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Introduction: Resting-state electroencephalogram (EEG) presents a promising
biometric modality due to its inherent liveness detection and resistance to
spoofing, addressing critical vulnerabilities in conventional systems. However,
its deployment faces fundamental trade-offs among accuracy, robustness, and
hardware efficiency, particularly concerning optimal electrode configuration,
discriminative feature extraction, and classifier generalization.

Methods: To address these challenges, this study systematically evaluates thirteen
entropy measures—including spectral entropy (SpEn), refined composite multiscale
entropy, fuzzy entropy, and sample entropy (Sakn) etc.—alongside six classifiers
(Quadratic Discriminant Analysis (QDA), Random Forests and Support Vector
Machines etc.) for person authentication. Using 32-channel EEG recordings from
26 healthy participants under rigorous leave-one-out cross-validation (LOOCV),
we quantified the impact of electrode selection and feature-classifier pairing.
Results: Key findings demonstrate: QDA classifier achieved peak performance
of 96.8% accuracy using 30 electrodes. Critically, a streamlined 9-electrode
portable configuration retained 96.1% accuracy, demonstrating robust
performance with reduced hardware requirements. SpEn measure exhibited
superior biometric discriminability compared with other entropy measures,
exceeding SaEn by 13.8 percentage points.

Conclusion: These results advance the design of portable EEG biometric devices
while highlighting entropy features’ scalability.

KEYWORDS

bioinformation technique, electroencephalogram (EEG), entropies, person
authentication, classifier

1 Introduction

Person authentication, verifying an identity claim through 1:1 biometric matching against
stored templates, faces growing demands for enhanced security, privacy, and convenience.
Conventional biometrics [e.g., fingerprint (Crouse et al., 2015), hand geometry (Bera et al., 2015),
iris textures (Kumar and Passi, 2010)] and voice patterns (Pal and Saha, 2015) exhibit well-
documented vulnerabilities including spoof susceptibility, template aging, and postmortem
misuse risks. In contrast, electroencephalogram (EEG) signals offer inherent advantages as a
biometric modality: spoofing resistance due to the non-replicable nature of neural dynamics,
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automatic postmortem invalidation, and continuous liveness monitoring
capabilities (Billeci et al., 2013; Unnisa et al., 2025). These advantages,
position EEG as a compelling biometric modality for next-generation
security systems.

However, the transition of EEG-based authentication from
laboratory environments to real-world deployment faces significant
practical constraints (Unnisa et al., 2025). First, environmental fragility
plagues resting-state EEG protocols—the dominant approach for its
operational convenience (Di et al., 2019; Wang et al., 2016). Although
passive acquisition of neural signatures avoids cognitive burdens (Kim
and Kim, 2019; Waili et al,, 2019), these protocols exhibit higher
susceptibility to motion artifacts and ambient noise than stimulus-driven
paradigms, critically compromising signal-to-noise ratios (SNR) in
uncontrolled environments. For instance, Suppiah et al. (2016)
demonstrated that even basic state transitions (eyes open/closed)
introduce significant intra-subject variability in single-channel systems.

Second, hardware-accuracy tradeoffs impose scalability constraints
(Carrion-Ojeda et al., 2021). Electrode count directly governs spatial
resolution and system complexity: while high-density electrode arrays
(64 + channels) achieve excellent discriminative performance, they incur
prohibitive costs and operational complexity that hinder scalability
(Barayeu et al., 2020). Conversely, consumer-grade devices (typically <16
channels) sacrifice accuracy for practical usability (Zhang et al., 2023).
Necessitating application-specific optimization between performance
and practicality (Kawala-Janik et al., 2015; Wu and Zhao, 2023).

The third challenge involves feature selection and classifier
construction. Feature extraction challenges arise from EEG’ inherent
nonlinearity and non-stationarity. Feature extraction from EEG signals
can be performed in the temporal, spatial, and spectral domains, each
offering distinct insights into the underlying neural activity (Ramzan and
Dawn, 2023). In the time domain, autoregressive (AR) models are
commonly used to extract features, while power spectral density (PSD)
(Wang et al., 2019) and wavelet-based methods are employed in the
frequency domain. Despite the utility of these methods, many traditional
approaches may not fully capture the rich information in EEG signals.
Entropy measures address this gap by quantifying signal uncertainty and
complexity, offering robust analytical frameworks for EEG (Tenev et al.,
2025; Yang et al., 2025). Recent research has explored advanced feature
extraction techniques, such as entropy-based methods and time-
frequency analysis, to improve the accuracy and robustness of
EEG-based biometric systems (Herndndez-Alvarez et al., 2022; Min
etal, 2017; Vella etal., 2017). Multivariate Multiscale Entropy (MvMSE)
captures the complexity of EEG signals across both temporal scales and
spatial electrodes, enabling the characterization of spatiotemporal
complexity profiles in multivariate signals (Lewandowska et al., 2023).
Multivariate dispersion entropy (MvDPE) can simultaneously capture
temporal dynamics and inter-channel interactions, providing stable
estimates even for short time series (Azami et al.,, 2019). Through various
variants including wavelet entropy, Shannon entropy, generalized Escort-
Tsallis entropy, and Rényi entropy, these entropy measures effectively
quantify signal complexity, providing new perspectives for deeply
understanding and utilizing the individual characteristics of EEG signals.

