @ 4.20GHz, 16GB of memory, and an NVIDIA 
GeForce GTX 1080Ti GPU.

2.3 Feature extraction

Thirteen entropy features—ApEn, RCMSE, FuEn, kolmogorov 
entropy (KE), multiscale entropy (MSE), MvDPE, permutation 
entropy (PE), sample entropy (SaEn), SpEn, symbolic transfer entropy 
(STE), wavelet log energy entropy (WLE) and wavelet packet energy 
entropy (WPE), MvMSE,—were extracted from each 1-s EEG epoch, 
grouped into thirteen complementary paradigms addressing distinct 
aspects of EEG non-stationarity, with parameters rigorously optimized 
for electrophysiological relevance:

	 1	 Time-Domain Regularity Metrics (ApEn, SaEn, FuEn): 
Quantify local signal predictability through instantaneous 
amplitude variations. Parameters of ApEn/SaEn were set m = 2, 
r = 0.2 × SD (SD: epoch-level standard deviation) based on 
established EEG benchmarks (Yang al et  al., 2025). This 
configuration optimally captures microstate transitions 
(80–120 ms duration) while ensuring cross-subject 
comparability (Hu and Min, 2018). SaEn improves upon ApEn 
by eliminating self-matches for enhanced consistency in short 
time-series (Richman and Moorman, 2000), while FuEn 
employs Gaussian fuzzy membership ( )= − −exp /ij i jD x x r  
for noise robustness (Xiang et al., 2015).

	 2	 Spectral/Time-Frequency Disorder Metrics (SpEn, WLE, 
WPE): Map oscillatory instability through energy distribution 
irregularities. SpEn applies Shannon entropy to normalized 

FIGURE 1

Workflow of the proposed study and Channel location.
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FFT power spectra (256-point Hamming window, 50% 
overlap) (Kannathal et al., 2005). WLE and WPE use 5-level 
Daubechies-4 wavelet decomposition, computing log-energy 
entropy (−∑ logj jjE E ) and full-tree energy distribution, 
respectively.

	 3	 Ordinal-Pattern Complexity Metrics (PE, MvDPE): Detect 
macro-scale temporal reorganizations via rank-order 
dynamics. PE parameters (m = 5, τ = 4, s = 2) capture θ γ−  
cross-frequency coupling (Min et al., 2017). MvDPE extends 
this with multivariate symbolic analysis (c = 6 symbol classes, 
d = 3 delay) for spatial pattern characterization (Azami 
et al., 2019).

	 4	 Multi-Scale & Information Dynamics (MSE, RCMSE, MvMSE, 
STE, KE): Characterize cross-hierarchy dynamics. Multi-scale 
entropies (MSE/RCMSE) apply scale factorτ = 20 to SaEn-
based coarse-grained sequences, covering δ γ−  band dynamics 
while RCMSE reduces variance through composite averaging 
(Wu et  al., 2014). MvMSE adopts m = 2, r = 0.2 × SD 
(consistent with time-domain metrics) for multichannel 
analysis. STE quantifies directional information flow via first-
difference binarization (Δx > 0 → ‘1’) (Vicente et al., 2011). KE 
estimates system randomness with m = 6 optimized through 
grid search (Schouten et al., 1994).

The parameterization of 13 Entropy metrics for EEG-based 
person authentication are shows as Table  1. Parameters without 
neurophysiological baselines were optimized via grid search (e.g., m∈ 
(4.8) for KE), maximizing identifiability index I across 26 subjects 
using 10-fold cross-validation. Physiological adaptations (m = 2, 
τ = 20, r = 0.2 × SD) and noise mitigation (FuEn/STE/RCMSE) 
ensured robust biometric authentication.

