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Introduction: Alzheimer's disease involves progressive white matter
microstructural degeneration that may precede clinical symptoms by decades.
While polygenic risk scores (PRS) quantify cumulative genetic liability for AD,
genome-wide PRS lack mechanistic specificity. We tested whether pathway-
specific PRS, targeting areas of biology including tau binding, lipid metabolism,
and immune response, are differentially associated with diffusion MRl measures
across the lifespan.

Methods: We analyzed two population-based cohorts: the Avon Longitudinal
Study of Parents and Children (ALSPAC; mean age = 19.8 years, n = 517)
and UK Biobank (mean age = 64.2 years, n = 18,172). Genome-wide and
nine pathway-specific PRS for Alzheimer's disease were constructed using
GWAS summary statistics and a clumping threshold of r2 < 0.2 at p < 0.001.
Diffusion MRI data were processed separately within each cohort: in ALSPAC,
tract-based fractional anisotropy (FA) and mean diffusivity (MD) were extracted
using probabilistic tractography from native-space regions of interest; in UK
Biobank, diffusion metrics were derived from TBSS-aligned skeletons and
standard atlas-based ROIs. Analyses focused on three tracts vulnerable to early
AD pathology: the dorsal cingulum, parahippocampal cingulum, and fornix.
Multiple linear regression models were used to assess PRS associations with FA
and MD, adjusting for demographic, scanner, and genetic ancestry covariates.
False discovery rate correction addressed multiple comparisons, and sensitivity
analyses were performed excluding the APOE region.

Results: In UK Biobank, higher PRS for protein—lipid complex assembly and tau
protein binding were robustly associated with lower fractional anisotropy and
higher mean diffusivity in both dorsal and parahippocampal cingulum segments
(False discovery rate-corrected p < 0.05), explaining more variance than APOE
alone; no significant effects emerged in the fornix. Genome-wide PRS showed
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weaker, non-significant associations. In ALSPAC, no PRS metric survived FDR
correction, though nominal trends appeared in the dorsal cingulum. Sensitivity
analyses confirmed that key cingulum associations in older adults persisted after
omitting APOE.

Conclusion: Pathway-specific polygenic risk for Alzheimer’s disease manifests
in white matter microstructure by mid- to late adulthood but not in early
adulthood, suggesting an age-dependent emergence of genetic effects.
dMRI phenotypes may thus serve as intermediate biomarkers for dissecting
mechanistic pathways of preclinical Alzheimer's disease vulnerability.

KEYWORDS

Alzheimer's disease, genetic predisposition to disease, genome-wide association study,
diffusion magnetic resonance imaging, white matter, lipid metabolism, tau proteins,

ALSPAC

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
condition that represents a major global health challenge, with
prevalence rates estimated between 5% and 7% in adults over
60 years of age (Prince et al., 2013). While a small subset of cases
result from rare autosomal dominant mutations in genes such
as APP, PSENI, and PSEN2 (Tanzi, 2012), most are due to the
interplay of complex genetic and environmental factors. Genome-
wide association studies (GWAS) have identified close to 80 loci
associated with AD risk, with the APOE ¢4 allele representing the
most significant contributor (Marioni et al., 2017; Jansen et al,
2019; Kunkle et al., 2019; Bellenguez et al., 2022). Polygenic risk
scores (PRS), which aggregate the genetic risk across these loci, offer
a powerful approach to quantify the cumulative genetic burden for
AD (Escott-Price et al., 2015; Harrison et al., 2020b). PRS have been
linked to structural brain changes, including cortical thinning and
subcortical atrophy, which are established markers of AD-related
pathology (Mak et al., 2017; Harrison et al., 2023). However, studies
focusing on PRS and white matter microstructure, which is an
important mediator of brain network integrity, remain limited.

White matter signal changes, such as reduced fractional
anisotropy (FA) and increased mean diffusivity (MD), are putative
indicators of microstructural degeneration and have been reported
in both symptomatic and preclinical stages of AD (Kantarci et al.,
2014; Alm and Bakker, 2019). These changes may emerge decades
before cognitive symptoms, particularly in key tracts such as the
parahippocampal cingulum and fornix, which are vulnerable to
early AD pathology (Zhuang et al, 2013; Wen et al, 2019).
Combining PRS with diffusion MRI (dMRI)-derived metrics offers
a promising avenue for detecting early, preclinical indicators of AD
risk. Yet, most AD PRS studies have concentrated on cortical or
subcortical volumes (Mak et al., 2017), with few investigations of
white matter pathways (Harrison et al., 2020a).

