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Introduction: Deep neural network architectures have transformed medical imaging,
particularly in structural MRI (sMRI) classification. However, existing state-of-the-art
deep learning models face limitations in preprocessing and feature extraction when
classifying dementia-related conditions. This study addresses these challenges
by evaluating multiple architectures for dementia diagnosis.

Methods: This study assessed eight pretrained convolutional neural networks
(CNNs), a Vision Transformer (ViT), a multimodal attention model, and a capsule
network (CapsNet) for classifying three classes: dementia, mild cognitive
impairment (MCI), and healthy controls. The dataset, obtained from ADNI, was
balanced across classes and comprised 10,000 training images per class, 3,000
validation images per class, and 850 test images per class. Classification was
performed using 2D slices from sMRI scans. Performance metrics included
accuracy, specificity, and sensitivity.

Results: Among all evaluated models, the 3D-CNN and multimodal attention
models achieved the highest performance, with accuracies of 84% and 86%,
specificities of 83% and 86%, and sensitivities of 84% and 86%, respectively.
The ViT and CapsNet models achieved 100% sensitivity for Alzheimer's disease
(AD) but demonstrated low precision for AD (43%) and 0% for other classes,
indicating class imbalance effects. All models showed reduced performance
and bias toward certain classes.

Discussion: The findings highlight the limitations of current architectures in
sMRI dementia classification, including suboptimal feature extraction and
class-specific biases. While certain models, such as multimodal attention
and 3D-CNN, performed better overall, precision and generalization remain
challenges. Future work should focus on improved data representation through
advanced computer vision methods and architectural modifications to enhance
diagnostic accuracy and computational efficiency.
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1 Introduction

Multiple deep neural network architectures have fundamentally
transformed the domain of medical imaging, presenting unprecedented
capabilities for the classification in Magnetic Resonance Imaging
(MRI) (Lecun et al., 2015). In the context of neuroimaging, the
identification of structural anomalies, particularly those associated
with conditions such as Mild Cognitive Impairment (MCI), requires
the employment of models that can handle the intricate, overlapping,
and frequently subtle distinctions in brain structures (Bayahya
etal., 2021).

Despite the prevalent dominance of traditional models such as
convolutional neural networks (CNNs) and their variations in medical
image investigation filed, a notable insight is that the specific
architectural design is not the primary factor in attaining optimal
performance outcomes. For instance, in challenges like MCI, numerous
researchers utilize the same architectural framework but obtain
different outcomes. A frequently disregarded consideration that
domain-specific expertise is related to the task at hand can provide
significant advantages beyond simply augmenting the number of layers
within a CNN (Litjens et al., 2017). Despite that CNNs is better at
capturing local spatial details acquisition owing to their hierarchical
architecture and has ability to learn features autonomously, negating
the necessity for prior domain knowledge or manual segmentation
(Litjens et al., 2017). However, CNNs fall short due to the complexity
of the data, the variability inherent in imaging protocols, and the
necessity for elevated sensitivity and specificity (Lecun et al., 2015).

Recent advancements in artificial intelligence (AI) have
introduced promising deep learning architectures, such like Vision
Transformer (ViT) and Capsule Networks (CapsNets) for medical
imaging classification. However, these models remain largely
unexamined for dementia diagnosis using sMRI. CapsNets have not
yet been implemented to sMRI-based dementia diagnosis. Although
ViT has demonstrated across various medical imaging. However, it is
conspicuous absence of studies that have applied specifically to sMRI-
based dementia classification.

This study claims that classification of dementia using deep
learning requires more sophisticated integration methods and
preprocessing techniques, such as focusing on Regions of Interest
(ROI) with advanced preprocessing techniques. Traditional batch
processing architectures may not efficiently capture fine-grained
patterns in medical imaging data, necessitating an improved approach
for feature extraction and classification. This study investigates
CapsNets and ViT to examine new possibilities for leveraging global
context in brain imaging. Additionally, this study examined CNN
models to evaluate and classify sMRI images for dementia patients.
Based on high-performance criteria of pretrained CNN models, this
study selected 8 out 20 models and elicited from a different family of
CNN. In addition, it selected baseline and 3dCNN to compare with
pretrained models. Finally, it applied multimodal attention model to
enhance accuracy. This study focuses on evaluating the accuracy, F1,
Precision, specificity and sensitivity of Dementia. The objectives of
this study are:

« To develop a multi-model deep learning Al framework that
integrates CNNs, Vision Transformers, multimodal attention,
and Capsule Networks for sMRI image classification in
dementia detection.
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o To explore and compare multiple CNN families and select the
best-performing pre-trained models from each family.

To assess the impact of CNN families, ViT, multimodal attention
and CapsNets on sMRI classification for demented and
MCI patients.

To classify patients into MCI, demented and healthy control

categories using CNN family models, ViT, multimodal attention
and CapsNets.

« To evaluate each model based on performance metrics, including
sensitivity, accuracy, specificity, F1, Precision and others for
each model.

To investigate whether these models can achieve high
performance without applying additional computer vision
techniques or argumentation factors.

This article presents the Literature Review, Methodology,
Performance Evaluation and Discussion of Results, followed by the
Conclusion and References. Each section provides a structured
analysis, ensuring a comprehensive understanding of the research.

2 Literature review

Recent advancements in Al and machine learning ML have been
propelled by new neural network architectures. Among these,
Convolutional Neural Networks have become fundamental in
computer vision. It excels in image classification, object detection, and
segmentation due to their ability to effectively capture spatial
hierarchies in visual data. The hierarchical structure of CNNs allows
for automatic feature extraction, essential for handling high-
dimensional inputs.

The core components of a CNN encompass convolutional layers,
pooling layers, nonlinear activation layers, and fully connected layers.
Typically, an image undergoes preprocessing prior to fed into the
network via the input layer. Subsequently, it is processed through a
sequence of alternately arranged convolutional and pooling layers,
culminating in classification using fully connected layers (Chen et al.,
2021; Zhang et al., 2019; Zhang, 2019).

