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Introduction: Deep neural network architectures have transformed medical imaging, 
particularly in structural MRI (sMRI) classification. However, existing state-of-the-art 
deep learning models face limitations in preprocessing and feature extraction when 
classifying dementia-related conditions. This study addresses these challenges 
by evaluating multiple architectures for dementia diagnosis.
Methods: This study assessed eight pretrained convolutional neural networks 
(CNNs), a Vision Transformer (ViT), a multimodal attention model, and a capsule 
network (CapsNet) for classifying three classes: dementia, mild cognitive 
impairment (MCI), and healthy controls. The dataset, obtained from ADNI, was 
balanced across classes and comprised 10,000 training images per class, 3,000 
validation images per class, and 850 test images per class. Classification was 
performed using 2D slices from sMRI scans. Performance metrics included 
accuracy, specificity, and sensitivity.
Results: Among all evaluated models, the 3D-CNN and multimodal attention 
models achieved the highest performance, with accuracies of 84% and 86%, 
specificities of 83% and 86%, and sensitivities of 84% and 86%, respectively. 
The ViT and CapsNet models achieved 100% sensitivity for Alzheimer’s disease 
(AD) but demonstrated low precision for AD (43%) and 0% for other classes, 
indicating class imbalance effects. All models showed reduced performance 
and bias toward certain classes.
Discussion: The findings highlight the limitations of current architectures in 
sMRI dementia classification, including suboptimal feature extraction and 
class-specific biases. While certain models, such as multimodal attention 
and 3D-CNN, performed better overall, precision and generalization remain 
challenges. Future work should focus on improved data representation through 
advanced computer vision methods and architectural modifications to enhance 
diagnostic accuracy and computational efficiency.
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1 Introduction

Multiple deep neural network architectures have fundamentally 
transformed the domain of medical imaging, presenting unprecedented 
capabilities for the classification in Magnetic Resonance Imaging 
(MRI) (Lecun et  al., 2015). In the context of neuroimaging, the 
identification of structural anomalies, particularly those associated 
with conditions such as Mild Cognitive Impairment (MCI), requires 
the employment of models that can handle the intricate, overlapping, 
and frequently subtle distinctions in brain structures (Bayahya 
et al., 2021).

Despite the prevalent dominance of traditional models such as 
convolutional neural networks (CNNs) and their variations in medical 
image investigation filed, a notable insight is that the specific 
architectural design is not the primary factor in attaining optimal 
performance outcomes. For instance, in challenges like MCI, numerous 
researchers utilize the same architectural framework but obtain 
different outcomes. A frequently disregarded consideration that 
domain-specific expertise is related to the task at hand can provide 
significant advantages beyond simply augmenting the number of layers 
within a CNN (Litjens et al., 2017). Despite that CNNs is better at 
capturing local spatial details acquisition owing to their hierarchical 
architecture and has ability to learn features autonomously, negating 
the necessity for prior domain knowledge or manual segmentation 
(Litjens et al., 2017). However, CNNs fall short due to the complexity 
of the data, the variability inherent in imaging protocols, and the 
necessity for elevated sensitivity and specificity (Lecun et al., 2015).

Recent advancements in artificial intelligence (AI) have 
introduced promising deep learning architectures, such like Vision 
Transformer (ViT) and Capsule Networks (CapsNets) for medical 
imaging classification. However, these models remain largely 
unexamined for dementia diagnosis using sMRI. CapsNets have not 
yet been implemented to sMRI-based dementia diagnosis. Although 
ViT has demonstrated across various medical imaging. However, it is 
conspicuous absence of studies that have applied specifically to sMRI-
based dementia classification.

This study claims that classification of dementia using deep 
learning requires more sophisticated integration methods and 
preprocessing techniques, such as focusing on Regions of Interest 
(ROI) with advanced preprocessing techniques. Traditional batch 
processing architectures may not efficiently capture fine-grained 
patterns in medical imaging data, necessitating an improved approach 
for feature extraction and classification. This study investigates 
CapsNets and ViT to examine new possibilities for leveraging global 
context in brain imaging. Additionally, this study examined CNN 
models to evaluate and classify sMRI images for dementia patients. 
Based on high-performance criteria of pretrained CNN models, this 
study selected 8 out 20 models and elicited from a different family of 
CNN. In addition, it selected baseline and 3dCNN to compare with 
pretrained models. Finally, it applied multimodal attention model to 
enhance accuracy. This study focuses on evaluating the accuracy, F1, 
Precision, specificity and sensitivity of Dementia. The objectives of 
this study are:

	•	 To develop a multi-model deep learning AI framework that 
integrates CNNs, Vision Transformers, multimodal attention, 
and Capsule Networks for sMRI image classification in 
dementia detection.

	•	 To explore and compare multiple CNN families and select the 
best-performing pre-trained models from each family.

	•	 To assess the impact of CNN families, ViT, multimodal attention 
and CapsNets on sMRI classification for demented and 
MCI patients.

	•	 To classify patients into MCI, demented and healthy control 
categories using CNN family models, ViT, multimodal attention 
and CapsNets.

	•	 To evaluate each model based on performance metrics, including 
sensitivity, accuracy, specificity, F1, Precision and others for 
each model.

	•	 To investigate whether these models can achieve high 
performance without applying additional computer vision 
techniques or argumentation factors.

This article presents the Literature Review, Methodology, 
Performance Evaluation and Discussion of Results, followed by the 
Conclusion and References. Each section provides a structured 
analysis, ensuring a comprehensive understanding of the research.

2 Literature review

Recent advancements in AI and machine learning ML have been 
propelled by new neural network architectures. Among these, 
Convolutional Neural Networks have become fundamental in 
computer vision. It excels in image classification, object detection, and 
segmentation due to their ability to effectively capture spatial 
hierarchies in visual data. The hierarchical structure of CNNs allows 
for automatic feature extraction, essential for handling high-
dimensional inputs.

The core components of a CNN encompass convolutional layers, 
pooling layers, nonlinear activation layers, and fully connected layers. 
Typically, an image undergoes preprocessing prior to fed into the 
network via the input layer. Subsequently, it is processed through a 
sequence of alternately arranged convolutional and pooling layers, 
culminating in classification using fully connected layers (Chen et al., 
2021; Zhang et al., 2019; Zhang, 2019).

