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Motor imagery (Ml)-based brain-computer interfaces (BCls) offer a novel
method to decode action imagination. Our previous study demonstrated
that actions play a key role in causing individual differences. Cognitive EEG
signals showed a positive correlation with M, reflecting these differences and
providing a foundation for predicting suitable Ml actions for each individual.
This study aimed to propose a multi-domain graph convolutional network
(M-GCN) for predicting personalized MI action using cognitive data. The M-
GCN extracts time, frequency, and spatial domain features from cognitive tasks
to construct multi-domain brain networks using different EEG quantization
methods according to the characteristics of the three domains. Subsequently,
the M-GCN utilizes spectral GCN to learn the topology relationship between
EEG channels by analyzing functional connection strength. Finally, for each
action, the M-GCN can accurately map cognitive data to the corresponding Ml
action and output a personalized action for each subject. A subject-independent
decoding paradigm with leave-one-subject-out cross-validation is adopted to
validate the model on ten subjects. Compared to baseline and single-domain
models, the M-GCN achieves the highest prediction accuracy of 73.60% (p =
7.1 x 1073), improving by 15.87% (p = 2.0 x 10~%) and by 7.2% (p = 4.0 x
1074, respectively. This study proves that the M-GCN can precisely predict
personalized MI actions, reflecting the efficiency of the multi-domain feature
fusion based on cognitive tasks and GCN and offering a novel method for
personalized BCI.

KEYWORDS

brain-computer interface, graph convolutional network, feature fusion, brain network,
correlation between cognitive tasks and MI, Ml prediction

1 Introduction

Brain-computer interfaces (BCIs) are advanced and innovative systems that enable
direct communication between humans and external devices by utilizing data encoded
in the brain activity (Shi et al., 2024a,b). BCIs based on a motor imagery (MI) paradigm
(MI-BClIs) are widely used due to their active rehabilitation training nature and objective
outcomes (Zhao et al., 2024).
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However, there are significant individual differences among
different people, which increase the difficulty of MI-BCIs training
(Wang et al.,, 2004), reducing EEG decoding accuracy (ACC) and
significantly reducing the efficiency of the MI-BCIs system (Li
et al., 2024). Therefore, discovering an indicator that quantifies
individual differences in MI is crucial. In our previous study, it
was found that action is an important factor affecting individual
differences (Deng et al, 2024). Action refers to a type of
movement sequence involving the displacement of a limb in space,
typically associated with purposeful behaviors in daily life, such as
drinking water or writing. When participants are asked to imagine
action, characteristic neural patterns are elicited in relevant brain
areas. Event-related desynchronization (ERD) and event-related
synchronization (ERS) are typical manifestations of MI. The ERD
and ERS features could be translated into rehabilitation assistive
commands or interventions for re-establishing the rehabilitation
circuit between the individual and the external environment
(Shi et al., 2024a,b). Certain actions are easier for participants
to effectively imagine, thereby yielding better ERD/ERS and
enhancing decoding performance. Moreover, the classification
ACC distinguishing left- and right-hand MI is usually used as
an evaluation metric. The suitable action tends to exhibit more
pronounced discriminative ERD/ERS patterns between the left and
right hemispheric motor regions, which may be associated with
higher accuracy in left- and right-hand classification (Blankertz
et al, 2008; Lotte et al, 2018). A higher classification ACC
inherently indicates that the subject’s MI of the corresponding
action is more effective and easier for the decoding model to
recognize (Wolpaw et al., 2002). Thus, each action can be divided
into weak and strong types by individually evaluating their
performance. However, the most suitable action may vary across
participants; it is necessary to construct a machine learning model
to predict a suitable action for each participant.

Moreover, the lengthy experimental cycle of MI makes it
impractical to determine the personalized action solely based on
extensive MI experiments. Consequently, efficiently predicting the
personalized action for each subject remains a significant challenge.
A correlation between cognitive EEG and MI has also been found
in our previous study (Deng et al., 2024). Specifically, cognitive
EEG and MI evoked by the same action show a positive correlation.
More precisely, the amplitude of event-related potentials (ERP) and
the intensity of ERD/ERS during MI are higher under a suitable
action, while unsuitable actions reduce both. In contrast to MI,
cognitive tasks offer a more effective approach by testing subjects’
encoding and recollection of information over a short period,
thereby enabling the rapid identification of the most suitable MI
action without imposing an additional training burden. Based on
the above, analyzing subjects’ cognitive EEG to predict the most
suitable MI action is an effective approach.

