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Background: White matter hyperintensities (WMH) are key imaging markers 
of cerebral small vessel disease (CSVD), associated with cognitive decline and 
stroke risk. An accurate predictive model is needed for early risk assessment.
Methods: This retrospective study utilized data from 587 patients undergoing 
cranial magnetic resonance imaging (MRI) at Hebei University’s Neurology 
Department. A predictive model for WMH was developed using a combination 
of clinical and laboratory parameters through Least Absolute Shrinkage and 
Selection Operator (LASSO) regression and binary logistic regression analysis. 
The model’s performance was evaluated using area under the receiver operating 
characteristic curve (AUC-ROC), calibration plots, and decision curve analysis 
(DCA).
Results: Key predictors included age, history of stroke, hypertension, 
triiodothyronine levels, albumin- globulin ratio, and homocysteine. The 
nomogram achieved an AUC of 0.783 (95% CI: 0.738–0.829) in the training 
cohort and 0.762 (95% CI: 0.690–0.834) in the validation cohort. Calibration 
and DCA confirmed the model’s clinical applicability.
Conclusion: This study presents a validated nomogram for predicting WMH, 
integrating clinical and biochemical markers. The model demonstrated robust 
predictive accuracy and potential for early risk stratification. Future studies 
should focus on multi-center validation and expanded risk factor inclusion.
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Introduction

Cerebral small vessel disease (CSVD), a crucial neurological disorder, presents a significant 
challenge to public health worldwide, especially in the aging population. CSVD is intricately 
linked to a range of severe outcomes, including stroke and cognitive decline, making its early 
detection and management imperative (Cannistraro et al., 2019; Duering et al., 2023; Wardlaw 
et al., 2019). White matter hyperintensities (WMH), as a key radiological hallmark of CSVD, 
are particularly noteworthy due to their association with increased risk of stroke, dementia, 
and mortality (Duering et al., 2023; Sassi, 2019; Hu et al., 2021). In T2-weighted (particularly 
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FLAIR) magnetic resonance imaging (MRI) sequences, WMH appear 
as areas of high signal intensity and are typically symmetrically 
distributed between the cerebral hemispheres (Duering et al., 2023; 
Wardlaw et al., 2013). While their exact pathophysiology remains 
under investigation, WMH are recognized as important indicators of 
cerebrovascular burden and brain health.

The diagnostic capabilities of MRI are primarily confined to 
identifying established structural changes within the brain, indicating 
that early-stage WMH or subtle structural alterations might elude 
accurate detection. This reliance on radiological evidence alone risks 
the underestimation or delayed identification of WMH, especially 
given its frequently asymptomatic nature in the initial stages (Guan 
et  al., 2021; Pantoni, 2010), posing challenges for timely clinical 
recognition in standard diagnostic procedures. This limitation 
highlights a clinical need for predictive models that can anticipate the 
presence of WMH, allowing for earlier intervention and management. 
Our study aims to fill this gap by constructing a predictive model for 
WMH, utilizing a comprehensive dataset from 587 neurology 
inpatients who underwent thorough cranial MRI examinations. The 
model incorporates a wide array of clinical and laboratory parameters, 
including gender, age, and histories of stroke, hypertension, diabetes, 
hyperlipidemia, as well as extensive laboratory findings such as 
complete blood count, liver and renal functions, electrolytes, blood 
glucose, coagulation profile, thyroid function, and homocysteine 
levels, totaling 88 distinct indicators. Our model offers an advanced 
tool for clinicians to assess and stratify WMH risk.

The development of this WMH predictive model marks a 
significant step forward in the early diagnosis of CSVD manifestations. 
It underscores the importance of integrating clinical data with 
radiological insights, fostering a more holistic approach in 
neurological care. Furthermore, the model’s capability to identify 
individuals at elevated risk of WMH facilitates targeted preventive 
strategies, potentially reducing the associated burdens of stroke and 
cognitive impairment.

