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Development and validation of a
predictive nomogram for cerebral
white matter hyperintensities:
insights from a comprehensive
clinical and laboratory analysis

Ning Li**!, Lijing Wang?, Xiaoying Xu*', Yadong Hu?,
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!Department of Neurology, Xiongan Xuanwu Hospital, Xiongan New Area, China, Department of

Neurology, Affiliated Hospital of Hebei University, Baoding, China, *Department of Ophthalmology,
Baoding No.1 Central Hospital, Baoding, China

Background: White matter hyperintensities (WMH) are key imaging markers
of cerebral small vessel disease (CSVD), associated with cognitive decline and
stroke risk. An accurate predictive model is needed for early risk assessment.
Methods: This retrospective study utilized data from 587 patients undergoing
cranial magnetic resonance imaging (MRI) at Hebei University's Neurology
Department. A predictive model for WMH was developed using a combination
of clinical and laboratory parameters through Least Absolute Shrinkage and
Selection Operator (LASSO) regression and binary logistic regression analysis.
The model's performance was evaluated using area under the receiver operating
characteristic curve (AUC-ROC), calibration plots, and decision curve analysis
(DCA).

Results: Key predictors included age, history of stroke, hypertension,
triiodothyronine levels, albumin- globulin ratio, and homocysteine. The
nomogram achieved an AUC of 0.783 (95% CIl: 0.738-0.829) in the training
cohort and 0.762 (95% Cl: 0.690-0.834) in the validation cohort. Calibration
and DCA confirmed the model's clinical applicability.

Conclusion: This study presents a validated nomogram for predicting WMH,
integrating clinical and biochemical markers. The model demonstrated robust
predictive accuracy and potential for early risk stratification. Future studies
should focus on multi-center validation and expanded risk factor inclusion.

KEYWORDS

cerebral small vessel disease (CSVD), white matter hyperintensities (WMH), predictive
modeling, neuroimaging, LASSO regression, nomogram, risk assessment

Introduction

Cerebral small vessel disease (CSVD), a crucial neurological disorder, presents a significant
challenge to public health worldwide, especially in the aging population. CSVD is intricately
linked to a range of severe outcomes, including stroke and cognitive decline, making its early
detection and management imperative (Cannistraro et al., 2019; Duering et al., 2023; Wardlaw
etal., 2019). White matter hyperintensities (WMH), as a key radiological hallmark of CSVD,
are particularly noteworthy due to their association with increased risk of stroke, dementia,
and mortality (Duering et al., 2023; Sassi, 2019; Hu et al., 2021). In T2-weighted (particularly
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FLAIR) magnetic resonance imaging (MRI) sequences, WMH appear
as areas of high signal intensity and are typically symmetrically
distributed between the cerebral hemispheres (Duering et al., 2023;

Jardlaw et al., 2013). While their exact pathophysiology remains
under investigation, WMH are recognized as important indicators of
cerebrovascular burden and brain health.

The diagnostic capabilities of MRI are primarily confined to
identifying established structural changes within the brain, indicating
that early-stage WMH or subtle structural alterations might elude
accurate detection. This reliance on radiological evidence alone risks
the underestimation or delayed identification of WMH, especially
given its frequently asymptomatic nature in the initial stages (Guan
et al.,, 2021; Pantoni, 2010), posing challenges for timely clinical
recognition in standard diagnostic procedures. This limitation
highlights a clinical need for predictive models that can anticipate the
presence of WMH, allowing for earlier intervention and management.
Our study aims to fill this gap by constructing a predictive model for
WMH, utilizing a comprehensive dataset from 587 neurology
inpatients who underwent thorough cranial MRI examinations. The
model incorporates a wide array of clinical and laboratory parameters,
including gender, age, and histories of stroke, hypertension, diabetes,
hyperlipidemia, as well as extensive laboratory findings such as
complete blood count, liver and renal functions, electrolytes, blood
glucose, coagulation profile, thyroid function, and homocysteine
levels, totaling 88 distinct indicators. Our model offers an advanced
tool for clinicians to assess and stratify WMH risk.

The development of this WMH predictive model marks a
significant step forward in the early diagnosis of CSVD manifestations.
It underscores the importance of integrating clinical data with
radiological insights, fostering a more holistic approach in
neurological care. Furthermore, the model’s capability to identify
individuals at elevated risk of WMH facilitates targeted preventive
strategies, potentially reducing the associated burdens of stroke and
cognitive impairment.