Considering that cognitive task and MI are both brain
neural activities involving the collaboration of multiple brain
regions, building a network model can concretely quantify multi-
region EEG signals to achieve more precise prediction. A graph
convolutional network (GCN) is a practical approach to address
the problem mentioned above by applying the traditional discrete
convolution concept to the graph structure. The GCN enables the
extraction of spectral domain representations of different node
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feature information on the graph, fully capturing both the intrinsic
features of the nodes and their topological relationships. EEG
data are collected through multi-channel electrodes, where the
EEG of each channel represents the neural activity of the specific
brain region it covers. Thus, multi-channel EEG can be abstracted
into a graph composed of point sets and edge sets. GCN, as
a method suitable for analyzing multi-channel EEG, has been
widely applied in EEG predicting and decoding that involve the
collaboration of multiple brain regions. Du et al. (2022) proposed
a frequency band attention graph convolutional adversarial neural
network for emotion recognition, where channels within the
frontal, temporal, and central lobes are represented as nodes
in a graph, aiming to fully exploit the interactions between
these regions. Wang et al. (2021b) introduced an attention-based
multiscale convolutional neural network-dynamical GCN model to
achieve driving fatigue detection. Leng et al. (2024) constructed a
dense graph convolutional network to recognize stroke patients,
with a focus on data from 12 channels in the frontal lobe for
experimental analysis. Feng et al. (2021) proposed a GCN based on
functional connectivity for motor intention decoding, and the brain
function connection network was extracted from the 18 channels
in the frontal, parietal, and occipital lobes. Wang et al. (2025)
constructed a dynamic graph convolutional-capsule network that
employs whole-brain region channels for MI decoding. These
studies sufficiently demonstrate that the GCN is effective in EEG
prediction and decoding based on multi-brain coordination.
Current studies primarily employ single-domain features or
data as the input of GCN to decode the EEG, e.g., time domain,
frequency domain, and spatial domain features. Sun et al. (2021)
constructed an adaptive spatiotemporal GCN model based on
time-domain dynamic features for MI classification. Pan et al.
(2024) proposed a self-constructing graph neural network based
on spatial features for emotion recognition and consciousness
detection. Sun et al. (2022) introduced a complex network-based
GCN model for major depressive disorder detection based on
multi-band frequency domain features. However, the complexity
and diversity of the EEG make it impossible for a single domain
feature to capture the activity characteristics of the brain completely
and accurately. The research shows that the fusion of different
domains of features may better capture the intricate interactions
between different EEG features and improve the model’s ability
to handle complex, multi-dimensional data. Wang fused three
types of features—differential entropy, power spectral density,
and functional brain network—to integrate the frequency domain
and the spatial domain information of EEG signals for emotion
recognition (Wang et al., 2023). Sun et al. (2022) extracted the
PSD from six frequency bands and constructed multi-layer brain
networks for each frequency band to train the model using the fused
multi-frequency band brain networks for major depressive disorder
detection. Xu et al. (2022) proposed a modified GCN for MI
recognition by multiple features in the temporal-frequency-spatial
domain to further improve the recognition performance. Chen
et al. (2022) proposed a method that integrates frequency-domain
features and brain connectivity features for cross-subject emotion
recognition. Wang et al. (2020) employed filter-bank common
spatial pattern and functional connectivity features to characterize
the MI for a more comprehensive capture of the underlying neural
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mechanisms. Therefore, constructing GCN models based on the
fusion of multi-domain features is a potential research direction.

