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Introduction: Alzheimer’s disease involves progressive white matter

microstructural degeneration that may precede clinical symptoms by decades.

While polygenic risk scores (PRS) quantify cumulative genetic liability for AD,

genome-wide PRS lack mechanistic specificity. We tested whether pathway-

specific PRS, targeting areas of biology including tau binding, lipid metabolism,

and immune response, are differentially associated with diffusion MRI measures

across the lifespan.

Methods: We analyzed two population-based cohorts: the Avon Longitudinal

Study of Parents and Children (ALSPAC; mean age = 19.8 years, n = 517)

and UK Biobank (mean age = 64.2 years, n = 18,172). Genome-wide and

nine pathway-specific PRS for Alzheimer’s disease were constructed using

GWAS summary statistics and a clumping threshold of r2 < 0.2 at p < 0.001.

Diffusion MRI data were processed separately within each cohort: in ALSPAC,

tract-based fractional anisotropy (FA) and mean diffusivity (MD) were extracted

using probabilistic tractography from native-space regions of interest; in UK

Biobank, diffusion metrics were derived from TBSS-aligned skeletons and

standard atlas-based ROIs. Analyses focused on three tracts vulnerable to early

AD pathology: the dorsal cingulum, parahippocampal cingulum, and fornix.

Multiple linear regression models were used to assess PRS associations with FA

and MD, adjusting for demographic, scanner, and genetic ancestry covariates.

False discovery rate correction addressed multiple comparisons, and sensitivity

analyses were performed excluding the APOE region.

Results: In UK Biobank, higher PRS for protein–lipid complex assembly and tau

protein binding were robustly associated with lower fractional anisotropy and

higher mean diffusivity in both dorsal and parahippocampal cingulum segments

(False discovery rate-corrected p < 0.05), explaining more variance than APOE

alone; no significant effects emerged in the fornix. Genome-wide PRS showed
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weaker, non-significant associations. In ALSPAC, no PRS metric survived FDR 

correction, though nominal trends appeared in the dorsal cingulum. Sensitivity 

analyses confirmed that key cingulum associations in older adults persisted after 

omitting APOE. 

Conclusion: Pathway-specific polygenic risk for Alzheimer’s disease manifests 

in white matter microstructure by mid- to late adulthood but not in early 

adulthood, suggesting an age-dependent emergence of genetic effects. 

dMRI phenotypes may thus serve as intermediate biomarkers for dissecting 

mechanistic pathways of preclinical Alzheimer’s disease vulnerability. 

KEYWORDS 

Alzheimer’s disease, genetic predisposition to disease, genome-wide association study, 
diffusion magnetic resonance imaging, white matter, lipid metabolism, tau proteins, 
ALSPAC 

Introduction 

Alzheimer’s disease (AD) is a progressive neurodegenerative 
condition that represents a major global health challenge, with 
prevalence rates estimated between 5% and 7% in adults over 
60 years of age (Prince et al., 2013). While a small subset of cases 
result from rare autosomal dominant mutations in genes such 
as APP, PSEN1, and PSEN2 (Tanzi, 2012), most are due to the 
interplay of complex genetic and environmental factors. Genome-
wide association studies (GWAS) have identified close to 80 loci 
associated with AD risk, with the APOE ε4 allele representing the 
most significant contributor (Marioni et al., 2017; Jansen et al., 
2019; Kunkle et al., 2019; Bellenguez et al., 2022). Polygenic risk 
scores (PRS), which aggregate the genetic risk across these loci, oer 
a powerful approach to quantify the cumulative genetic burden for 
AD (Escott-Price et al., 2015; Harrison et al., 2020b). PRS have been 
linked to structural brain changes, including cortical thinning and 
subcortical atrophy, which are established markers of AD-related 
pathology (Mak et al., 2017; Harrison et al., 2023). However, studies 
focusing on PRS and white matter microstructure, which is an 
important mediator of brain network integrity, remain limited. 

White matter signal changes, such as reduced fractional 
anisotropy (FA) and increased mean diusivity (MD), are putative 
indicators of microstructural degeneration and have been reported 
in both symptomatic and preclinical stages of AD (Kantarci et al., 
2014; Alm and Bakker, 2019). These changes may emerge decades 
before cognitive symptoms, particularly in key tracts such as the 
parahippocampal cingulum and fornix, which are vulnerable to 
early AD pathology (Zhuang et al., 2013; Wen et al., 2019). 
Combining PRS with diusion MRI (dMRI)-derived metrics oers 
a promising avenue for detecting early, preclinical indicators of AD 
risk. Yet, most AD PRS studies have concentrated on cortical or 
subcortical volumes (Mak et al., 2017), with few investigations of 
white matter pathways (Harrison et al., 2020a). 

Abbreviations: AD, Alzheimer’s disease; GWAS, genome-wide association 
study; SNP, Single Nucleotide Polymorphism; PRS, polygenic risk score; 
APOE4, APOE Epsilon 4; ALSPAC, Avon Longitudinal Study of Parents and 
Children; FDR, false discovery rate. 