2.4 Classification model

Given the absence of a standardized EEG classification framework, 
we rigorously evaluated six distinct classifiers to ensure robustness 
across diverse subjects and entropy features: KNN, Logistic Regression 
(LR), Support Vector Machines (SVM), Random Forests (RF), 
Quadratic Discriminant Analysis (QDA), and an ensemble voting 
classifier. This multi-algorithm approach mitigates model-specific 
biases and leverages complementary strengths for person 
authentication. As a non-parametric instance-based method, KNN 
avoids assumptions about data distribution, making it suitable for 
EEG’s non-stationary characteristics. It implements learning based on 
the K-nearest neighbors of the training samples, with K empirically 
determined to be 7 in our study. LR was selected for its efficiency in 
high-dimensional spaces and probabilistic class outputs. 
Regularization strength (inverse of penalty weight), optimizing 
generalization via grid search. SVM, belonging to the class of 
generalized linear classifiers, relies heavily on kernel functions. When 
training an SVM classifier with the Radial Basis Function (RBF) 
kernel, particular emphasis must be placed on two crucial parameters: 
c and g. A smaller value of c typically leads to a smoother decision 
surface, enhancing generalization, whereas a larger c aims to classify 
all training examples more accurately, albeit potentially at the expense 
of overfitting. The parameter g reflects the influence weight of 
individual training examples, playing a vital role in shaping the 

decision boundary. Based on an exhaustive grid search method 
(Lameski et al., 2015), we determined optimal values of c = 72  and g = 
−32  for our study. RF, an ensemble of decision trees, ensure diversity 

by allowing each tree to depend on independently sampled random 
vector values, thereby maintaining a uniform distribution across all 
trees in the forest. In our study, we meticulously selected the number 
of trees to be 300 and the number of input variables considered for 
each split to be 2, based on comprehensive validation. QDA seeks an 
optimal linear combination of features that statistically maximizes the 
separation between objects belonging to different classes, characterized 
by a quadratic decision boundary. This technique is particularly 
robust, leveraging posterior distributions to accurately estimate the 
class of a given test sample. Lastly, the voting classifier integrates 
diverse classifiers through fusion methods, enhancing the overall 
robustness and accuracy of the classification system. Specifically, soft 
fusion (Vote_s) employs the average predicted probabilities to 
determine the target subject, offering a probabilistic interpretation of 
the classification results. Conversely, hard fusion (Vote_h) utilizes a 
majority voting approach, providing a deterministic outcome based 
on the collective decision of the ensemble classifiers. By leveraging 
these fusion methods, we  further strengthen the reliability and 
performance of our classification framework.

2.5 Evaluation method

To assess the performance of the proposed classifier, detection 
quality was evaluated using three complementary metrics: (1) leave-
one-out cross-validation (LOOCV) was applied at the subject level to 
prevent data leakage, ensuring robustness in feature set identification; 
(2) average accuracy, precision, recall, F1-score, and confusion matrix 
were calculated across combinations of feature sets, classifiers, 
channels, and subject groups to quantify the overall detection 
efficacy;(3) receiver operating characteristic (ROC) analysis was 
adopted as the primary metric for binary classification tasks. As 
defined by ROC theory: ROC curves plot sensitivity (true positive 

TABLE 1  Parametric specifications of entropy metrics.

Entropy 
type

Key parameters Physiological basis

ApEn/SaEn/FuEn m = 2, r = 0.2 × SD Microstate dynamics (80–

120 ms)

PE m = 5, τ = 4, s = 2 θ γ−  cross-frequency 

coupling

MvDPE c = 6, d = 3 Non-Gaussian spatial patterns

MSE/RCMSE τ = 20, SaEn base δ γ−  band multiscale 

dynamics

MMSE m = 2, r = 0.2 × SD, τ = 20 Cross-channel & cross-scale 

interactions

STE Δx>0 → ‘1’ Directed information flow

SpEn None Shannon entropy on 

normalized FFT spectrum

WLE/WPE Daubechies-3, Levels = 5 Wavelet subband/full-tree 

energy entropy

KE m = 6 Grid search
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rate) against 1-specificity (false positive rate) under varying 
classification thresholds. The optimal threshold corresponds to the 
point closest to the top-left corner of the curve. The area under the 
ROC curve (AUC) provides a quantitative performance measure, 
where higher values indicate superior separability (AUC = 1: perfect 
classifier; AUC < 0.5: worse than random). ROC curves were 
generated per subject by iteratively adjusting the decision threshold 
for binary predictions. AUC values were computed using the 
trapezoidal rule.