In EEG-based authentication, classification methods primarily
include machine learning (ML) and deep learning (DL) approaches.
Traditional machine learning techniques, such as support vector
machines (SVM), random forests (RF), and K-nearest neighbors
(KNN), are widely used due to their simplicity, interpretability, and
computational efficiency. For instance, Kaewwit et al. (2017) integrated
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AR modeling, independent component analysis, and KNN classifiers
reaching 92.7% accuracy under 10-fold cross-validation. Hernandez-
Alvarez et al. (2022) achieved 91.1% accuracy using a RF approach. DL
models, including convolutional neural networks (CNN), recurrent
neural networks (RNN), long short-term memory (LSTM), and gated
recurrent units (GRU), have emerged as a powerful tool for enhancing
classification accuracy. For instance, the combination of CNN and
LSTM models, as well as bidirectional LSTM with neural networks
(BLSTM-NN), has demonstrated superior performance, with
accuracies reaching 97.6%. Despite these advantages, DL models face
challenges including high computational demands, substantial data
requirements, and limited interpretability compared to ML alternatives.
in EEG-based biometrics, the
non-stationarity and non-linearity of EEG signals complicate feature

Despite growing interest
extraction and classification, limiting practical deployment. Although
prior studies improve accuracy, key gaps persist—including suboptimal
feature selection, classifier robustness, and performance degradation
with reduced electrodes. To address this, we systematically evaluate
entropy features and classifiers for resting-state EEG person
authentication, aiming to balance practicality and high performance. Key
contributions are: (1) Entropy Feature Evaluation: Thirteen entropy
measures (e.g., approximate entropy (ApEn), refined composite
multiscale entropy (RCMSE), fuzzy entropy (FuEn) and spectral entropy
(SpEn) etc.) are assessed, revealing SpEn ‘s superior efficacy for short,
noisy EEG data in distinguishing individuals. (2) Classifier
Benchmarking: Six algorithms are tested, with QDA and ensemble
methods showing consistent robustness under resting-state conditions.
(3) Optimized Configuration: Using only nine electrodes and QDA,
we achieve 96.1% accuracy (26-subject dataset, leave-one-out validation),
enhancing reliability while minimizing hardware complexity.

The remainder of this paper is organized as follows. Section 1
introduces the background, motivation, and research objectives.
Section 2 details the methodology, including data acquisition, data
preprocessing, entropy-based feature extraction, and classification
algorithms. Section 3 presents the experimental results and
performance analysis. Section 4 discusses the findings in the context
of existing literature and highlights future research directions. Finally,
Section 5 concludes the study and summarizes the key contributions.

2 Materials and methods

The experimental workflow follows five sequential phases: (1)
EEG data acquisition, (2) preprocessing of raw recordings including
artifact removal, (3) segmentation into fixed-length epochs, (4)
development of a classification model using entropy-derived features
(e.g., SaEn), and (5) performance evaluation of classifiers. This
pipeline is schematically detailed in Figure 1. Each authentication trial
constitutes a binary classification task: given a claimed identity, the
system verifies whether a test EEG epoch matches the enrolled
template for that individual (genuine user) or not (imposter).

2.1 Data acquisition
Twenty-six healthy adults (aged 18 to 24 years; 12 males and 14

females) with no history of neurological disorders substance abuse
history, or sleep abnormalities were recruited. The experiment was
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FIGURE 1
Workflow of the proposed study and Channel location.

approved by the Academic Ethics Committee in accordance with the
Declaration of Helsinki. Written informed consent was obtained from all
participants. Based on the experimental design requirements for EEG
biometric authentication, participants were seated in a sound-attenuated,
electromagnetically shielded room while maintaining an awake, eyes-
open state for 10 min to capture stable neural dynamics while minimizing
fatigue-induced artifacts and standardizing data comparability with
established resting-state EEG protocols (Polich, 2007), after which only
the final 5 min were analyzed to ensure participants reached a stabilized
resting baseline post-initial adaptation and exclude early-stage artifacts
including electrode settling and transient alertness fluctuations (Shamlo
et al,, 2015). EEG data were acquired using a 32-channel Ag/AgCl
electrode cap (Brain Products GmbH) positioned according to the 10-20
international system. The linked mastoids (A1/A2) served as reference
electrodes to minimize frontal bias, enhance posterior signal fidelity, and
reduce volume-conduction artifacts in temporal regions (Hu, 2017; Mu
etal, 2017; Shamlo et al., 2015). Signals were digitized at 1000 Hz with
24-Dit resolution, while electrode impedances were maintained below 5
ke throughout all recordings.