Abbreviations: AD, Alzheimer's disease; GWAS, genome-wide association
study; SNP, Single Nucleotide Polymorphism; PRS, polygenic risk score;
APOE4, APOE Epsilon 4; ALSPAC, Avon Longitudinal Study of Parents and
Children; FDR, false discovery rate
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In addition to understanding overall genetic risk, pathway-
specific PRS provide a more granular approach by quantifying
genetic burden within defined biological pathways, such as those
related to amyloid processing, tau binding, and immune response
(Kunkle et al., 2019; Vogrinc et al, 2021). This could enable
researchers to delineate the mechanistic links between genetic
risk and neuroimaging phenotypes. Emerging evidence suggests
that pathway-specific PRS may explain more variance in brain
structure than genome-wide PRS, particularly in cortical regions
and subcortical volumes implicated in AD (Ahmad et al., 2018;
Caspers et al., 2020; Harrison et al., 2023). Recent work has linked
AD polygenic risk to white-matter alterations in UK Biobank
(Lorenz et al., 2025); our contribution is to interrogate pathway-
specific PRS and their age-dependent expression.

To address this gap, we tested associations between nine
biologically informed AD PRS and diffusion MRI measures (FA,
MD) in two population cohorts: we compared a young adult cohort
(ALSPAC; ~20 years) with an older adult cohort (UK Biobank;
~64 years) to test a lifespan hypothesis of age-dependent genetic
expression. By directly comparing these age groups, we evaluate
whether pathway-specific genetic risk manifests in white matter
early in adulthood, and how those effects might evolve with age.

Hypotheses
1. Higher pathway-specific PRS will be linked to lower FA and
higher MD in AD-vulnerable tracts.
2. Associations will be stronger in older versus younger adults,

reflecting accumulated effects of genetic liability on white
matter structure.

Materials and methods

Participants

Participants were drawn from two population-based cohorts:
the Avon Longitudinal Study of Parents and Children (ALSPAC)
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(Boyd et al., 2013) and UK Biobank (Sudlow et al., 2015). For
ALSPAC, pregnant women resident in Avon, UK with expected
dates of delivery between 1st April 1991 and 31st December 1992
were invited to take part in the study. The initial number of
pregnancies enrolled was 14,541; 13,988 children were alive at
1 year of age. Additional enrollments brought the total sample
size for analyses using any data collected after the age of seven to
15,447 pregnancies, with 14,901 children were alive at 1 year of
age. The ALSPAC cohort analyzed in the present study comprised
younger adults recruited for neuroimaging studies at approximately
19 years of age. Ethical approval for the study was obtained from the
ALSPAC Ethics and Law Committee and the Local Research Ethics
Committees (Boyd et al., 2013; Northstone et al., 2019). Following
genotyping and imaging quality control, 517 participants (80.7%
male; mean age: 19.81 years, SD: 0.02) with high-quality structural
T1 and diffusion MRI data were included (Sharp et al., 2020).

UK Biobank is an ongoing longitudinal cohort study of over
500,000 participants. A subset of 100,000 individuals is being
recalled for multimodal imaging, and the first 20,000 datasets were
analyzed in this study (Sudlow et al., 2015). Ethical approval for
UK Biobank was granted by several organizations (UK Biobank,
2007). UK Biobank data were accessed under application number
17044. All analyses reported here were conducted using the 2023
data release and completed during the active approval period of
the project. Data use was in full compliance with the UK Biobank
Material Transfer Agreement and data access conditions in place
at the time. UK Biobank participants were excluded if they self-
reported a history of neurological or major psychiatric disorders
at baseline or follow-up, or if hospital admission records indicated
conditions such as substance abuse/dependency, bipolar disorder,
schizophrenia/psychosis, neurodegenerative disorders, dementia,
or intellectual disability. After quality control, 18,172 individuals
(47.3% male; mean age: 64.2 years, SD: 7.75) with diffusion MRI
and genetic data were included.

Participants from both cohorts were excluded if they did not
report white British or Irish descent, or if they requested data
withdrawal. In UK Biobank, this ancestry was defined using the
“white British ancestry subset” field, which combines self-reported
ethnicity with principal component-based genetic clustering, to
ensure population homogeneity for PRS calculation. The study
adhered to the principles of the Human Tissue Act (2004), and
all participants provided written informed consent. Further details
of participant recruitment and exclusion criteria are described in
previously published work (Harrison et al., 2023).

Genotyping

Genotyping data for ALSPAC participants were obtained
using the Illumina HumanHap550 quad SNP genotyping platform
(Illumina Inc., San Diego, CA, USA), while UK Biobank data
were derived from the Affymetrix UK BiLEVE Axiom and UK
Biobank Axiom arrays.! Quality control was conducted using
PLINK, with exclusions applied for genotyping completeness below
97%, minor allele frequency (MAF) less than 1%, and deviations

1 https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/genotyping_sample_
workflow.pdf
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from Hardy-Weinberg equilibrium (p < 1 x 107#) (Purcell et al.,
2007). Genotype imputation was carried out using a prephasing
and imputation strategy implemented in IMPUTE2 and SHAPEIT
(Howie et al., 2011; Delaneau et al., 2012), using the 1000 Genomes
Project Phase I integrated variant set (December 2013 release)
as the reference panel (1000 Genomes Project Consortium et al.,
2015).

