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of brain arteriovenous
malformations using multimodal
Imaging in stereotactic
radiosurgery
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University and Shandong Academy of Medical Sciences, Jinan, Shandong, China

Background: Optimizing radiation dose to protect white matter (WM) tracts
during stereotactic radiosurgery (SRS) of brain arteriovenous malformations
(bAVMs) necessitates the integration of diffusion tensor imaging (DTI)-based WM
tractography to delineate WM tracts and establish dose constraints. Conventional
manual delineation of perilesional targets demonstrated significant operational
inefficiency, primarily attributed to the complex structural interdigitation
between pathological vasculature and eloquent brain areas.

Purpose: This study aimed to develop a two-stage deep learning (DL)
method that combines a two-dimensional (2D) U-Net detection-aided and
three-dimensional (3D) self-attention segmentation model for automatic bAVM
segmentation. This method focuses on improving efficiency in clinical practice
while protecting WM tracts using multimodal imaging and WM tractography
in SRS.

Methods: We analyzed imaging data from 191 patients who underwent
CyberKnife-based SRS at Huashan Hospital, Fudan University, with bAVMs closely
adjacent to WM tracts. A total of 153 patients were used to construct a
two-stage DL model to segment the bAVMs on multimodal imaging and WM
tractography, while the remaining 38 patients were utilized to validate the
model's performance. We introduced spatial and channel attention modules
in the U-Net variant, along with a versatile "Attentional ResBlock,” achieving
parameter efficiency through cross-dimensional interaction while preserving
model fidelity. The accuracy of the auto-segmented contours is evaluated using
geometric indices and dosimetric endpoints.

Results: Our proposed model demonstrated superior segmentation
performance, achieving a dice similarity coefficient (DSC) of 0.84 + 0.05,
sensitivity of 0.92 + 0.09, and F2-score of 0.79 £ 0.08. Furthermore, it attained
a low Hausdorff distance (4.55 + 1.14mm) and mean surface distance (0.53 +
0.08 mm), indicating exceptional boundary delineation precision. The difference
in the proportion of WM tracts within the target region between manual and our
automated contours is minimal (0.08 £ 0.13). Meanwhile, strong concordance
is observed between auto-segmented and manually contoured targets across
the majority of dosimetric endpoints, with a mean difference of 0.46 Gy.
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The received dose of WM tracts in the two comparison plans also has an
acceptable representation of dosimetric parameters (R2 = 0.92 for Dmean
and 0.88 for V1Gy). Dose exposition of the organ at risk (OAR) shows no
statistically significant differences in treatment plans with auto-segmentation
targets compared to regular plans.

Conclusion: The reliable bAVM automated-segmentation method has been
validated and may support SRS planning for bAVMs and thus avoid neurological
sequelae after SRS in considering WM tracts protection.

KEYWORDS

brain arteriovenous malformations, white matter tracts, stereotactic radiosurgery, deep
learning, auto-segmentation

1 Introduction

Brain arteriovenous malformations (bAVMs) represent

pathologically defined
by direct shunts between arterial and venous systems without

congenital cerebrovascular disorders
intervening capillaries, resulting in hemodynamic compromise
and hemorrhagic predisposition (Lawton et al., 2015; Rutledge
etal., 2021; Rammos et al., 2016). Modern stereotactic radiosurgery
(SRS) modalities enable less-fraction delivery of radiation doses
(20-25 Gy) to bAVMs’ nidal volumes (<3 cm?), achieving 70-90%
3-year occlusion rates with <5% symptomatic radiation necrosis
incidence (Samaniego et al., 2024; Ahmed et al., 2025; Graffeo et al.,
2020; Kano et al,, 2012). The dosimetric imperative of delivering
radiation doses necessitates a precise definition of therapeutic
margins during bAVM SRS, requiring simultaneous optimization
of target coverage and functional preservation in eloquent cortices
mediating language, visuospatial, and sensorimotor processing
(Buis et al., 2007; Ding et al., 2013; Hadjipanayis et al., 2001).