Materials and methods

Study population and design

This retrospective study, conducted at a tertiary hospital in 
Baoding, China, aimed to identify imaging biomarkers for CSVD. The 
study spanned from January 2020 to June 2022. During this period, 
we systematically collected and analyzed existing patient records to 
ensure a comprehensive examination of pre-determined data. The 
inclusion criteria comprised patients aged 55 years or older who had 
undergone complete cranial MRI examinations. Patients underwent 
cranial MRI for routine clinical evaluations due to various neurological 
symptoms such as dizziness, headache, cognitive impairment, or 
clinical suspicion of cerebrovascular disease. The exclusion criteria 
were designed to omit cases that might confound the study’s outcomes, 
such as patients with poor-quality MRI images, a significant history of 
stroke defined as large territorial infarctions or hemorrhagic strokes 
with substantial neurological sequelae, or severe comorbid conditions. 
Patients with minor ischemic strokes, lacunar infarctions, or transient 
ischemic attacks (TIAs) who had achieved stable neurological recovery 
were not excluded, as the study aimed to reflect real-world inpatient 
populations. Among the 144 patients with a prior stroke history, 82 had 

lacunar infarctions, 34 had TIAs, 18 had large-vessel ischemic strokes, 
and 10 had remote hemorrhagic strokes. These conditions included, 
but were not limited to, advanced cardiac, respiratory, renal, or hepatic 
diseases, and tumors. Cases indicative of non-vascular origins of 
CSVD, like multiple sclerosis or central nervous system demyelinating 
diseases, were also excluded, as were those with insufficient clinical or 
laboratory data. To ensure the confidentiality and privacy of patient 
data, all records were anonymized prior to analysis, with all personal 
identifiers removed. The data handling process adhered strictly to data 
protection regulations. In line with ethical standards, the requirement 
for individual informed consent was waived by the Institutional 
Review Board due to the retrospective nature of the study. This waiver 
was granted as the study involved minimal risk to participants and 
used only anonymized data from existing records. The study protocol 
was thoroughly reviewed and approved by the Institutional Review 
Board (IRB) of Affiliated Hospital of Hebei University (Approval 
Number HDFYLL-KY-2023-060). The study adhered strictly to the 
ethical standards outlined in the Declaration of Helsinki.

MRI acquisition and assessment

Participants underwent brain MRI examinations using a 1.5 T 
MRI scanner (Siemens, Munich, Germany). The standardized MRI 
protocol included axial T1-weighted, sagittal T2-weighted fluid-
attenuated inversion recovery (FLAIR), and axial susceptibility-
weighted sequences. Imaging parameters were as follows: a slice 
thickness of 5 mm with a 1-mm interslice gap. For T1-weighted spin 
echo, repetition time (TR)/echo time (TE) parameters were set at 
700/11 ms. For T2-weighted fast spin echo, the TR/TE were 
5200/120 ms, and for FLAIR, TR/TE and inversion time were set at 
8500/127 and 2,300 ms, respectively. This imaging protocol was 
designed to optimally identify radiological signs of WMH. WMH, 
pivotal to our study, are characterized as irregularly sized signal 
anomalies within the white matter, distinctly hyperintense on 
T2-weighted MRI sequences such as FLAIR. These anomalies are 
non-cavitary, exhibiting a signal contrast to cerebrospinal fluid (CSF). 
It’s important to note that lesions located in the subcortical grey matter 
or brainstem are typically not classified under WMH, unless 
specifically mentioned. In cases where hyperintensities extend into the 
deep grey matter or brainstem, they are collectively referred to as 
subcortical hyperintensities, encompassing a broader range of 
abnormalities (Duering et al., 2023; Wardlaw et al., 2013). WMH were 
graded using the Fazekas visual scale. Both periventricular and deep 
WMH with a score of 1 or higher were classified into the WMH group. 
The identification and localization of WMH were independently 
assessed by two experienced neuroimaging experts, Y. H. and H. Z., 
who were blinded to the clinical data of the participants to minimize 
assessment bias. The reliability of these assessments was quantified 
using the intraclass correlation coefficient (ICC). A substantial 
agreement was indicated by an ICC value of 0.85, reflecting a high 
level of interrater consistency.

Clinical blood biochemistry assessment

In our retrospective patient cohort analysis, a comprehensive 
dataset was meticulously compiled, including a broad spectrum of 
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clinical parameters. This dataset incorporated 81 distinct laboratory 
parameters, encompassing complete blood count, renal function 
indicators, electrolyte levels, coagulation profiles, glucose 
measurements (both random and fasting), liver function tests, lipid 
profiles, cardiac enzyme panels, thyroid function assessments, and 
homocysteine levels. These extensive blood biochemistry markers 
provided a thorough clinical picture for each enrolled individual, 
covering vital health aspects.