Polygenic risk score (PRS) calculations

As described previously (Harrison et al., 2023), PRS were
calculated using GWAS summary statistics from the largest
clinically-defined AD study available (Kunkle et al., 2019), that
does not include either of the ALSPAC or UK Biobank cohorts.
SNPs with a minor allele frequency below 1% were excluded from
analyses. To account for linkage disequilibrium (LD), the data were
pruned using the clumping procedure in PLINK, with a threshold
of 1 > 0.2 and a 500 kb window (-clump-r2 and —clump-kb
parameters). Polygenic risk scores (PRS) were then calculated using
the PLINK -score function (Purcell et al., 2007). Based on prior
research demonstrating that a p-value threshold (PT) of 0.001
captures the greatest variance in brain structural phenotypes linked
to AD risk (Foley et al., 2016), this threshold was used for the
primary analysis. Secondary analyses evaluated a range of p-value
thresholds spanning more and less stringent settings relative to
PT =0.001 (0.5,0.3,0.1,0.01, 1 x 10741 x 107>, 1 x 107°).

To derive pathway-specific PRS, we used the set of disease-
relevant biological pathways identified by Kunkle et al. (2019),
who reported nine Gene Ontology (GO) terms significantly
enriched for AD-associated variants using the MAGMA gene-
set analysis tool (de Leeuw et al., 2015). These pathways
include: protein-lipid complex assembly; regulation of AP
formation; protein-lipid complex; regulation of amyloid precursor
protein catabolic process; tau protein binding; reverse cholesterol
transport; protein-lipid complex subunit organization; plasma
lipoprotein particle assembly; and activation of immune response.
Further methodological details on the MAGMA pathway analysis,
including the n genes and n SNPs in UK Biobank and ALSPAC
pathways, can be found in our previous publication (Harrison et al.,
2023). Genes within each pathway were used to generate pathway-
specific SNP sets, which were then aligned with the discovery
GWAS summary statistics. These pathway PRS were computed
following the same clumping and scoring procedure used for the
genome-wide PRS.

MRI data acquisition

For the ALSPAC cohort, MRI data were acquired at Cardift
University Brain Research Imaging Center (CUBRIC) using a
3T General Electric HDx scanner and an 8-channel head coil.
T1-weighted structural images were collected using a 3D fast
spoiled gradient echo (FSPGR) sequence with 168-182 oblique-
axial AC-PC slices, 1 mm isotropic resolution, flip angle = 20°,
TR/TE/TI = 7.9 or 7.8/3.0/450 ms, slice thickness = 1 mm, field
of view = 256 mm x 192 mm, and acquisition time between 6
and 10 min (Sharp et al,, 2020). Diffusion MRI data were acquired
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using a pulsed gradient spin echo EPI sequence with 60 diffusion
directions at b = 1,200 s/mm?2, 5 b = 0 s/mm? volumes, voxel
size = 2.4 mm isotropic, TR = 16.5 s, TE = 87 ms, and a total scan
duration of approximately 13 min.

For the UK Biobank cohort, MRI data were obtained
across three dedicated imaging centers using Siemens Skyra 3T
scanners and standard Siemens 32-channel head coils. T1-weighted
structural images were acquired using a 3D MPRAGE sequence
with sagittal orientation, TR = 2,000 ms, TI = 880 ms, voxel
size = 1 mm’> isotropic, matrix = 208 mm X 256 mm X 256 mm,
and scan time of approximately 5 min (Alfaro-Almagro et al,
2018). Diffusion MRI was conducted with a multi-shell acquisition
comprising 100 diffusion directions at b-values of 1,000 and
2,000 s/mm?, alongwith6b=0s/ mm? volumes, voxel size = 2 mm?
isotropic, TR = 3.6 s, TE = 92 ms, and a scan duration of
approximately 7 min.

Diffusion MRI data processing

For the ALSPAC cohort, diffusion MRI data were processed
using tools from FSL (Smith et al., 2004) and MRtrix3 (Tournier
et al,, 2012). Raw diffusion-weighted images underwent correction
for eddy current-induced distortions and participant motion
using FSUs eddy. Non-brain tissue was removed using the Brain
Extraction Tool (BET), and diffusion tensors were fitted at each
voxel using dtifit to generate FA and MD maps. These maps
were non-linearly registered to MNI152 standard space. Regions
of interest (ROIs), including the parahippocampal cingulum,
dorsal cingulum and fornix, were delineated using probabilistic
tractography based on anatomical priors (see examples, Figure 1).
Mean FA and MD values were extracted from these tracts for
downstream statistical analysis.