3 Results

To evaluate classifier performance in person authentication, 
we compared the average accuracy of across six classifiers utilizing 
EEG signals from a single electrode combined with thirteen entropy-
based feature sets. Figure  2 demonstrates that classifier selection 
critically influenced performance. QDA achieved peak accuracy 
(63.6%), while RF performed poorest (55.7%). The results 
demonstrated that the mean accuracy using single electrode remained 
suboptimal for practical deployment, even with multi-feature fusion. 
Prior to inferential analysis, we  assessed the normality of paired 
differences and homogeneity of variances. While the assumption of 
equal variance was met, the normality assumption was violated for 
most comparisons. Consequently, the nonparametric Wilcoxon 
signed-rank test was employed for paired comparisons (Candia-
Rivera and Valenza, 2022). To mitigate Type I error inflation due to 
multiple testing, false discovery rate (FDR) correction was applied to 
all p-values. Wilcoxon signed-rank test (n = 26 subjects) revealed 
several significant differences after FDR adjustment: QDA surpassed 

KNN (W = 0.000, p < 0.001, rbr = 1.000, Median_diff = −0.070), LR 
(W = 1.000, p < 0.001, rbr = 0.994, Median_diff = 0.034), and Linear 
SVM (W  = 3.000, p  < 0.001, rbr = 0.983, Median_diff = 0.041). 
Similarly, the Vote_h outperformed KNN (W = 0.000, p < 0.001, rbr = 
1.000, Median_diff = 0.063) and LR (W = 0.000, p < 0.001, rbr = 1.000, 
Median_diff = 0.049). No significant differences were observed 
between. KNN and Linear SVM (W = 12.000, p = 0.037, rbr = − 0.675, 
Median_diff = −0.044); QDA and Vote_h (W = 138.000, p = 0.353, 
rbr = 0.2137, Median_diff = 0.003). Overall classifier ranking by 

performance was: QDA ≈ Vote_s > Vote_h > RBFSVM > LR > Linear 
SVM > KNN > RF.

To evaluate the impact of various entropy features on person 
authentication performance, we computed the average classification 
accuracy across eight classifiers for each feature type, utilizing resting-
state EEG signals from all 30 electrodes. As shown in Figure 3, feature 
type markedly affected authentication accuracy. The SpEn feature 
achieved the highest biometric authentication accuracy (90.5%), 
followed by RCMSE (89.5%) and WLE at 89.1%. WPE and ApEn also 
exhibited robust performance, with accuracies of 88.2 and 86.7%, 
respectively. Moderate results were observed for FuEn (85.6%), MSE 
(84.9%) and KE (84.0%). Conversely, MvDPE (83.6%), PE (83.2%), 
STE (82.3%), MvMSE (77.5%), and SaEn (76.7%) exhibited 
comparatively lower classification performance. Among thirteen 
entropy features, SpEn demonstrated superior performance, exceeding 
SaEn by 13.8 percentage points in classification accuracy, thereby 
establishing SpEn as the optimal feature for characterizing individual 
uniqueness in resting-state EEG data.