Additionally, ViT and CapsNet are new models that represent a 
paradigm shift in visual recognition, challenging the dominance of 
CNNs. Capsule Networks offer an innovative strategy to address the 
shortcomings of CNNs. It preserves the spatial hierarchies and 
handles the viewpoint variations. It constitutes a type of deep neural 
network engineered to capture complex spatial hierarchies and 
interrelations within data. It enhances image recognition and 
segmentation. Unlike CNN, CapsNets use capsules as vectors that 
encapsulate attributes such as size, position, and orientation of entities 
within an image (Chen et al., 2021; Zhang et al., 2019). ViT is an 
advanced architecture dedicated to image classification. ViT 
architecture employs self-attention mechanisms to capture global 
relationships across image patches (Bazi et al., 2021). It consists of an 
embedding layer, an encoder, and a classifier head. The model 
processes input images by partitioning them into non-overlapping 
patches, where each patch is treated as a token.

A lot of studies investigate the use of MRI brain scans in the 
identification and diagnosis of dementia. Dementia is delineated by 
severe symptoms such as memory impairment and cognitive decline 
it affects more than 47 million people worldwide with estimations 
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anticipated 131 million by 2050, as reported in the World Alzheimer 
Report 2016.

The early diagnosis of MCI is crucial as it facilitates the recognition 
of those at risk for Alzheimer’s disease (AD) and leads to more 
effective treatment, thereby potentially postponing the progression of 
the disease. To address these issues, numerous investigations have 
employed deep neural networks such as (Carcagnì et al., 2023; Herzog 
and Magoulas, 2021; Qiu et al., 2022; Luo et al., 2017; Murugan et al., 
2021; Taheri gorji and Kaabouch, 2019; Torghabeh et al., 2023; Li 
et al., 2019; Tomassini et al., 2023; Mohammed et al., 2021; Sai et al., 
2023; Pradhan et al., 2021; Kim et al., 2022). Carcagnì et al. (2023) 
objected to improve the automated classification of dementia using 
MRI by evaluating three advanced deep convolutional models 
(DenseNet, ResNet and EfficientNet). Experiments were executed on 
the Alzheimer’s Disease Neuroimaging Initiative1 (ADNI) and OASIS 
datasets, with various benchmarks were established by altering the 
quantity of slices per subject derived from 3D voxels. The findings 
demonstrated that deeper ResNet and DenseNet architectures 
outperformed on performance in comparison to their less 
complex equivalents.

Recent developments in deep learning technologies have 
significantly influenced the domains of medical imaging, healthcare 
data analytics, and clinical diagnostics. Herzog and Magoulas (2021) 
concentrate on early diagnosis and progressive dementia through the 
utilization of MRI classification with transfer learning architectures. 
CNN serves as the foundational model, with fully connected layers 
employing either Support Vector Machines (SVMs) or SoftMax 
functions for the classification task.

Furthermore, Murugan et  al. (2021) generated a high-
resolution disease probability maps model and precise visual 
representations of individual AD risk, despite the challenge of class 
imbalance in datasets such as those provided by Kaggle and ADNI 
dataset. It achieved impressive results, with 95.23% accuracy. 
However, the suggestion that certain pre-processing procedures 
may be deemed unnecessary.

Moreover, enhanced diagnostic methodologies are crucial for the 
identification of cognitive impairments caused by various factors. Qiu 
et al. (2022) introduced a deep learning framework that systematically 
diagnoses dementia using a combination of clinical data, 
neuropsychological assessments, and functional assessments such as 
CNN. The progression toward multimodal approaches emerged from 
limitations of single-modality methods. It pioneered multimodal 
classification combining structural MRI, FDG-PET, and CSF 
biomarkers, achieving improved diagnostic accuracy over individual 
modalities (Qiu et al., 2022). However, the models tend to default to 
an AD diagnosis in instances of mixed dementia, inadequately 
address atypical forms of AD, and lack the capability distinguish 
between different types of MCI. In addition, Luo et  al. (2017) 
introduced an automated algorithm for the recognition of AD using 
CNN deep neural learning on 3D brain MRI data. It is achieving a 

1  Data used in preparation of this article were obtained from the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/). 

As such, the investigators within the ADNI contributed to the design and 

implementation of ADNI and/or provided data but did not participate in analysis 

or writing of this report.

sensitivity of 1.0 and a specificity of 0.93. However, limitations 
include the necessity for more efficient data processing methodologies 
and CNN architectures.

Another investigation conducted by Torghabeh et  al. (2023) 
proposes for the implementation of CNN architecture to classify AD 
severity utilizing MRI scans. The objective is to leverage pre-trained 
CNNs as a decision support mechanism for medical physicians, 
facilitating the anticipation of dementia severity.

The prediction of the transition from MCI to AD dementia is 
challenging. MRI serves a crucial role in diagnosing MCI and AD by 
facilitating the examination of both brain structure and function. 
Taheri Gorji and Kaabouch (2019) discuss MCI, as a transitional 
phase that exists between normative cognitive function and AD. The 
investigation employed a deep learning approach, specifically 
CNN. The model achieved high accuracy rates 93%, particularly in the 
discrimination between CN individuals and those with 
LMCI. However, the study’s limitations include the small sample size 
and indicate the necessity for subsequent research and refinement of 
the CNN-based analytical framework. Furthermore, Li et al. (2019) 
developed and validated CNN deep learning model utilizing MRI 
images. The model achieved a concordance index (C-index) of 0.762 
when evaluated on 439 ADNI testing subjects and 0.781 on 40 subjects 
from the Australian Imaging Biomarkers and Lifestyle (AIBL) study. 
This methodological approach offers a cost-effective and accurate way 
to predict AD progression. However, the study was limited to the 
hippocampal region and initial datasets, with potential improvements 
expected from applying the method to whole-brain MRI data, 
incorporating longitudinal data, and addressing the continuum of 
AD progression.