In the UK Biobank cohort, diffusion data were preprocessed
using the standardized UK Biobank pipeline (Alfaro-Almagro et al.,
2018). This included correction for eddy currents, head motion,
and gradient distortion. Diffusion tensor imaging metrics were
derived from the b = 1,000 s/mm? shell using FSLs dtifit. The
resulting FA images were aligned to MNI space and processed with
tract-based spatial statistics (TBSS) to project individual data onto a
mean white matter skeleton (Smith et al., 2006). Mean FA and MD
values were extracted from predefined white matter ROIs based on
the JHU-ICBM tractography atlas for comparative analysis across
participants.

Statistical analysis

Statistical analyses were conducted using R v3.6.3 (R Core
Team, 2020). Modeling used base stats:lm and related functions;
figures were generated with “ggplot2.” Polygenic risk scores were
z-standardized prior to analysis. FA and MD values were used
in their original units, as derived from diffusion MRI processing
pipelines. Multiple linear regression models were used to assess
the association between PRS and FA/MD in anatomically defined
tracts. Separate models were constructed for genome-wide PRS
and each of the nine pathway-specific PRS. For each tract and
hemisphere, diffusion metrics (FA or MD) were the dependent
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variables. Separate linear models were fit for the genome-wide
PRS and each pathway-specific PRS, with the PRS as the predictor
of interest and the following covariates: age, sex, intracranial
volume; UK Biobank models additionally included imaging center
(site) and genotyping array; ancestry was controlled via principal
components (10 for ALSPAC; 15 for UK Biobank, in accordance
with cohort recommendations; (Fraser et al., 2013; Sudlow et al.,
2015). Genotyping array was included for UK Biobank to account
for platform/imputation batch effects that can influence PRS values.

To account for multiple comparisons across imaging
phenotypes and PRS models, p-values were corrected using
the False Discovery Rate (FDR) procedure (Benjamini et al., 2001).
Secondary analyses included re-estimation of all models excluding
SNPs within the APOE genomic region (chr19:44.4 Mb-46.5 Mb)
to determine APOE-independent effects. Additional analyses
were conducted using APOE-only PRS to evaluate its relative
explanatory power. Finally, associations were examined across a
range of p-value thresholds (PT = 0.5, 0.3, 0.1, 0.01, 1 x 1074,
1 x 107>, 1 x 107%) to assess the consistency of effects under
varying inclusion criteria for SNPs.

Results

Associations between AD PRS and white
matter microstructure in older adults

In the older adults, multiple pathway-specific PRS were
significantly ~associated with white matter microstructure
measures, particularly in the parahippocampal cingulum and
dorsal cingulum. These results are summarized in Supplementary
Tables 1, 2. Associations that withstood correction for multiple
comparisons and those that explained more variance than
APOE are indicated.

Patterns of association were consistent for most pathway PRS.
For example, the protein-lipid complex assembly pathway PRS was
negatively associated with FA in the parahippocampal cingulum,
on the left (p = 0.001; Beta = —8.43 x 1074;95% CI —1.36 x 1073,
—3.28 x 1074 12 = 5.8 x 10™*) and on the right (p = 3.89 x 10°;
Beta = —1.09 x 1073 95% CI —1.62 x 1073, —5.73 x 107%
2 = 94 x 107%). However, there were no associations with
FA in the dorsal cingulum. For MD, the protein-lipid complex
assembly pathway PRS was positively associated in the left and
right parahippocampal cingulum (p = 0.005; Beta = 7.58 x 107 7;
95% CI 2.33 x 1077, 1.28 x 10% r* = 47 x 10* and
p = 0.005; Beta = 8.19 x 1077; 95% CI 3.0 x 1077, 1.34 x 10
12 = 5.7 x 1074, respectively). There was also a positive association
with MD in the left and right dorsal cingulum (p = 1.64 x 10™%
Beta=8.4 x 1077;95% CI 4.03 x 1077,1.28 x 10%r* = 1.6 x 10~*
and p = 3.94 x 1074 Beta = 8.04 x 1077; 95% CI 3.59 x 1077,
1.25 x 10% r? = 3.9 x 1074, respectively). The only pathway PRS
with a different pattern of association was the immune response
PRS, with no significant effects.