In addition to understanding overall genetic risk, pathway-
specific PRS provide a more granular approach by quantifying 
genetic burden within defined biological pathways, such as those 
related to amyloid processing, tau binding, and immune response 
(Kunkle et al., 2019; Vogrinc et al., 2021). This could enable 
researchers to delineate the mechanistic links between genetic 
risk and neuroimaging phenotypes. Emerging evidence suggests 
that pathway-specific PRS may explain more variance in brain 
structure than genome-wide PRS, particularly in cortical regions 
and subcortical volumes implicated in AD (Ahmad et al., 2018; 
Caspers et al., 2020; Harrison et al., 2023). Recent work has linked 
AD polygenic risk to white-matter alterations in UK Biobank 
(Lorenz et al., 2025); our contribution is to interrogate pathway-
specific PRS and their age-dependent expression. 

To address this gap, we tested associations between nine 
biologically informed AD PRS and diusion MRI measures (FA, 
MD) in two population cohorts: we compared a young adult cohort 
(ALSPAC; ∼20 years) with an older adult cohort (UK Biobank; 
∼64 years) to test a lifespan hypothesis of age-dependent genetic 
expression. By directly comparing these age groups, we evaluate 
whether pathway-specific genetic risk manifests in white matter 
early in adulthood, and how those eects might evolve with age. 

Hypotheses 

1. Higher pathway-specific PRS will be linked to lower FA and 
higher MD in AD-vulnerable tracts. 

2. Associations will be stronger in older versus younger adults, 
reflecting accumulated eects of genetic liability on white 
matter structure. 

Materials and methods 

Participants 

Participants were drawn from two population-based cohorts: 
the Avon Longitudinal Study of Parents and Children (ALSPAC) 
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(Boyd et al., 2013) and UK Biobank (Sudlow et al., 2015). For 
ALSPAC, pregnant women resident in Avon, UK with expected 
dates of delivery between 1st April 1991 and 31st December 1992 
were invited to take part in the study. The initial number of 
pregnancies enrolled was 14,541; 13,988 children were alive at 
1 year of age. Additional enrollments brought the total sample 
size for analyses using any data collected after the age of seven to 
15,447 pregnancies, with 14,901 children were alive at 1 year of 
age. The ALSPAC cohort analyzed in the present study comprised 
younger adults recruited for neuroimaging studies at approximately 
19 years of age. Ethical approval for the study was obtained from the 
ALSPAC Ethics and Law Committee and the Local Research Ethics 
Committees (Boyd et al., 2013; Northstone et al., 2019). Following 
genotyping and imaging quality control, 517 participants (80.7% 
male; mean age: 19.81 years, SD: 0.02) with high-quality structural 
T1 and diusion MRI data were included (Sharp et al., 2020). 

UK Biobank is an ongoing longitudinal cohort study of over 
500,000 participants. A subset of 100,000 individuals is being 
recalled for multimodal imaging, and the first 20,000 datasets were 
analyzed in this study (Sudlow et al., 2015). Ethical approval for 
UK Biobank was granted by several organizations (UK Biobank, 
2007). UK Biobank data were accessed under application number 
17044. All analyses reported here were conducted using the 2023 
data release and completed during the active approval period of 
the project. Data use was in full compliance with the UK Biobank 
Material Transfer Agreement and data access conditions in place 
at the time. UK Biobank participants were excluded if they self-
reported a history of neurological or major psychiatric disorders 
at baseline or follow-up, or if hospital admission records indicated 
conditions such as substance abuse/dependency, bipolar disorder, 
schizophrenia/psychosis, neurodegenerative disorders, dementia, 
or intellectual disability. After quality control, 18,172 individuals 
(47.3% male; mean age: 64.2 years, SD: 7.75) with diusion MRI 
and genetic data were included. 

Participants from both cohorts were excluded if they did not 
report white British or Irish descent, or if they requested data 
withdrawal. In UK Biobank, this ancestry was defined using the 
“white British ancestry subset” field, which combines self-reported 
ethnicity with principal component-based genetic clustering, to 
ensure population homogeneity for PRS calculation. The study 
adhered to the principles of the Human Tissue Act (2004), and 
all participants provided written informed consent. Further details 
of participant recruitment and exclusion criteria are described in 
previously published work (Harrison et al., 2023). 

Genotyping 

Genotyping data for ALSPAC participants were obtained 
using the Illumina HumanHap550 quad SNP genotyping platform 
(Illumina Inc., San Diego, CA, USA), while UK Biobank data 
were derived from the Aymetrix UK BiLEVE Axiom and UK 
Biobank Axiom arrays.1 Quality control was conducted using 
PLINK, with exclusions applied for genotyping completeness below 
97%, minor allele frequency (MAF) less than 1%, and deviations 

1 https://biobank.ctsu.ox.ac.uk/crystal/ukb/docs/genotyping_sample_ 
workflow.pdf 

from Hardy-Weinberg equilibrium (p < 1 × 10−4) (Purcell et al., 
2007). Genotype imputation was carried out using a prephasing 
and imputation strategy implemented in IMPUTE2 and SHAPEIT 
(Howie et al., 2011; Delaneau et al., 2012), using the 1000 Genomes 
Project Phase I integrated variant set (December 2013 release) 
as the reference panel (1000 Genomes Project Consortium et al., 
2015). 