Materials and methods
Study population and design

This retrospective study, conducted at a tertiary hospital in
Baoding, China, aimed to identify imaging biomarkers for CSVD. The
study spanned from January 2020 to June 2022. During this period,
we systematically collected and analyzed existing patient records to
ensure a comprehensive examination of pre-determined data. The
inclusion criteria comprised patients aged 55 years or older who had
undergone complete cranial MRI examinations. Patients underwent
cranial MRI for routine clinical evaluations due to various neurological
symptoms such as dizziness, headache, cognitive impairment, or
clinical suspicion of cerebrovascular disease. The exclusion criteria
were designed to omit cases that might confound the study’s outcomes,
such as patients with poor-quality MRI images, a significant history of
stroke defined as large territorial infarctions or hemorrhagic strokes
with substantial neurological sequelae, or severe comorbid conditions.
Patients with minor ischemic strokes, lacunar infarctions, or transient
ischemic attacks (TIAs) who had achieved stable neurological recovery
were not excluded, as the study aimed to reflect real-world inpatient
populations. Among the 144 patients with a prior stroke history, 82 had
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lacunar infarctions, 34 had TIAs, 18 had large-vessel ischemic strokes,
and 10 had remote hemorrhagic strokes. These conditions included,
but were not limited to, advanced cardiac, respiratory, renal, or hepatic
diseases, and tumors. Cases indicative of non-vascular origins of
CSVD, like multiple sclerosis or central nervous system demyelinating
diseases, were also excluded, as were those with insufficient clinical or
laboratory data. To ensure the confidentiality and privacy of patient
data, all records were anonymized prior to analysis, with all personal
identifiers removed. The data handling process adhered strictly to data
protection regulations. In line with ethical standards, the requirement
for individual informed consent was waived by the Institutional
Review Board due to the retrospective nature of the study. This waiver
was granted as the study involved minimal risk to participants and
used only anonymized data from existing records. The study protocol
was thoroughly reviewed and approved by the Institutional Review
Board (IRB) of Affiliated Hospital of Hebei University (Approval
Number HDFYLL-KY-2023-060). The study adhered strictly to the
ethical standards outlined in the Declaration of Helsinki.

MRI acquisition and assessment

Participants underwent brain MRI examinations using a 1.5 T
MRI scanner (Siemens, Munich, Germany). The standardized MRI
protocol included axial T1-weighted, sagittal T2-weighted fluid-
attenuated inversion recovery (FLAIR), and axial susceptibility-
weighted sequences. Imaging parameters were as follows: a slice
thickness of 5 mm with a 1-mm interslice gap. For T1-weighted spin
echo, repetition time (TR)/echo time (TE) parameters were set at
700/11 ms. For T2-weighted fast spin echo, the TR/TE were
5200/120 ms, and for FLAIR, TR/TE and inversion time were set at
8500/127 and 2,300 ms, respectively. This imaging protocol was
designed to optimally identify radiological signs of WMH. WMH,
pivotal to our study, are characterized as irregularly sized signal
anomalies within the white matter, distinctly hyperintense on
T2-weighted MRI sequences such as FLAIR. These anomalies are
non-cavitary, exhibiting a signal contrast to cerebrospinal fluid (CSF).
It's important to note that lesions located in the subcortical grey matter
or brainstem are typically not classified under WMH, unless
specifically mentioned. In cases where hyperintensities extend into the
deep grey matter or brainstem, they are collectively referred to as
subcortical hyperintensities, encompassing a broader range of
abnormalities (Duering et al., 2023; Wardlaw et al., 2013). WMH were
graded using the Fazekas visual scale. Both periventricular and deep
WMH with a score of 1 or higher were classified into the WMH group.
The identification and localization of WMH were independently
assessed by two experienced neuroimaging experts, Y. H. and H. Z,,
who were blinded to the clinical data of the participants to minimize
assessment bias. The reliability of these assessments was quantified
using the intraclass correlation coefficient (ICC). A substantial
agreement was indicated by an ICC value of 0.85, reflecting a high
level of interrater consistency.