Furthermore, we  integrated the classifier selected from prior 
analysis (QDA) with 13 distinct entropy measures to evaluate their 
person authentication performance using resting-state EEG. As 

FIGURE 2

Comparison of average identification accuracy among different classifiers using a single electrode combined with all thirteen entropy feature sets, 
wilcoxon signed-rank test (p < 0.001).
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depicted in Figure 4, the classification accuracies achieved were: SpEn 
(93.2%), RCMSE (92.2%), WPE (90.0%), STE (87.8%), ApEn (87.7%), 
WLE (85.5%), FuEn (84.7%), PE (84.6%), MSE (84.4%), KE (83.3%), 
MvDPE (77.5%), MvMSE (75.8%), and SaEn (72.4%). Statistical 
validation, following normality and homogeneity of variance tests 
which indicated non-normal distributions, was performed using the 
wilcoxon signed-rank test (n = 26 subjects). Results confirmed that 
entropy selection critically governs classification accuracy (p < 0.001). 
SpEn significantly outperforming all other entropies except RCMSE 
and WPE (p  < 0.001 for all other comparisons), with the most 
pronounced disparity observed between SpEn and SaEn (W = 0.000, 
p < 0.001, rbr  = 1.000), indicating an exceptional effect size. These 
results align with the trends in Figure 3 but demonstrate marginal 
improvement due to QDA optimization, confirming the robustness of 
entropy features across classifier configurations.

To systematically assess the effect of electrode count, we performed 
ten independent experiments for each cumulative electrode 
configuration, with N incrementally increased from 1 to 30, and 
calculated the mean accuracy. Figure 5 reveals a triphasic growth 
pattern in mean identification accuracy: a steep increase (1–4 
electrodes), marginal gains (4–9 electrodes), and asymptotic stability 
(>9 electrodes) (Δ accuracy <0.5%, p > 0.05 for all classifiers except 
RBFSVM). The QDA classifier exemplifies this trend, achieving peak 
stability (96.0%) at 9 electrodes—only 0.8% below its 29-electrode 
maximum (96.8%). Subsequent electrode additions yielded no 
statistically significant improvement (p  > 0.05), reinforcing that 
excessive electrodes increase hardware complexity and subject 
discomfort without meaningful gains. Thus, we propose a 9-electrode/
QDA configuration as the optimal trade-off, achieving 96.0% accuracy 
while minimizing resource burden—a critical consideration for 
practical biometric systems.

In addition to the classifiers employed, the features extracted from 
diverse electrodes play a crucial role. Since EEG signals recorded from 
various electrodes reflect the functions and characteristics of distinct 

brain regions, they underpin the feasibility of EEG-based 
identification. Consequently, the unique characteristics of brain 
regions among individuals lead to variations in identification 
performance across different electrodes. As illustrated in Figure 5, 
statistical analysis of cumulative channel contributions reveals distinct 
inter-electrode variability in subject discriminability. Electrode TP8 
exhibits greater universality, enabling the distinction of most subjects. 
Conversely, electrode Oz demonstrates greater homogeneity, with less 
pronounced individual characteristics, rendering it challenging to 
differentiate among subjects when used in isolation. This suggests that 
each subject may possess their own optimal electrode for achieving 
optimal identification performance. Given that normality and 
homogeneity of variance assumptions were violated, nonparametric, 
Wilcoxon signed-rank tests were applied to compare performance 
across eight classifiers and multiple electrode configurations (Table 2). 
Results revealed significant performance stratification: both QDA and 
Vote_s outperformed the other classifiers (p < 0.001, FDR-corrected). 
Although no statistically significant difference was found between 
QDA and Vote_s (W = 159.5, p = 0.144; rbr = 0.314), the latter entails 
substantially higher computational cost due to its ensemble structure. 
Thus, for the 9-electrode configuration, QDA is recommended as it 
achieves comparable accuracy with considerably lower computational 
overhead—an essential balance for practical, deployable EEG 
biometric systems.

To validate the optimal configuration—nine electrodes, thirteen 
entropy-based features, and a QDA classifier—we generated receiver 
operating characteristic (ROC) curves. Figure  6 shows for all 26 
subjects, revealing outstanding classification performance. Notably, 
several subjects achieved a perfect AUC of 1.00, indicating flawless 
separability, while the majority attained AUC values exceeding 0.95, 
demonstrating high robustness.