2.2 Data preprocessing

All EEG data processing was performed sequentially in MATLAB
R2020a using EEGLAB toolbox and custom scripts. (1) Data first
underwent 0.15 Hz high-pass filtering to eliminate baseline drift (2)
Ocular artifacts were then corrected via Independent Component
Analysis (ICA) using the extended Infomax algorithm, with
components showing strong correlation (|r| > 0.7) with EOG channels
being rejected. (3) Muscle artifacts were reduced through wavelet
denoising (Daubechies-4 wavelet, 8-40 Hz range) using adaptive soft
thresholding. (4) Powerline noise at 50 Hz was removed with a
4th-order Butterworth notch filter (2-Hz bandwidth). Continuous data
from the final 5min were segmented into non-overlapping 1-s
epochs—a duration chosen to balance entropy feature stability in the
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6-band (requiring >3 cycles) and sensitivity to microstate dynamics
(typically 80-120 ms per state). This pipeline yielded a final dataset of
7,800 artifact-free epochs (300 epochs per subject across 26 subjects),
processed within the Neuroscan Scan 4.3 environment. The
experiments were conducted on a computer equipped with an Intel
Core i7-7700K CPU @ 4.20GHz, 16GB of memory, and an NVIDIA
GeForce GTX 1080Ti GPU.

2.3 Feature extraction

Thirteen entropy features—ApEn, RCMSE, FuEn, kolmogorov
entropy (KE), multiscale entropy (MSE), MvDPE, permutation
entropy (PE), sample entropy (SaEn), SpEn, symbolic transfer entropy
(STE), wavelet log energy entropy (WLE) and wavelet packet energy
entropy (WPE), MVMSE,—were extracted from each 1-s EEG epoch,
grouped into thirteen complementary paradigms addressing distinct
aspects of EEG non-stationarity, with parameters rigorously optimized
for electrophysiological relevance:

1 Time-Domain Regularity Metrics (ApEn, SaEn, FuEn):
Quantify local signal predictability through instantaneous
amplitude variations. Parameters of ApEn/SaEn were set m = 2,
r=0.2 x SD (SD: epoch-level standard deviation) based on
established EEG benchmarks (Yang al et al., 2025). This
configuration optimally captures microstate transitions
(80-120 ms
comparability (Hu and Min, 2018). SaEn improves upon ApEn

duration) while ensuring cross-subject
by eliminating self-matches for enhanced consistency in short
time-series (Richman and Moorman, 2000), while FuEn
employs Gaussian fuzzy membership D;; = exp(—xi —-xj/ r)
for noise robustness (Xiang et al., 2015).

2 Spectral/Time-Frequency Disorder Metrics (SpEn, WLE,
WPE): Map oscillatory instability through energy distribution

irregularities. SpEn applies Shannon entropy to normalized
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FFT power spectra (256-point Hamming window, 50%
overlap) (Kannathal et al., 2005). WLE and WPE use 5-level
Daubechies-4 wavelet decomposition, computing log-energy
entropy (_Z]E jlogE;) and full-tree energy distribution,
respectively.

3 Ordinal-Pattern Complexity Metrics (PE, MvDPE): Detect
macro-scale temporal reorganizations via rank-order
dynamics. PE parameters (m =5, 7 =4, s = 2) capture 6 —y
cross-frequency coupling (Min et al., 2017). MvDPE extends
this with multivariate symbolic analysis (c = 6 symbol classes,
d=3 delay) for spatial pattern characterization (Azami
etal., 2019).

4 Multi-Scale & Information Dynamics (MSE, RCMSE, MvMSE,
STE, KE): Characterize cross-hierarchy dynamics. Multi-scale
entropies (MSE/RCMSE) apply scale factorz =20 to SaEn-
based coarse-grained sequences, covering o — y band dynamics
while RCMSE reduces variance through composite averaging
(Wu et al, 2014). MVMSE adopts m=2, r=0.2xSD
(consistent with time-domain metrics) for multichannel
analysis. STE quantifies directional information flow via first-
difference binarization (Ax > 0 — ‘1°) (Vicente et al., 2011). KE
estimates system randomness with m = 6 optimized through

grid search (Schouten et al., 1994).