Accurate localization of eloquent regions and white matter
(WM) tracts within the bAVM margin is therefore critical for
preventing neurological sequelae (Maruyama et al., 2008; Ellis
et al., 2012). Recently, diffusion tensor imaging (DTI)-based WM
tractography has been integrated into SRS treatment planning
(Pantelis et al., 2010; Gavin and Sabin, 2016; Altabella et al.,
2018; Unnikrishnan et al.,, 2021; Yahya and Manan, 2019). This
integration facilitates identification of the anatomical relationship
between WM tracts and the nidus, thereby enabling optimization
of treatment plan design. Precise identification and delineation
of the bAVMs constitute essential steps in SRS planning.
Currently, targets are manually identified by neuroradiologists
and delineated by radiation oncologists using multimodal imaging
combined with WM tractography. However, conventional
workflows demonstrated resource-intensive operator-dependent
compounded by
particularly when managing targets juxtaposed to critical
WM tracts.

Given that deep learning (DL) algorithms represent the

characteristics inter-rater inconsistencies,

forefront of medical image analysis (Li et al, 2020; Park
et al, 2019; Liang et al., 2020; Almberg et al., 2022; Peng
et al,, 2019), auto-segmentation techniques have been developed
to overcome the limitations of manual bAVM contouring by
providing efficient and observer-independent results. Jiao et al.
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proposed a U-Net model to detect and quantify nidus diffuseness
in bAVMs using magnetic resonance angiography (MRA) images
(Jiao et al., 2022). Similarly, Hong et al. implemented YOLOvV5
and YOLOV8 algorithms to detect bAVMs and incorporated pre-
training techniques to improve bAVMSs’ segmentation performance
with limited datasets (Hong et al., 2024). While Wang et al.
developed an intensely supervised V-Net for delineating the
bAVMs from CT images and evaluated the resultant target dose
coverage changes (Wang et al., 2019). These studies collectively
validate the reliability of DL for direct segmentation of bAVMs in
medical imaging.

However,  significant  limitations  persist.  Existing
methodologies primarily rely on single-modal imaging, which may
inadequately capture the complex morphology and characteristics
of bAVMs. Furthermore, lesions proximal to WM tracts often
receive excessive radiation doses, largely due to challenges in
their precise identification on CT or conventional MRI. Finally,
while geometric indices serve as valuable metrics for assessing
segmentation accuracy, the dosimetric data derived from auto-
segmented contours represent a significantly more meaningful
endpoint. Therefore, a systematic dosimetric analysis of auto-
segmented bAVM:s and critical structures, such as WM tracts, also
needs consideration.

Given the limitations mentioned above, we have developed
an innovative two-stage DL ensemble, which integrates a two-
dimensional (2D) U-Net detection-aided and a three-dimensional
(3D) self-attention network for automatic bAVM segmentation.
This approach leverages multimodal imaging alongside WM
tractography, marking the first utilization of WM tractography in
the automated segmentation of bAVMs. It aims to improve the
precision of bAVM data extraction and ensure the preservation of
WM tracts. The results of bAVM auto-segmentations are evaluated
for standard geometric indices, including dice similarity coefficient
(DSC), Sensitivity, F2-score, Hausdorft distance (HD), and mean
surface distance (MSD). The various dosimetric parameters in
the target are obtained to assess the dosimetric differences of
the proposed method. Finally, we conduct a comparative analysis
of dosimetric outcomes between two contrast treatment plans
based on auto-segmented contours and manual contours. This
comparison focuses on the accuracy of dosimetric endpoints to
validate the performance and reliability of our proposed auto-
segmentation method.
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TABLE 1 Demographic and clinical characteristics of bAVM patients.

10.3389/fnins.2025.1645990

Dataset Type Age, Male sex Size (cc), SM grading, number (%)
median [IQR] median [IQR] I

Training set (n = 153) 26 [17-62] 87 (56.9%) 15.4 [1.3-55.9] 61 (39.9%) 84 (54.9%) 8 (5.2%)

Test Set (n = 38) 25 [19-48] 20 (52.6%) 15.1 [1.5-48.6] 14 (36.8%) 23 (60.5%) 1(2.6%)

SM, Spetzler-Martin grading.