Moreover, AD represents a widely prevalent neurodegenerative 
disorder, with its initial phase, MCI, characterized by subtle alterations 
in the subcortical structures of the temporal lobe. Timely identification 
through neuroimaging techniques such as brain MRI is of paramount 
importance yet presents considerable difficulties. Tomassini et  al. 
(2023) introduced CLAUDIA, a decision-support system based on 
Convolutional Long Short-Term Memory (ConvLSTM) architecture, 
designed for diagnosing AD from 3D MRI images.

Numerous investigations have examined the challenges of 
diagnosing dementia and AD. These challenges are caused by 
neurodegeneration and compromised neuronal communication in 
the brain. In light of the current lack of effective treatments, the 
significance of early diagnostic measures is crucial to prevent 
disease progression. Mohammed et  al. (2021) conducted an 
evaluation of diverse machine learning algorithms. Their analysis 
evaluated two CNN models (ResNet-50 + SVM and AlexNet 
+SVM). The random forest algorithm achieved the highest accuracy 
at 94%, accompanied by robust precision, recall, and F1 metrics. 
The study’s limitation lies in the need for additional research to 
substantiate these findings.

Pradhan et  al. (2021) presented a model that integrates 
DenseNet169 and VGG19 architectures. It analyzed MRI brain images 
and aimed to identify both the presence and severity of AD.

Moreover, Sai et al. (2023) investigated the application of CNN 
and transfer learning for early detection by utilizing AlexNet. It 
trained on specific datasets, to extract pertinent features for 
the classification.

Another investigation by Kim et al. (2022) concentrated on the 
CNN-based VUNO Med-DeepBrain AD (DBAD). IT compared and 
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evaluated Alzheimer’s diagnosis accuracy with medical experts using 
MRI data. It achieved an accuracy of 87.1%, specificity of 85.5% and 
sensitivity of 93.3%. However, it is essential to acknowledge the 
necessity for further expert validation and the potential trade-offs in 
processing speed that may arise when enhancing the algorithm which 
have been recognized as limitations.

Despite the significant progress achieved in the application 
of CNNs, CapsNets, and ViTs for the analysis of MRIs images, 
prior investigations reveal inconsistencies in findings attributable 
to various methodological gaps. These include an absence of 
comprehensive explanations concerning data preprocessing 

techniques, a lack of transparency in the optimization of 
hyperparameters and fine-tuning strategies. As well as unclear 
data partitioning for training, validation, and testing, which 
affects generalization and reproducibility. In light of these 
identified deficiencies, this study aims to develop an advanced AI 
framework integrating CNNs, CapsNets, multimodal attention, 
and ViTs within a well-structured preprocessing and evaluation 
pipeline. The proposed methodology optimized model tuning 
and rigorous validation, ultimately improving the reliability and 
reproducibility of AI-driven medical image classification 
and analysis.

FIGURE 1

Framework of multiple model.
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3 Methodology and framework

AI-based computational approaches are presented in the multiple 
CNNs, ViT, 3D CNN, multimodal attention, and CapsNets models 
as generalizable approaches as shown in Figure 1. This study proposed 
multiple methods combining high-performance criteria of pretrained 
CNNs, baseline CNN, 3D CNN, ViT, multimodal attention, and 
CapsNets models as shown in Figure 1. Consequently, this study 
conducted a comparative analysis of sensitivity, accuracy, specificity, 
F1, Roc curve, and others associated with the classification of medical 
imaging utilizing sMRI in the context of early-stage MCI.

This research primarily focuses on pre-trained image 
classification models but can be  extended the capability to 
be  adapted for various other computer vision detection. 
This study employed Timm stands for PyTorch Image 
Models. This library, developed in Python, provides a large 
collection of pre-trained deep learning models tailored for 
computer vision applications, particularly in image classification. 
It is widely used for its efficiency, diversity of models, and its 
seamless integration into PyTorch environments. It provides more 
than 900 pre-trained models crossing a multitude of architecture. 
The models have been trained utilizing popular datasets such as 
ImageNet, CIFAR, among others. Additionally, this study 
was conducted on GPU A1000. It Includes utilities designed for 
the fine-tuning of pre-trained models to accommodate 
custom datasets.

This study conducted on 3D CNN, CapsNet, ViT, multimodal 
attention, and eight different family models of CNN which 
includes: ConvNeXt, DenseNet, EfficientNet, ECA ResNet, 
MobileNetV4, GC ResNet, ResNet-AA, skresnet34, baseline CNN, 
as shown in Figure 1 and Table 1. In the following subsections the 
pretrained models and performance criteria.

3.1 Pre-trained models

There are eight different pretrained models in this study, in the 
following Table 1 the brief of them.

3.2 Performance criteria

This study utilities designed for the fine-tuning of pre-trained 
models to accommodate custom datasets. In the following the 
performance criteria are steps for electing the models:

	 1	 Define Performance Criteria—Before selecting the optimal 
model, it is clarifying the criteria for assessing “optimal 
performance.” Common criteria might include: Top-1 
Accuracy, Top-5 Accuracy, Error Rate (Lower is better), 
Parameter Count, Performance Score (Higher is better), 
Normalized Scores (norm_top1, norm_top5).

	 2	 Filter Key Attributes—Concentrate on important columns 
which are top1, top5, param_count, performance score.

	 3	 Normalize Data—Normalize all criteria to a uniform scale 
(0–1) to make more straightforward comparisons.

	 4	 Rank Models—Assess and rank models based on prioritized 
criteria which are—Primary Focus where use performance score 

or top1 accuracy as the deciding determinant. Tie-Breakers: Use 
top5 accuracy and lower param_count for enhanced efficiency.

	 5	 Evaluate Trade Offs—A model with the highest performance 
may possess a higher parameter count or entail substantial 
computationally expensive costs. In contexts with limited 
resources, considering smaller models such as mobilenet or 
densenet is advisable.

	 6	 Choose the Best Model and Analysis of Data—Based on the 
data presented, sorting models by performance score in 
descending order and evaluating the specifics of the models. 
Finally, choose the models based on highest performance 
score, Best Accuracy, and Best Trade-off between high accuracy 
with lower param_count.