Clinical evaluation

A thorough clinical evaluation was conducted for each participant. 
This evaluation encompassed the collection of demographic 
information, such as age and sex, along with a detailed medical 
history. Emphasis was placed on key health conditions, including 
hypertension, diabetes, hypercholesterolemia, as well as the history of 
carotid artery atherosclerosis and stroke. Hypertension was defined as 
a systolic blood pressure ≥140 mmHg, a diastolic blood pressure 
≥90 mmHg, or the use of antihypertensive medications. Diabetes was 
diagnosed based on fasting blood glucose levels ≥7.0 mmol/L, 2-h 
post-oral glucose tolerance test readings ≥11.1 mmol/L, or the use of 
hypoglycemic agents. Hypercholesterolemia was identified when total 
cholesterol or LDL cholesterol levels exceeded the upper normal 
range. Carotid atherosclerosis was determined by a history of the 
condition or evidence of increased intima-media thickness or the 
development of plaques in the carotid arteries, as indicated by carotid 
ultrasound examination.

Statistical analysis

In this study, a cohort of 587 patients was stratified into two 
datasets for the development of a WMH prediction model: a training 
dataset of 412 patients and a validation dataset of 175 patients, 
following a 7:3 allocation ratio. This strategic division was pivotal for 
robust model training and subsequent validation. For the WMH 
prediction model, continuous variables were transformed into 
categorical forms, a method widely endorsed in risk prediction 
research for its interpretability and generalizability (Barrio et al., 2017; 
Bennette and Vickers, 2012). This approach also helped minimize the 
influence of outliers and address the large differences in measurement 
units among heterogeneous variables, thereby improving model 
stability and comparability across predictors. This categorization 
process, often necessary for clinical data, facilitates more 
straightforward interpretation and applicability in a clinical setting. In 
defining cutoffs for these variables, R software was utilized to guide 
the process. In instances where specific cutoffs were not predefined, 
variables were pragmatically classified into binary or trinary 
categories. Categorical variables were then presented as frequencies 
and percentages. To compare baseline characteristics between the 
WMH-positive and WMH-negative groups, appropriate statistical 
tests were employed based on the nature of the data. Categorical 
variables were analyzed using χ2 tests or Fisher’s exact tests, as 
appropriate. The training dataset underwent variable selection 
through Least Absolute Shrinkage and Selection Operator (LASSO) 
regression. This technique, supported by cross-validation, is 
instrumental in reducing overfitting by selecting a subset of relevant 

predictors. The optimal lambda value was determined using the 
lambda.1SE criterion, which is associated with the most regularized 
model within one standard error of the minimum cross-validation 
error. Following this, significant variables identified in the LASSO 
regression were incorporated into a binary logistic regression model 
to ascertain independent predictors of WMH. A nomogram was then 
constructed based on these predictors to visually represent the risk 
factors and their relative weights in predicting WMH. The efficacy of 
the nomogram was assessed using receiver operating characteristic 
curve (ROC) analysis to measure the area under the curve (AUC). 
Calibration plots were also generated, comparing the predicted 
probabilities against actual outcomes to evaluate the model’s accuracy. 
Decision curve analysis (DCA) was further conducted to determine 
the clinical utility of the model, examining the net benefits across 
different threshold probabilities. All statistical analyses were 
conducted using R software (version 4.3.0), and a p-value of less than 
0.05 was considered statistically significant.

Results

Baseline characteristics

Between January 2020 and June 2022, a total of 683 patients were 
initially screened for eligibility. After applying exclusion criteria, 96 
patients were excluded, resulting in 587 eligible participants (see 
Figure  1). These were divided into a training set (n = 412) and a 
validation set (n = 175). Baseline characteristics of the WMH group 
(n = 200) and non-WMH group (n = 387) are summarized in Table 1. 
Significant differences (p < 0.05) were found in 31 out of 88 clinical 
and biochemical variables. Compared with the non-WMH group, 
patients in the WMH group were generally older and had a higher 
prevalence of vascular risk factors, including hypertension, stroke 
history, and carotid atherosclerosis. They also showed differences in 
renal function, lipid profile, thyroid function, and inflammatory 
indices. The remaining 57 variables did not show significant 
intergroup differences. Detailed comparisons are presented in Table 1.

Variable selection

In our comprehensive analysis aimed at developing a robust 
diagnostic model for WMH, we  meticulously compiled a dataset 
comprising 88 variables. This extensive dataset included crucial 
demographic details such as age and gender, alongside comprehensive 
medical histories and a wide array of laboratory tests. To distill the 
critical variables most predictive of WMH, we employed the LASSO 
(Least Absolute Shrinkage and Selection Operator) regression 
technique using the “glmnet package” in R. We applied a 10-fold cross-
validation method to fine-tune the regularization parameter λ, guided 
by the 1SE (one standard error) criterion (Figures 2A,B). This criterion 
was instrumental in maintaining a balance between simplicity and 
predictive accuracy of the model, thereby mitigating the risk of 
overfitting. Through this rigorous LASSO regression approach, 
we  identified seven pivotal indicators: age, stroke, hypertension, 
triiodothyronine, neutrophil-to-HDL ratio, albumin globulin ratio, 
and homocysteine (Table 2). Variables retaining non-zero coefficients 
in the LASSO model were deemed significant, suggesting a strong 
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association with WMH. These findings offer insights into potential 
pathophysiological mechanisms and contribute to the advancement 
of diagnostic methodologies for WMH.