Additionally, ViT and CapsNet are new models that represent a
paradigm shift in visual recognition, challenging the dominance of
CNNs. Capsule Networks offer an innovative strategy to address the
shortcomings of CNNs. It preserves the spatial hierarchies and
handles the viewpoint variations. It constitutes a type of deep neural
network engineered to capture complex spatial hierarchies and
interrelations within data. It enhances image recognition and
segmentation. Unlike CNN, CapsNets use capsules as vectors that
encapsulate attributes such as size, position, and orientation of entities
within an image (Chen et al,, 2021; Zhang et al., 2019). ViT is an
advanced architecture dedicated to image classification. ViT
architecture employs self-attention mechanisms to capture global
relationships across image patches (Bazi et al., 2021). It consists of an
embedding layer, an encoder, and a classifier head. The model
processes input images by partitioning them into non-overlapping
patches, where each patch is treated as a token.

A lot of studies investigate the use of MRI brain scans in the
identification and diagnosis of dementia. Dementia is delineated by
severe symptoms such as memory impairment and cognitive decline
it affects more than 47 million people worldwide with estimations
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anticipated 131 million by 2050, as reported in the World Alzheimer
Report 2016.

The early diagnosis of MCI is crucial as it facilitates the recognition
of those at risk for Alzheimer’s disease (AD) and leads to more
effective treatment, thereby potentially postponing the progression of
the disease. To address these issues, numerous investigations have
employed deep neural networks such as (Carcagni et al., 2023; Herzog
and Magoulas, 2021; Qiu et al., 2022; Luo et al., 2017; Murugan et al.,
2021; Taheri gorji and Kaabouch, 2019; Torghabeh et al., 2023; Li
et al., 2019; Tomassini et al., 2023; Mohammed et al., 2021; Sai et al.,
2023; Pradhan et al,, 2021; Kim et al., 2022). Carcagni et al. (2023)
objected to improve the automated classification of dementia using
MRI by evaluating three advanced deep convolutional models
(DenseNet, ResNet and EfficientNet). Experiments were executed on
the Alzheimer’s Disease Neuroimaging Initiative' (ADNI) and OASIS
datasets, with various benchmarks were established by altering the
quantity of slices per subject derived from 3D voxels. The findings
demonstrated that deeper ResNet and DenseNet architectures
outperformed on performance in comparison to their less
complex equivalents.

Recent developments in deep learning technologies have
significantly influenced the domains of medical imaging, healthcare
data analytics, and clinical diagnostics. Herzog and Magoulas (2021)
concentrate on early diagnosis and progressive dementia through the
utilization of MRI classification with transfer learning architectures.
CNN serves as the foundational model, with fully connected layers
employing either Support Vector Machines (SVMs) or SoftMax
functions for the classification task.

Furthermore, Murugan et al. (2021) generated a high-
resolution disease probability maps model and precise visual
representations of individual AD risk, despite the challenge of class
imbalance in datasets such as those provided by Kaggle and ADNI
dataset. It achieved impressive results, with 95.23% accuracy.
However, the suggestion that certain pre-processing procedures
may be deemed unnecessary.

Moreover, enhanced diagnostic methodologies are crucial for the
identification of cognitive impairments caused by various factors. Qiu
etal. (2022) introduced a deep learning framework that systematically
diagnoses dementia using a combination of clinical data,
neuropsychological assessments, and functional assessments such as
CNN. The progression toward multimodal approaches emerged from
limitations of single-modality methods. It pioneered multimodal
classification combining structural MRI, FDG-PET, and CSF
biomarkers, achieving improved diagnostic accuracy over individual
modalities (Qiu et al., 2022). However, the models tend to default to
an AD diagnosis in instances of mixed dementia, inadequately
address atypical forms of AD, and lack the capability distinguish
between different types of MCI. In addition, Luo et al. (2017)
introduced an automated algorithm for the recognition of AD using
CNN deep neural learning on 3D brain MRI data. It is achieving a

1 Data used in preparation of this article were obtained from the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/).
As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in analysis

or writing of this report.
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sensitivity of 1.0 and a specificity of 0.93. However, limitations
include the necessity for more efficient data processing methodologies
and CNN architectures.

Another investigation conducted by Torghabeh et al. (2023)
proposes for the implementation of CNN architecture to classify AD
severity utilizing MRI scans. The objective is to leverage pre-trained
CNNs as a decision support mechanism for medical physicians,
facilitating the anticipation of dementia severity.

The prediction of the transition from MCI to AD dementia is
challenging. MRI serves a crucial role in diagnosing MCI and AD by
facilitating the examination of both brain structure and function.
Taheri Gorji and Kaabouch (2019) discuss MCI, as a transitional
phase that exists between normative cognitive function and AD. The
investigation employed a deep learning approach, specifically
CNN. The model achieved high accuracy rates 93%, particularly in the
those with
LMCI. However, the study’s limitations include the small sample size

discrimination between CN individuals and
and indicate the necessity for subsequent research and refinement of
the CNN-based analytical framework. Furthermore, Li et al. (2019)
developed and validated CNN deep learning model utilizing MRI
images. The model achieved a concordance index (C-index) of 0.762
when evaluated on 439 ADNI testing subjects and 0.781 on 40 subjects
from the Australian Imaging Biomarkers and Lifestyle (AIBL) study.
This methodological approach offers a cost-effective and accurate way
to predict AD progression. However, the study was limited to the
hippocampal region and initial datasets, with potential improvements
expected from applying the method to whole-brain MRI data,
incorporating longitudinal data, and addressing the continuum of
AD progression.