3.3 Data collection and preprocessing

This study collection and preprocessing of sMRI image datasets 
pertinent to MCI and dementia. It conducted using public resources 
available in ADNI. This investigation focused on ADNI1, 1.5 T after 
completed 1 year, 2 year, and 3 year such as ADNI1Complete1Yr1.5 T. It 
denotes the first phase of the project (Mueller et  al., 2005; Miller 
et al., 2024).

This study focused on a High-Resolution Hippocampus Scan 
(High-Res HIPPO scan) in the coronal orientation (Henschel et al., 
2022). It constitutes advanced imaging modality technique designed 
to provide comprehensive structural and functional analyses of the 
hippocampus; a pivotal critical region integral to memory processes. 
This region is recognized as one of the initial sites to show signs of 
degeneration in Alzheimer’s disease. HIPPO scans provide enhanced 
spatial resolution, allowing the accurate visualization of hippocampal 
subfields, including the CA1, CA3, and dentate gyrus. These scans are 
especially advantageous for detecting subtle changes in hippocampal 
volume and structure that signify the early neurodegeneration. 
Clinically, HIPPO scans are essential for the detection of early 
hippocampal atrophy, and a hallmark of AD progression. 
Consequently, these scans hold significant importance for diagnosing 
and tracking diagnosis and assessment of neurodegenerative 
disorders. It has monitored structural changes over time in demented, 
MCI patients at various stages of cognitive decline (Mueller 
et al., 2005).

This methodology will ensure data heterogeneity, thereby 
facilitating a universal assessment of the model’s adaptability and 
resilience within the domain of image classification. Due to improve 
the generalizability of the model across a multitude of datasets. This 
study adopts a range of strategic methodologies. This investigation 
integrated data augmentation specifically engineered to synthetically 
enhance the variability of our training dataset.

	 1	 Slicing and Standardizing Images for Preprocessing (Lim 
et al., 2023):

Image slicing, particularly in the coronal orientation, is an 
essential procedure in analyzing medical images especially for MCI 
and AD diagnosis. Coronal orientation refers to slicing the brain along 
planes that are perpendicular to horizontal planes, providing a view 
from anterior to posterior. This orientation holds critical importance 
for effectively capturing hippocampal structures and other key regions 
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that are affected in neurodegenerative disorders. This study considers 
10 different slicing images for each image brain in each patient. 
Consequently, this constructed 2D grid Images as shown in Figure 2. 
After slicing process, standardization methods are employed to 
preprocess the images to ensure homogeneity and reduce variability 
caused by different imaging conditions (Ashburner and Friston, 2000; 
Klein et al., 2009).

3.4 Workflow of methodology

The procedure begins with loading the 3D medical image, as 
formatted in NIfTI and DCOM (Lim et al., 2023). It utilized libraries 
such as Nibabel to enable structured handling of volumetric data. 
Subsequently, the coronal slices are extracted by indexing the second 
axis of 3D image that provides cross-sectional views for the 
examination of hippocampal structures (Ashburner and Friston, 2000; 
Klein et al., 2009) as shown in Figure 2.

To enhance image quality, normalization is applied by scaling 
pixel values to defined range of [0, 1], which ensures consistent 
intensity levels. This is succeeded by standardization, where pixel 
intensities are adjusted to attain zero mean and unit variance. It 
minimized the impact of variations in image acquisition. The 
maintenance of spatial consistency is critical in coronal slices. Hence, 
it employed spatial alignment approaches such as rigid or affine 
transformations to ensure anatomical coherence across samples. Then, 
data augmentation applied to improve the robustness of models using 
rotation, flipping, or elastic deformations while preserving the 
coronal orientation.

This study amalgamates multiple slices (10 different slices) as 2D 
grid images of a brain image (Litjens et al., 2017) as shown in Figure 2. 
The slices spaced 2 mm apart into a singular visual representation 
arranged side-by-side within a two-dimensional plane of size 
512 × 512 as shown in Figure 2. It provides a concise yet elucidative 
depiction. This method effectively captures the spatial relationships 
between adjacent slices. It is imperative for preserving contextual 

FIGURE 2

2D grid slices images of the brain: (a) AD, (b) CN, and (c) MCI.
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insights regarding structural changes within the brain. This approach 
is computationally efficient as it permits the use of standard 
two-dimensional models rather than more complex 3D architecture 
(Zhu et  al., 2019). It mitigates processing overhead. Moreover, 
homogenous image dimension ensures consistency throughout the 
dataset. It simplifies preprocessing and model training workflows. 

Compact visualization is storage efficient. It supports standard data 
augmentation techniques like scaling and rotation, which bolster the 
robustness of the model (Ronneberger et al., 2015). This technique 
significantly enhances the model’s capacity to discern subtle yet 
essential characteristics pertinent to disease identification and 
progression assessment (Zhu et al., 2019; Ronneberger et al., 2015). 

TABLE 1  Pre-trained models based high performance criteria.

Models Features PyTorch image models (Timm) library

ConvNeXt (Lecun et al., 2015; Liu et al., 2022) four stages: Stage 1 (96 channels, 3 blocks), Stage 2 (192 channels, 3 blocks), Stage 3 (384 channels, 27 blocks), 

and Stage 4 (768 channels, 3 blocks).

(DenseNets-201) (Bayahya et al., 2021; Huang et al., 2017) Dense Blocks, Transition Layers, Growth Rate, Global Feature Concatenation. and Classifier. It has a 1 × 1 

convolution and a 2 × 2 average pooling layer to down-sample spatial dimensions.

EfficientNet-B5 (Litjens et al., 2017; Chen et al., 2021; 

Cubuk et al., 2018; Tan and Le, 2019)

The number of channels progressively increasing: 32, 40, 64, 112, 192, 320, respectively, form (Stage 2) to (Stage 

7). The final stage employs a 1 × 1 convolution followed by a global average pooling layer.

Skresnet34.ra_in1k (Zhang et al., 2019; Li et al., 2019) It enhances the traditional ResNet-34 framework by integrating Selective Kernel (SK) units.

Ecaresnet269d.ra2_in1k (Bazi et al., 2021; Carcagnì et al., 

2023; Herzog and magoulas, 2021; He et al., 2016; Wang et 

al., 2020; Wightman et al., 2021).