Multivariable analyses

The binary logistic regression analysis integrated the seven 
variables identified via LASSO regression. This analysis revealed that 
six variables—age, stroke, hypertension, triiodothyronine, albumin 
globulin ratio, and homocysteine—were significantly associated with 
WMH risk (p < 0.05), detailed in Table 3. These findings reinforce the 
notion that these six variables serve as independent clinical predictors 
for WMH. Meanwhile, the Neutrophil-to-HDL Ratio, though 
included in the model, did not manifest a statistically significant 
correlation in this particular analysis.

Predictive model development

This study employed binary logistic regression analysis to identify 
key variables associated with the risk of WMH. These variables, 
namely age, stroke, hypertension, triiodothyronine, albumin globulin 
ratio, and homocysteine, were used to develop a predictive nomogram 
(Figure 3). The nomogram operates by assigning a weighted point 
value to each variable, reflective of their respective beta coefficients 
and thus their relative prognostic influence. A cumulative point total 
for each patient is then calculated, which correlates with an estimated 
probability of WMH presence. This probability is deduced from the 

alignment of total points with the probability scale at the nomogram’s 
base. Incorporating a diverse range of variables, from biochemical 
markers to clinical features, this nomogram facilitates a holistic 
assessment of WMH risk. Such a comprehensive model aids healthcare 
professionals in making more informed decisions about patient care 
and risk management strategies.

Nomogram validation

The WMH risk prediction nomogram underwent rigorous 
validation, incorporating receiver operating characteristic (ROC) 
curve analysis, calibration plots, and decision curve analysis (DCA) 
for both training and validation cohorts. The ROC curve analysis 
(Figures 4A,B) demonstrated an AUC of 0.783 (95% CI: 0.738–0.829) 
for the training set and 0.762 (95% CI: 0.690–0.834) for the validation 
set, indicating the nomogram’s substantial discriminative ability for 
WMH risk. The sensitivity and specificity in the training set were 68.7 
and 76.6%, respectively, while in the validation set, these values were 
67.0 and 77.8% (Figures  4A,B). Calibration plots (Figures  5A,B) 
showed excellent alignment between predicted and observed 
outcomes, with intercepts and slopes at 0.000 and 1.000 respectively, 
highlighting the nomogram’s accurate predictions. The decision curve 
analysis (Figures 6A,B) illustrated the clinical utility of the nomogram, 
deviating significantly from extreme baselines and suggesting its value 
in improving clinical decision-making over standard care approaches. 
These combined validation methods underscore the nomogram’s 
precision and practicality in clinical settings, affirming its role as an 
effective tool in WMH risk prediction and management.

FIGURE 1

Flow diagram of the selection of eligible patients.
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TABLE 1  Baseline characteristics: comparing wmh patients with non-WMH patients.

Variables Total (n = 587) Non-WMH (n = 387) WMH (n = 200) p

Sex, n (%) 0.003

  Female 307 (52) 220 (57) 87 (44)

  Male 280 (48) 167 (43) 113 (56)

Age (years), n (%) < 0.001

  ≤68 421 (72) 306 (79) 115 (57)

  >68 166 (28) 81 (21) 85 (42)

History of stroke, n (%) < 0.001

  NO 443 (75) 320 (83) 123 (62)

  YES 144 (25) 67 (17) 77 (38)

Carotid atherosclerosis, n (%) < 0.001

  NO 245 (42) 181 (47) 64 (32)

  YES 342 (58) 206 (53) 136 (68)

Hypertension stage, n (%) < 0.001

  Normal 189 (32) 155 (40) 34 (17)

  Level 1 109 (19) 81 (21) 28 (14)

  Level 2 251 (43) 131 (34) 120 (60)

  Level 3 38 (6) 20 (5) 18 (9)

Hyperlipidemia, n (%) 0.005

  NO 382 (65) 236 (61) 146 (73)

  YES 205 (35) 151 (39) 54 (27)