The genome-wide PRS showed less evidence of association with
white matter microstructure than the pathway PRS. There were
nominally significant associations with reduced FA in the right
parahippocampal cingulum and increased MD in the left dorsal
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Associations with the protein-lipid complex assembly PRS and diffusion metrics in UK Biobank (n = 18 172). FA/MD are outcomes and PRS are
predictors. Pathway-specific polygenic scores were negatively associated with FA in the dorsal and parahippocampal cingulum and positively
associated with MD in the same regions. There were no positive associations with FA or MD in the fornix. Imaging phenotypes are shown on the
x-axis, the R? multiplied with the sign of the B-coefficients (positive and negative) are shown on the y-axis. Any nominally significant results are
labeled with their nominal P-value. Each bar represents a version of the PRS, color-coded by the P-value threshold used in the training data, shown
on the legend. "P-value threshold” denotes the SNP inclusion threshold for PRS construction (not a training/validation split). Numerical coefficients,
standard errors, confidence intervals, and p-values for each model are provided in Supplementary Tables. PRS, polygenic risk score; FA, fractional
anisotropy; MD, mean diffusivity; UKBB, UK Biobank; ROI, Region of Interest; SNP, Single Nucleotide Polymorphism; R?, Coefficient of
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cingulum, but these did not withstand FDR correction, as indicated
in the Supplementary Tables.

Associations between AD PRS and white
matter microstructure in younger adults

In the younger adult cohort, there was less evidence of
association between PRS and white matter microstructure. The

Frontiers in Neuroscience 05

direction of the effect seen inconsistent across ROIs and PRS, and 12
indicted minimal variance was explained (r? up to 5.5 x 10~7). Two
nominally significant associations were observed. For instance,
there was evidence of a positive association between MD in the left
dorsal cingulum and the regulation of amyloid precursor protein
catabolic process pathway PRS (p = 0.042; Beta = 2.21 x 10°%; 95%
CI2.21 x 108, 4.34 x 10% r? = 7.84 x 1073) and the protein—lipid
complex subunit organization PRS both showed (p = 0.043,
Beta = 2.26 x 10% 95% CI 6.94 x 10%,4.26 x 10% % =7.9 x 1073).
See Supplementary Tables 3, 4 for a summary of results.
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FIGURE 3

Associations with the genome-wide PRS and diffusion metrics in UK Biobank (n = 18 172). FA/MD are outcomes and PRS are predictors.
Genome-wide polygenic score was not significantly associated with any white matter metrics at the PT in our primary analysis (PT 0.001). There
were trends toward associations at more liberal PT, however none withstood multiple comparisons correction and the direction of effect was the
reverse of what would be expected in some cases, e.g., decreased MD in the right dorsal cingulum and increased FA in the left parahippocampal
cingulum. Imaging phenotypes are shown on the x-axis, the R2 multiplied with the sign of the B-coefficients (positive and negative) are shown on
the y-axis. Any nominally significant results are labeled with their nominal P-value. Each bar represents a version of the PRS, color-coded by the
P-value threshold used in the training data, shown on the legend. “P-value threshold” denotes the SNP inclusion threshold for PRS construction (not
a training/validation split). Numerical coefficients, standard errors, confidence intervals, and p-values for each model are provided in Supplementary
Tables. PRS, polygenic risk score; FA, fractional anisotropy; MD, mean diffusivity; UKBB, UK Biobank; ROI, Region of Interest; SNP, Single Nucleotide

Polymorphism; R2, Coefficient of Determination; B, Regression Coefficient.
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FIGURE 4

Associations with the protein-lipid complex assembly PRS and diffusion metrics in ALSPAC (n = 517). FA/MD are outcomes and PRS are predictors.
There were no associations that survived multiple comparisons correction even at more liberal PTs. There was a trend toward association with
increased MD in the left dorsal cingulum. Imaging phenotypes are shown on the X axis, the R2 multiplied with the sign of the B-coefficients (positive
and negative) are shown on the Y axis. Any nominally significant results are labeled with their nominal p-value. Each bar represents a version of the
PRS, color-coded by the p-value threshold used in the training data, shown on the legend. "P-value threshold” denotes the SNP inclusion threshold
for PRS construction (not a training/validation split). Numerical coefficients, standard errors, confidence intervals, and p-values for each model are
provided in Supplementary Tables. PRS, polygenic risk score; FA, fractional anisotropy; MD, mean diffusivity; UKBB, UK Biobank; ROI, Region of
Interest; SNP, Single Nucleotide Polymorphism; R2, Coefficient of Determination; B, Regression Coefficient.