It has a three-layer configuration. Each layer using a 3 × 3 convolution and replacing the original single 7 × 7 

convolution.

Mobilenetv4_conv_aa_large (Qiu et al., 2022, 2025) It has the Universal Inverted Bottleneck (UIB) including ConvNext, Feed Forward Network (FFN), Inverted 

Bottleneck (IB), and a novel Extra Depth wise (ExtraDW) variant.

Gcresnet50t.ra2_in1k (Luo et al., 2017; Cao et al., 2019) It is the integration of Global Context (GC) attention, modified tiered stem, and residual bottleneck blocks.

Resnetaa101d.sw_in12k_ft_in1k (Herzog and magoulas, 

2021; Murugan et al., 2021; Taheri gorji and Kaabouch, 

2019; He et al., 2019)

It has a three-layer stem that integrates 3 × 3 convolutions with pooling.

baseline CNN-resnet18 (Carcagnì et al., 2023) Simple 2D, Uses standard CNN layers (Conv2D, MaxPool, Dense)

3D CNN (Zhu et al., 2019) 3D convolutional architecture with dual attention mechanisms (spatial + channel), Processes volumetric brain 

data through multi-block 3D convolutions with batch normalization

multimodal attention (Qiu et al., 2022) separate imaging and clinical pathways using cross-modal attention. It applied description value for each label 

CN, MCI, AD

FIGURE 3

Training, testing and evaluation mechanism of pre-trained multiple models.
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FIGURE 4 (Continued)
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This integrating variability across slices into a single image will 
effectively enhance the model’s capacity. It discerns subtle yet essential 
characteristics pertinent to AD identification and progression analysis 
(Litjens et al., 2017; Esteva et al., 2019).

By adhering to these preprocessing protocols, especially 
emphasizing the coronal orientation, this study captured the essential 
hippocampal and medial temporal lobe structures. This approach is 
especially advantageous for the early detection of MCI and AD. It 
ensures high-quality and standardized input data for robust clinical 
and deep neural learning analyses, thereby enhancing 
diagnostic accuracy.

Finally, the processed 2D grid slices images feed into deep neural 
learning pipelines for further classification (Ashburner and Friston, 
2000; Klein et al., 2009). As shown in Figure 3 the concepts of training, 
validation, and testing sets are fundamental in the development and 
evaluation of multimodal in deep neural networks. These datasets are 

utilized to train, fine-tune, and evaluate the models’ ability to 
generalize new, unseen data. The validation dataset assumes a crucial 
function in model tuning and optimization. The testing dataset is 
employed after the model has been fully trained to compute its 
performance. Evaluate the model’s performance utilizing standard 
image classification metrics, such as accuracy, precision, specificity, 
sensitivity, recall, F1-score, and other computational efficiency. 
Compare these results as baseline models and state-of-the-art 
approaches with each other’s to demonstrate the advantages of models 
in sMRI image classification. Deploy the model in real-world sMRI 
classification scenarios to assess its adaptability and efficiency in 
practical environments settings. Collect feedback and performance 
metrices of data sets to refine and optimize the model. Finally, analyze 
the results to assess the impact of each model, and report findings, 
including any limitations and recommendations for future research in 
image classification.

FIGURE 4

Confusion matrix for multi-classification models.
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4 Performance evaluation and 
discussion of results

This work utilized a variety of deep neural network architectures 
that measured various metrices of the algorithms’ classification of the 
patients into three distinct categories: dementia, MCI, and healthy 
control. It utilized a range of evaluation metrics, including precision, 
F1, specificity, accuracy, sensitivity, Mean Squared Error (MSE), the 
ROC curve, as well as macro-average and micro-average, to assess the 
efficacy and performance of these architectures’ models (Bayahya 
et al., 2022). The results are generalized through the application of a 
pretrained large model, alongside data augmentation techniques 
applied to the images. The different Models utilized for the 
classification of patients included in Table 1.

In the next subsections, a comprehensive explanation of the 
training and testing phases, along with an in-depth discussion of the 
performance results of the deep neural models and the learning curves 
(Bayahya et al., 2022).

4.1 Training, validation and testing phase

During the training phase, this architecture implemented 10 
distinct pretrained deep neural classifier models to train the dataset. 
The procedure commenced with splitting the data into a 70% training 
dataset, which was not shuffled with validation and test datasets. A 
20% validation dataset remained unshuffled with respect to the other 
data. A 10% testing dataset that was similarly not shuffled with 
validation and test datasets as shown in Figure 3. The system was 
trained on 10,000 images for each class, validated on 3,000 images for 
each class and tested on 850 images in each class which are dementia, 
MCI, healthy control from more than 1,000 real patients. The 
experiment setup was 1,000 epochs with batch size 8, 10 workers, 
learning rate 0.001 for all experiments. All these hyperparameters 
selected based on high performance criteria on pre-trained models as 
discussed in section 3. Subsequently, each model was constructed 
according to a specific architectural framework. The models were 

thereafter subjected to validation and testing procedures to ascertain 
their effectiveness through various performance metrics, including 
sensitivity, specificity, accuracy, MSE, F1 score, micro-average, macro-
average, and the ROC curve (Bayahya et al., 2022).

4.2 Evaluation performance of deep neural 
model

Following the completion of the testing phase, different evaluation 
metrics were used to assess the efficacy of the deep neural models, 
including accuracy, sensitivity, specificity, F1 score, precision, the 
ROC curve, MSE, as well as micro-average and macro-average. The 
evaluation metrics were derived from a Confusion Matrix (CM), 
which provides a comprehensive summary of the prediction results 
associated with a classification task as shown in Figure  4. This 
investigation computed the evaluation metrics for each distinct class 
of the multi-classification model (normal = 0, dementia = 1, MCI = 2). 
It gains insights into precise prediction results. Additionally, the CM 
illustrates both the actual number of classes and the predicted number 
of classes (Bayahya et al., 2022).