Urea (mmol/L), n (%) 0.017

  ≤298 303 (52) 214 (55) 89 (44)

  >298 284 (48) 173 (45) 111 (56)

Creatinine (μmol/L), n (%) < 0.001

  ≤80 490 (83) 344 (89) 146 (73)

  >80 97 (17) 43 (11) 54 (27)

Lymphocyte percentage, n (%) 0.048

  ≤24 294 (50) 182 (47) 112 (56)

  >24 293 (50) 205 (53) 88 (44)

Monocyte count, n (%) 0.023

  ≤0.44 295 (50) 208 (54) 87 (44)

  >0.44 292 (50) 179 (46) 113 (56)

Eosinophil count, n (%) 0.031

  ≤0.07 299 (51) 210 (54) 89 (44)

  >0.07 288 (49) 177 (46) 111 (56)

Calcium (mmol/L), n (%) 0.015

  ≤2.32 310 (53) 190 (49) 120 (60)

  >2.32 277 (47) 197 (51) 80 (40)

Total cholesterol (mmol/L), n (%) 0.037

  ≤4.50 295 (50) 182 (47) 113 (56)

  >4.50 292 (50) 205 (53) 87 (44)

High-density lipoprotein (mmol/L), n (%) 0.013

  ≤1.13 306 (52) 187 (48) 119 (60)

  >1.13 281 (48) 200 (52) 81 (40)

(Continued)
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TABLE 1  (Continued)

Variables Total (n = 587) Non-WMH (n = 387) WMH (n = 200) p

Low-density lipoprotein (mmol/L), n (%) 0.015

  ≤2.89 295 (50) 180 (47) 115 (57)

  >2.89 292 (50) 207 (53) 85 (42)

Apolipoprotein A1 (g/L), n (%) 0.006

  ≤1.03 296 (50) 179 (46) 117 (58)

  >1.03 291 (50) 208 (54) 83 (42)

Apolipoprotein B100 (g/L), n (%) 0.02

  ≤0.79 297 (51) 182 (47) 115 (57)

  >0.79 290 (49) 205 (53) 85 (42)

Apolipoprotein E (mg/L), n (%) < 0.001

  ≤37 296 (50) 173 (45) 123 (62)

  >37 291 (50) 214 (55) 77 (38)

Lactate dehydrogenase (U/L), n (%) 0.022

  ≤158 307 (52) 216 (56) 91 (46)

  >158 280 (48) 171 (44) 109 (55)

Alkaline phosphatase (U/L), n (%) 0.017

  ≤70 297 (51) 210 (54) 87 (44)

  >70 290 (49) 177 (46) 113 (56)

Direct bilirubin (μmol/L), n (%) 0.004

  ≤3.60 302 (51) 216 (56) 86 (43)

  >3.60 285 (49) 171 (44) 114 (57)

Albumin globulin ratio, n (%) < 0.001

  ≤1.50 304 (52) 179 (46) 125 (62)

  >1.50 283 (48) 208 (54) 75 (38)

Triiodothyronine (μg/dL), n (%) < 0.001

  ≤0.64 43 (7) 13 (3) 30 (15)

  >0.64 544 (93) 374 (97) 170 (85)

Free thyroxine (ng/mL), n (%) 0.005

  ≤1.22 304 (52) 217 (56) 87 (44)

  >1.22 283 (48) 170 (44) 113 (56)

Homocysteine (μmol/L), n (%) < 0.001

  ≤15 310 (53) 230 (59) 80 (40)

  >15 277 (47) 157 (41) 120 (60)

Systemic immune-inflammatory index, n (%) 0.02

  ≤643.7 293 (50) 207 (53) 86 (43)

  >643.7 294 (50) 180 (47) 114 (57)

Systemic inflammation response index, n (%) < 0.001

  ≤1.23 293 (50) 213 (55) 80 (40)

  >1.23 294 (50) 174 (45) 120 (60)

Neutrophil-to-lymphocyte ratio, n (%) 0.042

  ≤2.80 294 (50) 206 (53) 88 (44)

  >2.80 293 (50) 181 (47) 112 (56)

Neutrophil-to-HDL ratio, n (%) 0.003

  ≤3.97 293 (50) 211 (55) 82 (41)

(Continued)

https://doi.org/10.3389/fnins.2025.1642057
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al.� 10.3389/fnins.2025.1642057

Frontiers in Neuroscience 07 frontiersin.org

Discussion

In this study, we successfully developed a predictive model for 
WMHs, based on a combination of clinical and laboratory parameters. 
Our model incorporates factors such as age, history of stroke, 

hypertension, triiodothyronine levels, albumin-globulin ratio, and 
homocysteine levels, all of which demonstrated significant associations 
with WMH occurrence. These findings highlight the clinical value of 
integrating metabolic and vascular factors for early CSVD 
risk assessment.