We quantified the performance of eight classifiers under optimal 
channel-feature combinations by computing mean accuracy, precision, 
recall, F1-score, and confusion matrices. As shown in Figure 7, QDA 

FIGURE 3

Mean classification accuracy per feature type across eight classifiers using resting-state EEG signals from all 30 electrodes.
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FIGURE 4

Comparison of the performance (accuracy with standard deviation) of all 13 entropy features within the QDA framework revealed significant 
performance differences, as confirmed wilcoxon signed-rank test (p < 0.001).

FIGURE 5

The average accuracy varies with the increasing of the number of subjects when using different classifier.
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consistently achieved superior overall accuracy, significantly 
outperforming all counterparts, Ensemble methods (Vote_s and 
Vote_h) ranked second, while RBFSVM, Linear SVM, KNN, and LR 
demonstrated intermediate efficacy. In contrast, RF exhibited 
suboptimal performance across all metrics, aligning with its known 
limitations in high-dimensional EEG data. Table 3 further details the 
discriminative capability through confusion matrices. QDA exhibited 
the highest diagonal accuracy (reflecting correct class assignments) and 
optimally balanced precision-recall tradeoffs for both positive and 
negative classes. Specifically, it minimized misclassification rates (e.g., 
2.4% inter-class confusion) while maintaining 96% class-wise precision 
and recall – a critical advantage for person identification robustness.

4 Discussion

Recently, several research groups have tackled the problem of 
utilizing EEG signals for person authentication (Boubakeur et al., 
2017; Maiorana et  al., 2015). Their approaches can be  broadly 

categorized into three types:(1) Rest State EEG: Rocca et al. extracted 
biometric traits for person authentication using resting EEG signals, 
leveraging different recording sessions separated in time to 
demonstrate the repeatability of EEG features. By employing 
autoregressive statistical modeling and a linear classifier, a high degree 
of accuracy was achieved (La Rocca et al., 2013). (2) Event-Stimulated 
EEG: Yang et  al. (2011) employed an event-related potential, 
specifically P300, to study person authentication using a learning 
vector quantization neural network, achieving a correct authentication 
rate of 92.1%. (3) Mental Imagery EEG: Nieves and Manian (2016) 
proposed an automatic person authentication system based on EEG 
signals derived from simple motor imagery movements, utilizing a 
minimum number of channels. A comprehensive review of EEG-based 
person authentication methods can also be  found in Fraschini 
et al. (2018).

When compared to existing EEG-based authentication methods, 
the proposed method for person authentication exhibits improved 
performance with a more robust detector. Unlike many previous works 
that rely on event-related potentials (e.g.,Mu et al., 2017; Yeom et al., 

TABLE 2  Results of wilcoxon signed-rank tests for 8 classifiers.