Researchers usually adopt suitable brain synchronization
quantification methods based on distribution characteristics of
domain to construct brain network as input graph for GCN.
Commonly used brain synchronization quantification methods
include mutual information (Garn et al, 2015), phase locking
value (PLV) (Yan et al., 2024), Manhattan distance (MD) (Ponten
et al., 2007), Pearson correlation coefficient (PCC) (Yang and Li,
2025), and phase lag index (PLI) (Xu et al, 2022). Dasdemir
analyzed functional brain connectivity of positive and negative
emotions using the PLV based on frequency domain (Dasdemir,
2024). Shi utilized mutual information to measure the relationship
between EEG channels and a GCN model, capturing the topological
structure (Shi et al., 2024a,b). Wang established multiband
functional connectivity matrices using the PLI (Wang et al,
2021a). Xue et al. (2024) used the Pearson correlation coeflicient
to analyze the brain connectivity of time-series signals from
different channels. These examples fully illustrate the necessity
of constructing multi-domain brain networks for distribution
characteristics of different domains. Given this, integrating multi-
domain brain networks may enhance the representational power
of GCN models, leading to more precise personalized MI
action prediction.

This study proposes an M-GCN model to predict personalized
MI action. The M-GCN extracts time, frequency, and spatial
domain features from cognitive tasks to construct multi-domain
features, then constructs multi-domain brain networks by different
EEG quantization methods according to the characteristics and
distribution of different domains. Subsequently, the M-GCN learns
features of brain region collaboration based on the topology
connections of the brain network by spectral GCN. Finally, for
each action, the M-GCN can accurately map the cognitive data to
the corresponding MI action and output the personalized action
for each subject. A subject-independent decoding paradigm with
leave-one-subject-out cross-validation (LOSO-CV) is adopted to
validate the model on ten subjects. The proposed framework is
validated on ten participants and shows the highest prediction ACC
(73.60%, p = 7.1 x 107%). The above results prove that the M-
GCN can achieve precise prediction of personalized MI action.
Meanwhile, it also reflects that multi-domain feature fusion based
on cognitive task and GCN are effective computational methods
for personalized MI action prediction, providing a novel method
for personalized BCI.

2 Materials and methods

The framework design for M-GCN includes: (1) the
construction of the multi-domain brain networks from cognitive
data; (2) the building of the M-GCN to predict personalized
MI action. The overall structure of the study is illustrated in
Figure 1. Firstly, the cognitive data collected from previous studies
are used to extract time, frequency, and spatial domain features
to construct multi-domain features. Secondly, multi-domain
brain networks are constructed by different EEG quantization
methods according to the characteristics and distribution of
different domains. Subsequently, spectral GCN is utilized to learn
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features of brain region collaboration based on the topological
connections of the brain network. Finally, the M-GCN takes
output features as samples and classifies labels according to the
level of MI classification ACC to output the best performance
action for individuals. Furthermore, the model is validated on
ten participants using a subject-independent decoding paradigm
with LOSO-CV.

2.1 Data collection

2.1.1 Participants and acquisition device

A total of ten right-handed adults (three women, mean age =
24.3 £ 3.6 years) participated in this study (refers to S1-S10). The
EEG acquisition device used a NeuroScan system with a sampling
rate of 1,000 Hz. The 64 electrodes were arranged based on the 10-
20 International System. The binaural mastoids were referenced,
and channel AFz was grounded.

2.1.2 Experimental paradigm

The cognitive data and MI data used in this study were both
collected through the action observation-based delayed matching
posture task (AO-DMPT) paradigm (Deng et al, 2024). The
paradigm consists of a cognitive task and an MI task, as shown in
Figure 2. By presenting action information in distinct forms, the
two tasks enable the simultaneous collection of both cognitive and
MI data from a subject. Three actions from daily life—cutting a
ball with a knife (C-K), grasping a ball with fingers (G-F), and
writing lines on paper with a pen (W-P)—are selected for the
paradigm. Each action incorporates five postures for the left and
right hands, respectively. And each subject completed both tasks
for all three actions. For each action, both cognitive data and
MI data are simultaneously obtained. The cognitive EEG data are
employed to construct the input samples of the GCN. The MI
data are exclusively utilized to determine the ground truth labels
of each action, as MI data of each action represent the actual effect
of imagery, ensuring that the model correctly maps cognitive data
to the corresponding MI action.