2 Methods and materials
2.1 Clinical dataset

A retrospective analysis was conducted on 191 patients
with bAVMs located adjacent to WM tracts, all of whom
underwent CyberKnife-based SRS in Huashan Hospital, Fudan
University, from 2016 to 2023. This study strictly complies with
the ethical principles outlined in the Declaration of Helsinki
and received approval from the local institutional review board
of Huashan Hospital, Fudan University. Demographic and
clinical characteristics, including age, sex, lesion size, affected
hemisphere, and Spetzler-Martin (SM) grading (Spetzler and
Martin, 2008) are documented in Table 1. All manual contours are
rigorously reviewed and verified by experienced neuroradiologists
to ensure quality control. Patients are immobilized with customized
thermoplastic masks and undergo computed tomography (CT)
simulation using a Toshiba 64-slice scanner (Japan). Axial images
are acquired from the vertex to the chin at a slice thickness
of 1mm. The 3D time-of-flight magnetic resonance angiography
(TOF-MRA) and T2-weighted magnetic resonance imaging (MRI)
images are acquired using a 3.0T MAGNETOM Trio scanner
(Siemens, Germany). The TOF-MRA sequence is performed with
a repetition time (TR) of 22ms, echo time (TE) of 3.5ms, flip
angle of 18°, and slice thickness of 1 mm. The T2-weighted images
are obtained using a turbo spin-echo fluid-attenuated inversion
recovery (FLAIR) sequence with a repetition time of 9,000 ms,
echo time of 90ms, inversion time of 2,500 ms, flip angle of
150°, and slice thickness of 1 mm. WM tractography and TI-
weighted MRI are performed in the intraoperative MRI suite using
a MAGNETOM Verio scanner (Siemens AG, Germany). Image
acquisition and analysis are conducted using the Neuro 3D Analysis
workstation. Anatomical imaging employed a 3D magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence,
acquiring whole-brain axial T1-weighted images with the following
parameters: slice thickness 1 mm; TR, 1,900 ms; TE, 2.98 ms; flip
angle 90°; and isotropic voxel size 1.0 mm x 1.0 mm x 1.0 mm. The
field of view was 256 mm with a 256 x 256 matrix. Diffusion tensor
imaging utilized a single-shot, multi-slice 2D spin-echo planar
imaging sequence with diffusion sensitization and fat suppression.
DTI parameters included: axial acquisition with 42 slices, 2 mm
slice thickness, no gap, TR 9,900 ms, TE 90 ms, voxel size 1.5 mm
x 1.5mm X 3 mm?>, flip angle 90°, and field of view 240 mm
with a 128 x 128 matrix, providing full brain coverage. The
191 patients are divided into training and testing groups with a
ratio of approximately 80:20 (153:38). Image registration of each
patient’s MRI and DTT volumes to their corresponding CT image is
accomplished using a proprietary MIM workflow (Fukumitsu et al.,
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2017). To enhance the robustness of the model, data augmentation
such as rotation, flipping, and zooming is employed, facilitating the
model’s ability to learn transformation-invariant features. Finally,
the preprocessed CT and MRI data are converted to NumPy arrays
and loaded into PyTorch, ready for model training (Van Der Walt
et al., 2011; Paszke, 2019).

2.2 Segmentation

2.2.1 Training process

A two-stage deep learning ensemble is trained to segment
bAVM nidus, which consists of a 2D U-Net detection model to
localize the bAVM regions of interest (ROI) and a 3D self-attention
network to segment bAVMs within the identified location. The
whole process for the training and testing phase is illustrated in
Figure 1. In the first stage of the training phase, the multimodal
images of each training patient are served as input images and
concatenated as multi-channel inputs, with the manual contours
serving as the target for learning. The binary mask of bAVMs
is coarsely generated in a 2D U-Net, and then a 128 x 128 x
128 pixel ROI bounding box centered at the mass center of the
mask is created to localize the bAVM nidus. The coordinates of
these cropped ROIs are stored and subsequently utilized to map
the predicted masks back to the original images. In the second
stage, the multimodal images are cropped to the defined ROI, and
these images are then input into the 3D self-attention architecture,
which provides accurate and efficient bAVM segmentation within
the ROL The 2D U-Net and 3D self-attention network are
implemented using Python 3.8 with PyTorch 1.12, enhanced by
CUDA 12.2, on six NVIDIA RTX 4080 Ti GPUs. The models
undergo training and testing across 300 epochs, employing the
Adam optimizer, which incorporates a momentum term of 0.5
to enhance convergence. The initial learning rate is set at 0.0002
and is systematically reduced by half whenever the error rates
on the validation set plateau, ensuring efficient and effective
learning progression.