Clinical blood biochemistry assessment

In our retrospective patient cohort analysis, a comprehensive
dataset was meticulously compiled, including a broad spectrum of
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clinical parameters. This dataset incorporated 81 distinct laboratory
parameters, encompassing complete blood count, renal function
electrolyte
measurements (both random and fasting), liver function tests, lipid

indicators, levels, coagulation profiles, glucose
profiles, cardiac enzyme panels, thyroid function assessments, and
homocysteine levels. These extensive blood biochemistry markers
provided a thorough clinical picture for each enrolled individual,

covering vital health aspects.

Clinical evaluation

A thorough clinical evaluation was conducted for each participant.
This evaluation encompassed the collection of demographic
information, such as age and sex, along with a detailed medical
history. Emphasis was placed on key health conditions, including
hypertension, diabetes, hypercholesterolemia, as well as the history of
carotid artery atherosclerosis and stroke. Hypertension was defined as
a systolic blood pressure >140 mmHg, a diastolic blood pressure
>90 mmHg, or the use of antihypertensive medications. Diabetes was
diagnosed based on fasting blood glucose levels >7.0 mmol/L, 2-h
post-oral glucose tolerance test readings >11.1 mmol/L, or the use of
hypoglycemic agents. Hypercholesterolemia was identified when total
cholesterol or LDL cholesterol levels exceeded the upper normal
range. Carotid atherosclerosis was determined by a history of the
condition or evidence of increased intima-media thickness or the
development of plaques in the carotid arteries, as indicated by carotid
ultrasound examination.

Statistical analysis

In this study, a cohort of 587 patients was stratified into two
datasets for the development of a WMH prediction model: a training
dataset of 412 patients and a validation dataset of 175 patients,
following a 7:3 allocation ratio. This strategic division was pivotal for
robust model training and subsequent validation. For the WMH
prediction model, continuous variables were transformed into
categorical forms, a method widely endorsed in risk prediction
research for its interpretability and generalizability (Barrio et al., 2017;
Bennette and Vickers, 2012). This approach also helped minimize the
influence of outliers and address the large differences in measurement
units among heterogeneous variables, thereby improving model
stability and comparability across predictors. This categorization
process, often necessary for clinical data, facilitates more
straightforward interpretation and applicability in a clinical setting. In
defining cutoffs for these variables, R software was utilized to guide
the process. In instances where specific cutoffs were not predefined,
variables were pragmatically classified into binary or trinary
categories. Categorical variables were then presented as frequencies
and percentages. To compare baseline characteristics between the
WMH-positive and WMH-negative groups, appropriate statistical
tests were employed based on the nature of the data. Categorical
variables were analyzed using y* tests or Fisher’s exact tests, as
appropriate. The training dataset underwent variable selection
through Least Absolute Shrinkage and Selection Operator (LASSO)
regression. This technique, supported by cross-validation, is
instrumental in reducing overfitting by selecting a subset of relevant
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predictors. The optimal lambda value was determined using the
lambda.1SE criterion, which is associated with the most regularized
model within one standard error of the minimum cross-validation
error. Following this, significant variables identified in the LASSO
regression were incorporated into a binary logistic regression model
to ascertain independent predictors of WMH. A nomogram was then
constructed based on these predictors to visually represent the risk
factors and their relative weights in predicting WMH. The efficacy of
the nomogram was assessed using receiver operating characteristic
curve (ROC) analysis to measure the area under the curve (AUC).
Calibration plots were also generated, comparing the predicted
probabilities against actual outcomes to evaluate the model’s accuracy.
Decision curve analysis (DCA) was further conducted to determine
the clinical utility of the model, examining the net benefits across
different threshold probabilities. All statistical analyses were
conducted using R software (version 4.3.0), and a p-value of less than
0.05 was considered statistically significant.

Results
Baseline characteristics

Between January 2020 and June 2022, a total of 683 patients were
initially screened for eligibility. After applying exclusion criteria, 96
patients were excluded, resulting in 587 eligible participants (see
Figure 1). These were divided into a training set (n =412) and a
validation set (n = 175). Baseline characteristics of the WMH group
(n =200) and non-WMH group (n = 387) are summarized in Table 1.
Significant differences (p < 0.05) were found in 31 out of 88 clinical
and biochemical variables. Compared with the non-WMH group,
patients in the WMH group were generally older and had a higher
prevalence of vascular risk factors, including hypertension, stroke
history, and carotid atherosclerosis. They also showed differences in
renal function, lipid profile, thyroid function, and inflammatory
indices. The remaining 57 variables did not show significant
intergroup differences. Detailed comparisons are presented in Table 1.