2.1.2.1 Cognitive task

Firstly, the cognitive task provides the subject with six action
videos, including three left-hand postures and three right-hand
postures, to remember the action. Each video stimulus is displayed
once for 65, followed by a 3s interval before the next video.
Subsequently, 25 posture images extracted from the action videos
are shown as visual stimuli. The subject is asked to match visual
stimuli to memory by judging whether the posture has appeared in
the initial video. Each image lasts for 6 s to allow the subject to make
a judgment, and no image is repeated during the task. During this
phase, the subject needs to be asked to encode action information
and trigger memory to evoke cognitive EEG signals. For analysis,
a time window from 0.2 s before to 1.0's after the presentation of
the action image is selected as cognitive data. Since every subject
accomplishes three types of actions, the total trials for each subject
are 75. The cognitive data is used to construct the brain network,
which serves as the input to the M-GCN for the prediction of
personalized MI action.
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Spatial brain network

FIGURE 1
Framework of a multi-domain GCN model for predicting Ml actions.
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FIGURE 2
The schematic of the paradigm using C-K, G-F, and W-P daily action.

2.1.2.2 Ml task

The MI task repeatedly plays the action video to guide the
subjects to ML In the initial 0-2 s, a blank is displayed on the screen
to allow the subject to rest. In 2-3's, a white fixation cross appears
at the center of the screen. In 3-9s, an action video is played on
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the screen, accompanied by arrows indicating the corresponding
directions of the left and right hands in the video. The combination
of arrow and posture enables participants to perform MI from
the correct direction. This phase consists of a total of 80 trials.
During this phase, the subject needs to be guided to engage in
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autonomous imagery to generate MI signals, with the 6s period
after the presentation of each action video selected as MI data. Since
every subject finishes three types of actions, the total number of MI
data samples per subject is 240. The MI data are used for left- and
right-hand classification to determine the mean MI-ACC of each
action, which in turn defines the ground truth labels for each action.

This task involves identifying whether a given MI trial
corresponds to left-hand or right-hand motor imagery. It is
performed using a Common Spatial Pattern (CSP) and Deep Neural
Network (DNN) model on the MI data. The mean MI-ACC for
each action is used to define the ground truth label (strong or weak)
for that action.

2.2 Data preprocessing

2.2.1 Cognitive data preprocessing

Nineteen channels located near the supplementary motor area,
motor area, and visual areas (FZ, FC3, FCZ, FC4, C5, C3, C1, CZ,
C2, C4, C6, CP3, CP4, PO3, POZ, PO4, O1, OZ, O2) are selected
to analyze cognitive data. This study uses a time window of 1.2s
to intercept the EEG data of 0.2s before and 1s after the image
stimulus to analyze the cognitive data.

A third-order Butterworth bandpass filter from 0.5 to 20 Hz
is used to effectively preserve cognitive potentials while removing
high-frequency noise and ensuring accurate analysis of cognitive
responses. The average data of the first 0.2s is subtracted
for baseline calibration. An independent component analysis
algorithm was then applied to each channel and used to reduce
electrooculogram and electromyography artifacts. The last 1s
period is defined as the raw cognitive data. A multichannel EEG
signal X; of a single trial is used as an example to describe the
cognitive data after processing. Suppose that:

Xj=xj, h=1,2,...,19 t=12,...,1000 (1)

where j denotes the number of trials, i denotes the number of
channels in the EEG signal, and ¢ denotes the number of sample
points in each channel. From each subject, 75 two-dimensional
data vectors (19 x 1,000) can be obtained as input samples for
the M-GCN.

2.2.2 Ml data preprocessing

Twelve channels located near the supplementary motion area
(FC3, FCZ, FC4, C5, C3, Cl, CZ, C2, C4, C6, CP3, and CP4) are
selected to analyze MI data. The MI data is filtered using a fifth-
order Butterworth bandpass filter in the range of 8 to 30 Hz. This
range captures the sensorimotor rhythms, including both mu (8-
13 Hz) and beta (13-30 Hz) bands, which are relevant for MI-based
feature extraction. The classification of MI includes distinguishing
between left- and right-hand actions.

The feature extraction by CSP that is a spatially filtered feature
extraction method for classification tasks, aimed to extract the
spatial components of each class from raw EEG data. The specific
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formula can be found in Qiu et al. (2017). Thus, a total of 80
feature vectors can be obtained from 80 MI trials for each subject in
each action.