2.2.2 Network architecture

The architecture of our proposed 3D self-attention network
is detailed in Figure 2, top, and it is divided into two stages:
encoding and decoding. The encoding stage consists of five levels
arranged in a hierarchical structure. The input image slices, which
were previously cropped during the detection phase, undergo
processing via combined convolution and attention blocks. Max-
pooling is then applied to down-sample the feature maps. To
maintain the multi-level features effectively, concatenation is
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new data.

The schematic flow diagram of the proposed method. The upper part illustrates the training stage, while the lower part shows the testing stage for

employed to enhance the volume of feature maps from both the
encoding and decoding stages. The final transformation involves
funneling these maps through a convolution layer to decrease their
dimensionality to two channels. This is immediately followed by
a “tanh” activation layer that serves to polarize the feature maps,
thereby distinguishing the posterior probabilities of the bAVMs
from those of normal tissue.

2.2.3 Attentional block

Inspired by CBAM (Ye et al.,, 2018), the attention mechanism
is embedded within the U-Net architecture to improve edge
prediction accuracy for bAVM segmentation. The proposed
attention mechanism comprises two specialized submodules: a
channel attention module (CAM) for feature refinement and
a spatial attention module (SAM) for contextual weighting.
The CAM utilizes dual-pooling operations (global average
pooling and global max pooling) to integrate multi-scale
feature representations. These aggregated features transform
a shared multilayer perceptron (MLP). Subsequent element-
wise summation and sigmoid activation yield channel-wise
weighting coeflicients (V.), which rescale the original feature
map (F) via Hadamard product. The SAM then prioritizes
discriminative spatial regions by generating attention weights
through a lightweight convolutional subnetwork applied to
the refined features, followed by sigmoid normalization. This
hierarchical attention framework progressively refines feature
discriminability for boundary-critical structures. The new feature
can be obtained by multiplying the weight coefficient with the
original feature graph F. To optimize computational efficiency
and model compactness, we implement depth-wise separable
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convolution as a parameter-reduction strategy, as schematically
depicted by the red arrow in Figure 2, attention block. This
architectural innovation decomposes standard convolution into
two sequential operations: depth-wise separable convolution
that performs spatial filtering through channel-wise independent
kernels (Chollet, 2017), followed by point-wise convolution (1 x
1 kernels) for channel combination. The decoupled processing
mechanism achieves substantial parameter reduction compared
with conventional convolution. The schematic diagram of the
depth-wise separable convolution is illustrated in Figure 2, bottom.
The full stages of CAM and SAM are shown as follows:

V(F) = 0 (MLP(AvgPool(F)) + MLP(MaxPool(F)))
= o (Wi(Wo(Fgy)) + (W1 (Wo(Fpap))) 1)
Vs(F) = o (f([AvgPool(F), MaxPool(F)]))

=o(f([Fogs Fou]) @

where MLP represents the multilayer perceptron, F represents
the original feature, V. and V represent the weight coeflicient for
CAM and SAM, respectively.

2.2.4 Loss functions

Recent studies have predominantly employed either the
Intersection over Union (IoU) or Dice loss functions within their
neural network architectures (Jadon, 2020; Sudre et al., 2017). In
this work, we introduce a novel compound loss function designed
to supervise the training of our network. This function integrates
both IoU and Dice losses, strategically penalizing discrepancies
while simultaneously promoting congruence between the predicted
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FIGURE 2
The proposed architecture of the self-attention network (top) and the schematic diagram of depthwise separable convolution (bottom)

segmentations and the ground truth data. The loss formulations for
the IoU and Dice metric are as follows:
Loy =1—1IoU =1 L 3)
U= T T T I P BN
2x TP

Ipie=1—— """
bice 2x TP+ FP + FN

4)
where TP, FP, and FN are true positive, false positive, and false
negative, respectively.
By combining these two distinct loss functions, we establish the
composite loss function for deep supervision as follows:

Liou + Lpice

5 ©)

