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Introduction: Cerebral small vessel disease (cSVD) is a leading cause of stroke
and vascular contributions to cognitive impairment and dementia (VCID).
Studying monogenic forms of cSVD can elucidate molecular pathways that
are dysfunctional in the common sporadic forms and may serve as potential
therapeutic targets. Mutations in COL4A1 and COL4AZ2 cause highly penetrant
cSVD as part of the multisystem disorder known as Gould syndrome, which
includes cerebrovascular manifestations such as porencephaly, early-onset
stroke, leukoencephalopathy, and intracerebral hemorrhage (ICH).

Methods: To investigate how allelic heterogeneity influences cerebrovascular
phenotypes, we examined five Col4al mutant mouse strains that collectively
model the clinical spectrum of Gould syndrome. Each strain underwent
multimodal magnetic resonance imaging (MRI) at 14.1 Tesla to assess radiological
features characteristic of cSVD.

Results: Multimodal MRI successfully identified typical cSVD-associated
lesions across all Col4al mutant strains. The imaging revealed heterogeneous
expressivity among the allelic variants in terms of lesion prevalence, size, and
number. Furthermore, analysis across strains identified brain regions that were
consistently more vulnerable to cSVD-related lesions.

Discussion: These findings demonstrate that high-field multimodal MRI can
sensitively detect and differentiate cerebrovascular abnormalities among Col4al
mutant mouse models of Gould syndrome. The approach provides a powerful,
noninvasive platform for assessing genotype—phenotype relationships and for
identifying brain regions at heightened risk in cSVD, supporting its potential use
in early diagnosis and mechanistic studies of vascular pathology.
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Introduction

Cerebral small vessel disease (cSVD) is a group of cerebrovascular conditions that account for
up to 30% of strokes and are a major cause of vascular contributions to cognitive impairment and
dementia (VCID)—an irreversible and progressive form of dementia that has become a significant
public health issue (Petty et al., 2000; Bamford et al., 1987; Pantoni, 2010; Pantoni and Gorelick,
2014). Monogenic and idiopathic forms of cSVDs (Rutten-Jacobs et al., 2015; Yamamoto et al.,
2011; Choi, 2015; Joutel et al., 2016; Joutel and Faraci, 2014) share clinical manifestations, suggesting
common pathogenic mechanisms. Monogenic forms of complex disorders tend to be more severe
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and occur at younger ages. Thus, monogenic forms of ¢cSVD may
represent experimentally tractable settings to provide insight into
pathogenic processes underlying common age-related disease subtypes.
The genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2
(COL4A2) share a common genetic locus that is reproducibly associated
with ¢SVD hallmarks in large-scale genetic studies including white matter
hyperintensities (Malik et al., 2018; Persyn, 2020; Sargurupremraj et al.,
2020; Traylor et al., 2021; Mishra et al., 2022; Duperron et al.,, 2023),
enlarged perivascular spaces (Duperron et al., 2023), ischemic stroke
(Mishra et al., 2022), and small vessel stroke (Mishra et al., 2022), even
after accounting for hypertension (Sargurupremraj et al., 2020), making
COL4A1/A2 mutations a promising study subject for revealing the
disease-causing mechanisms that eventually lead to cSVD.

COL4A1 and COL4A2 assemble into heterotrimers [alaloa2(IV)]
that are conserved throughout the animal kingdom and are fundamental
constituents of specialized extracellular matrix structures called basement
membranes. Rare, dominant, coding mutations of COL4A I and COL4A2
cause monogenic cerebrovascular disease as part of a highly variable
multisystem disorder named Gould syndrome. CSVD is one of the most
notable features of Gould syndrome and encompasses a constellation of
clinical manifestations, including porencephaly, early-onset stroke,
leukoencephalopathy; intracranial aneurysms, and recurrent intracerebral
hemorrhage (ICH) (Breedveld et al., 2006; Gould et al., 2005; Gould et al.,
20065 Sibon et al., 2007; Guey and Hervé, 2022). Missense mutations of
highly conserved glycine residues in the COL4A1 and COL4A2 triple
helical domain represent the most prevalent class of mutations (Jeanne
et al., 2015; Whittaker et al., 2022). Murine models of Col4al and Col4a2

10.3389/fnins.2025.1639871

mutations faithfully replicate Gould syndrome and allelic heterogeneity
was shown to modulate the severity of ICH in an allelic series of Col4al
and Col4a2 mutant mice (Jeanne and Gould, 2017; Labelle-Dumais, 2019;
Kuo et al., 2014).