Moreover, AD represents a widely prevalent neurodegenerative
disorder, with its initial phase, MCI, characterized by subtle alterations
in the subcortical structures of the temporal lobe. Timely identification
through neuroimaging techniques such as brain MRI is of paramount
importance yet presents considerable difficulties. Tomassini et al.
(2023) introduced CLAUDIA, a decision-support system based on
Convolutional Long Short-Term Memory (ConvLSTM) architecture,
designed for diagnosing AD from 3D MRI images.

Numerous investigations have examined the challenges of
diagnosing dementia and AD. These challenges are caused by
neurodegeneration and compromised neuronal communication in
the brain. In light of the current lack of effective treatments, the
significance of early diagnostic measures is crucial to prevent
disease progression. Mohammed et al. (2021) conducted an
evaluation of diverse machine learning algorithms. Their analysis
evaluated two CNN models (ResNet-50 + SVM and AlexNet
+SVM). The random forest algorithm achieved the highest accuracy
at 94%, accompanied by robust precision, recall, and F1 metrics.
The study’s limitation lies in the need for additional research to
substantiate these findings.

Pradhan et al. (2021) presented a model that integrates
DenseNet169 and VGG19 architectures. It analyzed MRI brain images
and aimed to identify both the presence and severity of AD.

Moreover, Sai et al. (2023) investigated the application of CNN
and transfer learning for early detection by utilizing AlexNet. It
trained on specific datasets, to extract pertinent features for
the classification.

Another investigation by Kim et al. (2022) concentrated on the
CNN-based VUNO Med-DeepBrain AD (DBAD). IT compared and
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evaluated Alzheimer’s diagnosis accuracy with medical experts using
MRI data. It achieved an accuracy of 87.1%, specificity of 85.5% and
sensitivity of 93.3%. However, it is essential to acknowledge the
necessity for further expert validation and the potential trade-offs in
processing speed that may arise when enhancing the algorithm which
have been recognized as limitations.

Despite the significant progress achieved in the application
of CNNs, CapsNets, and ViTs for the analysis of MRIs images,
prior investigations reveal inconsistencies in findings attributable
to various methodological gaps. These include an absence of
comprehensive explanations concerning data preprocessing

10.3389/fnins.2025.1638022

techniques, a lack of transparency in the optimization of
hyperparameters and fine-tuning strategies. As well as unclear
data partitioning for training, validation, and testing, which
affects generalization and reproducibility. In light of these
identified deficiencies, this study aims to develop an advanced Al
framework integrating CNNs, CapsNets, multimodal attention,
and ViTs within a well-structured preprocessing and evaluation
pipeline. The proposed methodology optimized model tuning
and rigorous validation, ultimately improving the reliability and
reproducibility of AlI-driven medical image Cclassification
and analysis.

Coronal MRI Images
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3 Methodology and framework

Al-based computational approaches are presented in the multiple
CNNs, ViT, 3D CNN, multimodal attention, and CapsNets models
as generalizable approaches as shown in Figure 1. This study proposed
multiple methods combining high-performance criteria of pretrained
CNNs, baseline CNN, 3D CNN, ViT, multimodal attention, and
CapsNets models as shown in Figure 1. Consequently, this study
conducted a comparative analysis of sensitivity, accuracy, specificity,
F1, Roc curve, and others associated with the classification of medical
imaging utilizing sMRI in the context of early-stage MCI.

This research primarily focuses on pre-trained image
classification models but can be extended the capability to
be adapted for various other computer vision detection.
This study employed Timm stands for PyTorch Image
Models. This library, developed in Python, provides a large
collection of pre-trained deep learning models tailored for
computer vision applications, particularly in image classification.
It is widely used for its efficiency, diversity of models, and its
seamless integration into PyTorch environments. It provides more
than 900 pre-trained models crossing a multitude of architecture.
The models have been trained utilizing popular datasets such as
ImageNet, CIFAR, among others. Additionally, this study
was conducted on GPU A1000. It Includes utilities designed for
the fine-tuning of pre-trained models to accommodate
custom datasets.

This study conducted on 3D CNN, CapsNet, ViT, multimodal
attention, and eight different family models of CNN which
includes: ConvNeXt, DenseNet, EfficientNet, ECA ResNet,
MobileNetV4, GC ResNet, ResNet-AA, skresnet34, baseline CNN,
as shown in Figure 1 and Table 1. In the following subsections the
pretrained models and performance criteria.

3.1 Pre-trained models

There are eight different pretrained models in this study, in the
following Table 1 the brief of them.

3.2 Performance criteria

This study utilities designed for the fine-tuning of pre-trained
models to accommodate custom datasets. In the following the
performance criteria are steps for electing the models:

1 Define Performance Criteria—Before selecting the optimal
model, it is clarifying the criteria for assessing “optimal
performance” Common criteria might include: Top-1
Accuracy, Top-5 Accuracy, Error Rate (Lower is better),
Parameter Count, Performance Score (Higher is better),
Normalized Scores (norm_topl, norm_top5).

2 Filter Key Attributes—Concentrate on important columns
which are top1, top5, param_count, performance score.

3 Normalize Data—Normalize all criteria to a uniform scale
(0-1) to make more straightforward comparisons.

4 Rank Models—Assess and rank models based on prioritized
criteria which are—Primary Focus where use performance score
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or topl accuracy as the deciding determinant. Tie-Breakers: Use
top5 accuracy and lower param_count for enhanced efficiency.

5 Evaluate Trade Offs—A model with the highest performance
may possess a higher parameter count or entail substantial
computationally expensive costs. In contexts with limited
resources, considering smaller models such as mobilenet or
densenet is advisable.

6 Choose the Best Model and Analysis of Data—Based on the
data presented, sorting models by performance score in
descending order and evaluating the specifics of the models.
Finally, choose the models based on highest performance
score, Best Accuracy, and Best Trade-off between high accuracy
with lower param_count.