Lﬁnul =
2.3 Evaluation metrics
Quantitative comparisons between the segmentation results

from our proposed model and manual contouring are conducted
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for each patient in the validation dataset, employing metrics such
as DSC, sensitivity, and F2-score (Dice, 1945; Altman et al,
1994; Devarriya et al., 2020). Several established architectures,
including U-Net (Montazerolghaem et al., 2023) and Res-Net (Targ
et al, 2016), along with the state-of-the-art nnU-Net (Isensee
et al,, 2021) framework, are evaluated to demonstrate the superior
performance of our proposed network. To quantitatively evaluate
the contribution of the attention modules, an ablation study is
conducted. We compare the performance of the complete proposed
model (with attention modules) against an ablated variant, where
all attention modules are removed. The metrics employed in this
study are defined as follows:

21ANB| 27P

DSC(4,B) = - ©)
/Al + B ~ 2TP+ FP+ EN

Sensitivit e @)
ensiiiy = =
= TP PN
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TABLE 2 Quantitative results for the segmentation of different methods.

10.3389/fnins.2025.1645990

Res-Net 0.73 £0.14 0.77 £ 0.20 0.67 £0.14 534+ 1.27 0.83 £0.13 0.15+0.24
U-Net 0.76 £ 0.10 0.81 £0.16 0.70 £ 0.11 5.51 +1.48 0.78 £0.16 0.12 £ 0.32
nnU-Net 0.79 £0.13 0.88 £0.13 0.68 £0.17 507 £ 1.21 0.70 £ 0.11 0.13 £ 0.20
Ours 0.84 £+ 0.05 0.92 + 0.09 0.79 £ 0.08 4.55 £+ 0.56 0.53 £0.08 0.08 +£0.13
5TP ( ) TABLE 3 Results of the ablation study on attention mechanisms.
2= ———— 8
STP -+ AFP + EN Model variant DSC HD MSD
odel varian
HD(A, B) = max (h (A, B),h (B,A)) 9)
h(A B) + h(B A) With attention modules 0.84 £ 0.05 4.55 4+ 0.56 0.53 4 0.08
MSD(A,B) = ————""~ (10)
2 Without attention 0.80 £ 0.09 513 +0.85 0.65 £ 0.14
modules

where TP, FP, and FN are true positive, false positive, and false
negative, respectively. h(A, B) = maxzeq mingeg ||a—0b||, h(B,A) =
maxpeg Mingey ||b— all, ||.|| denotes the Euclidean distance. A and
B represent auto-segment and manual contours, respectively.

The WM tracts in target (WMT) is used to evaluate the
proportion of WM tracts delineated within the target region. It is
defined as follows:

ANWM BNWM
A B

WMT = (11)

where A and B represent auto-segment and manual contours,
respectively. WM is the contours of white matter tracts.

The dose-volume histograms (DVH) and various dosimetric
parameters are derived for each patient from both auto-segmented
and manually contoured bAVMS’ regions to assess the dosimetric
implications of the proposed segmentation method. The dosimetric
endpoints evaluation, includes the mean dose (Dmean), maximum
dose (Dmax), 99% target volume dose (D99), and 95% target
volume dose (D95). To evaluate the variation in dose permissible to
the WM tracts, while ensuring adequate coverage and conformality
of the bAVM target, two controlled treatment plans are designed
for each patient in the test dataset using the CyberKnife TPS
(version 4.6, Accuray, Inc., Sunnyvale, USA). These plans are
designed by a senior physician, based on auto-segmented and
manually contoured bAVMS’ outlines. To maintain comparability
of dosimetric endpoints, all other planning parameters such as
prescription dose, fraction, and size of collimators are held constant
(shown in Supplementary Table S1). The correlation between
dosimetric endpoints derived from WM tracts in these two plans
is assessed using the R? value of the linear regression.

3 Results

The overall geometric parameters for all 38 patients in the
test dataset and model evaluation are summarized in Table 2.
Our proposed model achieved superior performance, with mean
DSC, Sensitivity, and F2-score values of 0.84 £ 0.05, 0.92 +
0.09, and 0.79 £ 0.08, respectively, outperforming all compared
methods including nnU-Net (0.79 % 0.13, 0.88 £ 0.13, 0.68 +
0.17), U-Net (0.76 £ 0.10, 0.81 & 0.16, 0.70 £ 0.11), and Res-Net
(0.73 £ 0.14, 0.77 &+ 0.20, 0.67 & 0.14). Moreover, our method
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TABLE 4 Quantitative evaluation of segmentation performance across
Spetzler—Martin grades.