The DNN is used as a binary classifier to discriminate between
the left and right hands. The DNN trains neuron weights repeatedly
through forward propagation by setting multiple neurons in
different layers and calibrates neuron weights through back
propagation. The output of the DNN is expressed mathematically
as follows:

y=f(60) = fii(Wi_1fi—2 (-.f (Wix+ b) + b) (2)

where L represents the number of network layers and is set to
4; 0 represents the parameters, including the weights w and bias
b. w and b are randomly initialized, and the learning rate is set
to 0.05 and 0.01, respectively. Furthermore, the weight decay,
sparsity regularization, and proportion of DNN are 0.05, 4, and
0.05, respectively. The structure of DNN is 4-100-50-10-2. DNN
uses the feature vector after CSP extraction as input. The DNN
output is the classification of the left and the right hand. In this
study, a ten-fold cross-validation is adopted to yield an average
ACC. The 80 trials are divided into 72 training trials and 8 test trials,
with an equal number of left- and right-hand MI trials in each set.
The MI-ACC for different actions are used to evaluate the ground
truth label of each action, with higher ACC indicating a stronger
action, while the remaining actions are considered weak.

Therefore, for each action of each subject, the corresponding
sample constructed from cognitive data and its label determined
from MI data can be obtained, ensuring that the GCN is trained
on informative representations with reliable ground truth labels.
Each subject completes a total of 75 cognitive task trials. These trials
are classified into 25 strong action trials and 50 weak action trials
according to the MI classification ACC for the left and right hands.
The cognitive data from these trials are used as input samples for
the model, while the corresponding labels derived from the MI data
serve as the labels, enabling the model to learn the mapping from
cognitive data to the actual MI action.

2.3 Multi-domain brain network
construction

Brain networks constructed from cognitive data consist
of plenty of nodes and edges; 19 channels located near the
supplementary motor area, motor area, and visual areas are set
as nodes. Various EEG quantization methods according to the
characteristics of different domains are selected to determine the
edges. Cognitive data obtained during the cognitive task are used
to construct three types of brain networks: time domain, frequency
domain, and spatial domain networks.

2.3.1 Time domain brain network construction
Down-sampling is a widely used data dimensionality reduction
method, typically employed to reduce the sampling rate or data size
of a signal while preserving its key features. Thus, down-sampling
is applied only for the time domain feature extraction to obtain
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informative representations. Multiple down-sampling factors are
tested to evaluate their impact on model performance. A factor
of 40 is found to provide a balance between data reduction and
retention of relevant EEG information, enabling efficient training of
deep learning-based models without significant loss of ACC. Thus,
the data are averaged and down-sampled with a down-sampling
rate of 40, meaning that the retained data points are averages over
the nearest 40 data points. For each of the 19 channels, 40 points
could be derived, and a two-dimensional feature matrix (19 x 40)
can be obtained for each trial as a time domain feature.

For the time domain feature, the edges can be determined via
PCC. The PCC, a statistical method widely used to measure the
linear correlation between two variables, can be used to characterize
the EEG synchronization between two time series, the time domain
feature D; of a single trial is used as an example to show the
specific equation:

Sl (d, —dn)(d, — dn2)
@ - dn) S G, — )’

NE)

Whih2 = |

Where did, dflz are the time features vectors from the channel
hl and h2; T is the total number of time features on a channel,
Whih2 € [0, 1] can quantify the relationship between two channels
and assess the strength of their correlation; an adjacency matrix (19
x 19) can be obtained for each trial.

By combining the node feature matrix and the adjacency
matrix, the time domain brain network could be defined. Two
components of the brain network, the adjacency matrix A and the
node feature matrix x, together constitute the input for each trial to
the M-GCN model.

2.3.2 Frequency domain brain network
construction

The wavelet transform (DWT) is a Fourier transform-based
time-frequency analysis tool. The wavelet coefficients can represent
signal information in both the time and frequency domains. The
DWT can be expressed using the following Equation:

WGk = 30 e v () (4)

Where xj/ is a signal (sequence) of length n; wj’fk(n) is scaling
the wavelet function. Four levels of Daubechies wavelets are used to
decompose EEG into four band: 1-4 Hz, 4-8 Hz, 8-13 Hz and 13-
20 Hz. Furthermore, for the four frequency bands, the PSD features
are captured via the Welch method, a two-dimensional feature
matrix (19 x 4) can be obtained for each trial as frequency feature.