Recent nomogram studies have modeled CSVD or its subtypes 
using clinical and biochemical markers—including age, hypertension, 
creatinine or homocysteine, inflammatory indices, and previous 
cerebrovascular events—with reported AUCs ranging from 0.70 to 
0.86 (Li et al., 2024a,b,c; Li et al., 2024). Compared with these works, 
our model specifically targets WMHs rather than overall CSVD 
burden or cognitive outcomes. Moreover, it introduces 
triiodothyronine (T3) as an endocrine predictor, thereby extending 
prior approaches by adding an endocrine dimension to CSVD 
risk stratification.

A novel aspect of our study is the elucidation of reduced 
triiodothyronine levels as a predictor of WMHs. Prior studies have 
established a link between thyroid dysfunction and CSVD (Zhang 
et al., 2017; Chu et al., 2022); however, the specific association between 
triiodothyronine levels and WMH risk has not been extensively 
explored. Our findings suggest a complex interplay between thyroid 
function and cerebral microvascular integrity, reinforcing the need for 
further investigation into the endocrine system’s role in microvascular 

TABLE 1  (Continued)

Variables Total (n = 587) Non-WMH (n = 387) WMH (n = 200) p

  >3.97 294 (50) 176 (45) 118 (59)

Lymphocyte-to-monocyte ratio, n (%) < 0.001

  ≤3.47 294 (50) 174 (45) 120 (60)

  >3.47 293 (50) 213 (55) 80 (40)

Monocyte-to-HDL ratio, n (%) 0.003

  ≤0.39 293 (50) 211 (55) 82 (41)

  >0.39 294 (50) 176 (45) 118 (59)

FIGURE 2

Screening of variables based on LASSO regression model in the training group (412 patients). (A) LASSO coefficient profiles for WMH clinical predictors. 
This figure presents the coefficient profiles of 88 features considered in the LASSO model for predicting the risk of WMH. The graph displays how each 
feature’s coefficient varies with the log of lambda (log(lambda)), demonstrating the shrinkage effect of the LASSO technique. (B) LASSO regression 
cross-validation results. This figure illustrates the evaluation of model performance under various regularization parameters λ through cross-validation 
in LASSO regression. A vertical dashed line on the left side represents λmin, which corresponds to the model with the best performance. On the right 
side, another vertical dashed line denotes λ1SE, representing a slightly sparser model. The numbers of selected variables are annotated above each line.

TABLE 2  Coefficients and lambda.1SE value of the LASSO regression.

Variable Coefficients Lambda.1SE

Age 0.102 0.057

History of stroke 0.082

Hypertension 0.065

Triiodothyronine −0.093

Neutrophil-to-HDL ratio 0.004

Albumin globulin ratio −0.014

Homocysteine 0.024

This table presents the LASSO regression analysis outcomes, displaying coefficients for key 
variables like age, stroke, hypertension, triiodothyronine, neutrophil-to-HDL ratio, albumin-
globulin ratio, and homocysteine. It also includes the lambda.1SE value, crucial in model 
selection, indicating the model’s robustness and predictive reliability. This analysis forms a 
vital part of our predictive model’s development, underscoring these variables’ significance in 
determining the risk of WMH.
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brain injury (Guo et al., 2022). Recent studies have supported this 
connection, including a Mendelian-randomization analysis linking 
thyroid parameters to MRI markers of small-vessel disease (Tian et al., 
2023) and a neuroimaging review outlining thyroid-hormone action 
in the human brain (Salas-Lucia, 2024). Low triiodothyronine levels 
may reflect a hypometabolic and hypoperfusion state that impairs 
myelin repair and exacerbates small-vessel injury, consistent with 
recent clinical evidence linking thyroid hormone levels to WMH 
burden (Xing et al., 2022). Mechanistically, reduced triiodothyronine 
(T3) may impair cerebral microvascular function by lowering 
endothelial nitric-oxide bioavailability, reducing cerebral perfusion, 
and limiting oligodendrocyte-mediated myelin repair, thereby 
increasing susceptibility to blood–brain barrier disruption and 

ischemic demyelination. The albumin to globulin ratio (AGR) 
emerged as a significant predictor in our study, underscoring the 
impact of systemic health on cerebral microvascular integrity. 
Previous research has demonstrated a correlation between lower AGR 
levels and cognitive decline in elderly populations, as well as its 
prognostic value in acute ischemic stroke (Maeda et al., 2019; Yang 
et  al., 2022). Additionally, AGR has been associated with clinical 
outcomes in acute ischemic stroke, further reinforcing its link to 
systemic inflammation and nutritional status in cerebrovascular 
health (Wang et  al., 2023). A lower AGR likely reflects systemic 
inflammation and reduced antioxidant capacity, which can promote 
endothelial dysfunction and microvascular damage. These findings 
collectively support the clinical relevance of AGR as a marker of 