S-M DSC Sensitivity F2- HD MSD

grades score

i 0839+ | 09390059 | 0774+ 4394+ | 0527+
0.035 0.081 0.590 0.074

11 0842+ | 09080100 | 0791+ 4599+ | 0539+
0.031 0.079 0.492 0.062

v 0.831 0.981 0.847 4751 0.541

Grade IV results are presented as mean values due to the limited sample size. Data in this table
are presented with three decimal places to better illustrate the differences between groups.
SM, Spetzler-Martin grading.

also attained the lowest HD (4.55 £ 0.56 mm) and MSD (0.53
+ 0.08 mm), indicating a notable improvement in segmentation
boundary precision. The difference in the proportion of WM tracts
within the target region between manual and our auto-segmented
contours is minimal, with a recorded value of 0.08 & 0.13. The
corresponding values are 0.15 £ 0.24 for Res-Net, 0.12 £ 0.32 for
U-Net, and 0.13 & 0.20 for nnU-Net, respectively.

The results of the ablation study on the attention mechanisms
are summarized in Table 3. Removing the attention modules led to
a noticeable degradation in segmentation performance across all
metrics. Specifically, the model with attention modules achieved
a superior DSC of 0.84 % 0.05, compared to 0.80 £ 0.09 for the
ablated version. Similarly, the inclusion of attention mechanisms
reduced the HD from 5.13 £ 0.85mm to 4.55 &+ 0.56 mm and
the MSD from 0.65 + 0.14mm to 0.53 £ 0.08 mm. A detailed
breakdown of segmentation performance across Spetzler-Martin
grades is provided in Table 4. The model achieved consistent and
high DSC across all grades (Grade II: 0.839 % 0.035; Grade III:
0.842 + 0.031; Grade IV: 0.831), demonstrating its robustness
in segmenting bAVMs of varying complexity. Similar trends are
observed in sensitivity, F2-score, and other boundary distance
metrics. These quantitative results validate the high accuracy
of contours delineated by our proposed segmentation method.
Two examples of manual and predicted contours are illustrated
in Figure 3, where manual contours are depicted in red, auto-
segmented contours in blue, and discrepancies are highlighted in
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zoomed-in window location is indicated by a red rectangle.

Segmentation results for two tested cases in DTl and MRA views. The middle row shows the zoomed-in images of full-view DTl images. The

Manual
MRA

Zoomed in

yellow masks. From the zoomed-in images, it is evident that the
target area delineated by the model effectively avoided WM tracts,
closely matching the performance of manual delineation.

An exemplary dosimetric comparison is shown in Figures 4a,
b for DTT and MRA views, respectively. The corresponding
DVH curves for bAVM target coverage, both manually and
auto-segmented, are nearly identical, as illustrated in Figure 4c.
The differences in target dosimetric parameters for 38 patients
are depicted in Figure 4d. A strong concordance is observed
between the auto-segmented and the manually contoured across
the majority of dosimetric endpoints. Specifically, the differences
in Dmean, Dmax, D99, and D95 are less than 0.46, 0.15, 1.09 Gy,
and 1.23 Gy, respectively.

Analysis of the two treatment plan parameters revealed no
statistically significant differences in target coverage (97.35 £ 3.42
vs. 97.94 + 3.19) and the number of beams utilized (183 = 27 vs.
175 = 37). Similarly, the conformity index (CI), new conformity
index (nCI), and Monitor units (MU) demonstrate no discernible
differences between the plans. A detailed comparison is depicted
in Table 5. Two representative comparison images of the two
treatment plans, designed using model-generated contours and
manual contours, are presented in Figure 5, plotted in axial, sagittal,
and coronal planes. Corresponding DVH curves are exhibited
in Figure 6. When considering the dosimetric parameters for
the critical volume of WM tracts, we observe a high degree of
concordance between control plans designed based on manually
and auto-segmented bAVM targets. This agreement is notable for
most of the WM tracts, with Dmean (R* = 0.92) and V1Gy (R> =
0.88), as shown in Figures 7a, b. Dose exposition of the OARs is
assessed for comparison of both treatment plans. Brainstem Dmean
(0.63 £ 0.41 vs. 0.67 & 0.38 Gy, p = 0.02), optic chiasm Dmean
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(0.21 £0.15 vs. 0.23 £ 0.13 Gy, p = 0.38), and all other OARs listed
in Table 6 show no statistically significant differences in treatment
plans with auto-segmentation targets compared to regular plans.