While the qualitative diagnosis of Gould syndrome relies on
molecular genetic analysis (Sondergaard et al., 2017; Guey et al,,
2021), neuroradiology, in particular magnetic resonance imaging
(MRI), provides valuable early detection and monitorization of the
progression of cSVD, serving as an indispensable tool for timely
clinical intervention. The typical neuroimaging findings of ¢SVD
include white matter lesions, lacunar infarcts, and hemorrhagic
lesions, which can be readily detected by different MRI techniques,
such as T2-weighted imaging (T2WI), Fluid Attenuated Inversion
Recovery (FLAIR), and susceptibility-weighted imaging (SWI). Allelic
heterogeneity in Col4al mutant mice offers an opportunity to develop
and evaluate multimodal imaging for studying the breadth of
phenotypes in this model of monogenic cSVD. This may provide
insight into correlations between genotypes, radiological features, and
histopathology findings, which can improve the understanding of
cSVD generally and Gould syndrome more specifically.

In this study, we used five different Col4al mutant mouse strains that
recapitulate the clinical spectrum of cerebrovascular manifestations
associated with Gould syndrome (Figure 1A). Using this unique allelic
series, we characterized the neuroradiology features of cerebrovascular
lesions using multimodal 14.1 Tesla MRI. We established a machine
learning-based imaging analysis pipeline to quantify radiological changes
and used ex vivo studies to elucidate the pathological basis of the
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respective MR lesions (Figure 1B). Overall, our study demonstrates that
multimodal MRI combined with machine learning successfully identify
typical cSVD lesions and heterogeneous expressivity in a Col4al murine
allelic series in terms of anatomical changes, and lesion prevalence,
number and volume.

Results

The primary goal of this study was to optimize multimodal
MRI pipeline to detect lesions and disease burden in mouse models
of a monogenic form of cSVD. To maximize the potential to detect
and characterize cSVD lesions, we chose to investigate old animals
(52.1 £1.26 weeks) as the
manifestations is exacerbated with age in Col4al mutant mice
(Jeanne et al., 2015).

We used 5 Col4al mutant strains that well mimic the disease

severity of cerebrovascular

spectrum observed in individuals with Gould syndrome. Each strain
carries a distinct mutation, including 4 different glycine missense
mutations in the triple helical domain (Col4al”%*P, Col4al*'*"",
Col4a1*¢19%5 and Col4al”®'*’P) and one mutation in the NC1 domain
(Colda1751%2") ' While there was no difference in age across all animal
groups (Supplementary Figure S1A), 3 out 5 strains have reduced body
weight compared to WT (Col4al**; Supplementary Figure S1B), which
is consistent with previous report of reduced body size in Col4al mutant
mice and might contribute to potential change in overall brain size.

T2WI and FLAIR MRI reveals variable
volumetric changes in Col4al mutant
brains

The pipeline for U-net segmentation of brain and ventricle volumes
is shown in Figure 2A. Typical results of both parenchyma and ventricle
segmentations are shown in Figure 2B. The quality control (QC) passing
rate of skull-stripping output ranged from 82 to 94% depending on the
input MRI sequences, while the Dice Coefficient maintained above 0.94
for both QC-passed and -failed cases (Supplementary Table S1). The brain
slices with QC-failed skull-stripping either contained extremely large
brain lesions or were located at the rostral-caudal ends
(Supplementary Figure S2). Upon quantification, our results show that
whole brain volume was significantly lower in Col4a17%**?" mice than in
WT controls (**p = 0.009, Figure 2C). In contrast, Coldal™*** mice
exhibited a trend toward larger ventricle volume as well as ventricle-to-
brain ratios compared to WT controls (p = 0.059 and 0.058; Figures 2D,E).
No other significant differences in ventricle or brain volumes were
observed for the rest genotypes.