FIGURE 3

Nomogram for predicting the risk of WMH. For all patients, points are calculated based on six indicators by aligning them with corresponding point 
scales. The cumulative sum of points is then located on the “Total Points” axis. Subsequently, the risk of WMH, as determined by the nomogram, 
corresponds to the probability indicated on the “WMH” scale corresponding to the “Total Points”.

TABLE 3  Binary logistic regression analysis.

B SE OR 95% CI Z P

Age 1.008 0.261 2.74 1.64–4.57 3.864 <0.001

History of stroke 0.721 0.262 2.06 1.23–3.44 2.75 0.006

Hypertension 0.624 0.132 1.87 1.44–2.42 4.74 <0.001

Triiodothyronine −1.582 0.441 0.21 0.09–0.49 −3.587 <0.001

Albumin globulin ratio −0.693 0.245 0.5 0.31–0.81 −2.824 0.005

Homocysteine 0.712 0.242 2.04 1.27–3.27 2.943 0.003

This table presents the outcomes of the binary logistic regression analysis conducted to identify potential predictors of WMH. This analysis initially included seven variables identified through 
LASSO regression. Of these, six were retained in the final WMH diagnostic model, namely: age, history of stroke, hypertension, triiodothyronine, albumin-to-globulin ratio, and 
homocysteine. One variable, neutrophil-to-HDL ratio, was excluded from the final model due to its p-value exceeding 0.05. The table provides detailed information for each factor, including 
the regression coefficient (B), standard error (SE), odds ratio (OR), 95% confidence interval (95% CI), Z-value, and p-value. The OR values indicate the relative risk associated with each factor, 
where values above 1 suggest an increased risk for WMH, and values below 1 indicate a decreased risk.
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systemic health and its potential utility in predicting WMH risk. 
Homocysteine, as a significant biomarker in our predictive model, 
aligns with existing research on CSVD. Previous studies have 
consistently demonstrated a correlation between elevated 
homocysteine levels and the development of CSVD, which is 
intrinsically linked to WMH (Staszewski et al., 2018; Nam et al., 2019). 
Mechanistically, homocysteine induces oxidative stress, endothelial 
injury, and disruption of the blood–brain barrier, all of which can 
accelerate white matter damage. This correlation positions 
homocysteine as a potential early indicator for WMH, offering 

valuable insights for detection and intervention strategies (Yuan et al., 
2022). In addition to homocysteine, our predictive model identified 
hypertension, age, and a history of stroke as significant predictors, 
which is consistent with the current understanding of CSVD 
pathophysiology. These factors contribute to chronic hypoperfusion, 
vascular stiffening, and impaired autoregulation, further predisposing 
the white matter to ischemic injury. Hypertension is known to 
exacerbate white matter lesion burden, contributing to the 
development of WMH (Maniega et  al., 2017; Solé-Guardia et  al., 
2023). Similarly, age-related changes in cerebral vessels are recognized 

FIGURE 5

(A,B) These two figures present calibration plots for the WMH predictive model using the training set (A) and the validation set (B). The calibration plots 
compare the predicted probabilities of WMH, as provided by the nomogram, against the actual observed frequencies.

FIGURE 4

(A,B) Receiver operating characteristic (ROC) curves for WMH predictive model in training set (A) and validation set (B). The ROC curves plot the 
sensitivity against the specificity for various threshold levels.
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as key factors in WMH pathogenesis (Li et al., 2020; Markus and de 
Erik Leeuw, 2023). A history of stroke, indicative of pre-existing 
cerebrovascular pathology, suggests a predisposition to further 
vascular injury and WMH development (Cannistraro et al., 2019; Pasi 
and Cordonnier, 2020). From a pathophysiological perspective, 
elevated homocysteine and lower AGR indicate oxidative and 
inflammatory stress that precipitate endothelial dysfunction. 
Hypertension and aging promote arteriolar remodeling and impaired 
autoregulation, facilitating blood–brain barrier (BBB) leakage. 
Reduced triiodothyronine (T3) suggests a hypometabolic state that 
may weaken perivascular clearance and glymphatic function while 
limiting remyelination. These mechanisms converge to promote 
diffuse white-matter injury and are jointly consistent with 
contemporary models of CSVD pathogenesis.