Classifier W p rbr Median_diff

QDA, KNN 0.000 <0.001 1.000 0.017

QDA, LR 82.000 0.002 0.647 0.001

QDA, LinearSVM 3.000 <0.001 0.987 0.018

QDA, RBFSVM 9.000 <0.001 0.961 0.023

QDA, RF 0.000 <0.001 1.000 0.035

QDA, Vote_s 159.000 0.144 0.314 0.001

QDA, Vote_h 57.000 0.004 0.755 0.004

Vote_s, KNN 0.000 <0.001 1.000 0.017

Vote_s, LR 61.000 0.001 0.738 0.001

Vote_s, LinearSVM 0.000 <0.001 1.000 0.017

Vote_s, RF 0.000 <0.001 1.000 0.035

Vote_s, Vote_h 0.000 <0.001 1.000 0.036

KNN, LinearSVM 215.000 0.719 0.075 0.001

KNN, RBFSVM 163.000 0.164 0.299 0.006

KNN, RF 0.000 <0.001 1.000 0.018

KNN, LR 0.000 <0.001 −1.000 −0.015

KNN, Vote_h 0.000 <0.001 −1.000 −0.014

LR, LinearSVM 29.000 <0.001 0.875 0.016

LR, RBFSVM 6.000 <0.001 0.974 0.023

LR, RF 0.000 <0.001 1.000 0.033

LR, Vote_h 37.000 <0.001 0.841 0.003

LinearSVM, RBFSVM 131.000 0.043 0.437 0.005

LinearSVM, RF 0.000 <0.001 1.000 0.017

LinearSVM, Vote_h 0.000 <0.001 −1.000 −0.013

RBFSVM, RF 145.000 0.082 0.376 0.013

RBFSVM, Vote_s 0.000 <0.001 −1.000 −0.023

RBFSVM, Vote_h 7.000 <0.001 −0.970 −0.019

RF, Vote_h 0.000 <0.001 −1.000 −0.032
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FIGURE 6

ROC curves demonstrating high-performance person authentication using optimized EEG configuration (9 electrodes, 13 entropy features, QDA).

FIGURE 7

Classifier Performance Comparison: (a) Mean Accuracy, (b) Precision, (c) Recall, and (d) F1-Score for 13 entropy features from nine channel sets.
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2013) or task-induced mental imagery (Rodrigues et al., 2016), our 
approach utilizes resting-state EEG, which offers greater practicality for 
real-world applications by eliminating the need for active user 
participation or stimulus presentation equipment. Moreover, while 
some studies such as Maiorana et al. (2016) also employed resting-state 
EEG, they utilized substantially more electrodes (19 channels) 
compared to our configuration (9 channels), which increases setup 
complexity and subject discomfort. Our electrode reduction strategy, 
informed by systematic channel selection, demonstrates that 
comparable—in fact superior—accuracy can be achieved with fewer 
electrodes, enhancing usability without compromising performance.

Another critical differentiation lies in our feature extraction 
framework. While earlier studies predominantly utilized temporal, 
spectral, or wavelet-based features, we introduced a comprehensive 
entropy-based feature set that captures the nonlinear dynamics and 
complexity of resting-state EEG signals. Specifically, our findings 
indicate that SpEn outperforms other entropy measures, suggesting 
that frequency domain unpredictability provides particularly 
discriminative information for identity authentication. This represents 
a significant departure from conventional power-based or 
ERP-component features commonly used in prior literature.

Classifier selection further distinguishes our work. Whereas 
several previous studies employed Support Vector Machines (Mu 

et al., 2017; Yeom et al., 2013), k-NN (Maiorana et al., 2016), or neural 
networks (Yang et al., 2011), we implemented Quadratic Discriminant 
Analysis (QDA), which proved highly effective in modeling the 
distribution of entropy features. The superior performance of QDA 
(96.1% accuracy) compared to other classifiers in our study—and 
relative to those reported in prior works—may be attributed to its 
ability to handle non-linear class boundaries and different covariance 
structures across subjects, which is especially relevant given the high 
intersubject variability in EEG signals.

Furthermore, a comparison of related classification performances 
from previous studies is presented in Table 4. When compared to 
existing EEG-based identification/authentication methods, the 
proposed method for person authentication exhibits improved 
performance with a more robust detector. Given the reduced need for 
electrodes and the fusion of multiple classifier advantages, the 
proposed method is more convenient and effective.

The experimental results can be summarized as follows: (1) Utilizing 
a reduced number of electrodes for person authentication is feasible and 
practical. Specifically, the highest accuracy of 96.1% was achieved using 
nine electrodes and a QDA classifier, making it suitable, convenient, and 
comfortable for daily applications. (2) The significance of different 
electrodes in person authentication varies considerably. The electrode 
TP8 exhibited the best distinguishability for person authentication, with 
most subjects being distinguishable using this electrode. Conversely, the 
electrode Oz demonstrated the weakest distinguishability. (3) Among 13 
entropy feature sets, SpEn exhibited superior person identification 
performance, whereas SaEn demonstrated significantly lower efficacy 
with marked differences from all other entropy measures. (4) Variations 
exist among classifiers for person authentication. The performance 
ranking of the eight classifiers was QDA ≈ vote_s > vote_h > radial basis 
function support vector machine (RBFSVM) > logistic regression 
(LR) > linear support vector machine (Linear SVM) > k-nearest 
neighbors (KNN) > random forest (RF).