Representative brain images after skull-stripping are also shown for
all five genotypes and all five MRI modalities used in this study (Figure 3)
to demonstrate the phenotypic variability of radiological manifestations
among Col4al mutant mice. Of note, one mouse from one strain
(Col4a11%5%) presented SW1 sensitive lesions along with schizencephaly
(red arrow in Figure 3), a radiological features associated with Gould
syndrome (Yoneda, 2013; Matsumoto, 2015; Smigiel, 2016; Khalid, 2018).
In three out of five genotypes (Col4al“**P, Col4al"“"*", and Coldal"
¢10355) TIWI showed gadolinium (Gd) enhanced lesions. These results
indicate that Col4a] mutations can lead to both macro- and micro-scopic

structural changes detectable by MRI.
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Hypointense lesions detected by SWI vary
in prevalence, number, volume, and type in
the allelic series of Col4al mutant mice

The summary of prevalence, number, volume, and type of
cerebral lesions observed in Col4al mutant mice is shown in Table 1.
There was a range in the prevalence of SWI-positive lesions among
Col4al mutant mice, from 20% for Col4al™*%?" mice to 100%
for Col4a17¢1* mice. When exclusively considering animals with
SWI-positive lesions, the individual lesion burden also shared
noteworthy variability, where Col4a17%!%* mice had 15.8 + 6 lesions
per animal while only two lesions were found in a single Col4a1*/51%5%
mouse. These data are consistent with mutations in the NC1 domain
leading to milder pathology (Kuo et al., 2014). We also observed that
Col4a1 +/G1038S

(16.3 £ 9 x 107" mm’ per lesion), which is consistent with age-related

mice presented with large isolated lesions
macrohemorrhages reported previously (Ratelade et al, 2018;
Branyan et al., 2023).

Additionally, we investigated the percentage of SWI-positive
lesions that presented Gd enhancement, i.e., Gd(+), as detected by
T1WI. Interestingly, these percentages were once again highly variable
between genotypes, ranging from no enhancing lesions in Col4a 17515%
and Col4al*°?V mice, to 20 and 25% in Col4al*¥¢"%" and
Col4a17/%**P mice, respectively. Notably, in Col4al*°!%% mice, the
genotype presenting the highest lesion burden and largest solitary

lesion size, only 1.3% of lesions were Gd(+).

Regional analysis of SWI-positive lesions
emphasizes the vulnerability of deep grey
matter areas

We co-registered the hypointense lesions from SWI and the
anatomical structures from T2WT according to the defined anatomical
structure in Allen Mouse Brain Atlas (Figure 4A). Analysis of
SWI-positive lesions showed deep grey matter areas were
compromised in all five Col4al mutant strains, with the top affected
regions from the most to least frequent being the thalamus (42.7%),
striatum (17.2%), hypothalamus (15.3%), midbrain (8.7%), and
hippocampus (3.5%; Figure 4C). Col4al”%* mice, showed larger
lesions, and had a broader range of brain regions affected, including
lesions in the midbrain (Figure 4B).

Combining SWI and T1-post Gd MRI enables differentiation
between distinct types of lesions.