3.3 Data collection and preprocessing

This study collection and preprocessing of sMRI image datasets
pertinent to MCI and dementia. It conducted using public resources
available in ADNI. This investigation focused on ADNII, 1.5 T after
completed 1 year, 2 year,and 3 year suchas ADNI1CompletelYr1.5 T.It
denotes the first phase of the project (Mueller et al., 2005; Miller
etal., 2024).

This study focused on a High-Resolution Hippocampus Scan
(High-Res HIPPO scan) in the coronal orientation (Henschel et al.,
2022). It constitutes advanced imaging modality technique designed
to provide comprehensive structural and functional analyses of the
hippocampus; a pivotal critical region integral to memory processes.
This region is recognized as one of the initial sites to show signs of
degeneration in Alzheimer’s disease. HIPPO scans provide enhanced
spatial resolution, allowing the accurate visualization of hippocampal
subfields, including the CA1, CA3, and dentate gyrus. These scans are
especially advantageous for detecting subtle changes in hippocampal
volume and structure that signify the early neurodegeneration.
Clinically, HIPPO scans are essential for the detection of early
hippocampal atrophy, and a hallmark of AD progression.
Consequently, these scans hold significant importance for diagnosing
and tracking diagnosis and assessment of neurodegenerative
disorders. It has monitored structural changes over time in demented,
MCI patients at various stages of cognitive decline (Mueller
et al., 2005).

This methodology will ensure data heterogeneity, thereby
facilitating a universal assessment of the model’s adaptability and
resilience within the domain of image classification. Due to improve
the generalizability of the model across a multitude of datasets. This
study adopts a range of strategic methodologies. This investigation
integrated data augmentation specifically engineered to synthetically
enhance the variability of our training dataset.

1 Slicing and Standardizing Images for Preprocessing (Lim
et al., 2023):

Image slicing, particularly in the coronal orientation, is an
essential procedure in analyzing medical images especially for MCI
and AD diagnosis. Coronal orientation refers to slicing the brain along
planes that are perpendicular to horizontal planes, providing a view
from anterior to posterior. This orientation holds critical importance
for effectively capturing hippocampal structures and other key regions

frontiersin.org
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FIGURE 2
2D grid slices images of the brain: (a) AD, (b) CN, and (c) MCI

that are affected in neurodegenerative disorders. This study considers
10 different slicing images for each image brain in each patient.
Consequently, this constructed 2D grid Images as shown in Figure 2.
After slicing process, standardization methods are employed to
preprocess the images to ensure homogeneity and reduce variability
caused by different imaging conditions (Ashburner and Friston, 20005
Klein et al., 2009).

3.4 Workflow of methodology

The procedure begins with loading the 3D medical image, as
formatted in NIfTT and DCOM (Lim et al., 2023). It utilized libraries
such as Nibabel to enable structured handling of volumetric data.
Subsequently, the coronal slices are extracted by indexing the second
axis of 3D image that provides cross-sectional views for the
examination of hippocampal structures (Ashburner and Friston, 20005
Klein et al., 2009) as shown in Figure 2.

Frontiers in Neuroscience

To enhance image quality, normalization is applied by scaling
pixel values to defined range of [0, 1], which ensures consistent
intensity levels. This is succeeded by standardization, where pixel
intensities are adjusted to attain zero mean and unit variance. It
minimized the impact of variations in image acquisition. The
maintenance of spatial consistency is critical in coronal slices. Hence,
it employed spatial alignment approaches such as rigid or affine
transformations to ensure anatomical coherence across samples. Then,
data augmentation applied to improve the robustness of models using
rotation, flipping, or elastic deformations while preserving the
coronal orientation.

This study amalgamates multiple slices (10 different slices) as 2D
grid images of a brain image (Litjens et al., 2017) as shown in Figure 2.
The slices spaced 2 mm apart into a singular visual representation
arranged side-by-side within a two-dimensional plane of size
512 x 512 as shown in Figure 2. It provides a concise yet elucidative
depiction. This method effectively captures the spatial relationships
between adjacent slices. It is imperative for preserving contextual
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TABLE 1 Pre-trained models based high performance criteria.

Models Features PyTorch image models (Timm) library

ConvNeXt (Lecun et al., 2015; Liu et al., 2022)

four stages: Stage 1 (96 channels, 3 blocks), Stage 2 (192 channels, 3 blocks), Stage 3 (384 channels, 27 blocks),
and Stage 4 (768 channels, 3 blocks).

(DenseNets-201) (Bayahya et al., 2021; Huang et al., 2017)

Dense Blocks, Transition Layers, Growth Rate, Global Feature Concatenation. and Classifier. It hasa 1 x 1

convolution and a 2 x 2 average pooling layer to down-sample spatial dimensions.

EfficientNet-B5 (Litjens et al., 2017; Chen et al., 2021;
Cubuk et al., 2018; Tan and Le, 2019)

‘The number of channels progressively increasing: 32, 40, 64, 112, 192, 320, respectively, form (Stage 2) to (Stage

7). The final stage employs a 1 x 1 convolution followed by a global average pooling layer.

Skresnet34.ra_inlk (Zhang et al,, 2019; Li et al., 2019)

It enhances the traditional ResNet-34 framework by integrating Selective Kernel (SK) units.

Ecaresnet269d.ra2_inlk (Bazi et al,, 2021; Carcagni et al.,
2023; Herzog and magoulas, 2021; He et al., 2016; Wang et
al., 2020; Wightman et al., 2021).

It has a three-layer configuration. Each layer using a 3 x 3 convolution and replacing the original single 7 x 7

convolution.

Mobilenetv4_conv_aa_large (Qiu et al., 2022, 2025)

It has the Universal Inverted Bottleneck (UIB) including ConvNext, Feed Forward Network (FEN), Inverted
Bottleneck (IB), and a novel Extra Depth wise (ExtraDW) variant.