The parameterization of 13 Entropy metrics for EEG-based
person authentication are shows as Table 1. Parameters without
neurophysiological baselines were optimized via grid search (e.g., me
(4.8) for KE), maximizing identifiability index I across 26 subjects
using 10-fold cross-validation. Physiological adaptations (m =2,
T=20, r=0.2xSD) and noise mitigation (FuEn/STE/RCMSE)
ensured robust biometric authentication.

2.4 Classification model

Given the absence of a standardized EEG classification framework,
we rigorously evaluated six distinct classifiers to ensure robustness
across diverse subjects and entropy features: KNN, Logistic Regression
(LR), Support Vector Machines (SVM), Random Forests (RF),
Quadratic Discriminant Analysis (QDA), and an ensemble voting
classifier. This multi-algorithm approach mitigates model-specific
biases and leverages complementary strengths for person
authentication. As a non-parametric instance-based method, KNN
avoids assumptions about data distribution, making it suitable for
EEG’s non-stationary characteristics. It implements learning based on
the K-nearest neighbors of the training samples, with K empirically
determined to be 7 in our study. LR was selected for its efficiency in
high-dimensional spaces and probabilistic class outputs.
Regularization strength (inverse of penalty weight), optimizing
generalization via grid search. SVM, belonging to the class of
generalized linear classifiers, relies heavily on kernel functions. When
training an SVM classifier with the Radial Basis Function (RBF)
kernel, particular emphasis must be placed on two crucial parameters:
c and g. A smaller value of ¢ typically leads to a smoother decision
surface, enhancing generalization, whereas a larger ¢ aims to classify
all training examples more accurately, albeit potentially at the expense
of overfitting. The parameter g reflects the influence weight of

individual training examples, playing a vital role in shaping the
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TABLE 1 Parametric specifications of entropy metrics.

Entropy Key parameters Physiological basis

type

ApEn/SaEn/FuEn | m=2,r=0.2xSD Microstate dynamics (80—
120 ms)

PE m=51=4s=2 6 — y cross-frequency
coupling

MvDPE c=6,d=3 Non-Gaussian spatial patterns

MSE/RCMSE T =20, SaEn base & — 7 band multiscale
dynamics

MMSE m=2,r=02xSD,7=20  Cross-channel & cross-scale
interactions

STE Ax>0 - 1 Directed information flow

SpEn None Shannon entropy on
normalized FFT spectrum

WLE/WPE Daubechies-3, Levels = 5 Wavelet subband/full-tree
energy entropy

KE m=6 Grid search

decision boundary. Based on an exhaustive grid search method
(Lameski et al., 2015), we determined optimal values of ¢ =27 and g=
273 for our study. RE an ensemble of decision trees, ensure diversity
by allowing each tree to depend on independently sampled random
vector values, thereby maintaining a uniform distribution across all
trees in the forest. In our study, we meticulously selected the number
of trees to be 300 and the number of input variables considered for
each split to be 2, based on comprehensive validation. QDA seeks an
optimal linear combination of features that statistically maximizes the
separation between objects belonging to different classes, characterized
by a quadratic decision boundary. This technique is particularly
robust, leveraging posterior distributions to accurately estimate the
class of a given test sample. Lastly, the voting classifier integrates
diverse classifiers through fusion methods, enhancing the overall
robustness and accuracy of the classification system. Specifically, soft
fusion (Vote_s) employs the average predicted probabilities to
determine the target subject, offering a probabilistic interpretation of
the classification results. Conversely, hard fusion (Vote_h) utilizes a
majority voting approach, providing a deterministic outcome based
on the collective decision of the ensemble classifiers. By leveraging
these fusion methods, we further strengthen the reliability and
performance of our classification framework.

2.5 Evaluation method

To assess the performance of the proposed classifier, detection
quality was evaluated using three complementary metrics: (1) leave-
one-out cross-validation (LOOCV) was applied at the subject level to
prevent data leakage, ensuring robustness in feature set identification;
(2) average accuracy, precision, recall, F1-score, and confusion matrix
were calculated across combinations of feature sets, classifiers,
channels, and subject groups to quantify the overall detection
efficacy;(3) receiver operating characteristic (ROC) analysis was
adopted as the primary metric for binary classification tasks. As
defined by ROC theory: ROC curves plot sensitivity (true positive
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rate) against 1-specificity (false positive rate) under varying
classification thresholds. The optimal threshold corresponds to the
point closest to the top-left corner of the curve. The area under the
ROC curve (AUC) provides a quantitative performance measure,
where higher values indicate superior separability (AUC = 1: perfect
classifier; AUC < 0.5: worse than random). ROC curves were
generated per subject by iteratively adjusting the decision threshold
for binary predictions. AUC values were computed using the
trapezoidal rule.