Variable selection

In our comprehensive analysis aimed at developing a robust
diagnostic model for WMH, we meticulously compiled a dataset
comprising 88 variables. This extensive dataset included crucial
demographic details such as age and gender, alongside comprehensive
medical histories and a wide array of laboratory tests. To distill the
critical variables most predictive of WMH, we employed the LASSO
(Least Absolute Shrinkage and Selection Operator) regression
technique using the “glmnet package” in R. We applied a 10-fold cross-
validation method to fine-tune the regularization parameter 4, guided
by the 1SE (one standard error) criterion (Figures 2A,B). This criterion
was instrumental in maintaining a balance between simplicity and
predictive accuracy of the model, thereby mitigating the risk of
overfitting. Through this rigorous LASSO regression approach,
we identified seven pivotal indicators: age, stroke, hypertension,
triiodothyronine, neutrophil-to-HDL ratio, albumin globulin ratio,
and homocysteine (Table 2). Variables retaining non-zero coeflicients
in the LASSO model were deemed significant, suggesting a strong
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Paticnts mecting the inclusion criteria
(N=683)
96 patients were excluded
* Incomplete laboratory data: 57 Cases
» Severe stroke affecting CSVD ssessment:
10 Cases
——| * Poor MRI Image quality: 8 Cases
* Severe heart disease: 6 Cases
¢ Severe liver disease: 6 Cases
» Severe kidney disease: 5 Cases
*  Multiple sclerosis: 4 Cases
587 patients were icluded
Training sct(N=412) | | Validation sct(N=175)|
FIGURE 1
Flow diagram of the selection of eligible patients.

association with WMH. These findings offer insights into potential
pathophysiological mechanisms and contribute to the advancement
of diagnostic methodologies for WMH.

Multivariable analyses

The binary logistic regression analysis integrated the seven
variables identified via LASSO regression. This analysis revealed that
six variables—age, stroke, hypertension, triiodothyronine, albumin
globulin ratio, and homocysteine—were significantly associated with
WMH risk (p < 0.05), detailed in Table 3. These findings reinforce the
notion that these six variables serve as independent clinical predictors
for WMH. Meanwhile, the Neutrophil-to-HDL Ratio, though
included in the model, did not manifest a statistically significant
correlation in this particular analysis.

Predictive model development

This study employed binary logistic regression analysis to identify
key variables associated with the risk of WMH. These variables,
namely age, stroke, hypertension, triiodothyronine, albumin globulin
ratio, and homocysteine, were used to develop a predictive nomogram
(Figure 3). The nomogram operates by assigning a weighted point
value to each variable, reflective of their respective beta coefficients
and thus their relative prognostic influence. A cumulative point total
for each patient is then calculated, which correlates with an estimated
probability of WMH presence. This probability is deduced from the
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alignment of total points with the probability scale at the nomogram’s
base. Incorporating a diverse range of variables, from biochemical
markers to clinical features, this nomogram facilitates a holistic
assessment of WMH risk. Such a comprehensive model aids healthcare
professionals in making more informed decisions about patient care
and risk management strategies.

Nomogram validation

The WMH risk prediction nomogram underwent rigorous
validation, incorporating receiver operating characteristic (ROC)
curve analysis, calibration plots, and decision curve analysis (DCA)
for both training and validation cohorts. The ROC curve analysis
(Figures 4A,B) demonstrated an AUC of 0.783 (95% CI: 0.738-0.829)
for the training set and 0.762 (95% CI: 0.690-0.834) for the validation
set, indicating the nomogram’s substantial discriminative ability for
WMH risk. The sensitivity and specificity in the training set were 68.7
and 76.6%, respectively, while in the validation set, these values were
67.0 and 77.8% (Figures 4A,B). Calibration plots (Figures 5A,B)
showed excellent alignment between predicted and observed
outcomes, with intercepts and slopes at 0.000 and 1.000 respectively,
highlighting the nomogram’s accurate predictions. The decision curve
analysis (Figures 6A,B) illustrated the clinical utility of the nomogram,
deviating significantly from extreme baselines and suggesting its value
in improving clinical decision-making over standard care approaches.
These combined validation methods underscore the nomogram’s
precision and practicality in clinical settings, affirming its role as an
effective tool in WMH risk prediction and management.
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TABLE 1 Baseline characteristics: comparing wmh patients with non-WMH patients.