APOE-independent and APOE-specific
effects

Several of the significant associations observed in the UK
Biobank cohort showed corrected significance after excluding
the APOE region from the PRS, indicating that these effects
were not solely driven by APOE-related variants. Associations
which remained significant when APOE was removed from the
PRS are indicated in Supplementary Tables 1-4. For example,
the tau protein binding pathway PRS was negatively associated
with FA in the left and right parahippocampal cingulum
(p = 0.001; Beta = —8.43 x 1074 95% CI —1.36 x 1072,
—3.28 x 107* and p = 3.91, Beta = —1.09 x 1073 95% CI
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—1.61 x 1073, =573 x 1074, respectively), and this effect was
still significant (with FDR correction) when APOE was excluded
(see Supplementary Figure 1). Similarly, there were also significant
positive associations with the tau pathway PRS and MD in the
dorsal cingulum and parahippocampal cingulum bilaterally which
persisted without APOE (p range = 0.005-1.64 x 107%, see
Supplementary Tables 1-4). In contrast, in the ALSPAC younger
adult cohort, the exclusion of APOE led to attenuation of all
previously nominal associations and reduced effect sizes. Analyses
using an APOE-only PRS showed that although APOE evidently
contributed to white matter variation in UK Biobank, in several
cases, pathway-specific scores explained a greater proportion of
the variance in white matter microstructure than APOE alone (see

Supplementary Tables 1-4).
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Protein-Lipid Complex Assembly PRS, Fractional Anisotropy & Mean Diffusivity, ALSPAC (n = 517)
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FIGURE 5

Associations with the genome-wide PRS and diffusion metrics in ALSPAC (n = 517). FA/MD are outcomes and PRS are predictors. There were no
associations between any PT and FA or MD. Imaging phenotypes are shown on the X axis, the R multiplied with the sign of the B-coefficients
(positive and negative) are shown on the Y axis. Any nominally significant results are labeled with their nominal p-value. Each bar represents a
version of the PRS, color-coded by the p-value threshold used in the training data, shown on the legend. “P-value threshold” denotes the SNP
inclusion threshold for PRS construction (not a training/validation split). Numerical coefficients, standard errors, confidence intervals, and p-values
for each model are provided in Supplementary Tables. PRS, polygenic risk score; FA, fractional anisotropy; MD, mean diffusivity; UKBB, UK Biobank;
ROI, Region of Interest; SNP, Single Nucleotide Polymorphism; R2, Coefficient of Determination; B, Regression Coefficient.

PRS threshold sensitivity analyses

To assess the robustness of associations across varying degrees
of SNP inclusion, analyses were repeated using a range of additional
p-value thresholds (PTs) for PRS construction: 0.5, 0.3, 0.1,
0.01, 1 x 104, 1 x 105, and 1 x 106. These are shown on
Figures 2-5. In the UK Biobank cohort, significant associations
between white matter microstructure and pathway-specific PRS
were most consistently observed at PT = 0.001 and other more
stringent thresholds, particularly for the tau protein binding and
protein-lipid complex assembly pathways (shown in Figures 2-
5, Supplementary Figure 1). The genome-wide PRS showed some
trends toward significance at more liberal thresholds, however
they didn’t remain when corrected for multiple comparisons and
the direction of effect was often reversed. For example, there was
an apparent positive association with FA in the left hippocampal
cingulum at PTs > 0.05. In contrast, in the ALSPAC cohort,
none of the associations reached significance at any threshold
following correction for multiple comparisons, although nominal
effects occasionally varied by PT. Overall, these findings support
PT =0.001 as the optimal threshold for capturing variance in white
matter microstructure associated with AD genetic risk, consistent
with prior literature (Foley et al., 2016).

Discussion

This study provides evidence that AD-related genetic risk,
when partitioned by biological pathway, is associated with variation
in white matter microstructure in mid-to-late adulthood, but
not in early adulthood. Using large population cohorts at two
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developmental stages, we identified tract-specific associations
between higher pathway-specific polygenic scores and diffusion
MRI markers of white matter microstructure in older adults,
with no significant findings in younger adults after correction for
multiple comparisons. These findings add to emerging evidence
that the influence of AD genetic liability on brain structure may be
age-dependent (Jiaxuan Peng et al., 2024; Korologou-Linden et al.,
2025), with expression of risk increasing with advancing age.

In the UK Biobank cohort of older adults, pathway-specific
PRS, particularly those linked to tau protein binding, lipid and
amyloid metabolism, were significantly associated with increased
MD and decreased FA in the parahippocampal cingulum and
dorsal cingulum. The strongest associations were observed for
MD in these regions, with more modest negative correlations
between PRS and FA in the parahippocampal cingulum. These
effects were significant even after exclusion of the APOE region
and were stronger than those observed with an APOE alone.
No associations were identified with either MD or FA in the
fornix at the primary p-value threshold (PT = 0.001), although
some emerged in secondary analysis of more liberal thresholds.
The genome-wide PRS showed weaker evidence overall, with no
associations surviving correction.