3 Results

To evaluate classifier performance in person authentication,
we compared the average accuracy of across six classifiers utilizing
EEG signals from a single electrode combined with thirteen entropy-
based feature sets. Figure 2 demonstrates that classifier selection
critically influenced performance. QDA achieved peak accuracy
(63.6%), while RF performed poorest (55.7%). The results
demonstrated that the mean accuracy using single electrode remained
suboptimal for practical deployment, even with multi-feature fusion.
Prior to inferential analysis, we assessed the normality of paired
differences and homogeneity of variances. While the assumption of
equal variance was met, the normality assumption was violated for
most comparisons. Consequently, the nonparametric Wilcoxon
signed-rank test was employed for paired comparisons (Candia-
Rivera and Valenza, 2022). To mitigate Type I error inflation due to
multiple testing, false discovery rate (FDR) correction was applied to
all p-values. Wilcoxon signed-rank test (n = 26 subjects) revealed
several significant differences after FDR adjustment: QDA surpassed

10.3389/fnins.2025.1651501

KNN (W = 0.000, p < 0.001, r,p= 1.000, Median_diff = —0.070), LR
(W =1.000, p <0.001, r,p=0.994, Median_diff = 0.034), and Linear
SVM (W =3.000, p <0.001, rp= 0.983, Median_diff = 0.041).
Similarly, the Vote_h outperformed KNN (W = 0.000, p < 0.001, r,p=
1.000, Median_diff = 0.063) and LR (W = 0.000, p < 0.001, ry,= 1.000,
Median_diff = 0.049). No significant differences were observed
between. KNN and Linear SVM (W = 12.000, p = 0.037, r,p= — 0.675,
Median_diff = —0.044); QDA and Vote_h (W = 138.000, p = 0.353,
rip= 0.2137, Median_diff = 0.003). Overall classifier ranking by
performance was: QDA = Vote_s > Vote_h > RBFSVM > LR > Linear
SVM > KNN > RE

To evaluate the impact of various entropy features on person
authentication performance, we computed the average classification
accuracy across eight classifiers for each feature type, utilizing resting-
state EEG signals from all 30 electrodes. As shown in Figure 3, feature
type markedly affected authentication accuracy. The SpEn feature
achieved the highest biometric authentication accuracy (90.5%),
followed by RCMSE (89.5%) and WLE at 89.1%. WPE and ApEn also
exhibited robust performance, with accuracies of 88.2 and 86.7%,
respectively. Moderate results were observed for FuEn (85.6%), MSE
(84.9%) and KE (84.0%). Conversely, MvDPE (83.6%), PE (83.2%),
STE (82.3%), MVMSE (77.5%), and SaEn (76.7%) exhibited
comparatively lower classification performance. Among thirteen
entropy features, SpEn demonstrated superior performance, exceeding
SaEn by 13.8 percentage points in classification accuracy, thereby
establishing SpEn as the optimal feature for characterizing individual
uniqueness in resting-state EEG data.

Furthermore, we integrated the classifier selected from prior
analysis (QDA) with 13 distinct entropy measures to evaluate their
person authentication performance using resting-state EEG. As

Single Electrode Classifiers Accuracy with SD and Wilcoxon signed-rank test
1.2 1 %
I 1
3
I * 1
1.0 1 r 1
E3
I 1
*
I 1
0.8 1 05661 0.5905 0.5799 0.6127 0.6364 0.6344 06197
g ’ 0.5574
5
8 0.6 1
) L
0.4
0.2 1
0.0 - T
4
[ KNN [ LinearSVM [ RF [ Vote s
B LR S RBFSVM [ QDA  [EE Vote h
FIGURE 2
Comparison of average identification accuracy among different classifiers using a single electrode combined with all thirteen entropy feature sets,
wilcoxon signed-rank test (p < 0.001).

Frontiers in Neuroscience

05

frontiersin.org


https://doi.org/10.3389/fnins.2025.1651501
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Yang et al. 10.3389/fnins.2025.1651501
10 Various Entropies Mean ACC
¢ 0.9050
08670 2293 0.8495 08911 08816
0% 0.8361 0.8323 0.8231
0.8 1 0.7671 0.7748
0.6 1
g
<
0.4 -
0.2 1
0.0 -
B ApEn s KE [ PE [ STE [ WPE
B RCMSE MSE s Salin WLE MvMSIEE
B FuEn [ MvDPE SpEn
FIGURE 3
Mean classification accuracy per feature type across eight classifiers using resting-state EEG signals from all 30 electrodes.

depicted in Figure 4, the classification accuracies achieved were: SpEn
(93.2%), RCMSE (92.2%), WPE (90.0%), STE (87.8%), ApEn (87.7%),
WLE (85.5%), FuEn (84.7%), PE (84.6%), MSE (84.4%), KE (83.3%),
MvDPE (77.5%), MvMSE (75.8%), and SaEn (72.4%). Statistical
validation, following normality and homogeneity of variance tests
which indicated non-normal distributions, was performed using the
wilcoxon signed-rank test (1 = 26 subjects). Results confirmed that
entropy selection critically governs classification accuracy (p < 0.001).
SpEn significantly outperforming all other entropies except RCMSE
and WPE (p <0.001 for all other comparisons), with the most
pronounced disparity observed between SpEn and SaEn (W = 0.000,
p <0.001, rp, = 1.000), indicating an exceptional effect size. These
results align with the trends in Figure 3 but demonstrate marginal
improvement due to QDA optimization, confirming the robustness of
entropy features across classifier configurations.