Variables Total (n = 587) Non-WMH (n = 387) WMH (n = 200)

Sex, 1 (%) 0.003
Female 307 (52) 220 (57) 87 (44)
Male 280 (48) 167 (43) 113 (56)

Age (years), n (%) <0.001
<68 421 (72) 306 (79) 115 (57)
>68 166 (28) 81(21) 85 (42)

History of stroke, n (%) <0.001
NO 443 (75) 320 (83) 123 (62)
YES 144 (25) 67 (17) 77 (38)

Carotid atherosclerosis, 1 (%) <0.001
NO 245 (42) 181 (47) 64 (32)
YES 342 (58) 206 (53) 136 (68)

Hypertension stage, 1 (%) <0.001
Normal 189 (32) 155 (40) 34 (17)
Level 1 109 (19) 81(21) 28 (14)
Level 2 251 (43) 131 (34) 120 (60)
Level 3 38 (6) 20 (5) 18 (9)

Hyperlipidemia, n (%) 0.005
NO 382 (65) 236 (61) 146 (73)
YES 205 (35) 151 (39) 54 (27)

Urea (mmol/L), n (%) 0.017
<298 303 (52) 214 (55) 89 (44)
>298 284 (48) 173 (45) 111 (56)

Creatinine (pmol/L), n (%) <0.001
<80 490 (83) 344 (89) 146 (73)
>80 97 (17) 43 (11) 54 (27)

Lymphocyte percentage, n (%) 0.048
<24 294 (50) 182 (47) 112 (56)
>24 293 (50) 205 (53) 88 (44)

Monocyte count, 1 (%) 0.023
<0.44 295 (50) 208 (54) 87 (44)
>0.44 292 (50) 179 (46) 113 (56)

Eosinophil count, 7 (%) 0.031
<0.07 299 (51) 210 (54) 89 (44)
>0.07 288 (49) 177 (46) 111 (56)

Calcium (mmol/L), n (%) 0.015
<232 310 (53) 190 (49) 120 (60)
>2.32 277 (47) 197 (51) 80 (40)

Total cholesterol (mmol/L), n (%) 0.037
<4.50 295 (50) 182 (47) 113 (56)
>4.50 292 (50) 205 (53) 87 (44)

High-density lipoprotein (mmol/L), n (%) 0.013
<1.13 306 (52) 187 (48) 119 (60)
>1.13 281 (48) 200 (52) 81 (40)

(Continued)
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TABLE 1 (Continued)

Variables Total (n = 587) Non-WMH (n = 387) WMH (n = 200)

Low-density lipoprotein (mmol/L), n (%) 0.015
<2.89 295 (50) 180 (47) 115 (57)
>2.89 292 (50) 207 (53) 85 (42)

Apolipoprotein A1 (g/L), n (%) 0.006
<1.03 296 (50) 179 (46) 117 (58)
>1.03 291 (50) 208 (54) 83 (42)

Apolipoprotein B100 (g/L), n (%) 0.02
<0.79 297 (51) 182 (47) 115 (57)
>0.79 290 (49) 205 (53) 85 (42)

Apolipoprotein E (mg/L), n (%) <0.001
<37 296 (50) 173 (45) 123 (62)
>37 291 (50) 214 (55) 77 (38)

Lactate dehydrogenase (U/L), n (%) 0.022
<158 307 (52) 216 (56) 91 (46)
>158 280 (48) 171 (44) 109 (55)

Alkaline phosphatase (U/L), 1 (%) 0.017
<70 297 (51) 210 (54) 87 (44)
>70 290 (49) 177 (46) 113 (56)

Direct bilirubin (pmol/L), n (%) 0.004
<3.60 302 (51) 216 (56) 86 (43)
>3.60 285 (49) 171 (44) 114 (57)

Albumin globulin ratio, n (%) <0.001
<1.50 304 (52) 179 (46) 125 (62)
>1.50 283 (48) 208 (54) 75 (38)

Triiodothyronine (pg/dL), n (%) <0.001
<0.64 43 (7) 13 (3) 30 (15)
>0.64 544 (93) 374 (97) 170 (85)

Free thyroxine (ng/mL), n (%) 0.005
<1.22 304 (52) 217 (56) 87 (44)
>1.22 283 (48) 170 (44) 113 (56)

Homocysteine (umol/L), n (%) <0.001
<15 310 (53) 230 (59) 80 (40)
>15 277 (47) 157 (41) 120 (60)