Polygenic risk score (PRS) calculations 

As described previously (Harrison et al., 2023), PRS were 
calculated using GWAS summary statistics from the largest 
clinically-defined AD study available (Kunkle et al., 2019), that 
does not include either of the ALSPAC or UK Biobank cohorts. 
SNPs with a minor allele frequency below 1% were excluded from 
analyses. To account for linkage disequilibrium (LD), the data were 
pruned using the clumping procedure in PLINK, with a threshold 
of r2 > 0.2 and a 500 kb window (–clump-r2 and –clump-kb 
parameters). Polygenic risk scores (PRS) were then calculated using 
the PLINK –score function (Purcell et al., 2007). Based on prior 
research demonstrating that a p-value threshold (PT) of 0.001 
captures the greatest variance in brain structural phenotypes linked 
to AD risk (Foley et al., 2016), this threshold was used for the 
primary analysis. Secondary analyses evaluated a range of p-value 
thresholds spanning more and less stringent settings relative to 
PT = 0.001 (0.5, 0.3, 0.1, 0.01, 1 × 10−4 , 1 × 10−5 , 1 × 10−6). 

To derive pathway-specific PRS, we used the set of disease-
relevant biological pathways identified by Kunkle et al. (2019), 
who reported nine Gene Ontology (GO) terms significantly 
enriched for AD-associated variants using the MAGMA gene-
set analysis tool (de Leeuw et al., 2015). These pathways 
include: protein–lipid complex assembly; regulation of Aβ 
formation; protein–lipid complex; regulation of amyloid precursor 
protein catabolic process; tau protein binding; reverse cholesterol 
transport; protein–lipid complex subunit organization; plasma 
lipoprotein particle assembly; and activation of immune response. 
Further methodological details on the MAGMA pathway analysis, 
including the n genes and n SNPs in UK Biobank and ALSPAC 
pathways, can be found in our previous publication (Harrison et al., 
2023). Genes within each pathway were used to generate pathway-
specific SNP sets, which were then aligned with the discovery 
GWAS summary statistics. These pathway PRS were computed 
following the same clumping and scoring procedure used for the 
genome-wide PRS. 

MRI data acquisition 

For the ALSPAC cohort, MRI data were acquired at Cardi 
University Brain Research Imaging Center (CUBRIC) using a 
3T General Electric HDx scanner and an 8-channel head coil. 
T1-weighted structural images were collected using a 3D fast 
spoiled gradient echo (FSPGR) sequence with 168–182 oblique-
axial AC-PC slices, 1 mm isotropic resolution, flip angle = 20◦ , 
TR/TE/TI = 7.9 or 7.8/3.0/450 ms, slice thickness = 1 mm, field 
of view = 256 mm × 192 mm, and acquisition time between 6 
and 10 min (Sharp et al., 2020). Diusion MRI data were acquired 
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using a pulsed gradient spin echo EPI sequence with 60 diusion 
directions at b = 1,200 s/mm2 , 5 b = 0 s/mm2 volumes, voxel 
size = 2.4 mm isotropic, TR = 16.5 s, TE = 87 ms, and a total scan 
duration of approximately 13 min. 

For the UK Biobank cohort, MRI data were obtained 
across three dedicated imaging centers using Siemens Skyra 3T 
scanners and standard Siemens 32-channel head coils. T1-weighted 
structural images were acquired using a 3D MPRAGE sequence 
with sagittal orientation, TR = 2,000 ms, TI = 880 ms, voxel 
size = 1 mm3 isotropic, matrix = 208 mm × 256 mm × 256 mm, 
and scan time of approximately 5 min (Alfaro-Almagro et al., 
2018). Diusion MRI was conducted with a multi-shell acquisition 
comprising 100 diusion directions at b-values of 1,000 and 
2,000 s/mm2 , along with 6 b = 0 s/mm2 volumes, voxel size = 2 mm 3 

isotropic, TR = 3.6 s, TE = 92 ms, and a scan duration of 
approximately 7 min. 

Diffusion MRI data processing 

For the ALSPAC cohort, diusion MRI data were processed 
using tools from FSL (Smith et al., 2004) and MRtrix3 (Tournier 
et al., 2012). Raw diusion-weighted images underwent correction 
for eddy current-induced distortions and participant motion 
using FSL’s eddy. Non-brain tissue was removed using the Brain 
Extraction Tool (BET), and diusion tensors were fitted at each 
voxel using dtifit to generate FA and MD maps. These maps 
were non-linearly registered to MNI152 standard space. Regions 
of interest (ROIs), including the parahippocampal cingulum, 
dorsal cingulum and fornix, were delineated using probabilistic 
tractography based on anatomical priors (see examples, Figure 1). 
Mean FA and MD values were extracted from these tracts for 
downstream statistical analysis. 