To systematically assess the effect of electrode count, we performed
ten independent experiments for each cumulative electrode
configuration, with N incrementally increased from 1 to 30, and
calculated the mean accuracy. Figure 5 reveals a triphasic growth
pattern in mean identification accuracy: a steep increase (1-4
electrodes), marginal gains (4-9 electrodes), and asymptotic stability
(>9 electrodes) (A accuracy <0.5%, p > 0.05 for all classifiers except
RBESVM). The QDA classifier exemplifies this trend, achieving peak
stability (96.0%) at 9 electrodes—only 0.8% below its 29-electrode
maximum (96.8%). Subsequent electrode additions yielded no
statistically significant improvement (p > 0.05), reinforcing that
excessive electrodes increase hardware complexity and subject
discomfort without meaningful gains. Thus, we propose a 9-electrode/
QDA configuration as the optimal trade-off, achieving 96.0% accuracy
while minimizing resource burden—a critical consideration for
practical biometric systems.

In addition to the classifiers employed, the features extracted from
diverse electrodes play a crucial role. Since EEG signals recorded from
various electrodes reflect the functions and characteristics of distinct
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brain regions, they underpin the feasibility of EEG-based
identification. Consequently, the unique characteristics of brain
regions among individuals lead to variations in identification
performance across different electrodes. As illustrated in Figure 5,
statistical analysis of cumulative channel contributions reveals distinct
inter-electrode variability in subject discriminability. Electrode TP8
exhibits greater universality, enabling the distinction of most subjects.
Conversely, electrode Oz demonstrates greater homogeneity, with less
pronounced individual characteristics, rendering it challenging to
differentiate among subjects when used in isolation. This suggests that
each subject may possess their own optimal electrode for achieving
optimal identification performance. Given that normality and
homogeneity of variance assumptions were violated, nonparametric,
Wilcoxon signed-rank tests were applied to compare performance
across eight classifiers and multiple electrode configurations (Table 2).
Results revealed significant performance stratification: both QDA and
Vote_s outperformed the other classifiers (p < 0.001, FDR-corrected).
Although no statistically significant difference was found between
QDA and Vote_s (W = 159.5, p = 0.144; ,, = 0.314), the latter entails
substantially higher computational cost due to its ensemble structure.
Thus, for the 9-electrode configuration, QDA is recommended as it
achieves comparable accuracy with considerably lower computational
overhead—an essential balance for practical, deployable EEG
biometric systems.

To validate the optimal configuration—nine electrodes, thirteen
entropy-based features, and a QDA classifier—we generated receiver
operating characteristic (ROC) curves. Figure 6 shows for all 26
subjects, revealing outstanding classification performance. Notably,
several subjects achieved a perfect AUC of 1.00, indicating flawless
separability, while the majority attained AUC values exceeding 0.95,
demonstrating high robustness.

We quantified the performance of eight classifiers under optimal
channel-feature combinations by computing mean accuracy, precision,
recall, F1-score, and confusion matrices. As shown in Figure 7, QDA
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Comparison of the performance (accuracy with standard deviation) of all 13 entropy features within the QDA framework revealed significant
performance differences, as confirmed wilcoxon signed-rank test (p < 0.001).
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TABLE 2 Results of wilcoxon signed-rank tests for 8 classifiers.