Systemic immune-inflammatory index, n (%) 0.02
<643.7 293 (50) 207 (53) 86 (43)
>643.7 294 (50) 180 (47) 114 (57)

Systemic inflammation response index, n (%) <0.001
<1.23 293 (50) 213 (55) 80 (40)
>1.23 294 (50) 174 (45) 120 (60)

Neutrophil-to-lymphocyte ratio, n (%) 0.042
<2.80 294 (50) 206 (53) 88 (44)
>2.80 293 (50) 181 (47) 112 (56)

Neutrophil-to-HDL ratio, n (%) 0.003
<3.97 293 (50) 211 (55) 82 (41)

(Continued)
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TABLE 1 (Continued)

10.3389/fnins.2025.1642057

Variables Total (n = 587) Non-WMH (n = 387) WMH (n = 200)
>3.97 294 (50) 176 (45) 118 (59)
Lymphocyte-to-monocyte ratio, 1 (%) <0.001
<3.47 294 (50) 174 (45) 120 (60)
>3.47 293 (50) 213 (55) 80 (40)
Monocyte-to-HDL ratio, n (%) 0.003
<0.39 293 (50) 211 (55) 82 (41)
>0.39 294 (50) 176 (45) 118 (59)
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FIGURE 2
Screening of variables based on LASSO regression model in the training group (412 patients). (A) LASSO coefficient profiles for WMH clinical predictors.
This figure presents the coefficient profiles of 88 features considered in the LASSO model for predicting the risk of WMH. The graph displays how each
feature's coefficient varies with the log of lambda (log(lambda)), demonstrating the shrinkage effect of the LASSO technique. (B) LASSO regression
cross-validation results. This figure illustrates the evaluation of model performance under various regularization parameters 2 through cross-validation
in LASSO regression. A vertical dashed line on the left side represents Amin, which corresponds to the model with the best performance. On the right
side, another vertical dashed line denotes ALSE, representing a slightly sparser model. The numbers of selected variables are annotated above each line.

TABLE 2 Coefficients and lambda.1SE value of the LASSO regression.

Variable Coefficients Lambda.1SE
Age 0.102 0.057
History of stroke 0.082

Hypertension 0.065

Triiodothyronine —-0.093

Neutrophil-to-HDL ratio 0.004

Albumin globulin ratio —0.014

Homocysteine 0.024

This table presents the LASSO regression analysis outcomes, displaying coefficients for key
variables like age, stroke, hypertension, triiodothyronine, neutrophil-to-HDL ratio, albumin-
globulin ratio, and homocysteine. It also includes the lambda.1SE value, crucial in model
selection, indicating the model’s robustness and predictive reliability. This analysis forms a
vital part of our predictive model’s development, underscoring these variables’ significance in
determining the risk of WMH.

Discussion

In this study, we successfully developed a predictive model for
WMHs, based on a combination of clinical and laboratory parameters.
Our model incorporates factors such as age, history of stroke,

Frontiers in Neuroscience

hypertension, triiodothyronine levels, albumin-globulin ratio, and
homocysteine levels, all of which demonstrated significant associations
with WMH occurrence. These findings highlight the clinical value of
integrating metabolic and vascular factors for early CSVD
risk assessment.

Recent nomogram studies have modeled CSVD or its subtypes
using clinical and biochemical markers—including age, hypertension,
creatinine or homocysteine, inflammatory indices, and previous
cerebrovascular events—with reported AUCs ranging from 0.70 to
0.86 (Li et al., 2024a,b,c; Li et al,, 2024). Compared with these works,
our model specifically targets WMHs rather than overall CSVD
burden or cognitive outcomes. Moreover, it introduces
triiodothyronine (T3) as an endocrine predictor, thereby extending
prior approaches by adding an endocrine dimension to CSVD
risk stratification.

A novel aspect of our study is the elucidation of reduced
triiodothyronine levels as a predictor of WMHs. Prior studies have
established a link between thyroid dysfunction and CSVD (Zhang
etal,, 2017; Chu et al., 2022); however, the specific association between
triiodothyronine levels and WMH risk has not been extensively
explored. Our findings suggest a complex interplay between thyroid
function and cerebral microvascular integrity, reinforcing the need for

further investigation into the endocrine systen’s role in microvascular
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TABLE 3 Binary logistic regression analysis.