In the ALSPAC cohort of younger adults, no associations
between AD-related genetic risk and white matter microstructure
survived correction for multiple comparisons. Nonetheless,
nominal associations were observed, including between higher
PRS and increased MD in the left cingulum, although these effects
were small and not statistically robust. However, several nominal
associations showed the opposite direction of effect compared to
older adults, raising the possibility of age-dependent modulation
or developmental non-linearity in the expression of AD genetic
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risk (Lopez et al., 2012; Bonham et al., 2016). Given differences in
acquisition and processing pipelines between cohorts, diffusion
metrics were not standardized within samples, and thus direct
comparisons of beta coefficients should be interpreted cautiously.
However, r* values, which are scale independent, were generally
smaller in ALSPAC than UK Biobank, suggesting that the lack
of significant associations is not solely attributable to sample
size, but also reflects weaker underlying effects. White matter
microstructure continues to mature throughout adolescence and
early adulthood (Paus, 2010; Tamnes et al., 2010), and previous
studies have suggested that age-related neurodevelopmental
changes may mask or modulate the influence of genetic risk
variants during this period (Giedd et al., 1999; Smith et al,
2016). Indeed, studies have demonstrated changes in white matter
microstructure in young APOE or clusterin risk allele carriers
(Braskie et al., 2011; Heise et al., 2011), and in infants carrying
APOEA4, with altered myelin development detectable within the first
year of life (Dean et al., 2014; Remer et al., 2020). These findings
support the notion that while AD risk variants may influence white
matter structure early in life, the phenotypic effects may remain
subtle or regionally specific until later stages of development or
aging.

The link between changes in white matter signal and
poorer cognitive function has been demonstrated across several
neurodegenerative cohorts, further highlighting white matter
metrics as promising markers for preclinical detection of AD
vulnerability (Acosta-Cabronero et al., 2012; Power et al,, 2019).
The absence of corrected associations in ALSPAC, contrasted
with robust effects in UK Biobank, supports a developmental
timing model in which pathway-specific AD liability becomes
phenotypically expressed in mid- to late adulthood. These patterns
are consistent with recent evidence showing that the influence of
AD-related genetic risk on brain structure may be latent in early
life and become phenotypically expressed through age-accelerated
neurodegeneration in mid-to-late adulthood (Jiaxuan Peng et al.,
2024; Korologou-Linden et al., 2025). Indeed, developmental
mismatch models suggest that genetically vulnerable white matter
circuits may follow altered maturational trajectories, potentially
laying a structural foundation for later neurodegenerative processes
(Mills et al., 2014).

To our knowledge, this is the first study to investigate white
matter microstructure in relation to pathway-specific AD PRS.
Prior research has focused on gray matter phenotypes. Three
previous studies applied pathway-specific PRS in dementia-free
older adult cohorts but only used only used Bonferroni significant
loci from GWAS. Corlier et al. (2018) (N = 355) found that an
immune response PRS (comprising 11 SNPs) was associated with a
global measure of cortical thinning. Ahmad et al. (2018) (N =4,521)
reported no significant associations between seven pathway-based
PRS (each with ~20 SNPs) and hippocampal or whole brain
volumes. Caspers et al. (2020) (N = 544) identified associations
between pathway-specific PRS and cortical thinning, noting more
bilateral effects and distinct patterns involving superior parietal
and anterior/mid-cingulate regions. Our previous work using UK
Biobank and ALSPAC data showed no significant associations
between AD PRS and gray matter volumes in younger adults
(Harrison et al., 2023), consistent with the null white matter results
in the present study.
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A growing body of evidence suggests that the neuroanatomical
effects of Alzheimer’s disease genetic risk are developmentally
regulated, with expression emerging gradually across the lifespan.
He et al. (2023) and Korologou-Linden et al. (2025) demonstrated
age-dependent PRS effects on brain morphology across large
datasets (N > 20,000), with associations absent in youth but
prominent in mid-to-late adulthood (p. 20). Similarly, Jiaxuan Peng
et al. (2024) reported that higher AD PRS was linked to reduced
white matter signal changes and network efficiency in older cohorts,
particularly in tracts implicated in AD progression. Network-based
approaches may be more sensitive to subtle white matter changes
in young adults. For example, Mirza-Davies et al. (2022) used
diffusion MRI-derived connectome analyses in the ALSPAC cohort
and found that higher genome-wide AD PRS was associated with
reduced connectivity in visual and rich-club brain regions. Our
findings extend this evidence by showing that pathway-specific
scores track with microstructural disruption in these same regions,
and that several effects remain after removing APOE, underscoring
the value of polygenic approaches that move beyond single-gene
models (Escott-Price et al., 2015).

This study has several notable strengths. First, it is the
largest to date to examine white matter microstructure in
relation to pathway-specific polygenic risk for Alzheimer’s disease,
using harmonized genetic pipelines across two well-characterized
population cohorts at different life stages. Second, we applied
summary statistics from the largest GWAS of clinically-defined AD
(Kunkle et al., 2019), and were able to construct threshold-based
PRS with increased statistical power and more comprehensive
genetic signal compared to previous studies that relied solely on
genome-wide significant loci. The large sample sizes in both cohorts
provided sufficient power to detect subtle associations, while the
use of biologically informed pathway scores allowed for a more
mechanistically nuanced investigation of AD risk architecture.