10.3389/fnins.2025.1651501

Classifier w P o Median_diff
QDA, KNN 0.000 <0.001 1.000 0.017
QDA, LR 82.000 0.002 0.647 0.001
QDA, LinearSVM 3.000 <0.001 0.987 0.018
QDA, RBESVM 9.000 <0.001 0.961 0.023
QDA, RF 0.000 <0.001 1.000 0.035
QDA, Vote_s 159.000 0.144 0314 0.001
QDA, Vote_h 57.000 0.004 0.755 0.004
Vote_s, KNN 0.000 <0.001 1.000 0.017
Vote_s, LR 61.000 0.001 0.738 0.001
Vote_s, LinearSVM 0.000 <0.001 1.000 0.017
Vote_s, RF 0.000 <0.001 1.000 0.035
Vote_s, Vote_h 0.000 <0.001 1.000 0.036
KNN, LinearSVM 215.000 0.719 0.075 0.001
KNN, RBFSVM 163.000 0.164 0.299 0.006
KNN, RF 0.000 <0.001 1.000 0.018
KNN, LR 0.000 <0.001 ~1.000 —0.015
KNN, Vote_h 0.000 <0.001 ~1.000 —0.014
LR, LinearSVM 29.000 <0.001 0.875 0.016
LR, RBESVM 6.000 <0.001 0.974 0.023
LR, RF 0.000 <0.001 1.000 0.033
LR, Vote_h 37.000 <0.001 0.841 0.003
LinearSVM, RBESVM 131.000 0.043 0437 0.005
LinearSVM, RF 0.000 <0.001 1.000 0.017
LinearSVM, Vote_h 0.000 <0.001 ~1.000 -0.013
RBFSVM, RF 145.000 0.082 0376 0.013
RBESVM, Vote_s 0.000 <0.001 ~1.000 —0.023
RBESVM, Vote_h 7.000 <0.001 —0.970 —0.019
RE, Vote_h 0.000 <0.001 ~1.000 —0.032

consistently achieved superior overall accuracy, significantly
outperforming all counterparts, Ensemble methods (Vote_s and
Vote_h) ranked second, while RBFSVM, Linear SVM, KNN, and LR
demonstrated intermediate efficacy. In contrast, RF exhibited
suboptimal performance across all metrics, aligning with its known
limitations in high-dimensional EEG data. Table 3 further details the
discriminative capability through confusion matrices. QDA exhibited
the highest diagonal accuracy (reflecting correct class assignments) and
optimally balanced precision-recall tradeoffs for both positive and
negative classes. Specifically, it minimized misclassification rates (e.g.,
2.4% inter-class confusion) while maintaining 96% class-wise precision
and recall - a critical advantage for person identification robustness.

4 Discussion

Recently, several research groups have tackled the problem of
utilizing EEG signals for person authentication (Boubakeur et al.,
2017; Maiorana et al., 2015). Their approaches can be broadly

Frontiers in Neuroscience

categorized into three types:(1) Rest State EEG: Rocca et al. extracted
biometric traits for person authentication using resting EEG signals,
leveraging different recording sessions separated in time to
demonstrate the repeatability of EEG features. By employing
autoregressive statistical modeling and a linear classifier, a high degree
of accuracy was achieved (La Rocca et al., 2013). (2) Event-Stimulated
EEG: Yang et al. (2011) employed an event-related potential,
specifically P300, to study person authentication using a learning
vector quantization neural network, achieving a correct authentication
rate of 92.1%. (3) Mental Imagery EEG: Nieves and Manian (2016)
proposed an automatic person authentication system based on EEG
signals derived from simple motor imagery movements, utilizing a
minimum number of channels. A comprehensive review of EEG-based
person authentication methods can also be found in Fraschini
etal. (2018).

When compared to existing EEG-based authentication methods,
the proposed method for person authentication exhibits improved
performance with a more robust detector. Unlike many previous works
that rely on event-related potentials (e.g.,Mu et al., 2017; Yeom et al.,
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ROC curves demonstrating high-performance person authentication using optimized EEG configuration (9 electrodes, 13 entropy features, QDA).
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2013) or task-induced mental imagery (Rodrigues et al., 2016), our
approach utilizes resting-state EEG, which offers greater practicality for
real-world applications by eliminating the need for active user
participation or stimulus presentation equipment. Moreover, while
some studies such as Maiorana et al. (2016) also employed resting-state
EEG, they utilized substantially more electrodes (19 channels)
compared to our configuration (9 channels), which increases setup
complexity and subject discomfort. Our electrode reduction strategy,
informed by systematic channel selection, demonstrates that
comparable—in fact superior—accuracy can be achieved with fewer
electrodes, enhancing usability without compromising performance.
Another critical differentiation lies in our feature extraction
framework. While earlier studies predominantly utilized temporal,
spectral, or wavelet-based features, we introduced a comprehensive
entropy-based feature set that captures the nonlinear dynamics and
complexity of resting-state EEG signals. Specifically, our findings
indicate that SpEn outperforms other entropy measures, suggesting
that frequency domain unpredictability provides particularly
discriminative information for identity authentication. This represents
a significant departure from conventional power-based or
ERP-component features commonly used in prior literature.
Classifier selection further distinguishes our work. Whereas
several previous studies employed Support Vector Machines (Mu

TABLE 3 Confusion matrix of eight model.

Classifier Actual value/ Negative = Positive
Predicted value
KNN Negative 6,131 359
Positive 347 6,143
LR Negative 6,222 268
Positive 330 6,160
LinearSVM Negative 6,093 397
Positive 287 6,203
RBFSVM Negative 6,176 314
Positive 244 6,246
RF Negative 6,243 247
Positive 625 5,865
QDA Negative 6,233 257
Positive 259 6,231
Vote_s Negative 6,231 259
Positive 266 6,224
Vote_h Negative 6,234 256
Positive 298 6,192

TABLE 4 Performance comparison of the previous works.