As noted, not all SWI-positive lesions were Gd(+), as detected by
enhanced T1WI, and the percentage was variable between genotypes.
To better understand the difference of these lesions, we performed
Perl’s Prussian blue staining and immunolabeling for TER-119 to test
for the presence of iron deposition and red blood cells, respectively in
one brain with Gd(+) SWI-positive lesion (Col4al”%!"*P) and one
brain with Gd(—) SWI-positive lesion (Col4al*%%%). In both lesions,
iron deposition was detected by Perl’s Prussian Blue staining, as shown
in Figure 5A. However, only the Gd(+) lesion was filled with
non-degraded red blood cells as indicated by the high TER-119
immunopositive signal, suggestive of a hemorrhagic lesion at early
stage (Figure 5A). Interestingly, TER-119(+) regions were also
accompanied by increased glial fibrillary acidic protein (GFAP)
immunoreactivity (Figure 5B), which may be due to early astrogliosis
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FIGURE 3
Representative multimodal MRI of Col4al mutant and wild-type mice acquired at 14.1 Tesla. Representative images of all five different MRl modalities
are shown for all five genotypes (after skull-striping via U-net). SWI-positive lesions (black —) were detected in all Col4al mutant strains, but notin WT
mice. Increased post-Gd enhancement (white >) was only found in Col4a1*/¢%%? (G658D), Col4al*/c193% (G1038S), and Col4al*/c16°0 (G1180D) by T1WI
One schizencephaly case was found in Col4al*/%1%38 mice and indicated by red > in T2WI.

TABLE 1 Prevalence, number, volume and type of SWI-positive lesions in Col4al mutant mouse strains.

Prevalence of lesions

Genotype

Number of lesions
per positive cases
(mean + s.d.)

Volume of lesions per % of lesions with Gd

WT 0 of 5 (0%) 0.0 £ N/A
G658D 3 of 5 (60%) 1.3+0.6
G912V 3 of 5 (60%) 3.0+ 1.0
G1038S 5 0f 5 (100%) 15.8 +6.0
G1180D 3 of 5 (60%) 33+£25
S1582P 1 of 5 (20%) 2+ N/A

responding to ICH (Perry et al., 2019). These results suggest two types
of ICH lesions, SWI(+)/Gd(—) and SWI(+)Gd(-), are implicated in
the development of Gould syndrome, though their chronological
relationship warrants validation in larger studies.

Discussion

Gould syndrome is a highly variable multisystem disorder
caused by COL4A1 and COL4A2 mutations, whose clinical
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positive case (mm?, enhancement

mean + s.d.)

0.0+ N/A N/A

1.6+2.8x 107 25%

L1+ 1.1x 10" 0%

16.3+9.0 x 10~ 1.3%

3.9+52x 107 20%

1.7+3.7 x 10~ 0%

presentation can vary widely between and within families ranging
from asymptomatic COL4A1/COL4A2 mutation carriers to
severely disabled individuals (Guey and Hervé, 2022). The key
manifestation of Gould syndrome in adults is a wide range of cSVD
conditions, including porencephaly, ICH of variable severity, and
white matter lesions (Guey and Hervé, 2022; Vahedi, 2007; de
Vries, 2009). Previously, we successfully demonstrated that Col4al
and Col4a2 mutant mice can recapitulate pathophysiological
hallmarks of Gould syndrome, including ICH, whose severity was
modulated by allelic heterogeneity (Jeanne et al., 2015; Jeanne and
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Gould, 2017). In this study, we show that our multimodal MRI
approach can detect radiological features of ¢cSVD in Col4al
mutant mice that are similar to those observed in individuals with
Gould syndrome, and extend our previous findings of allelic
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heterogeneity contributing to the variability of cerebrovascular

manifestations in Col4al mutant mice (Jeanne et al., 2015).
COL4A1 mutations were initially discovered in humans as a

genetic cause of porencephaly (Gould et al., 2005) and ¢cSVD (Gould
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FIGURE 5

Characterization of Gd(-) vs. Gd(+) SWI-positive lesions in Col4al mutant mice. (A) MRI, Prussian Blue staining, and TER119 immunolabeling images of
Gd(-) vs. Gd(+) SWI-positive lesions, represented by a Col4al*/103% (G1038S) case (top row) and a Col4a1*/c48% (G1180D) case (bottom row).
(B) Zoom-in outlook of lesions, showing Prussian blue staining, and co-immunolabeling for TER119 and GFAP.