In the UK Biobank cohort, diusion data were preprocessed 
using the standardized UK Biobank pipeline (Alfaro-Almagro et al., 
2018). This included correction for eddy currents, head motion, 
and gradient distortion. Diusion tensor imaging metrics were 
derived from the b = 1,000 s/mm2 shell using FSL’s dtifit. The 
resulting FA images were aligned to MNI space and processed with 
tract-based spatial statistics (TBSS) to project individual data onto a 
mean white matter skeleton (Smith et al., 2006). Mean FA and MD 
values were extracted from predefined white matter ROIs based on 
the JHU-ICBM tractography atlas for comparative analysis across 
participants. 

Statistical analysis 

Statistical analyses were conducted using R v3.6.3 (R Core 
Team, 2020). Modeling used base stats:lm and related functions; 
figures were generated with “ggplot2.” Polygenic risk scores were 
z-standardized prior to analysis. FA and MD values were used 
in their original units, as derived from diusion MRI processing 
pipelines. Multiple linear regression models were used to assess 
the association between PRS and FA/MD in anatomically defined 
tracts. Separate models were constructed for genome-wide PRS 
and each of the nine pathway-specific PRS. For each tract and 
hemisphere, diusion metrics (FA or MD) were the dependent 

variables. Separate linear models were fit for the genome-wide 
PRS and each pathway-specific PRS, with the PRS as the predictor 
of interest and the following covariates: age, sex, intracranial 
volume; UK Biobank models additionally included imaging center 
(site) and genotyping array; ancestry was controlled via principal 
components (10 for ALSPAC; 15 for UK Biobank, in accordance 
with cohort recommendations; (Fraser et al., 2013; Sudlow et al., 
2015). Genotyping array was included for UK Biobank to account 
for platform/imputation batch eects that can influence PRS values. 

To account for multiple comparisons across imaging 
phenotypes and PRS models, p-values were corrected using 
the False Discovery Rate (FDR) procedure (Benjamini et al., 2001). 
Secondary analyses included re-estimation of all models excluding 
SNPs within the APOE genomic region (chr19:44.4 Mb–46.5 Mb) 
to determine APOE-independent eects. Additional analyses 
were conducted using APOE-only PRS to evaluate its relative 
explanatory power. Finally, associations were examined across a 
range of p-value thresholds (PT = 0.5, 0.3, 0.1, 0.01, 1 × 10−4 , 
1 × 10−5 , 1 × 10−6) to assess the consistency of eects under 
varying inclusion criteria for SNPs. 

Results 

Associations between AD PRS and white 
matter microstructure in older adults 

In the older adults, multiple pathway-specific PRS were 
significantly associated with white matter microstructure 
measures, particularly in the parahippocampal cingulum and 
dorsal cingulum. These results are summarized in Supplementary 
Tables 1, 2. Associations that withstood correction for multiple 
comparisons and those that explained more variance than 
APOE are indicated. 

Patterns of association were consistent for most pathway PRS. 
For example, the protein–lipid complex assembly pathway PRS was 
negatively associated with FA in the parahippocampal cingulum, 
on the left (p = 0.001; Beta = −8.43 × 10−4; 95% CI −1.36 × 10−3 , 
−3.28 × 10−4; r2 = 5.8 × 10−4) and on the right (p = 3.89 × 105; 
Beta = −1.09 × 10−3; 95% CI −1.62 × 10−3 , −5.73 × 10−4; 
r2 = 9.4 × 10−4). However, there were no associations with 
FA in the dorsal cingulum. For MD, the protein–lipid complex 
assembly pathway PRS was positively associated in the left and 
right parahippocampal cingulum (p = 0.005; Beta = 7.58 × 10−7; 
95% CI 2.33 × 10−7 , 1.28 × 106; r2 = 4.7 × 10−4 and 
p = 0.005; Beta = 8.19 × 10−7; 95% CI 3.0 × 10−7 , 1.34 × 106; 
r2 = 5.7 × 10−4 , respectively). There was also a positive association 
with MD in the left and right dorsal cingulum (p = 1.64 × 10−4; 
Beta = 8.4 × 10−7; 95% CI 4.03 × 10−7 , 1.28 × 106; r2 = 1.6 × 10−4 

and p = 3.94 × 10−4; Beta = 8.04 × 10−7; 95% CI 3.59 × 10−7 , 
1.25 × 106; r2 = 3.9 × 10−4 , respectively). The only pathway PRS 
with a dierent pattern of association was the immune response 
PRS, with no significant eects. 

The genome-wide PRS showed less evidence of association with 
white matter microstructure than the pathway PRS. There were 
nominally significant associations with reduced FA in the right 
parahippocampal cingulum and increased MD in the left dorsal 
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FIGURE 1 

Example dMRI regions of interest defined for ALSPAC. Left image: the fornix; Center image: the dorsal cingulum; Right image: the parahippocampal 
cingulum. 