The PLV is an effective index used to quantify the phase
synchronization between two group of frequency features, which
is a typical method for analyzing brain functional connections. The
PLV of frequency features is defined as follows:

1 T
PLV = - ‘thl et (5)
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Where ¢ represents the phase difference, calculated between
channel hl and h2, and an adjacency matrix (19 x 19) can be
obtained for each trial. Thus, by combining the node feature matrix
and the adjacency matrix, the frequency domain brain network
is defined.

2.3.3 Spatial domain brain network construction

CSP, a widely used spatial filtering feature extraction algorithm,
is used to extract spatial distribution components. Its basic
principle involves diagonalizing matrices to identify a set of
optimal spatial filters for projection, which maximizes the variance
difference between the two types of signals, thereby obtaining
feature vectors with high discrimination.

Given the number of EEG channels 4, the number of samples
per channel ¢, the h by t matrix of EEG data of the strong
action, and the / by t matrix of EEG data of the weak action,
the CSP computes the n by n matrix W such that the normalized
variances: var(W;Strong) = 1- var(W;Weak). Where W; represents
the i row of W. By taking the rows of W for which those
variances are the closest to 0/1, one obtains the directions of optimal
discriminability through variance. Finally, the most discriminative
and non-redundant information could be extracted from the EEG
signal; a two-dimensional feature matrix (19 x 1) can be obtained
for each trial as a spatial feature.

The MD is a distance measurement method in mathematics and
computing. MD can provide a simple and computationally cheap
distance measurement method, which is suitable for dealing with
high-dimensional features to evaluate the degree of information
sharing between different CSP features. MD can be computed using
the equation:

Lhin2 = Isp1 — spal (6)

Where sy, s are the spatial features vectors from the channel
h1 and h2. Considering the large values of the MD, normalization
is necessary. To achieve this, we employ min-max normalization,
thereby mapping MD values into the [0, 1] range. The specific
equation is defined as follows:

x — min(x)
Xnormalized = ————— (7)
max (x) — min(x)

An adjacency matrix (19 x 19) can be obtained for each trial.
Thus, by combining the node feature matrix and the adjacency
matrix, the spatial domain brain network is defined.

Finally, for each trial of each subject, time-domain, frequency-
domain, and spatial-domain brain networks are obtained,
respectively, as inputs to the model.

2.4 Multi-domain graph convolutional
network prediction model

As shown in Figure 3, the M-GCN comprises five blocks: the
time domain GCN block (TDN)), the frequency domain GCN block
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Structure of a multi-domain graph convolutional network prediction model.
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(FDN), and the spatial (SDN) domain GCN block process brain
networks from the corresponding domain separately, learning the
functional connections between EEG channels via spectral graph
convolution (GC) layers, rectified linear unit (ReLU), and dropout.
The output block integrates multi-domain features through a fully
connected layer, normalizes them via batch standardization, and
classifies using SoftMax. The voting bloc determines the final action
based on majority votes. Additional model details are provided in
Table 1.

As depicted in Figure 3, for each input multi-domain brain
network, the time domain, frequency domain, and spatial domain
brain networks are input into the TDN, FDN, and SDN,
respectively. Each network is first processed through a GC layer
based on spectral GC.

Frontiersin Neuroscience

Assume that each input brain network is represented as a graph
G = {V, E, A, x}, where V represents the set of nodes with h
feature vectors, and E stands for the set of edges. A ¢ RS is a
weighted adjacency matrix that represents the connection strength
between two nodes, where S denotes the number of nodes in the
graph, corresponding to the number of EEG channels in the brain
network. A node feature matrix x ¢ R*/ is defined for each trial,
where f denotes the feature dimension of each node. The graph
Laplacian of G is defined in the following way:

L=D-A (8)

Where D ¢ RS*S is the degree matrix of G; each matrix entries
in D can be calculated by the equation:
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TABLE 1 Graph convolution network based on multi-domain brain
networks.

