AUTHOR=Tang Dongsheng , Qin Lang , Hu Longfei , Gao Siqi , Jian Yixuan , Zhu Zhiqiang TITLE=Personalized temporal interference stimulation targeting striatum reduces functional stability and dynamic connectivity variability in the sensorimotor network JOURNAL=Frontiers in Neuroscience VOLUME=Volume 19 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2025.1645903 DOI=10.3389/fnins.2025.1645903 ISSN=1662-453X ABSTRACT=BackgroundFunctional stability within brain networks, particularly the sensorimotor network (SMN), is crucial for coherent motor control. Temporal Interference (TI) stimulation offers a non-invasive method to modulate deep brain structures like the striatum, yet its impact on dynamic functional stability across motor networks remains largely unexplored.MethodsTwenty-six healthy male participants separately underwent TI stimulation and Sham stimulation in a crossover, double-blind, randomized controlled trial with counterbalanced protocol. resting-state functional magnetic resonance imaging (rs-fMRI) was acquired before and during the stimulation. A total of 20 min TI stimulation (10 mA, Δf = 20 Hz) was applied to the right striatum using personalized electrode montages optimized. Dynamic functional connectivity (dFC) was computed using a sliding-window approach. Voxel-wise functional stability across the whole brain was quantified by Kendall’s concordance coefficient of voxel-to-voxel dFC. Seed-based dFC variability in the right striatum was measured as the standard deviation of dFC across windows.Results(1) Functional stability: TI stimulation significantly decreased functional stability in bilateral SMA regions (predominantly SMA proper, with parts of pre-SMA) compared to Sham and baseline conditions (P < 0.01). (2) Dynamic functional connectivity: TI stimulation reduced dFC variability between the right striatum and left SMA region (predominantly SMA proper, with parts of pre-SMA) compared to baseline (P < 0.01). (3) Safety: No adverse cognitive effects or side effects were observed, with good blinding effectiveness maintained throughout the study.ConclusionOur findings indicate that TI stimulation targeting the striatum effectively modulates sensorimotor network stability and dFC variability within the cortico-striatal pathway, highlighting its potential as a non-invasive neuromodulation approach for motor network disorders.Clinical trial registration[www.chictr.org.cn;], identifier [ChiCTR2500098699].