FIGURE 2 

Associations with the protein-lipid complex assembly PRS and diffusion metrics in UK Biobank (n = 18 172). FA/MD are outcomes and PRS are 
predictors. Pathway-specific polygenic scores were negatively associated with FA in the dorsal and parahippocampal cingulum and positively 
associated with MD in the same regions. There were no positive associations with FA or MD in the fornix. Imaging phenotypes are shown on the 
x-axis, the R2 multiplied with the sign of the B-coefficients (positive and negative) are shown on the y-axis. Any nominally significant results are 
labeled with their nominal P-value. Each bar represents a version of the PRS, color-coded by the P-value threshold used in the training data, shown 
on the legend. “P-value threshold” denotes the SNP inclusion threshold for PRS construction (not a training/validation split). Numerical coefficients, 
standard errors, confidence intervals, and p-values for each model are provided in Supplementary Tables. PRS, polygenic risk score; FA, fractional 
anisotropy; MD, mean diffusivity; UKBB, UK Biobank; ROI, Region of Interest; SNP, Single Nucleotide Polymorphism; R2 , Coefficient of 
Determination; B, Regression Coefficient. 

cingulum, but these did not withstand FDR correction, as indicated 
in the Supplementary Tables. 

Associations between AD PRS and white 
matter microstructure in younger adults 

In the younger adult cohort, there was less evidence of 
association between PRS and white matter microstructure. The 

direction of the eect seen inconsistent across ROIs and PRS, and r2 

indicted minimal variance was explained (r2 up to 5.5 × 10−7). Two 
nominally significant associations were observed. For instance, 
there was evidence of a positive association between MD in the left 
dorsal cingulum and the regulation of amyloid precursor protein 
catabolic process pathway PRS (p = 0.042; Beta = 2.21 × 106; 95% 
CI 2.21 × 108 , 4.34 × 106; r2 = 7.84 × 10−3) and the protein−lipid 
complex subunit organization PRS both showed (p = 0.043, 
Beta = 2.26 × 106; 95% CI 6.94 × 108 , 4.26 × 106; r2 = 7.9 × 10−3). 
See Supplementary Tables 3, 4 for a summary of results. 
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FIGURE 3 

Associations with the genome-wide PRS and diffusion metrics in UK Biobank (n = 18 172). FA/MD are outcomes and PRS are predictors. 
Genome-wide polygenic score was not significantly associated with any white matter metrics at the PT in our primary analysis (PT 0.001). There 
were trends toward associations at more liberal PT, however none withstood multiple comparisons correction and the direction of effect was the 
reverse of what would be expected in some cases, e.g., decreased MD in the right dorsal cingulum and increased FA in the left parahippocampal 
cingulum. Imaging phenotypes are shown on the x-axis, the R2 multiplied with the sign of the B-coefficients (positive and negative) are shown on 
the y-axis. Any nominally significant results are labeled with their nominal P-value. Each bar represents a version of the PRS, color-coded by the 
P-value threshold used in the training data, shown on the legend. “P-value threshold” denotes the SNP inclusion threshold for PRS construction (not 
a training/validation split). Numerical coefficients, standard errors, confidence intervals, and p-values for each model are provided in Supplementary 
Tables. PRS, polygenic risk score; FA, fractional anisotropy; MD, mean diffusivity; UKBB, UK Biobank; ROI, Region of Interest; SNP, Single Nucleotide 
Polymorphism; R2 , Coefficient of Determination; B, Regression Coefficient. 

FIGURE 4 

Associations with the protein-lipid complex assembly PRS and diffusion metrics in ALSPAC (n = 517). FA/MD are outcomes and PRS are predictors. 
There were no associations that survived multiple comparisons correction even at more liberal PTs. There was a trend toward association with 
increased MD in the left dorsal cingulum. Imaging phenotypes are shown on the X axis, the R2 multiplied with the sign of the B-coefficients (positive 
and negative) are shown on the Y axis. Any nominally significant results are labeled with their nominal p-value. Each bar represents a version of the 
PRS, color-coded by the p-value threshold used in the training data, shown on the legend. “P-value threshold” denotes the SNP inclusion threshold 
for PRS construction (not a training/validation split). Numerical coefficients, standard errors, confidence intervals, and p-values for each model are 
provided in Supplementary Tables. PRS, polygenic risk score; FA, fractional anisotropy; MD, mean diffusivity; UKBB, UK Biobank; ROI, Region of 
Interest; SNP, Single Nucleotide Polymorphism; R2 , Coefficient of Determination; B, Regression Coefficient. 

APOE-independent and APOE-specific 
effects 

Several of the significant associations observed in the UK 

Biobank cohort showed corrected significance after excluding 

the APOE region from the PRS, indicating that these eects 
were not solely driven by APOE-related variants. Associations 
which remained significant when APOE was removed from the 

PRS are indicated in Supplementary Tables 1–4. For example, 
the tau protein binding pathway PRS was negatively associated 

with FA in the left and right parahippocampal cingulum 

(p = 0.001; Beta = −8.43 × 10−4; 95% CI −1.36 × 10−3 , 
−3.28 × 10−4 and p = 3.91, Beta = −1.09 × 10−3; 95% CI 