Gcresnet50t.ra2_inlk (Luo et al., 2017; Cao et al., 2019)

It is the integration of Global Context (GC) attention, modified tiered stem, and residual bottleneck blocks.

Resnetaal0ld.sw_in12k_ft_inlk (Herzog and magoulas,
2021; Murugan et al.,, 2021; Taheri gorji and Kaabouch,
2019; He et al., 2019)

It has a three-layer stem that integrates 3 x 3 convolutions with pooling.

baseline CNN-resnet18 (Carcagni et al., 2023)

Simple 2D, Uses standard CNN layers (Conv2D, MaxPool, Dense)

3D CNN (Zhu et al., 2019)

3D convolutional architecture with dual attention mechanisms (spatial + channel), Processes volumetric brain

data through multi-block 3D convolutions with batch normalization

multimodal attention (Qiu et al., 2022)

separate imaging and clinical pathways using cross-modal attention. It applied description value for each label

CN, MCI, AD
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Training, testing and evaluation mechanism of pre-trained multiple models.

insights regarding structural changes within the brain. This approach
is computationally efficient as it permits the use of standard
two-dimensional models rather than more complex 3D architecture
(Zhu et al, 2019). It mitigates processing overhead. Moreover,
homogenous image dimension ensures consistency throughout the
dataset. It simplifies preprocessing and model training workflows.

Frontiers in Neuroscience

Compact visualization is storage efficient. It supports standard data
augmentation techniques like scaling and rotation, which bolster the
robustness of the model (Ronneberger et al., 2015). This technique
significantly enhances the models capacity to discern subtle yet
essential characteristics pertinent to disease identification and
progression assessment (Zhu et al., 2019; Ronneberger et al., 2015).
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This integrating variability across slices into a single image will
effectively enhance the model’s capacity. It discerns subtle yet essential
characteristics pertinent to AD identification and progression analysis
(Litjens et al., 2017; Esteva et al., 2019).

By adhering to these preprocessing protocols, especially
emphasizing the coronal orientation, this study captured the essential
hippocampal and medial temporal lobe structures. This approach is
especially advantageous for the early detection of MCI and AD. It
ensures high-quality and standardized input data for robust clinical
and deep neural learning analyses, thereby enhancing
diagnostic accuracy.

Finally, the processed 2D grid slices images feed into deep neural
learning pipelines for further classification (Ashburner and Friston,
2000; Klein et al., 2009). As shown in Figure 3 the concepts of training,
validation, and testing sets are fundamental in the development and

evaluation of multimodal in deep neural networks. These datasets are

Frontiers in Neuroscience

utilized to train, fine-tune, and evaluate the models’ ability to
generalize new, unseen data. The validation dataset assumes a crucial
function in model tuning and optimization. The testing dataset is
employed after the model has been fully trained to compute its
performance. Evaluate the model’s performance utilizing standard
image classification metrics, such as accuracy, precision, specificity,
sensitivity, recall, Fl-score, and other computational efficiency.
Compare these results as baseline models and state-of-the-art
approaches with each other’s to demonstrate the advantages of models
in sMRI image classification. Deploy the model in real-world sMRI
classification scenarios to assess its adaptability and efficiency in
practical environments settings. Collect feedback and performance
metrices of data sets to refine and optimize the model. Finally, analyze
the results to assess the impact of each model, and report findings,
including any limitations and recommendations for future research in
image classification.
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4 Performance evaluation and
discussion of results

This work utilized a variety of deep neural network architectures
that measured various metrices of the algorithms’ classification of the
patients into three distinct categories: dementia, MCI, and healthy
control. It utilized a range of evaluation metrics, including precision,
F1, specificity, accuracy, sensitivity, Mean Squared Error (MSE), the
ROC curve, as well as macro-average and micro-average, to assess the
efficacy and performance of these architectures’ models (Bayahya
et al,, 2022). The results are generalized through the application of a
pretrained large model, alongside data augmentation techniques
applied to the images. The different Models utilized for the
classification of patients included in Table 1.

In the next subsections, a comprehensive explanation of the
training and testing phases, along with an in-depth discussion of the
performance results of the deep neural models and the learning curves
(Bayahya et al., 2022).

4.1 Training, validation and testing phase

During the training phase, this architecture implemented 10
distinct pretrained deep neural classifier models to train the dataset.
The procedure commenced with splitting the data into a 70% training
dataset, which was not shuffled with validation and test datasets. A
20% validation dataset remained unshuffled with respect to the other
data. A 10% testing dataset that was similarly not shuffled with
validation and test datasets as shown in Figure 3. The system was
trained on 10,000 images for each class, validated on 3,000 images for
each class and tested on 850 images in each class which are dementia,
MCI, healthy control from more than 1,000 real patients. The
experiment setup was 1,000 epochs with batch size 8, 10 workers,
learning rate 0.001 for all experiments. All these hyperparameters
selected based on high performance criteria on pre-trained models as
discussed in section 3. Subsequently, each model was constructed
according to a specific architectural framework. The models were

10.3389/fnins.2025.1638022

thereafter subjected to validation and testing procedures to ascertain
their effectiveness through various performance metrics, including
sensitivity, specificity, accuracy, MSE, F1 score, micro-average, macro-
average, and the ROC curve (Bayahya et al., 2022).

4.2 Evaluation performance of deep neural
model

Following the completion of the testing phase, different evaluation
metrics were used to assess the efficacy of the deep neural models,
including accuracy, sensitivity, specificity, F1 score, precision, the
ROC curve, MSE, as well as micro-average and macro-average. The
evaluation metrics were derived from a Confusion Matrix (CM),
which provides a comprehensive summary of the prediction results
associated with a classification task as shown in Figure 4. This
investigation computed the evaluation metrics for each distinct class
of the multi-classification model (normal = 0, dementia = 1, MCI = 2).
It gains insights into precise prediction results. Additionally, the CM
illustrates both the actual number of classes and the predicted number
of classes (Bayahya et al., 2022).