et al,, 2006). Subsequent studies identified similar consequences for
COL4A2 mutations (Yoneda et al., 2012; Jeanne et al., 2012; Verbeek
etal, 2012; Gunda et al.,, 2014). Large scale studies validated COL4A 1
mutations as frequent causes of porencephaly and schizencephaly and
COL4A1 and COL4A2 as frequent causes of prenatal hemorrhagic or
ischemic cerebral lesions (Maurice et al., 2021; Coste et al., 2022).
Individuals with pathogenic variants in COL4A1 and COL4A2 had
clinical stroke for which hemorrhagic events were the most common
causes. Radiological findings include white matter hyperintensities,
cerebral hemorrhage, ischemic lesions, and cerebral microbleeds. Less
frequently reported findings included brain atrophy, enlarged
perivascular spaces, calcification, and cerebral aneurysms (Whittaker
etal,, 2022). Missense mutations of highly conserved glycine residues
in COL4A1 or COL4A?2 triple helical domains are the most common
class of mutation. Mice with Col4al or Col4a2 mutations model the
human disease and demonstrate that genetic background and allelic
heterogeneity both contribute to the variable expressivity (Jeanne
et al., 2015; Labelle-Dumais, 2019; Kuo et al., 2014; Gould et al., 2007;
Mao, 2015; Mao, 2021). Here we used different strains from a Col4al
allelic series in an attempt to model the breadth of clinical
manifestations reported in human patients.

The typical neuroimaging lesions detected by our multimodal
MRI approach included both enlarged ventricle size and ICH. Previous

Frontiers in Neuroscience

studies indicate that the enlarged ventricle might be secondary to the
recurrence of ICHY. In line with this notion, dilated ventricles were
mainly found among Col4a17%1%% mice, which also exhibited the
highest ICH burden. This is consistent with previously reported
histological findings using a larger murine allelic series of Col4al and
Col4a2 mutations (Jeanne et al., 2015; Kuo et al., 2014). Meanwhile,
the majority of ICH lesions across all mutant strains were located in
periventricular subcortical regions, similar to what had been reported
in individuals with Gould syndrome (Guey et al., 2021). This study
also demonstrated that the Col4al murine allelic series can model a
range of ICH lesion characteristics, including prevalence, number,
volume, and bleeding activity. In particular, by the age of 12-month
old, Col4a17%1%% mice presented the highest lesion burden, the largest
solitary lesion size, and the most extensive affected region among all
Col4al mutations examined in this study; however, only 1.3% of
Col4a17/%1%% showed Gd(+) which radiology feature indicates
active ICH.

This multimodal imaging modality also detected porencephaly
and schizencephaly, two radiological findings associated with Gould
syndrome (Meuwissen, 2015), in Col4al mutant mice. Porencephaly
was detected in one mouse in the Col4a1*!%% background but not
in other genotypes (Supplementary Figure S3). To better characterize
the lesion, the infiltration of CSF into the corpus callosum was
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confirmed through combined analysis of TW2I and FLAIR within
the same brain slice. Considering porencephaly can cause severe
consequences leading to early lethality, its higher prevalence may
thus have been precluded in this study, which suggests future MRI
study should be conducted at an earlier time point (<12 month) for
the pathogenesis of porencephaly. Additionally, schizencephaly,
although rarely reported in individuals with Gould syndrome
(Meuwissen, 2015), was also detected with low incidence in Col4al
mutant mice (one Col4al”%%% mouse, Figure 3). Those two cases