In Table 2, various neural network architectures utilize multiple 
performance metrics. The models compared include Baseline_CNN, 
Enhanced_3D_CNN, MultiModal_Attention, CapsuleNet, 
ConvNeXt, DenseNet, ECAResNet, EfficientNet-B5, GCResNet, 
MobileNetV, ResNetAA, SKResNet, and ViT. The performance 
metrics include accuracy, precision, sensitivity (recall), F1 score, 
balanced accuracy, mean squared error (MSE), and ROC AUC (both 
micro and macro) (Bayahya et al., 2022). Accuracy measures the ratio 
of correctly classified samples. MultiModal_Attention and 3D_CNN, 
revealed the highest accuracy of (0.84) and (0.86). However, 
ConvNeXt showed the lowest accuracy (0.3414), signifying a 
diminished effective generalization compared to others. Another 
metric is Precision that reflects the proportion of true positive 
predictions among all positive predictions (Bayahya et al., 2022). 
MultiModal_Attention once again excelled with 0.86 precision, 
showed its efficacy in minimizing false positives. Conversely, 

TABLE 2  Testing metrics to determine the performance of the multimodal deep neural network.

Models Acc Prec Sen Spec F1 BAcc MSE R Mic RMacro

capsule_net 43 1 33 67 20 50 124 57 50

convnext 34 11 33 67 17 50 66 51 50

densenet 39 43 45 71 35 58 117 54 58

ecaresnet 51 50 52 75 50 63 104 63 6

efficientnet_b5 47 47 46 7 46 59 107 60 59

gcresnet 50 50 49 74 48 61 94 63 61

mobilenetv 35 25 44 71 30 57 149 51 57

resnetaa 45 45 46 71 44 59 107 59 59

skresnet 45 42 51 73 41 62 107 59 62

vit 43 14 33 67 2 50 124 57 50

Baseline_CNN, 73 72 73 86 72 73 40 77 77

3D_CNN 84 83 84 92 84 84 24 86 86

MultiModal_Attention 86 86 86 93 86 86 20 88 88

Acc = Accuracy%, Pre = Precision%, Sen = Sensitivity%, Specificity% = Spe, Balanced Accuracy = BAcc, ROC Micro% = RMic, ROC Macro% = RMac.
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CapsuleNet and ViT both achieve only 0.1444 precision, indicating 
poor precision.

Another most important metric is Sensitivity (Recall) that 
assesses the ability to identify true positive instances among all 
actual positives. MultiModal_Attention led highlighting strong 
recall capabilities with 0.86 than other models whereas ConvNeXt, 
CapsuleNet, and ViT shared the lowest recall. Consequently, 
balanced accuracy accounts for class imbalance by averaging 
sensitivity and specificity showed MultiModal Attention and 3D_
CNN performed best achieving than others with scores of 0.84 and 
0.86, respectively. Conversely, ConvNeXt, CapsuleNet, and ViT all 
scored 0.5000, indicating no discriminative ability beyond random 
guessing. The F1 score is another metric that provides a harmonic 
means of precision and recall. MultiModal Attention attained the 
highest F1 score (0.867) whereas CapsuleNet and ViT scored the 
lowest (0.2015).

The specificity of a model measures its ability to correctly identify 
negative cases (i.e., those that do not belong to the target class) 
(Bayahya et al., 2022). The specificity value of CapsuleNet and ViT 
Specificity is 67%, which means that these models correctly identify 
67% of the negative cases. This value may indicate that models’ 
sensitivity Bias and struggle with distinguishing subtle features 
necessary to improve specificity. Other models such as ECAResNet, 
GCResNet, and SKResNet achieved higher specificity and better at 
distinguishing between negative and positive cases. In contrast, the 
best models are Multimodal Attention and 3D CNN with 0.92 and 
0.93, respectively.

MSE measures the average squared deviation between predicted 
and actual values where the lower values being preferable (Bayahya 
et al., 2022). Multimodal Attention achieved the lowest MSE (0.20) 
whereas MobileNetV recorded the highest MSE (149).

A shown in Table 2, ROC AUC (Micro and Macro) evaluates the 
model’s capability to distinguish between classes (Bayahya et al., 2022). 
Multimodal Attention excelled in both micro and macro-ROC (0.88) 
whereas CapsuleNet, ConvNeXt, and ViT reached the lowest 
macro-ROC AUC (0.5000), indicating no better performance than 
random chance.

In conclusion, Multimodal Attention emerged as the best effective 
model, followed by 3D_CNN and baseline CNN. In contrast, 
CapsuleNet and ConvNeXt require significant improvements to 
enhance performance in practical applications. It is worth noting that 
even the models that provided superior results compared to others are 
still ineffective and inadequate in their ability to distinguish between 
various types of Alzheimer’s disease and health controls.

As shown in Table 3, the performance metrics associated with 
CapsNet, Convnext and ViT revealed significant imbalances in the 
model’s predictive capabilities across different classes (CN, MCI, and 
AD). CN and MCI classifications in CapsNet and ViT recorded the 
precision, recall, and F1-score at 0.00, indicating that the model was 
unable to accurately identify any instances pertaining to these 
categories. As well as AD cases in Convnext and Mobilenetv4.

The AD class in capsule net and ViT as well as MCI class in 
convnext, recorded the recall score is 1.0. It means the model correctly 
identified all AD classes and MCI classes related to each model, 
respectively. However, the precision of AD in capsule net and ViT is 
0.43 as well as MCI in convnext is 0.34, indicating a high rate of false 
positives. In addition, Multimodal Attention is 0.94 in NC and AD as 
well as 0.92 AD in 3D CNN. The other models showed different 

TABLE 3  Classification testing metrics to determine the performance of 
AI models.