Overall, our study not only corroborates with existing literature 
but also offers new perspectives in understanding the relationship 
between WMHs and systemic health conditions. By integrating 
traditional and novel predictors, our model advances the 
understanding of WMH pathogenesis and provides a comprehensive 
tool for risk assessment and management.

The primary strength of our model lies in its interdisciplinary 
approach, integrating clinical and laboratory data for a comprehensive 
assessment of WMH risk. By relying on commonly assessed medical 
parameters, the model ensures ease of application in clinical settings, 
enhancing its practical utility. This integrative approach not only 
improves predictive accuracy but also facilitates early risk 
stratification, potentially aiding in timely interventions. However, 
this study has certain limitations. Its retrospective design may 
introduce selection bias, and the single-center inpatient data source 
may restrict the generalizability of our findings to broader or 
community-based populations. In particular, the sample was 
composed exclusively of neurology inpatients, which may further 

limit the generalizability of our findings to broader, community-
based populations. Furthermore, because all participants were Han 
Chinese inpatients from a single tertiary hospital, the study lacks 
ethnic and socioeconomic diversity, which may further constrain the 
generalizability of the results. Moreover, patients with a history of 
stroke were not excluded, as the study aimed to reflect real-world 
inpatient populations; however, this may introduce heterogeneity and 
confounding in the interpretation of WMH-related risk factors. 
Additionally, despite incorporating various clinical and biochemical 
variables, the model does not account for genetic predispositions, 
lifestyle factors, or advanced imaging biomarkers, which could 
further refine risk prediction. Furthermore, data on migraine history 
were not systematically collected, which may be  relevant given 
evidence linking migraine-especially with aura-to increased WMH 
risk. In addition, WMH volume and spatial distribution were not 
analyzed, which should be explored in future studies. Future research 
should focus on four key areas. First, prospective multicenter 
validation is needed to confirm the model’s applicability across 
diverse populations. Second, incorporating additional risk factors, 
including genetic, lifestyle, and advanced imaging parameters (e.g., 
diffusion tensor imaging and perfusion MRI), may enhance 
predictive accuracy. Third, longitudinal studies could provide deeper 
insights into how these predictors influence WMH progression over 
time. Lastly, integrating this model into routine clinical practice and 
evaluating its impact on decision-making and patient outcomes 
remains a crucial area for further investigation.

In conclusion, while our study aligns with and extends existing 
literature, offering new insights into the relationship between WMHs 
and systemic health conditions, it also lays the groundwork for future 
research and clinical applications. Despite its limitations, this study 
contributes a valuable tool for risk assessment and early detection of 
WMH, paving the way for improved management of CSVD.

FIGURE 6

(A,B) These figures depict the decision curve analysis for the WMH predictive model, applied to the training set (A) and the validation set (B). The DCA 
graphs display the net benefit of using the predictive model at various threshold probabilities compared to two reference strategies: treating all patients 
or treating none. The horizontal line in each graph represents the scenario where no patients are treated (assuming all are negative), yielding a net 
benefit of zero. The oblique line represents the opposite extreme, where all patients are treated (assuming all are positive). The curves of the model 
diverge from these extremes, indicating its clinical utility by providing a balance between the benefits and drawbacks of treatment decisions based on 
the model’s predictions.
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Conclusion

In this study, we  developed a predictive model for WMH by 
integrating diverse clinical and laboratory parameters. The model, 
incorporating key factors such as age, stroke history, hypertension, 
triiodothyronine levels, albumin-globulin ratio, and homocysteine levels, 
demonstrated robust performance in assessing WMH risk. Our findings 
provide novel insights into the interplay between systemic health and 
cerebral microvascular health, highlighting the importance of thyroid 
function and systemic inflammation in WMH pathophysiology.

Despite limitations such as its retrospective design and single-
center data source, this study represents a valuable step toward 
improving early identification and management of WMH. Future 
research should focus on validating the model in diverse populations 
and exploring additional risk factors, such as genetic and lifestyle 
elements, to enhance its predictive accuracy.

In summary, this study offers a practical tool for WMH risk 
assessment, with the potential to improve prevention and management 
strategies in patients with cerebral small vessel disease.
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