−1.61 × 10−3 , −5.73 × 10−4 , respectively), and this eect was 
still significant (with FDR correction) when APOE was excluded 
(see Supplementary Figure 1). Similarly, there were also significant 
positive associations with the tau pathway PRS and MD in the 
dorsal cingulum and parahippocampal cingulum bilaterally which 
persisted without APOE (p range = 0.005–1.64 × 10−4 , see 
Supplementary Tables 1–4). In contrast, in the ALSPAC younger 
adult cohort, the exclusion of APOE led to attenuation of all 
previously nominal associations and reduced eect sizes. Analyses 
using an APOE-only PRS showed that although APOE evidently 
contributed to white matter variation in UK Biobank, in several 
cases, pathway-specific scores explained a greater proportion of 
the variance in white matter microstructure than APOE alone (see 
Supplementary Tables 1–4). 
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FIGURE 5 

Associations with the genome-wide PRS and diffusion metrics in ALSPAC (n = 517). FA/MD are outcomes and PRS are predictors. There were no 
associations between any PT and FA or MD. Imaging phenotypes are shown on the X axis, the R2 multiplied with the sign of the B-coefficients 
(positive and negative) are shown on the Y axis. Any nominally significant results are labeled with their nominal p-value. Each bar represents a 
version of the PRS, color-coded by the p-value threshold used in the training data, shown on the legend. “P-value threshold” denotes the SNP 
inclusion threshold for PRS construction (not a training/validation split). Numerical coefficients, standard errors, confidence intervals, and p-values 
for each model are provided in Supplementary Tables. PRS, polygenic risk score; FA, fractional anisotropy; MD, mean diffusivity; UKBB, UK Biobank; 
ROI, Region of Interest; SNP, Single Nucleotide Polymorphism; R2 , Coefficient of Determination; B, Regression Coefficient. 

PRS threshold sensitivity analyses 

To assess the robustness of associations across varying degrees 
of SNP inclusion, analyses were repeated using a range of additional 
p-value thresholds (PTs) for PRS construction: 0.5, 0.3, 0.1, 
0.01, 1 × 104, 1 × 105, and 1 × 106. These are shown on 
Figures 2–5. In the UK Biobank cohort, significant associations 
between white matter microstructure and pathway-specific PRS 
were most consistently observed at PT = 0.001 and other more 
stringent thresholds, particularly for the tau protein binding and 
protein–lipid complex assembly pathways (shown in Figures 2– 
5, Supplementary Figure 1). The genome-wide PRS showed some 
trends toward significance at more liberal thresholds, however 
they didn’t remain when corrected for multiple comparisons and 
the direction of eect was often reversed. For example, there was 
an apparent positive association with FA in the left hippocampal 
cingulum at PTs > 0.05. In contrast, in the ALSPAC cohort, 
none of the associations reached significance at any threshold 
following correction for multiple comparisons, although nominal 
eects occasionally varied by PT. Overall, these findings support 
PT = 0.001 as the optimal threshold for capturing variance in white 
matter microstructure associated with AD genetic risk, consistent 
with prior literature (Foley et al., 2016). 

Discussion 

This study provides evidence that AD-related genetic risk, 
when partitioned by biological pathway, is associated with variation 
in white matter microstructure in mid-to-late adulthood, but 
not in early adulthood. Using large population cohorts at two 

developmental stages, we identified tract-specific associations 
between higher pathway-specific polygenic scores and diusion 
MRI markers of white matter microstructure in older adults, 
with no significant findings in younger adults after correction for 
multiple comparisons. These findings add to emerging evidence 
that the influence of AD genetic liability on brain structure may be 
age-dependent (Jiaxuan Peng et al., 2024; Korologou-Linden et al., 
2025), with expression of risk increasing with advancing age. 

In the UK Biobank cohort of older adults, pathway-specific 
PRS, particularly those linked to tau protein binding, lipid and 
amyloid metabolism, were significantly associated with increased 
MD and decreased FA in the parahippocampal cingulum and 
dorsal cingulum. The strongest associations were observed for 
MD in these regions, with more modest negative correlations 
between PRS and FA in the parahippocampal cingulum. These 
eects were significant even after exclusion of the APOE region 
and were stronger than those observed with an APOE alone. 
No associations were identified with either MD or FA in the 
fornix at the primary p-value threshold (PT = 0.001), although 
some emerged in secondary analysis of more liberal thresholds. 
The genome-wide PRS showed weaker evidence overall, with no 
associations surviving correction. 

In the ALSPAC cohort of younger adults, no associations 
between AD-related genetic risk and white matter microstructure 
survived correction for multiple comparisons. Nonetheless, 
nominal associations were observed, including between higher 
PRS and increased MD in the left cingulum, although these eects 
were small and not statistically robust. However, several nominal 
associations showed the opposite direction of eect compared to 
older adults, raising the possibility of age-dependent modulation 
or developmental non-linearity in the expression of AD genetic 
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risk (Lopez et al., 2012; Bonham et al., 2016). Given dierences in 
acquisition and processing pipelines between cohorts, diusion 
metrics were not standardized within samples, and thus direct 
comparisons of beta coeÿcients should be interpreted cautiously. 
However, r2 values, which are scale independent, were generally 
smaller in ALSPAC than UK Biobank, suggesting that the lack 
of significant associations is not solely attributable to sample 
size, but also reflects weaker underlying eects. White matter 
microstructure continues to mature throughout adolescence and 
early adulthood (Paus, 2010; Tamnes et al., 2010), and previous 
studies have suggested that age-related neurodevelopmental 
changes may mask or modulate the influence of genetic risk 
variants during this period (Giedd et al., 1999; Smith et al., 
2016). Indeed, studies have demonstrated changes in white matter 
microstructure in young APOE or clusterin risk allele carriers 
(Braskie et al., 2011; Heise et al., 2011), and in infants carrying 
APOE4, with altered myelin development detectable within the first 
year of life (Dean et al., 2014; Remer et al., 2020). These findings 
support the notion that while AD risk variants may influence white 
matter structure early in life, the phenotypic eects may remain 
subtle or regionally specific until later stages of development or 
aging. 