Capsulenet Precision Recall F1-
score

Support

CN 0% 0% 0% 447

MCI 0% 0% 0% 677

AD 43% 100% 60% 859

Macro AVG 14% 30% 20% 1,983

Weigh AVG 18% 43% 26% 1,983

convnext

CN 0% 0% 0% 447

MCI 34% 100% 50% 677

AD 0% 0% 0% 859

Macro AVG 11% 33% 16% 1,983

Weight AVG 11% 34% 17% 1,983

densenet201

CN 32% 60% 42% 447

MCI 42% 67% 52% 677

AD 54% 5% 9% 859

Macro AVG 43% 44% 34% 1,983

Weight AVG 45% 39% 31% 1,983

ecaresnet269

CN 47% 44% 45% 447

MCI 54% 72% 62% 677

AD 49% 38% 43% 859

Macro AVG 50% 51% 50% 1,983

WeightAVG 50% 51% 50% 1,983

Efficientnet_b5

CN 46% 39% 43% 447

MCI 48% 49% 49% 677

AD 46% 49% 47% 859

Macro AVG 47% 46% 46% 1,983

WeightAVG 47% 47% 47% 1,983

gcresnet50t

CN 48% 28% 35% 447

MCI 49% 72% 58% 677

AD 52% 44% 48% 859

Macro AVG 50% 48% 47% 1,983

Weight AVG 50% 50% 49% 1,983

mobilenetv4

CN 29% 86% 43% 447

MCI 45% 44% 44% 677

AD 0% 0% 0% 859

Macro AVG 24% 43% 29% 1,983

WeighAVG 22% 34% 25% 1,983

resnetaa101d

CN 46% 38% 42% 447

(Continued)
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performance values in precision, recall, and F1-scores but still need 
performance improvement.

The macro-average values in CapsNet, convnext, ViT and 
mobilenetv4 as shown in Table 3 reflect the poor performance across 
all classes equally. However, the other models recorded better scores 
rating greater than 0.40 across all classes but still need more 
improvement in performance. The weighted average in capsule net, 
mobilenetv4 and convnext, account imbalances for all class and shows 
slightly better recall (43, 34, and 34%, respectively) but still low 

precision and F1-score. Additionally, all other models recorded better 
scores rating from 44 to 51% but still need more improvement. The 
best was in Multimodal Attention and 3D CNN rating score from 
83 to 89%.

The ROC curve for multiclass data serves as a metric for 
evaluating the accuracy of rating and classification test outcomes. 
This methodology is employed to determine the optimal cut-off value 
that facilitates the generation of a curve in the unit square. It is a 
graphical plot for multiclass datasets that measures the accuracy of 
the rating while concurrently illustrating the results of the diagnostic 
tests. ROC is created by plotting the true positive rate (TPR) in 
relation to the false positive rate (FPR) at various threshold 
parameters settings. The minimal acceptable value for the area under 
the curve is established at 0.5. As shown in Figure 5 and Table 3, 
Micro Average AUC in most models are slightly higher at range from 
0.51 to 0.57 but still close to random. The Diagonal Line of ROC 
curves associated with all classes overlap with it. Consequently, it 
represents random performance. Multimodal Attention, 3D CNN 
have Micro Average AUC higher than others model up to 86% but 
others still close to random.

4.3 Grad-CAM visualization

Grad-CAM visualization reveals intense activation hotspots 
concentrated in the hippocampus and temporal lobe regions, with 
attention weights reaching 0.95 in AD memory-critical areas. The 
heatmap shows pronounced red zones indicating severe atrophy 
patterns, where the model focuses 91.2% of its discriminative 
power on detecting tissue loss and ventricular enlargement 
characteristic of advanced neurodegeneration as shown in 
Figure 6.

Grad-CAM analysis displays moderate activation patterns with 
0.72 attention weights in the hippocampus and emerging temporal 
lobe changes at 0.68 intensity in MCI class. The visualization shows 
orange-yellow heatmap regions indicating early pathological 
changes, where the model detects subtle structural alterations with 
78.1% confidence, representing the transitional state between 
normal aging and Alzheimer’s disease progression as shown in 
Figure 7.

Grad-CAM visualization demonstrates balanced, distributed 
activation across the brain with lower intensity heatmaps and 
maximum attention weights of 0.58 in the parietal cortex in CN 
class. The visualization shows diffuse green-blue patterns indicating 
preserved brain architecture, where the model confidently classifies 
healthy tissue with 89.0% accuracy by detecting normal structural 
integrity and age-appropriate brain morphology as shown in 
Figure 8.

4.4 Discussion of results

The results suggest that the models require improvements in 
data representation, class balancing, or model architecture to 
enhance overall performance. In the following subsections, there 
are many aspects for the reasons for diminishing 
performance outcomes.

TABLE 3  (Continued)

Capsulenet Precision Recall F1-
score

Support

MCI 46% 67% 55% 677

AD 41% 31% 35% 859

Macro AVG 45% 45% 44% 1,983

WeightAVG 44% 45% 43% 1,983

skresnet34

CN 43% 68% 53% 447

MCI 46% 77% 58% 677

AD 36% 6% 11% 859

Macro AVG 42% 50% 40% 1,983

WeightAVG 41% 44% 36% 1,983

ViT

CN 0% 0% 0% 447

MCI 0% 0% 0% 677

AD 43% 100% 60% 859

Macro AVG 14% 33% 20% 1,983

WeightAVG 18% 43% 26% 1,983

Baseline CNN

CN 63% 74% 68% 447

MCI 67% 73% 70% 677

AD 85% 72% 78% 859

Macro AVG 72% 73% 72% 1,983

WeightAVG 74% 73% 73% 1,983

Enhanced_3D_CNN

CN 86% 83% 85% 447

MCI 72% 83% 77% 677

AD 92% 83% 88% 859

Macro AVG 84% 83% 83% 1,983

WeightAVG 84% 83% 83% 1,983

MultiModal_Attention

CN 94% 87% 90% 447

MCI 78% 89% 83% 677

AD 94% 87% 90% 859

Macro AVG 89% 88% 88% 1,983

WeightAVG 89% 88% 88% 1,983
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FIGURE 5 (Continued)
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4.4.1 Data challenges
The Complexity of sMRI Images where a persistent gap exists 

between image-level labels and the pixel-level predictions necessary 
for the classification in sMRI images. This disparity arises from 
variability in imaging protocols, the presence of overlapping atrophy 

in pivotal cerebral regions and the need for elevated sensitivity and 
specificity (Kumari and Singh, 2023).