Module Type Parameters
(activation
function)

TDN Input 19.40
GC-TIME-1 32(ReLU) 19.32
Dropout-TIME 0.5 19.32
GC- TIME—2 16(ReLU) 19.16
Dropout-TIME 0.5 19.16
Global mean Mean value of each 16
pool-TIME node

FDN Input 19.4
GC-FRE-1 32(ReLU) 19.32
Dropout-FRE 0.5 19.32
GC-FRE—-2 16(ReLU) 19.16
Dropout-FRE 0.5 19.16
Global mean Mean value of each 16
pool-FRE node

SDN Input 19.1
GC-SPA-1 32(ReLU) 19.32
Dropout-SPA 0.5 19.32
GC-SPA-2 16(ReLU) 19.16
Dropout-SPA 0.5 19.16
Global mean Mean value of each 16
pool-SPA node

Output Concatenate - 16*3

block
Batch
standardization
SoftMax 2 2

The asterisk (%) indicates feature concatenation across the three domain branches (time,
frequency, and spatial), resulting in a combined feature dimension.

Dji = Zj Ajj )

where i and j denote the indices of nodes in the graph, each element
in the diagonal matrix D indicates the number of edges associated
with this node and the degree of performance of this node, i.e.,
the degree of the node. The normalized equivalent of L is given
as follows:

L=1-D:4AD: (10)
Where I ¢ RS*S is an identity matrix. The real symmetric
matrix L can be diagonalized as:

I=unUT (11)
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Where U ¢ RS*S represents a matrix of eigenvectors; A € RS*S
is a diagonal matrix whose elements are composed of eigenvalues
A1, A2se)s, respectively.

Assuming that a graph signal is x, the spectral graph
convolutional operation can be formulated as follows:

&x= Ugg(/\)UxTx (12)

Where gy represents a graph filter constrained by 6, gg(A) can
be calculated by the equation:

g(Al) -0
gm=1 (13)
0 - g(s)

Since directly decomposing the eigenvalues of L is very time-
consuming, K-order Chebyshev polynomials can be utilized to
approximate gy, which is calculated by the following equation:

K -
Gx~ Y OnTm(Ax (14)
Where T,,(A) is the m-order of the Chebyshev polynomial, and

the formula of A is as follows:

2N

A= -1 (15)

)hmax

Where Amax is the maximum eigenvalue of L. This calculation
ensures that the eigenvalue lies within [—1, 1], which is required
for the stable computation of Chebyshev polynomials. For the sake
of efficiency and computational ACC, the Chebyshev polynomial
order is set to 1 in spectral convolution. The propagation rule of
each convolutional layer in GCN is given as follows:

1 ~~_1

G = o(D2AD" 260 w0) (16)

Where G® and G™tD denote the input and output of the
(Dth graph convolution (GC) layer, respectively; wO represents the
parameter matrix of each layer; o is the activation function. In this
study, the ReLU function is adopted as o, defined as:

f (x) = max(0,x) (17)

The primary goal of ReLU is to introduce nonlinearity so
that neural networks can learn complex nonlinear features. To
capture hierarchical features across dimensions while preventing
overfitting, two GC layers with 32 and 16 hidden units, respectively,
are configured for each domain branch (TDN/FDN/SDN) to
progressively extract higher-level representations from the input
graphs. Each graph convolutional layer is followed by a dropout
layer to prevent overfitting and enhance model generalization.
A dropout rate of 0.5 is applied after each GC layer to
reduce overfitting. By randomly cropping a portion of neurons
during training, it effectively alleviates overfitting of features.
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TABLE 2 Evaluation matrix.

Predicted label

Weak action

Strong action

True label Strong action TP FN

Weak action FP N

Subsequently, a mean pooling operation is applied over all nodes
to aggregate their features and generate advanced features.

All learned features from the three branches are fed into the
output block, which is composed of a fully connected layer, a batch
standardization layer, and a SoftMax layer. The fully connected
layer integrates the features extracted by the TDN, FDN, and SDN;
the batch standardization layer normalizes the data based on the
mean and standard deviation to eliminate amplitude discrepancies
in the advanced features; and then the SoftMax layer outputs the
final binary prediction of whether the input cognitive data of each
trial corresponds to a “strong” or “weak” MI action for the subject.
This result is then passed to the voting bloc. During M-GCN
training, the learning rates and number of training epochs are set
to 0.001 and 1000, respectively. Empirical observations confirmed
stable training dynamics, with loss convergence typically achieved
by epoch 800.

Finally, the voting module conducts a vote on all the
discrimination results of a subject for the three actions. Specifically,
the module sequentially processes the cognitive data corresponding
to each action through the model, and this procedure is repeated
independently for each of the three actions. Then, the module
counts the number of “strong” predictions for each action and
compares these counts across the three actions. The action with the
highest number of “strong” predictions is selected as the subject’s
personalized MI action, assuming it achieves the best MI effect.