2} SE OR 95% CI V4 P
Age 1.008 0.261 2.74 1.64-4.57 3.864 <0.001
History of stroke 0.721 0.262 2.06 1.23-3.44 2.75 0.006
Hypertension 0.624 0.132 1.87 1.44-2.42 4.74 <0.001
Triiodothyronine —1.582 0.441 0.21 0.09-0.49 —3.587 <0.001
Albumin globulin ratio —0.693 0.245 0.5 0.31-0.81 —2.824 0.005
Homocysteine 0.712 0.242 2.04 1.27-3.27 2.943 0.003

This table presents the outcomes of the binary logistic regression analysis conducted to identify potential predictors of WMH. This analysis initially included seven variables identified through
LASSO regression. Of these, six were retained in the final WMH diagnostic model, namely: age, history of stroke, hypertension, triiodothyronine, albumin-to-globulin ratio, and
homocysteine. One variable, neutrophil-to-HDL ratio, was excluded from the final model due to its p-value exceeding 0.05. The table provides detailed information for each factor, including
the regression coefficient (B), standard error (SE), odds ratio (OR), 95% confidence interval (95% CI), Z-value, and p-value. The OR values indicate the relative risk associated with each factor,

where values above 1 suggest an increased risk for WMH, and values below 1 indicate a decreased risk.
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FIGURE 3
Nomogram for predicting the risk of WMH. For all patients, points are calculated based on six indicators by aligning them with corresponding point
scales. The cumulative sum of points is then located on the “Total Points” axis. Subsequently, the risk of WMH, as determined by the nomogram,
corresponds to the probability indicated on the "WMH" scale corresponding to the “Total Points”.

brain injury (Guo et al., 2022). Recent studies have supported this
connection, including a Mendelian-randomization analysis linking
thyroid parameters to MRI markers of small-vessel disease (Tian et al.,
2023) and a neuroimaging review outlining thyroid-hormone action
in the human brain (Salas-Lucia, 2024). Low triiodothyronine levels
may reflect a hypometabolic and hypoperfusion state that impairs
myelin repair and exacerbates small-vessel injury, consistent with
recent clinical evidence linking thyroid hormone levels to WMH
burden (Xing et al., 2022). Mechanistically, reduced triiodothyronine
(T3) may impair cerebral microvascular function by lowering
endothelial nitric-oxide bioavailability, reducing cerebral perfusion,
and limiting oligodendrocyte-mediated myelin repair, thereby
increasing susceptibility to blood-brain barrier disruption and
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ischemic demyelination. The albumin to globulin ratio (AGR)
emerged as a significant predictor in our study, underscoring the
impact of systemic health on cerebral microvascular integrity.
Previous research has demonstrated a correlation between lower AGR
levels and cognitive decline in elderly populations, as well as its
prognostic value in acute ischemic stroke (Maeda et al., 2019; Yang
et al., 2022). Additionally, AGR has been associated with clinical
outcomes in acute ischemic stroke, further reinforcing its link to
systemic inflammation and nutritional status in cerebrovascular
health (Wang et al., 2023). A lower AGR likely reflects systemic
inflammation and reduced antioxidant capacity, which can promote
endothelial dysfunction and microvascular damage. These findings
collectively support the clinical relevance of AGR as a marker of
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(A,B) These two figures present calibration plots for the WMH predictive model using the training set (A) and the validation set (B). The calibration plots
compare the predicted probabilities of WMH, as provided by the nomogram, against the actual observed frequencies.

systemic health and its potential utility in predicting WMH risk.
Homocysteine, as a significant biomarker in our predictive model,
aligns with existing research on CSVD. Previous studies have
consistently demonstrated a correlation between elevated
homocysteine levels and the development of CSVD, which is
intrinsically linked to WMH (Staszewski et al., 2018; Nam et al., 2019).
Mechanistically, homocysteine induces oxidative stress, endothelial
injury, and disruption of the blood-brain barrier, all of which can
accelerate white matter damage. This correlation positions