The link between changes in white matter signal and 
poorer cognitive function has been demonstrated across several 
neurodegenerative cohorts, further highlighting white matter 
metrics as promising markers for preclinical detection of AD 
vulnerability (Acosta-Cabronero et al., 2012; Power et al., 2019). 
The absence of corrected associations in ALSPAC, contrasted 
with robust eects in UK Biobank, supports a developmental 
timing model in which pathway-specific AD liability becomes 
phenotypically expressed in mid- to late adulthood. These patterns 
are consistent with recent evidence showing that the influence of 
AD-related genetic risk on brain structure may be latent in early 
life and become phenotypically expressed through age-accelerated 
neurodegeneration in mid-to-late adulthood (Jiaxuan Peng et al., 
2024; Korologou-Linden et al., 2025). Indeed, developmental 
mismatch models suggest that genetically vulnerable white matter 
circuits may follow altered maturational trajectories, potentially 
laying a structural foundation for later neurodegenerative processes 
(Mills et al., 2014). 

To our knowledge, this is the first study to investigate white 
matter microstructure in relation to pathway-specific AD PRS. 
Prior research has focused on gray matter phenotypes. Three 
previous studies applied pathway-specific PRS in dementia-free 
older adult cohorts but only used only used Bonferroni significant 
loci from GWAS. Corlier et al. (2018) (N = 355) found that an 
immune response PRS (comprising 11 SNPs) was associated with a 
global measure of cortical thinning. Ahmad et al. (2018) (N = 4,521) 
reported no significant associations between seven pathway-based 
PRS (each with ∼20 SNPs) and hippocampal or whole brain 
volumes. Caspers et al. (2020) (N = 544) identified associations 
between pathway-specific PRS and cortical thinning, noting more 
bilateral eects and distinct patterns involving superior parietal 
and anterior/mid-cingulate regions. Our previous work using UK 
Biobank and ALSPAC data showed no significant associations 
between AD PRS and gray matter volumes in younger adults 
(Harrison et al., 2023), consistent with the null white matter results 
in the present study. 

A growing body of evidence suggests that the neuroanatomical 
eects of Alzheimer’s disease genetic risk are developmentally 
regulated, with expression emerging gradually across the lifespan. 
He et al. (2023) and Korologou-Linden et al. (2025) demonstrated 
age-dependent PRS eects on brain morphology across large 
datasets (N > 20,000), with associations absent in youth but 
prominent in mid-to-late adulthood (p. 20). Similarly, Jiaxuan Peng 
et al. (2024) reported that higher AD PRS was linked to reduced 
white matter signal changes and network eÿciency in older cohorts, 
particularly in tracts implicated in AD progression. Network-based 
approaches may be more sensitive to subtle white matter changes 
in young adults. For example, Mirza-Davies et al. (2022) used 
diusion MRI-derived connectome analyses in the ALSPAC cohort 
and found that higher genome-wide AD PRS was associated with 
reduced connectivity in visual and rich-club brain regions. Our 
findings extend this evidence by showing that pathway-specific 
scores track with microstructural disruption in these same regions, 
and that several eects remain after removing APOE, underscoring 
the value of polygenic approaches that move beyond single-gene 
models (Escott-Price et al., 2015). 

This study has several notable strengths. First, it is the 
largest to date to examine white matter microstructure in 
relation to pathway-specific polygenic risk for Alzheimer’s disease, 
using harmonized genetic pipelines across two well-characterized 
population cohorts at dierent life stages. Second, we applied 
summary statistics from the largest GWAS of clinically-defined AD 
(Kunkle et al., 2019), and were able to construct threshold-based 
PRS with increased statistical power and more comprehensive 
genetic signal compared to previous studies that relied solely on 
genome-wide significant loci. The large sample sizes in both cohorts 
provided suÿcient power to detect subtle associations, while the 
use of biologically informed pathway scores allowed for a more 
mechanistically nuanced investigation of AD risk architecture. 