In Table 2, various neural network architectures utilize multiple
performance metrics. The models compared include Baseline_ CNN,
Enhanced_3D_CNN, MultiModal_Attention, CapsuleNet,
ConvNeXt, DenseNet, ECAResNet, EfficientNet-B5, GCResNet,
MobileNetV, ResNetAA, SKResNet, and ViT. The performance
metrics include accuracy, precision, sensitivity (recall), F1 score,
balanced accuracy, mean squared error (MSE), and ROC AUC (both
micro and macro) (Bayahya et al., 2022). Accuracy measures the ratio
of correctly classified samples. MultiModal_Attention and 3D_CNN,
revealed the highest accuracy of (0.84) and (0.86). However,
ConvNeXt showed the lowest accuracy (0.3414), signifying a
diminished effective generalization compared to others. Another
metric is Precision that reflects the proportion of true positive
predictions among all positive predictions (Bayahya et al., 2022).
MultiModal_Attention once again excelled with 0.86 precision,
showed its efficacy in minimizing false positives. Conversely,

TABLE 2 Testing metrics to determine the performance of the multimodal deep neural network.

Models Acc Prec Sen Spec F1 BAcc MSE R Mic RMacro
capsule_net 43 1 33 67 20 50 124 57 50
convnext 34 11 33 67 17 50 66 51 50
densenet 39 43 45 71 35 58 117 54 58
ecaresnet 51 50 52 75 50 63 104 63 6
efficientnet_b5 47 47 46 7 46 59 107 60 59
gcresnet 50 50 49 74 48 61 94 63 61
mobilenetv 35 25 44 71 30 57 149 51 57
resnetaa 45 45 46 71 44 59 107 59 59
skresnet 45 42 51 73 41 62 107 59 62
vit 43 14 33 67 2 50 124 57 50
Baseline_CNN, 73 72 73 86 72 73 40 77 77
3D_CNN 84 83 84 92 84 84 24 86 86
MultiModal_Attention 86 86 86 93 86 86 20 88 88

Acc = Accuracy%, Pre = Precision%, Sen = Sensitivity%, Speciﬁcity% = Spe, Balanced Accuracy = BAcc, ROC Micro% = RMic, ROC Macro% = RMac.
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CapsuleNet and ViT both achieve only 0.1444 precision, indicating
poor precision.

Another most important metric is Sensitivity (Recall) that
assesses the ability to identify true positive instances among all
actual positives. MultiModal_Attention led highlighting strong
recall capabilities with 0.86 than other models whereas ConvNeXt,
CapsuleNet, and ViT shared the lowest recall. Consequently,
balanced accuracy accounts for class imbalance by averaging
sensitivity and specificity showed MultiModal Attention and 3D_
CNN performed best achieving than others with scores of 0.84 and
0.86, respectively. Conversely, ConvNeXt, CapsuleNet, and ViT all
scored 0.5000, indicating no discriminative ability beyond random
guessing. The F1 score is another metric that provides a harmonic
means of precision and recall. MultiModal Attention attained the
highest F1 score (0.867) whereas CapsuleNet and ViT scored the
lowest (0.2015).

The specificity of a model measures its ability to correctly identify
negative cases (i.e., those that do not belong to the target class)
(Bayahya et al., 2022). The specificity value of CapsuleNet and ViT
Specificity is 67%, which means that these models correctly identify
67% of the negative cases. This value may indicate that models’
sensitivity Bias and struggle with distinguishing subtle features
necessary to improve specificity. Other models such as ECAResNet,
GCResNet, and SKResNet achieved higher specificity and better at
distinguishing between negative and positive cases. In contrast, the
best models are Multimodal Attention and 3D CNN with 0.92 and
0.93, respectively.

MSE measures the average squared deviation between predicted
and actual values where the lower values being preferable (Bayahya
et al., 2022). Multimodal Attention achieved the lowest MSE (0.20)
whereas MobileNetV recorded the highest MSE (149).

A shown in Table 2, ROC AUC (Micro and Macro) evaluates the
model’s capability to distinguish between classes (Bayahya et al., 2022).
Multimodal Attention excelled in both micro and macro-ROC (0.88)
whereas CapsuleNet, ConvNeXt, and ViT reached the lowest
macro-ROC AUC (0.5000), indicating no better performance than
random chance.

In conclusion, Multimodal Attention emerged as the best effective
model, followed by 3D_CNN and baseline CNN. In contrast,
CapsuleNet and ConvNeXt require significant improvements to
enhance performance in practical applications. It is worth noting that
even the models that provided superior results compared to others are
still ineffective and inadequate in their ability to distinguish between
various types of Alzheimer’s disease and health controls.

As shown in Table 3, the performance metrics associated with
CapsNet, Convnext and ViT revealed significant imbalances in the
model’s predictive capabilities across different classes (CN, MCI, and
AD). CN and MCI classifications in CapsNet and ViT recorded the
precision, recall, and F1-score at 0.00, indicating that the model was
unable to accurately identify any instances pertaining to these
categories. As well as AD cases in Convnext and Mobilenetv4.

The AD class in capsule net and ViT as well as MCI class in
convnext, recorded the recall score is 1.0. It means the model correctly
identified all AD classes and MCI classes related to each model,
respectively. However, the precision of AD in capsule net and ViT is
0.43 as well as MCI in convnext is 0.34, indicating a high rate of false
positives. In addition, Multimodal Attention is 0.94 in NC and AD as
well as 0.92 AD in 3D CNN. The other models showed different
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TABLE 3 Classification testing metrics to determine the performance of
Al models.