Empirical research highlights that most of investigations studies 
focused on specific brain regions, such as the hippocampus or 
medial temporal lobe. These areas frequently demonstrate 

FIGURE 5

Receiver operating characteristic (ROC) curve analysis of multiple model in DNN.
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overlapping structural changes, thereby complicating accurate 
diagnosis. Moreover, sMRI images in dementia suffer from a lack of 
high-quality annotations, as the labeling process necessitates costly 
and time-consuming expertise from radiologists. Additionally, 
Variability in MRI scanning protocols adds noise and inconsistency, 
which hampers the generalizability of deep learning models across 
diverse and heterogeneous datasets (Lecun et  al., 2015). 
Additionally, there are significant factors to consider, including the 
sMRI images itself in relation to MCI and AD, CN and MCI. The 
images of individuals appear to share notable similarities. In certain 
instances, a singular imaging examination may display features 
indicative of AD yet be labeled as MCI (Zhang et al., 2013; Lombardi 
et al., 2020). This variation arises from the necessity to account for 
incorporate supplementary variables that should be considered, 
such as standardized clinical diagnostic assessments including the 
Mini-Mental State Examination (MMSE) (Arevalo-Rodriguez et al., 
2015) and the educational qualifications of the patients.

4.4.2 Model limitations
Other aspects related to deep neural networks focused on CNNs, 

ViT and capsule Network. These models established dominated 
medical image analysis but face numerous limitations when applied 
to sMRI images such as these studies (Carcagnì et al., 2023; Herzog 

and magoulas, 2021; Qiu et al., 2022; Luo et al., 2017; Murugan et al., 
2021; Taheri gorji and Kaabouch, 2019; Torghabeh et al., 2023; Li 
et al., 2019; Tomassini et al., 2023; Mohammed et al., 2021; Sai et al., 
2023; Pradhan et  al., 2021; Kim et  al., 2022). The hierarchical 
architecture of CNN may lead to loss of fine-grained information due 
to pooling layers while it is outstanding at capturing local spatial 
details (Guo et  al., 2018). Additionally, it struggles in addressing 
overlapping objects and intricate patterns. Thereby, leading to 
diminished robustness in sMRI image classification. ViT may overlook 
local details within image patches and face challenges with overlapping 
objects while it is better at capturing global context. Both CNNs and 
ViT require extensive data augmentation to accommodate variations 
in input. Capsule networks is an advanced architecture that has 
limitations such as parameter redundancy, high computational costs, 
and instability during training due to the dynamic routing algorithms 
(Lalonde et al., 2024; Afshar et al., 2019). These issues highlight the 
inefficiency and overfitting risks that are inherent within deep learning 
models for sMRI images. Moreover, studies achieving high accuracy 
often suffer from data leaks, where training, validation, and testing 
datasets are not adequately separated, resulting in inflated performance 
metrics that fail to generalize to new data. Data leakage occurs 
resulting in enabling shuffle criteria when training and testing the 
data. Thereby, one sMRI image appeared once in training dataset and 

FIGURE 6

Explainable AI for AD classification.
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other in validation or testing dataset. Numerous studies used wrong 
techniques to split data properly. It introduces biases that compromise 
the reliability of their outcomes (Zhang et al., 2024).

4.4.3 Clinical relevance
International guidelines recommend sMRI primarily for 

utilization of non-degenerative causes rather than to affirm AD or 
MCI diagnoses (Baltes et al., 2014). This situation needs integrating 
efficient analyzing techniques, such as deep neural networks, 
computer vision algorithms with clinical testing methods for improved 
diagnostic accuracy.

4.4.4 Implications for future research
Future research should innovate methods that bridge the gap 

between pixel-level detection and image-level analysis as well as 
addressing the variability and complexity of sMRI images.

4.4.5 Summary of discussion
To mitigate the limitations identified in the research study and 

enhance the performance of the model, the author recommended a 

holistic methodology that includes improved preprocessing pipelines, 
advanced data augmentation strategies, hybrid architectural designs, 
optimized hyperparameter tuning, and stringent data segmentation 
protocols. Additionally, segmentation of regions of interest (ROI) will 
be integrated to focus on relevant anatomical structures, diminishing 
background noise and improving feature extraction.

5 Conclusion

This study Investigated a multi-model deep neural network 
architectures that utilized multiple pre-trained CNNs, CapsNets, 
Multimodal Attention, 3D CNN, and ViT to evaluate the 
performance of image classification in slices structural sMRI. The 
methodological pipeline encompassed several stages, commencing 
with data preprocessing, followed by local feature extraction using 
CNNs, hierarchical spatial representation modeling through 
CapsNets, and global feature refinement using ViT, followed by 
evaluation matrices mechanism. Despite the theoretical strengths 
of this state-of-the-art multi-model, the performance results were 

FIGURE 7

Explainable AI for MCI classification.
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underperforming and unoptimized. The models struggled to 
generalize effectively, potentially due to issues such as biased classes, 
overlapping between images diseases as shared some similarities.

The findings highlight the need for additional refinement in 
multi-model deep learning models. Subsequent future research 
should prioritize and focus on improving data preprocessing and 
augmentation techniques, exploring more effective computer vision 
methods fusion with deep neural networks. Then optimizing 
hyperparameters to achieve better performance among models. 
While the results were below expectations, this study provides 
valuable insights into the challenges of using traditional and advanced 
neural network architectures and sets the stage for future exploration 
in multi-model deep learning frameworks.

Data availability statement

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.
loni.usc.edu/). As such, the investigators within the ADNI contributed 
to the design and implementation of ADNI and/or provided data but 
did not participate in the analysis or writing of this report. A complete 

listing of ADNI investigators can be found at: https://adni.loni.usc.
edu/data-samples/.

Ethics statement

The studies were conducted in accordance with the local legislation 
and institutional requirements. Written informed consent for 
participation in this study was provided by the participants’ legal 
guardians/next of kin. Written informed consent was obtained from the 
individual(s), and minor(s)’ legal guardian/next of kin, for the publication 
of any potentially identifiable images or data included in this article.

Author contributions

AB: Writing  – original draft, Investigation, Software, Formal 
analysis, Methodology, Conceptualization. FJ: Funding acquisition, 
Resources, Writing – review & editing. HB: Methodology, Writing – 
review & editing, Supervision. FE: Writing  – review & editing, 
Supervision. OT: Data curation, Visualization, Writing – review & 
editing. SA: Supervision, Writing – review & editing.

FIGURE 8

Explainable AI for CN classification.
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