1+/G10385

suggest that Col4a mice may serve as an ideal pre-clinical
platform to study the evolution of various radiological phenotypes
of Gould syndrome, although a larger sample size is needed for a
more comprehensive phenotypic description of other COL4A1 and
COLA2 mutations. Notably, periventricular leukoencephalopathy, a
frequent MRI finding in individuals with COL4A1 and COL4A2
mutations characterized by FLAIR hyperintensity, was not
identified in this study. Since proton tends to have longer T} and
T, values at ultra-high field and the signal-to-noise ratio (SNR) of
inversion  recovery  sequence follows the  equation
SNR o (1 _9e"TVT, )(1 9 TRIT, )_Ze—TE/TZ } the absence of white

matter hyperintensity in this study could be attributed to the current
FLAIR sequence lacking enough SNR to afford adequate tissue
contrast at 14.1 T. Alternatively, leukoencephalopathy, like
porencephaly or schizencephaly, may have a low prevalence in the
Col4al mutant mice studied here, and further large-scale studies
with a wider age range and a more white matter-specific pathological
validation (like Luxol Fast Blue staining) are needed to investigate
this possibility.

This study was designed as a methodological exploration to
establish an imaging platform to characterize phenotypic heterogeneity
in a monogenic murine disease model. Now that the neuroimaging
and analysis pipelines are established, future studies can characterize
disease progression longitudinally for each genotype. In particular,
longitudinal MRI can track the formation and evolution of ICH,
making it highly efficient to study acute/subacute and chronic-stages
of ICH by leveraging SWI and Gd-enhanced T1WTI techniques, and
to explore potential difference between genotypes.

In this study, two convolutional networks with U-net
architecture were implemented to perform the brain structure
segmentation on the acquired MRI data, enabling quantitative
morphometric analysis. To prevent potential overfitting, we trained
and validated both networks on a previously published mouse brain
MRI dataset before applying the optimized model to the animals in
this study. The first segmentation task was whole brain extraction,
commonly referred to as skull-stripping, for which numerous
automatic algorithms have been proposed for human brain imaging
(Kalavathi and Prasath, 2016) but remained underdeveloped for
preclinical research. Given that U-Net-Based segmentation has
demonstrated robustness against inter-subject variability and
efficiency in handling rodent brain MRI data (Hsu, 2020), it was
chosen as an optimal architecture for MRI contrast-indifferent skull-
stripping while limited dataset was available in this study. The loss
function used in our convolutional networks is Local Weighting-
Modified Dice coefficient, which was reported to offer greater
robustness than the conventional Dice coefficient as for class-
imbalanced segmentation tasks (Sugino, 2021). The same neural
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network architecture and loss function were used for ventricle
segmentation, where both T2WT and FLAIR were fed as input data,
which proved sufficient to differentiate CSF from brain tissue. This
multi-modality input strategy was also applied in another U-net (not
reported here) aimed at quantifying leukoencephalopathy lesions,
however, the scarcity of such pathological changes in this study
precluded sufficient training.

Although the multimodal MR imaging in this study was
performed at non-clinical field strength, our findings suggest that
multimodal MRI combined with machine learning holds significant
promise for aiding individuals with Gould syndrome in a clinical
setting. As demonstrated here, multimodal MRI enabled the
identification of subtle brain changes, that potentially enable early
detection of the disorder, and personalized treatment strategies
tailored to each patient’s unique neurological profile. Moreover,
machine learning algorithms can analyze vast amounts of multimodal
MRI data to uncover complex patterns and biomarkers indicative of
disease progression, facilitating timely interventions and potentially
improving patient outcomes. By integrating multimodal MRI and
machine learning, clinicians could enhance their understanding of
Gould syndrome and develop more effective therapeutic interventions
to alleviate its symptoms and improve the quality of life for
affected individuals.

Materials and methods
Animals

All animal research was approved by the Institutional Animal
Care and Use Committee of the University of California, San
Francisco (protocols AN159737 and AN182181). We studied five
strains of mice from a Col4al allelic series (Kuo et al., 2014)
(Figure 1A). The mutations affect four distinct glycine residues in
the COL4A1 triple helical domain: G658D, G912V, G1038S,
G1180D, and one missense mutation in a serine residue in the NC1
domain: S1582P. Each genotype group contained 5 male animals
of 52.1 + 1.26 weeks of age (Supplementary Figure S1A) and age-
and sex- matched wild-type (WT) littermates (n = 5) were used
as controls.