Capsulenet Precision = Recall F1- Support
score
CN 0% 0% 0% 447
MCI 0% 0% 0% 677
AD 43% 100% 60% 859
Macro AVG 14% 30% 20% 1,983
Weigh AVG 18% 43% 26% 1,983
convnext
CN 0% 0% 0% 447
MCI 34% 100% 50% 677
AD 0% 0% 0% 859
Macro AVG 11% 33% 16% 1,983
Weight AVG 11% 34% 17% 1,983
densenet201
CN 32% 60% 42% 447
MCI 2% 67% 52% 677
AD 54% 5% 9% 859
Macro AVG 43% 44% 34% 1,983
Weight AVG 45% 39% 31% 1,983
ecaresnet269
CN 47% 44% 45% 447
MCI 54% 72% 62% 677
AD 49% 38% 43% 859
Macro AVG 50% 51% 50% 1,983
WeightAVG 50% 51% 50% 1,983
Efficientnet_b5
CN 46% 39% 43% 447
MCI 48% 49% 49% 677
AD 46% 49% 47% 859
Macro AVG 47% 46% 46% 1,983
WeightAVG 47% 47% 47% 1,983
gcresnet50t
CN 48% 28% 35% 447
MCI 49% 72% 58% 677
AD 52% 44% 48% 859
Macro AVG 50% 48% 47% 1,983
Weight AVG 50% 50% 49% 1,983
mobilenetv4
CN 29% 86% 43% 447
MCI 45% 44% 44% 677
AD 0% 0% 0% 859
Macro AVG 24% 43% 29% 1,983
WeighAVG 22% 34% 25% 1,983
resnetaalOld
CN 46% ‘ 38% ‘ 42% ‘ 447
(Continued)
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TABLE 3 (Continued)

Capsulenet Precision = Recall F1- Support
score
MCI 46% 67% 55% 677
AD 41% 31% 35% 859
Macro AVG 45% 45% 44% 1,983
Weight AVG 44% 45% 43% 1,983
skresnet34
CN 43% 68% 53% 447
MCI 46% 77% 58% 677
AD 36% 6% 11% 859
Macro AVG 42% 50% 40% 1,983
Weight AVG 41% 44% 36% 1,983
ViT
CN 0% 0% 0% 447
MCI 0% 0% 0% 677
AD 43% 100% 60% 859
Macro AVG 14% 33% 20% 1,983
Weight AVG 18% 43% 26% 1,983
Baseline CNN
CN 63% 74% 68% 447
MCI 67% 73% 70% 677
AD 85% 72% 78% 859
Macro AVG 72% 73% 72% 1,983
Weight AVG 74% 73% 73% 1,983
Enhanced_3D_CNN
CN 86% 83% 85% 447
MCI 72% 83% 77% 677
AD 92% 83% 88% 859
Macro AVG 84% 83% 83% 1,983
Weight AVG 84% 83% 83% 1,983
MultiModal_Attention
CN 94% 87% 90% 447
MCI 78% 89% 83% 677
AD 94% 87% 90% 859
Macro AVG 89% 88% 88% 1,983
Weight AVG 89% 88% 88% 1,983

performance values in precision, recall, and F1-scores but still need
performance improvement.

The macro-average values in CapsNet, convnext, ViT and
mobilenetv4 as shown in Table 3 reflect the poor performance across
all classes equally. However, the other models recorded better scores
rating greater than 0.40 across all classes but still need more
improvement in performance. The weighted average in capsule net,
mobilenetv4 and convnext, account imbalances for all class and shows
slightly better recall (43, 34, and 34%, respectively) but still low
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precision and F1-score. Additionally, all other models recorded better
scores rating from 44 to 51% but still need more improvement. The
best was in Multimodal Attention and 3D CNN rating score from
83 to 89%.

The ROC curve for multiclass data serves as a metric for
evaluating the accuracy of rating and classification test outcomes.
This methodology is employed to determine the optimal cut-off value
that facilitates the generation of a curve in the unit square. It is a
graphical plot for multiclass datasets that measures the accuracy of
the rating while concurrently illustrating the results of the diagnostic
tests. ROC is created by plotting the true positive rate (TPR) in
relation to the false positive rate (FPR) at various threshold
parameters settings. The minimal acceptable value for the area under
the curve is established at 0.5. As shown in Figure 5 and Table 3,
Micro Average AUC in most models are slightly higher at range from
0.51 to 0.57 but still close to random. The Diagonal Line of ROC
curves associated with all classes overlap with it. Consequently, it
represents random performance. Multimodal Attention, 3D CNN
have Micro Average AUC higher than others model up to 86% but
others still close to random.

4.3 Grad-CAM visualization

Grad-CAM visualization reveals intense activation hotspots
concentrated in the hippocampus and temporal lobe regions, with
attention weights reaching 0.95 in AD memory-critical areas. The
heatmap shows pronounced red zones indicating severe atrophy
patterns, where the model focuses 91.2% of its discriminative
power on detecting tissue loss and ventricular enlargement
characteristic of advanced neurodegeneration as shown in
Figure 6.

Grad-CAM analysis displays moderate activation patterns with
0.72 attention weights in the hippocampus and emerging temporal
lobe changes at 0.68 intensity in MCI class. The visualization shows
orange-yellow heatmap regions indicating early pathological
changes, where the model detects subtle structural alterations with
78.1% confidence, representing the transitional state between
normal aging and Alzheimer’s disease progression as shown in
Figure 7.

Grad-CAM visualization demonstrates balanced, distributed
activation across the brain with lower intensity heatmaps and
maximum attention weights of 0.58 in the parietal cortex in CN
class. The visualization shows diffuse green-blue patterns indicating
preserved brain architecture, where the model confidently classifies
healthy tissue with 89.0% accuracy by detecting normal structural
integrity and age-appropriate brain morphology as shown in
Figure 8.