Author Classifier

EEG paradigm

10.3389/fnins.2025.1651501

etal., 2017; Yeom et al., 2013), k-NN (Maiorana et al., 2016), or neural
networks (Yang et al., 2011), we implemented Quadratic Discriminant
Analysis (QDA), which proved highly effective in modeling the
distribution of entropy features. The superior performance of QDA
(96.1% accuracy) compared to other classifiers in our study—and
relative to those reported in prior works—may be attributed to its
ability to handle non-linear class boundaries and different covariance
structures across subjects, which is especially relevant given the high
intersubject variability in EEG signals.

Furthermore, a comparison of related classification performances
from previous studies is presented in Table 4. When compared to
existing EEG-based identification/authentication methods, the
proposed method for person authentication exhibits improved
performance with a more robust detector. Given the reduced need for
electrodes and the fusion of multiple classifier advantages, the
proposed method is more convenient and effective.

The experimental results can be summarized as follows: (1) Utilizing
areduced number of electrodes for person authentication is feasible and
practical. Specifically, the highest accuracy of 96.1% was achieved using
nine electrodes and a QDA classifier, making it suitable, convenient, and
comfortable for daily applications. (2) The significance of different
electrodes in person authentication varies considerably. The electrode
TP8 exhibited the best distinguishability for person authentication, with
most subjects being distinguishable using this electrode. Conversely, the
electrode Oz demonstrated the weakest distinguishability. (3) Among 13
entropy feature sets, SpEn exhibited superior person identification
performance, whereas SaEn demonstrated significantly lower efficacy
with marked differences from all other entropy measures. (4) Variations
exist among classifiers for person authentication. The performance
ranking of the eight classifiers was QDA = vote_s > vote_h > radial basis
function support vector machine (RBFSVM) > logistic regression
(LR) > linear support vector machine (Linear SVM) > k-nearest
neighbors (KNN) > random forest (RF).

However, this study has some limitations: (1) The sample size was
relatively small, with only 26 subjects and 300 epochs per subject
studied. For future research, we plan to recruit a substantial number
of volunteers to further validate the performance. (2) Some classifier
parameters were not optimized. As this work focused on evaluating
the feasibility of the proposed method, finding the optimal classifier
configuration conditions was beyond the scope of this paper. Future
research will explore further performance improvements through
parameter tuning. (3) The experiment was conducted in a controlled
environment and has not been tested in outdoor natural settings,
where various noise and uncertainty factors may affect authentication
accuracy. In our future work, it will be meaningful to conduct further
research in two areas: (i) validating the robust performance of person
authentication with a larger pool of participants and (ii) exploring the
actual application of an EEG-based person authentication system. For

Number of electrodes

Accuracy (%)

Maiorana et al. (2016) Nearest-neighbor Resting-state 19 87.9
Mu et al. (2017) SVM Event-Related Potential 22 90.7
Rodrigues et al. (2016) Optimum-path Forest classifier Motor Imagery 30 87.0
Yeom et al. (2013) SVM Event-Related Potential 5 86.3
This paper QDA Resting-state 9 96.1
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robust performance, it may be helpful to measure uncertainty in
fusing different features and classifiers at an appropriate level in a
given system, as well as to capture the sensitivity of the obtained
results. For practical applications, although we performed an offline
analysis on EEG datasets recorded from online experiments in this
study, further research in a real-time online experimental
environment is needed to confirm the findings. A real-time person
authentication system using wireless EEG devices such as
smartphones, tablets, and cloud servers could have widespread future
applications. Therefore, a mobile person authentication system needs
to be developed for online real-time applications. A global sensitivity
and uncertainty analysis for the person authentication system will
be beneficial in validating the robustness of the authentication results
in the future. Considering convenience in practical applications,
different priority channel regions and a reduced number of electrodes
can be used for real-time person identity detection and
authentication, which could benefit human authentication methods
such as Brain Print or EEG passwords.

5 Conclusion

In this study, we propose an approach for a resting EEG-based
system that utilizes thirteen entropy feature sets, six classifier types,
and select electrodes to enhance the efficiency of person identity
detection. The research findings demonstrate that the choice of feature
sets and classifiers significantly impacts person authentication
performance. Experimental results reveal that the proposed method
achieves a commendable accuracy of 96.1% and offers a more robust
detector. LOOCV suggests substantial potential applicability for
person authentication using this approach. A resting EEG-based
person authentication system promises valuable insights into
biometric characteristics across relevant fields and serves as a
significant supplement to existing methods.
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