Several limitations must be acknowledged. The ALSPAC cohort 
was much smaller than the UKBB cohort, and therefore may not 
have been powered to detect very subtle eects. Although the 
same quality control procedures and PRS construction pipeline 
were applied across both cohorts, minor dierences in SNP 
availability may have resulted in variation in the SNPs retained 
after LD clumping, potentially aecting the comparability of the 
resulting scores. We used 1000 Genomes phase I imputation, 
which is robust for common variants but may underperform 
TOPMed for lower-frequency alleles; this could modestly reduce 
PRS fidelity. Incorporating TOPMed-based imputation in future 
studies may enhance sensitivity. Both ALSPAC and UK Biobank 
reflect relatively healthy, high-functioning populations, which may 
limit generalizability, and the ALSPAC imaging subsample was 
predominantly male due to recruitment criteria (Fraser et al., 
2013; Fry et al., 2017; Sharp et al., 2020). As with all PRS-
based approaches, the underlying biological mechanisms remain 
uncertain; individual SNPs may tag multiple biological processes 
via linkage disequilibrium. As noted in our previous study, 
pathway boundaries are overlapping and imprecise (Harrison 
et al., 2023). We used summary statistics from Kunkle et al. 
(2019) a large clinically defined AD GWAS that excludes UK 
Biobank, thereby maintaining discovery–target independence in 
both cohorts. Although the more recent Bellenguez et al. (2022) 
GWAS increases power, it incorporates UK Biobank (including 
AD-by-proxy), which would reduce independence for the present 
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analyses. Future studies should assess the generalizability of 
pathway-specific eects using Bellenguez-based scores, and those 
using UK Biobank should also examine whether pathway-specific 
PRS show stronger associations in participants with a positive 
AD-by-proxy phenotype. 

A key methodological consideration is that the diusion MRI 
pipelines diered substantially between cohorts. The UK Biobank 
analysis employed TBSS, which, while widely used, is known to 
have limited spatial specificity and reduced sensitivity to small 
or curved tracts–particularly those near cerebrospinal fluid or 
gray matter boundaries (Smith et al., 2006; Bach et al., 2014). 
For example, the fornix showed no significant associations in 
the UK Biobank cohort despite its known relevance to AD. 
It is anatomically narrow, highly curved, and runs adjacent to 
the ventricles, making it particularly diÿcult to delineate with 
TBSS. ALSPAC diusion data were analyzed with native-space 
tractography to maximize anatomical specificity in small, curved 
tracts adjacent to CSF (e.g., fornix), which can be challenging 
for skeleton-based TBSS approaches. We modeled UKBB scanner 
site as a covariate, consistent with common practice. Alternative 
harmonization approaches, such as ComBat and longitudinal 
ComBat, can further reduce unwanted site/batch variance. Future 
work should consider harmonized within-cohort pipelines to 
balance spatial specificity and cross-dataset comparability (Beer 
et al., 2020). 

Finally, interpreting diusion MRI measures is inherently 
complex. Both lower FA and higher MD are non-specific and 
may reflect a range of underlying biological changes, including 
demyelination, axonal loss, edema, or fiber crossing (Beaulieu, 
2002; Jones et al., 2013). As such, caution is warranted when 
attributing diusion changes directly to neurodegeneration. 
Although we focused a priori on tracts with strong evidence for 
early AD vulnerability (parahippocampal and dorsal cingulum, 
fornix), pathway-specific genetic eects could extend to additional 
association and prefrontal pathways, particularly in younger adults. 
Systematic whole-brain or frontally focused extensions will be 
an important target for future studies, incorporating multimodal 
neuroimaging and functional genomic annotation, to clarify the 
molecular and structural pathways linking polygenic risk to brain 
changes. 

This study provides new evidence that polygenic risk for 
Alzheimer’s disease, stratified according to biological pathway, 
is associated with dierences in white matter microstructure 
in cognitively healthy older adults. The strongest associations 
were observed in tracts vulnerable to early AD pathology, 
such as the parahippocampal cingulum and dorsal cingulum, 
and surpassed nominal significance threshold after exclusion 
of the APOE locus. In contrast, no robust associations were 
detected in a younger cohort, despite using harmonized genetic 
methods and a targeted set of tracts. These findings support 
the hypothesis that the neuroanatomical eects of AD genetic 
risk may be developmentally regulated, with minimal impact in 
early adulthood and greater expression in mid-to-late life. By 
applying a pathway-specific polygenic approach to large imaging 
cohorts across the lifespan, this study highlights the value of 
white matter microstructure as a potential intermediate phenotype 
for understanding how AD risk unfolds across development 
and underscores the importance of lifespan and mechanistic 
perspectives in genetic neuroimaging research. 
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SUPPLEMENTARY FIGURE 1 

Associations with the Tau Protein Binding PRS and diffusion metrics in UK 
Biobank (n = 18 172). Pathway-specific polygenic scores were negatively 
associated with FA in the dorsal and parahippocampal cingulum and 
positively associated with MD in the same regions. There were no 
associations with FA or MD in the fornix that withstood multiple 
comparisons correction. Imaging phenotypes are shown on the x-axis, the 
R2 multiplied with the sign of the B-coefficients (positive and negative) are 
shown on the y-axis. Any nominally significant results are labeled with their 
nominal P-value. Each bar represents a version of the PRS, color-coded by 
the P-value threshold used in the training data, shown on the legend. 
“P-value threshold” denotes the SNP inclusion threshold for PRS 
construction (not a training/validation split). Numerical coefficients, 
standard errors, confidence intervals, and p-values for each model are 
provided in Supplementary Tables. 
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