MR acquisitions

The workflow of this multimodal MRI study is illustrated in
Figure 1B. All in vivo MR experiments were conducted on a 14.1 Tesla
vertical MR system (Agilent Technologies, Palo Alto, CA) equipped
with 100G/cm gradients and a single tuned millipede 'H proton coil
(inner diameter = 40 mm). For each imaging session, mice were
anesthetized using isoflurane (1-1.5% in O,) and positioned in a
dedicated cradle maintaining constant anesthesia and placed in the
MR bore; respiration and temperature were continuously monitored
during all acquisitions to ensure animal well-being and data
reproducibility. Four optimized sequences of matching geometry
(axial orientation, field of view (FOV) = 20x20 mm?, matrix = 256x
256, 16 slices, 0.4 mm slice thickness, 0.1 mm interslice gap) were used
during the same session for an overall scan time of ~60 min/animal.
The sequences are briefly described below, while detailed parameters
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TABLE 2 Description of MRI modalities.

10.3389/fnins.2025.1639871

MRI modality Sequence parameters Scan time Readouts Refs
« Anatomical structure
Readout type: SE « Volume and intensity of
T2-Weighted Imaging (T2WT) TE/TR = 21.38 ms/2500 ms 5minl12s brain regions 56-58
FA =90°, NEX =8 « High grey matter/white matter
contrast
Readout type: GE
Susceptibility-Weighted Imaging « Highly sensitive to iron content
TE/TR: 21.38 ms/2500 ms 9min35s 56-58
(SWI) « Microbleeds/microhemorrhages
FA =10°, NEX = 16
Readout type: Fast SE o White matter hyperintensities
Fluid-Attenuated Inversion
TE/TR = 14.26 ms/5500 ms, TT = 1,600 ms 12min50s « Differentiation between CSF and 56-59
Recovery Imaging (FLAIR)
FA =90°, NEX =4 T2W hyperintense lesions
Readout type: GE
Gd-Enhanced T1-Weighted TE/TR = 2.41 ms/120 ms a7 « Blood-brain barrier disruption 658
m7s 8
Imaging (Gd-Enhanced TIWI) FA = 40°, NEX = 10, Acquired pre/post Gd « Active microhemorrhages
injection

All four (T2WI, FLAIR, SWI and Gd-Enhanced TIWI) MR sequences share the same geometry: field of view (FOV) = 20 x 20 mm?2, matrix size = 256 x 256, slice thickness = 0.4 mm, slice
gap = 0.1 mm, number of slices = 16. Additional parameters optimized for 14.1 T imaging are described in the table. CSE, cerebral spinal fluid; FA, flip angle; Gd, Gadolinium; GE, gradient

echo; NEX, number of excitations; SE, spin echo; TE, echo time; T1, inversion time; and TR, repetition time.

can be found in Table 2 (Wardlaw et al., 2013; Miura et al., 2017;
Thaler et al., 2019; Wu et al., 2023).

1 Susceptibility Weighted Imaging (SWI) was used to detect
potential ICH, as pathological lesions in Gould syndrome
result in iron deposits (Gould et al., 2005; Gould et al., 2006),
leading to main magnetic field (B,) inhomogeneity
detectable by SWIL.

2 T2-weighted imaging (T2WT) was performed using a fast-spin-
echo (FSE) scheme, as FSE-based T2WI is less sensitive to
distortion artifacts caused by B, inhomogeneity than SWI, and
is thus used for the atlas-based brain structure registration
as described.

3 Fluid Attenuated Inversion Recovery (FLAIR) was used to
quantify ventricle volumes and detect potential white matter
hyperintensity lesions.