homocysteine as a potential early indicator for WMH, offering
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valuable insights for detection and intervention strategies (Yuan et al.,
2022). In addition to homocysteine, our predictive model identified
hypertension, age, and a history of stroke as significant predictors,
which is consistent with the current understanding of CSVD
pathophysiology. These factors contribute to chronic hypoperfusion,
vascular stiffening, and impaired autoregulation, further predisposing
the white matter to ischemic injury. Hypertension is known to
exacerbate white matter lesion burden, contributing to the
development of WMH (Maniega et al., 2017; Solé-Guardia et al.,
2023). Similarly, age-related changes in cerebral vessels are recognized
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as key factors in WMH pathogenesis (Li et al., 2020; Markus and de
Erik Leeuw, 2023). A history of stroke, indicative of pre-existing
cerebrovascular pathology, suggests a predisposition to further
vascular injury and WMH development (Cannistraro et al., 2019; Pasi
and Cordonnier, 2020). From a pathophysiological perspective,
elevated homocysteine and lower AGR indicate oxidative and
inflammatory stress that precipitate endothelial dysfunction.
Hypertension and aging promote arteriolar remodeling and impaired
autoregulation, facilitating blood-brain barrier (BBB) leakage.
Reduced triiodothyronine (T3) suggests a hypometabolic state that
may weaken perivascular clearance and glymphatic function while
limiting remyelination. These mechanisms converge to promote
diffuse white-matter injury and are jointly consistent with
contemporary models of CSVD pathogenesis.

Opverall, our study not only corroborates with existing literature
but also offers new perspectives in understanding the relationship
between WMHs and systemic health conditions. By integrating
traditional and novel predictors, our model advances the
understanding of WMH pathogenesis and provides a comprehensive
tool for risk assessment and management.

The primary strength of our model lies in its interdisciplinary
approach, integrating clinical and laboratory data for a comprehensive
assessment of WMH risk. By relying on commonly assessed medical
parameters, the model ensures ease of application in clinical settings,
enhancing its practical utility. This integrative approach not only
improves predictive accuracy but also facilitates early risk
stratification, potentially aiding in timely interventions. However,
this study has certain limitations. Its retrospective design may
introduce selection bias, and the single-center inpatient data source
may restrict the generalizability of our findings to broader or
community-based populations. In particular, the sample was
composed exclusively of neurology inpatients, which may further
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limit the generalizability of our findings to broader, community-
based populations. Furthermore, because all participants were Han
Chinese inpatients from a single tertiary hospital, the study lacks
ethnic and socioeconomic diversity, which may further constrain the
generalizability of the results. Moreover, patients with a history of
stroke were not excluded, as the study aimed to reflect real-world
inpatient populations; however, this may introduce heterogeneity and
confounding in the interpretation of WMH-related risk factors.
Additionally, despite incorporating various clinical and biochemical
variables, the model does not account for genetic predispositions,
lifestyle factors, or advanced imaging biomarkers, which could
further refine risk prediction. Furthermore, data on migraine history
were not systematically collected, which may be relevant given
evidence linking migraine-especially with aura-to increased WMH
risk. In addition, WMH volume and spatial distribution were not
analyzed, which should be explored in future studies. Future research
should focus on four key areas. First, prospective multicenter
validation is needed to confirm the model’s applicability across
diverse populations. Second, incorporating additional risk factors,
including genetic, lifestyle, and advanced imaging parameters (e.g.,
diffusion tensor imaging and perfusion MRI), may enhance
predictive accuracy. Third, longitudinal studies could provide deeper
insights into how these predictors influence WMH progression over
time. Lastly, integrating this model into routine clinical practice and
evaluating its impact on decision-making and patient outcomes
remains a crucial area for further investigation.

In conclusion, while our study aligns with and extends existing
literature, offering new insights into the relationship between WMHs
and systemic health conditions, it also lays the groundwork for future
research and clinical applications. Despite its limitations, this study
contributes a valuable tool for risk assessment and early detection of
WMH, paving the way for improved management of CSVD.
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Conclusion

In this study, we developed a predictive model for WMH by
integrating diverse clinical and laboratory parameters. The model,
incorporating key factors such as age, stroke history, hypertension,
triiodothyronine levels, albumin-globulin ratio, and homocysteine levels,
demonstrated robust performance in assessing WMH risk. Our findings
provide novel insights into the interplay between systemic health and
cerebral microvascular health, highlighting the importance of thyroid
function and systemic inflammation in WMH pathophysiology.

Despite limitations such as its retrospective design and single-
center data source, this study represents a valuable step toward
improving early identification and management of WMH. Future
research should focus on validating the model in diverse populations
and exploring additional risk factors, such as genetic and lifestyle
elements, to enhance its predictive accuracy.

In summary, this study offers a practical tool for WMH risk
assessment, with the potential to improve prevention and management
strategies in patients with cerebral small vessel disease.
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