4 Discussion

of bAVMs
challenging due to intrinsic complexities: heterogeneous nidus

Accurate  segmentation remains  clinically
composition (encompassing abnormal vasculature, parenchyma,
cerebrospinal fluid, and embolized vessels) and poorly defined
lesion boundaries. To address this, we developed a cascade
segmentation framework comprising a 2D U-Net for preliminary
localization followed by a 3D self-attention network for precise
volumetric delineation. This approach demonstrated superior
segmentation accuracy for bAVMs adjacent to WM tracts,
yielding a mean DSC of 0.84 £ 0.05. These results significantly
outperform all existing benchmarks, including the state-of-the-art
nnU-Net (0.79 4 0.13), ResNet (0.73 =+ 0.14), and standard
U-Net (0.76 £ 0.10). Moreover, the model’s

performance closely aligned with the interobserver variability

architectures

across all evaluated geometric metrics. This suggested that within
the intra-institutional experiments, the model has exhibited a
proficiency level comparable to that of expert neurosurgeons and
radiation oncologists.

While existing literature addresses bAVMSs auto-segmentation
(Jiao et al., 2022; Hong et al., 2024; Wang et al., 2019; Wu et al,,
2021), this study presents the first automated framework, to our
knowledge, designed specifically for bAVMs intersecting WM tracts
using integrated DTI and multi-modal imaging. Our methodology
employs DTT co-registered with T1-weighted MRI to reconstruct
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comparison for the bAVM target across 38 patients in the test dataset.

Example of a patient for dose distribution from the original plan in (a) DTl and (b) MRA views, highlighting target contours of ground truth (red) and
auto-segmentation (blue). (c) DVH comparison for these target contours, with ground truth in red and auto-segmentation in blue. (d) DVH metrics

TABLE 5 Plan details with manual and auto-segmentation targets.

Parameters Manual- Auto- p-value
segment segment

Target coverage (%) 97.35+3.42 97.94 +3.19 0.2

Number of beams 183 £27 175+ 37 0.04

CI 1.21+0.13 1.19 £ 0.09 0.17

nCI 1.28 £ 0.15 1.24+0.13 0.21

MU 18,442 + 3,581 17,936 £ 2,944 0.01

WM tracts volume, enabling precise spatial mapping between
critical fiber tracts and nidal boundaries. This capability directly
enhances functional preservation strategies in SRS planning. We
introduce the concept of WMT to evaluate the differences in
WM tracts delineation between auto-segmented and manually
contoured targets. As shown in Table 2, there is no statistical
difference in WMT. It was clear that the target area delineated
by the model effectively avoided the WM tracts, closely matching
the accuracy of manual delineation. In addition, accurate bAVMs’
contouring can be implemented by using multimodality images to
identify features such as location, size, and invasion area (Ishihara
et al., 2020). Therefore, TOF-MRA, T2-weighted MRI, and CE-CT
images are utilized to provide comprehensive morphological data,
including vascular structure, abnormal vascular connections, and
the presence of edema and inflammation in the surrounding tissues.
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TABLE 6 Dose exhibition of organs at risk.

Dose  Manual Auto- p-
metric segment segment value
(€}%) (&)%)
Brainstem Dmean 0.63 & 0.67 = 0.02
0.41 0.38
Optical Dmean 021+ 023+ 0.38
chiasm 0.15 0.13
Optical Ipsilateral Dmean 0.84 + 0.77 + 0.11
nerve 0.52 0.69
Contralateral | Dmean 024 £ 0.46 £0.1 0.15
0.08
Eyes Ipsilateral Dmean 0.32 £+ 0.38 £ 0.19
0.72 0.51
Contralateral | Dmean 0.25 + 0.33 + 0.2
0.42 0.27

The current study integrates multiple innovations to improve
segmentation performance. First, departing from conventional
whole-volume processing, we implement a cascaded framework:
a 2D detection network generates preliminary localization of
the bAVMs, identifying their spatial coordinates and boundaries.
Subsequently, an optimized 3D self-attention network performs
fine-grained segmentation exclusively within these regions. This
targeted approach eliminates extraneous tissue interference,
thereby significantly improving segmentation accuracy compared
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MRA and displayed in axial, sagittal, and coronal planes