Several limitations must be acknowledged. The ALSPAC cohort
was much smaller than the UKBB cohort, and therefore may not
have been powered to detect very subtle effects. Although the
same quality control procedures and PRS construction pipeline
were applied across both cohorts, minor differences in SNP
availability may have resulted in variation in the SNPs retained
after LD clumping, potentially affecting the comparability of the
resulting scores. We used 1000 Genomes phase I imputation,
which is robust for common variants but may underperform
TOPMed for lower-frequency alleles; this could modestly reduce
PRS fidelity. Incorporating TOPMed-based imputation in future
studies may enhance sensitivity. Both ALSPAC and UK Biobank
reflect relatively healthy, high-functioning populations, which may
limit generalizability, and the ALSPAC imaging subsample was
predominantly male due to recruitment criteria (Fraser et al,
2013; Fry et al, 2017; Sharp et al., 2020). As with all PRS-
based approaches, the underlying biological mechanisms remain
uncertain; individual SNPs may tag multiple biological processes
via linkage disequilibrium. As noted in our previous study,
pathway boundaries are overlapping and imprecise (Harrison
et al, 2023). We used summary statistics from Kunkle et al.
(2019) a large clinically defined AD GWAS that excludes UK
Biobank, thereby maintaining discovery-target independence in
both cohorts. Although the more recent Bellenguez et al. (2022)
GWAS increases power, it incorporates UK Biobank (including
AD-by-proxy), which would reduce independence for the present

frontiersin.org


https://doi.org/10.3389/fnins.2025.1638503
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Harrison et al.

analyses. Future studies should assess the generalizability of
pathway-specific effects using Bellenguez-based scores, and those
using UK Biobank should also examine whether pathway-specific
PRS show stronger associations in participants with a positive
AD-by-proxy phenotype.

A key methodological consideration is that the diffusion MRI
pipelines differed substantially between cohorts. The UK Biobank
analysis employed TBSS, which, while widely used, is known to
have limited spatial specificity and reduced sensitivity to small
or curved tracts—particularly those near cerebrospinal fluid or
gray matter boundaries (Smith et al., 2006; Bach et al., 2014).
For example, the fornix showed no significant associations in
the UK Biobank cohort despite its known relevance to AD.
It is anatomically narrow, highly curved, and runs adjacent to
the ventricles, making it particularly difficult to delineate with
TBSS. ALSPAC diffusion data were analyzed with native-space
tractography to maximize anatomical specificity in small, curved
tracts adjacent to CSF (e.g., fornix), which can be challenging
for skeleton-based TBSS approaches. We modeled UKBB scanner
site as a covariate, consistent with common practice. Alternative
harmonization approaches, such as ComBat and longitudinal
ComBat, can further reduce unwanted site/batch variance. Future
work should consider harmonized within-cohort pipelines to
balance spatial specificity and cross-dataset comparability (Beer
et al., 2020).

Finally, interpreting diffusion MRI measures is inherently
complex. Both lower FA and higher MD are non-specific and
may reflect a range of underlying biological changes, including
demyelination, axonal loss, edema, or fiber crossing (Beaulieu,
2002; Jones et al., 2013). As such, caution is warranted when
attributing diffusion changes directly to neurodegeneration.
Although we focused a priori on tracts with strong evidence for
early AD vulnerability (parahippocampal and dorsal cingulum,
fornix), pathway-specific genetic effects could extend to additional
association and prefrontal pathways, particularly in younger adults.
Systematic whole-brain or frontally focused extensions will be
an important target for future studies, incorporating multimodal
neuroimaging and functional genomic annotation, to clarify the
molecular and structural pathways linking polygenic risk to brain
changes.

This study provides new evidence that polygenic risk for
Alzheimer’s disease, stratified according to biological pathway,
is associated with differences in white matter microstructure
in cognitively healthy older adults. The strongest associations
were observed in tracts vulnerable to early AD pathology,
such as the parahippocampal cingulum and dorsal cingulum,
and surpassed nominal significance threshold after exclusion
of the APOE locus. In contrast, no robust associations were
detected in a younger cohort, despite using harmonized genetic
methods and a targeted set of tracts. These findings support
the hypothesis that the neuroanatomical effects of AD genetic
risk may be developmentally regulated, with minimal impact in
early adulthood and greater expression in mid-to-late life. By
applying a pathway-specific polygenic approach to large imaging
cohorts across the lifespan, this study highlights the value of
white matter microstructure as a potential intermediate phenotype
for understanding how AD risk unfolds across development
and underscores the importance of lifespan and mechanistic
perspectives in genetic neuroimaging research.
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