4 T1-weighted imaging (TIWI) w/o Gadolinium (Gd) injection
was performed to detect potential defects in blood brain
barrier integrity. The same GE scheme as SWI was used, but
repetition time (TR) and echo time (TE) were shortened to
increase sensitivity to T1 effect (linked to local concentration
of Gd) and decrease sensitivity to T2* effect (due to local B,
inhomogeneity). Images were acquired before (pre-) and after
(post-) injection of Gd through the tail vein (Gadavist®,
4041/100 g body weight, 1:4 diluted with normal saline).

Volumetric analysis and lesion
quantification

For volumetric analysis, a U-net Convolutional Neural Network
architecture (Ronneberger et al, 2015) was optimized and
implemented in MATLAB®. Two separate U-Net architectures were
included in this study: one was trained to generate a brain mask
(‘skull-stripping’) by using any of the three MRI sequences (T2WI,
TIWI, and SWI) as input. The other neural network was trained for
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segmentation of ventricle volume by using stacked T2WI-FLAIR data
as input. The training dataset came from published data from our
group that used the same MRI modalities on a different Gould
syndrome mouse model (Yamasaki et al., 2023). The ground truth for
segmentation training was manually labeled in Image]. The training
both U-net
Supplementary Table S2. All segmentation outputs underwent a

parameters  for architectures are listed in
quality-control (QC) process by a human reader, where the off-target
results were replaced by manual segmentation. Brain and ventricle
volumes were extracted from U-net, adjusted via QC, and calculated
for each animal. Ventricle-to-brain ratio was also calculated.

SWI-positive lesions were defined as hypointense pixels in SWI
images and quantified using manual segmentation in Image]. The
prevalence, number, and volume of lesions were compiled for each
animal and for each group. To investigate the distribution of
SWI-positive lesions across the brain, an open-sourced atlas-based
imaging data analysis pipeline (AIDAmri) (Pallast et al., 2019) was
customized to register T2ZW brain images to the Allen Brain
Reference Atlas (Wang et al., 2020). Based on the registration result,
the SWI-positive lesion volumes for each brain region were
summed up across all animals and an intra-group region-wise
volumetric analysis was performed using Excel (Microsoft, WA,
United States).

Histological and molecular
characterization of SWI-positive lesions

Right after the MRI scan, all mice were maintained under
anesthetized state and transcardially perfused with phosphate buffered
saline (PBS) prior to organ collection. Brains were fixed by immersion
in 4% paraformaldehyde overnight at 4 °C and cryoprotected in 30%
sucrose in PBS at 4 °C for 48 h, embedded in optimal cutting tissue
compound (Sakura Finetek, CA, USA) and flash frozen using dry ice.
To validate the pathological nature of SWI positive lesions, 40 pm
coronal cryosections parallel to the MRI slices were collected along
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the rostro-caudal axis and stained with Perl’s Prussian Blue and
counterstained with nuclear Fast red (Vector Lab, CA, United States)
as described previously (Jeanne et al., 2015; Hayashi et al., 2018).
Images were acquired using a SteREO Discovery V8 microscope,
AxioCam ICc3 camera and AxioVision 4.6 software (Zeiss, NY,
United States).

Another set of 40 pm cryosections underwent incubation
overnight at 4 °C with rat anti-TER-119 (1:500, R&D Systems, MN,
United States) and rabbit polyclonal anti-GFAP antibody (1:1000,
Dako, Glostrup, Denmark). The primary antibodies were detected
using corresponding secondary antibodies after 2 h of incubation at
room temperature. ProLong Gold containing 4’,6-diamidino-2-
phenylindole (DAPI; Invitrogen, CA, United States) was used for
mounting the sections. Images were acquired using the same
microscopy system as described above.

Statistical analysis

Statistical analysis was performed using a one-way ANOVA with
Dunnett’s post-hoc test in Prism (GraphPad, MA, United States),
comparing WT to each of the mutant genotype groups, for each of the
following parameters: body weight, ventricle volume, brain volume,
ventricle-to-brain ratio (*p < 0.05, **p < 0.01).
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