Treatment plans based on manual and auto-segmented PTV contours for (a) a right-sided lesion and (b) a left-sided lesion, incorporating DTI and

to traditional methods. Second, unlike prior U-Net-based solutions,
we introduce spatial and channel attention mechanisms within
a unified Attentional Block architecture. This design optimizes
feature discrimination while maintaining parameter efficiency.
The ablation study confirms the critical role of the attention
mechanisms, as their removal led to marked performance drops
across all metrics. This validates that the attention modules
are essential for capturing fine structural details and achieving
accurate boundary segmentation. Third, mitigating overfitting is
essential given the limited clinical dataset (N = 191). Spatial

Frontiersin Neuroscience

transformations, including random deformations and rotations, are
applied during training to diversify the sample population. This
augmentation strategy enhances model robustness to anatomical
variability while minimizing the risk of overfitting.

The inability to visualize WM tracts on conventional CT/MRI
images increases the risk of critical areas adjacent to the bAVMs
being subjected to excessive radiation levels, potentially inducing
side effects that exceed tolerable limits. As we know, this study
marks the first exploration of the effects of an automated
contouring model on radiation dose estimates for both the bAVMs
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Figure 5. (a) Right-sided lesion. (b) Left-sided lesion.
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and WM tracts. The mean differences in DVH metrics are all
less than 0.46 Gy. When considering the dosimetric parameters
generated in contrasted plans using auto-segmented and manually
contoured targets, we observe no significant differences in most of
the dosimetric endpoints for the WM tracts. This further confirms
the limitation of WM tracts dose reception for the treatment
plan designed based on the target area delineated by our method,
thereby achieving the protection of WM tracts in bAVM SRS.

This study has several limitations: First, the single-institution
design  limits and technical

demographic heterogeneity.

Multicenter validation is essential to confirm generalizability

Frontiersin Neuroscience 10

and enhance the robustness of the automated segmentation
framework. The primary reason for this current limitation stems
from the highly specialized nature of bAVM treatment using
CyberKnife radiosurgery. To the best of our knowledge, this
procedure is currently performed by only two institutions in
China: Huashan Hospital and Tiantan Hospital. This extreme
concentration of cases makes an initial single-center study a
practical necessity, though we agree it introduces a constraint
on generalizability. Therefore, as an immediate and concrete
step to address this limitation, we are actively collaborating with
Tiantan Hospital to initiate a multicenter validation study. We
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aim to collect an independent external dataset to further evaluate
and improve the generalization capability of our model. Second,
the modest dataset size may constrain model generalizability
despite augmentation strategies. Third, our study is limited by
the imbalanced distribution of Spetzler-Martin grades in our
cohort, particularly the underrepresentation of Grade IV bAVMs.
This reflects their inherent rarity but may impact the model’s
performance on these complex subtypes. While our initial analysis
on the limited available cases showed promising results, future
validation on a larger, more balanced multicenter dataset is
essential to confirm generalizability across all grades. Despite
these limitations, our research introduces a new neural network
structure, which demonstrates promising results in both geometric
metrics and dosimetric endpoints for the precise automatic
segmentation of bAVMs.

5 Conclusion

This study presents a novel two-stage deep learning approach
that integrates DTI-based WM tractography and multimodal
imaging for the automatic segmentation of bAVM adjacent to
WM tracts. Our work directly addresses the clinical challenge of
time-consuming manual segmentation in stereotactic radiosurgery
planning by developing an efficient automated solution. Validated
on a clinical cohort of 191 bAVM patients treated with
CyberKnife radiosurgery, the proposed method combines a
detection-aided model with 3D self-attention mechanisms to
achieve precise contour delineation. A comprehensive evaluation
on an independent test set (n = 38) demonstrated high
segmentation accuracy through both geometric and dosimetric
analyses. Despite promising results, we acknowledge limitations
such as the imbalanced distribution of Spetzler-Martin grades
and the single-center study design. Future work will focus on
multicenter validation with more balanced clinical cohorts and
the development of real-time segmentation capabilities for clinical
implementation. This approach demonstrates strong potential
for supporting stereotactic radiosurgery planning for bAVMs by
providing reliable dosimetric endpoints, thereby helping to avoid
neurological sequelae through enhanced protection of white matter
tracts while significantly improving operational efficiency.
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