4.4 Discussion of results

The results suggest that the models require improvements in
data representation, class balancing, or model architecture to
enhance overall performance. In the following subsections, there
reasons for diminishing

are many aspects for the

performance outcomes.
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4.4.1 Data challenges

The Complexity of sMRI Images where a persistent gap exists
between image-level labels and the pixel-level predictions necessary
for the classification in sMRI images. This disparity arises from
variability in imaging protocols, the presence of overlapping atrophy
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in pivotal cerebral regions and the need for elevated sensitivity and
specificity (Kumari and Singh, 2023).

Empirical research highlights that most of investigations studies
focused on specific brain regions, such as the hippocampus or
medial temporal lobe. These areas frequently demonstrate
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overlapping structural changes, thereby complicating accurate
diagnosis. Moreover, sMRI images in dementia suffer from a lack of
high-quality annotations, as the labeling process necessitates costly
and time-consuming expertise from radiologists. Additionally,
Variability in MRI scanning protocols adds noise and inconsistency,
which hampers the generalizability of deep learning models across
diverse and heterogeneous datasets (Lecun et al, 2015).
Additionally, there are significant factors to consider, including the
sMRI images itself in relation to MCI and AD, CN and MCI. The
images of individuals appear to share notable similarities. In certain
instances, a singular imaging examination may display features
indicative of AD yet be labeled as MCI (Zhang et al., 2013; Lombardi
et al., 2020). This variation arises from the necessity to account for
incorporate supplementary variables that should be considered,
such as standardized clinical diagnostic assessments including the
Mini-Mental State Examination (MMSE) (Arevalo-Rodriguez et al.,
2015) and the educational qualifications of the patients.

4.4.2 Model limitations

Other aspects related to deep neural networks focused on CNNs,
ViT and capsule Network. These models established dominated
medical image analysis but face numerous limitations when applied
to sMRI images such as these studies (Carcagni et al., 2023; Herzog
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and magoulas, 2021; Qiu et al., 2022; Luo et al., 2017; Murugan et al.,
2021; Taheri gorji and Kaabouch, 2019; Torghabeh et al., 2023; Li
et al., 2019; Tomassini et al., 2023; Mohammed et al., 2021; Sai et al.,
2023; Pradhan et al, 2021; Kim et al, 2022). The hierarchical
architecture of CNN may lead to loss of fine-grained information due
to pooling layers while it is outstanding at capturing local spatial
details (Guo et al.,, 2018). Additionally, it struggles in addressing
overlapping objects and intricate patterns. Thereby, leading to
diminished robustness in sSMRI image classification. ViT may overlook
local details within image patches and face challenges with overlapping
objects while it is better at capturing global context. Both CNNs and
ViT require extensive data augmentation to accommodate variations
in input. Capsule networks is an advanced architecture that has
limitations such as parameter redundancy, high computational costs,
and instability during training due to the dynamic routing algorithms
(Lalonde et al., 2024; Afshar et al., 2019). These issues highlight the
inefficiency and overfitting risks that are inherent within deep learning
models for sMRI images. Moreover, studies achieving high accuracy
often suffer from data leaks, where training, validation, and testing
datasets are not adequately separated, resulting in inflated performance
metrics that fail to generalize to new data. Data leakage occurs
resulting in enabling shuffle criteria when training and testing the
data. Thereby, one sMRI image appeared once in training dataset and

frontiersin.org


https://doi.org/10.3389/fnins.2025.1638022
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Bayahya et al.

10.3389/fnins.2025.1638022

MCI Classification

Grad-CAM Visualization

FIGURE 7
Explainable Al for MCI classification.
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other in validation or testing dataset. Numerous studies used wrong
techniques to split data properly. It introduces biases that compromise
the reliability of their outcomes (Zhang et al., 2024).

4.4.3 Clinical relevance

International guidelines recommend sMRI primarily for
utilization of non-degenerative causes rather than to affirm AD or
MCI diagnoses (Baltes et al., 2014). This situation needs integrating
efficient analyzing techniques, such as deep neural networks,
computer vision algorithms with clinical testing methods for improved
diagnostic accuracy.

4.4.4 Implications for future research

Future research should innovate methods that bridge the gap
between pixel-level detection and image-level analysis as well as
addressing the variability and complexity of sMRI images.

4.4.5 Summary of discussion

To mitigate the limitations identified in the research study and
enhance the performance of the model, the author recommended a
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holistic methodology that includes improved preprocessing pipelines,
advanced data augmentation strategies, hybrid architectural designs,
optimized hyperparameter tuning, and stringent data segmentation
protocols. Additionally, segmentation of regions of interest (ROI) will
be integrated to focus on relevant anatomical structures, diminishing
background noise and improving feature extraction.

5 Conclusion

This study Investigated a multi-model deep neural network
architectures that utilized multiple pre-trained CNNs, CapsNets,
Multimodal Attention, 3D CNN, and ViT to evaluate the
performance of image classification in slices structural sMRI. The
methodological pipeline encompassed several stages, commencing
with data preprocessing, followed by local feature extraction using
CNNs, hierarchical spatial representation modeling through
CapsNets, and global feature refinement using ViT, followed by
evaluation matrices mechanism. Despite the theoretical strengths
of this state-of-the-art multi-model, the performance results were
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underperforming and unoptimized. The models struggled to
generalize effectively, potentially due to issues such as biased classes,
overlapping between images diseases as shared some similarities.

The findings highlight the need for additional refinement in
multi-model deep learning models. Subsequent future research
should prioritize and focus on improving data preprocessing and
augmentation techniques, exploring more effective computer vision
methods fusion with deep neural networks. Then optimizing
hyperparameters to achieve better performance among models.
While the results were below expectations, this study provides
valuable insights into the challenges of using traditional and advanced
neural network architectures and sets the stage for future exploration
in multi-model deep learning frameworks.
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