However, this study has some limitations: (1) The sample size was 
relatively small, with only 26 subjects and 300 epochs per subject 
studied. For future research, we plan to recruit a substantial number 
of volunteers to further validate the performance. (2) Some classifier 
parameters were not optimized. As this work focused on evaluating 
the feasibility of the proposed method, finding the optimal classifier 
configuration conditions was beyond the scope of this paper. Future 
research will explore further performance improvements through 
parameter tuning. (3) The experiment was conducted in a controlled 
environment and has not been tested in outdoor natural settings, 
where various noise and uncertainty factors may affect authentication 
accuracy. In our future work, it will be meaningful to conduct further 
research in two areas: (i) validating the robust performance of person 
authentication with a larger pool of participants and (ii) exploring the 
actual application of an EEG-based person authentication system. For 

TABLE 3  Confusion matrix of eight model.

Classifier Actual value/
Predicted value

Negative Positive

KNN Negative 6,131 359

Positive 347 6,143

LR Negative 6,222 268

Positive 330 6,160

LinearSVM Negative 6,093 397

Positive 287 6,203

RBFSVM Negative 6,176 314

Positive 244 6,246

RF Negative 6,243 247

Positive 625 5,865

QDA Negative 6,233 257

Positive 259 6,231

Vote_s Negative 6,231 259

Positive 266 6,224

Vote_h Negative 6,234 256

Positive 298 6,192

TABLE 4  Performance comparison of the previous works.

Author Classifier EEG paradigm Number of electrodes Accuracy (%)

Maiorana et al. (2016) Nearest-neighbor Resting-state 19 87.9

Mu et al. (2017) SVM Event-Related Potential 22 90.7

Rodrigues et al. (2016) Optimum-path Forest classifier Motor Imagery 30 87.0

Yeom et al. (2013) SVM Event-Related Potential 5 86.3

This paper QDA Resting-state 9 96.1
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robust performance, it may be helpful to measure uncertainty in 
fusing different features and classifiers at an appropriate level in a 
given system, as well as to capture the sensitivity of the obtained 
results. For practical applications, although we performed an offline 
analysis on EEG datasets recorded from online experiments in this 
study, further research in a real-time online experimental 
environment is needed to confirm the findings. A real-time person 
authentication system using wireless EEG devices such as 
smartphones, tablets, and cloud servers could have widespread future 
applications. Therefore, a mobile person authentication system needs 
to be developed for online real-time applications. A global sensitivity 
and uncertainty analysis for the person authentication system will 
be beneficial in validating the robustness of the authentication results 
in the future. Considering convenience in practical applications, 
different priority channel regions and a reduced number of electrodes 
can be  used for real-time person identity detection and 
authentication, which could benefit human authentication methods 
such as Brain Print or EEG passwords.

5 Conclusion

In this study, we propose an approach for a resting EEG-based 
system that utilizes thirteen entropy feature sets, six classifier types, 
and select electrodes to enhance the efficiency of person identity 
detection. The research findings demonstrate that the choice of feature 
sets and classifiers significantly impacts person authentication 
performance. Experimental results reveal that the proposed method 
achieves a commendable accuracy of 96.1% and offers a more robust 
detector. LOOCV suggests substantial potential applicability for 
person authentication using this approach. A resting EEG-based 
person authentication system promises valuable insights into 
biometric characteristics across relevant fields and serves as a 
significant supplement to existing methods.
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