To evaluate the ability of the proposed model across different
individuals, the validation is performed on ten participants. A
subject-independent decoding paradigm by applying a LOSO-CV
is adopted to evaluate the generalization ability of the proposed
model. In the training phase, cognitive EEG data from all but one
subject are used as the model inputs, and the corresponding MI data
of these subjects serve to provide the ground truth labels. In the
testing phase, only the cognitive EEG data of the remaining left-out
subject are fed into the model, while their ground truth labels from
MI data are used solely for performance evaluation. The LOSO-CV
is repeated until every subject has been used once as the test set.

2.5 Evaluation metrics

2.5.1 Accuracy metrics

For binary classification, data can be classified into four
categories based on true and predicted values: true-positives (TP),
false-positives (FP), true-negatives (TN), and false-negatives (FN),
where positive denotes that the predicted action is consistent with
the real action and negative denotes the opposite. Table 2 shows the
evaluation matrix.

F1, sensitivity, specificity, and ACC are also commonly applied
to evaluate the performance of the model. The equations for them

Frontiersin Neuroscience

10.3389/fnins.2025.1637018

are as follows:

2TP

1l — (18)

2TP + FP + FN
Sensitivity = P (19)

ensitivity = TP+ EN

TN

Specificity = —— 20
pecificity L IN (20)

TP + TN
Accuracy = * (21)

TP + FP+ TN + FN

2.5.2 Kappa coefficient

The Kappa coeflicient is an index used to evaluate the
consistency and effect of a classifier. Consistency is whether the
predicted results of the model are consistent with the actual
prediction results (Difonzo et al., 2022). It is calculated as follows:

Kappa = Acctim_q;—pe (22)

(TP + TN) (TP + FP) + (FP + TN)(FN + TN)

(23)
(TP + FP + TN + FN)?

e

2.5.3 Clustering coefficient

For brain networks, the clustering coefficient is a key metric
used to measure the local connectivity and modular structure of
a network. Furthermore, the average of the clustering coefficients
of all n describes the density of all clusters in the entire network.
Its value ranges between 0 and 1. The larger the C, the more the
nodes in the network are clustered together, indicating a higher
local clustering within the network. The specific equation is defined
as follows:

1 h 1 h E;
[ R _ 24
=3 Zi:l Gi=5 Zi:l ki(k; — 1)/2 (24)

Where C; represents the clustering coefficient of channel I; E;
represents the number of neighboring nodes directly connected to
channel i k; is the degree of channel i.

2.6 Control models

To ensure a more comprehensive and fair comparison, this
study compares M-GCN with five baseline models. More details are
as follows:

Logistic regression (LR): A traditional linear model that
is often used as a baseline for classification tasks due
to its interpretability and effectiveness in modeling linear
relationships (Deng et al., 2024).
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EEGNet: A compact and efficient convolutional neural
network designed for EEG decoding, capable of extracting
spatial and temporal features from EEG signals effectively
(Cecotti and Graser, 2011).

Convolutional neural network (CNN): It can automatically
learn hierarchical features from raw data through
convolutional layers (Lawhern et al., 2018).

GCN-LSTM: A graph-based hybrid deep learning model
that combines GCN with long short-term memory (LSTM)
networks, enabling it to capture both the complex spatial
dependencies among EEG channels and the temporal
dynamics of neural signals (Gosala et al., 2025).

SAST-GCN: A segmentation adaptive spatial-temporal GCN
based on the spatial-temporal structure of multi-channel
EEG signals. It can effectively improve the recognition
dynamic connection

performance by reflecting the

relationship between EEG channels more accurately

(Lu et al., 2022).

3 Result

3.1 Accuracy analysis of distinguishing
strong and weak action

3.1.1 Accuracy with different models

The ACC, a crucial criterion in the field of BCIs, representing
the ratio of correctly detected trials to the total number
of trials, is utilized to verify the prediction performance of
models. The significance test method uses a P-value to represent
statistical significance.

This study implements personalized MI prediction for ten
subjects using different models separately. As shown in Figure 4,
the M-GCN outperforms five baselines, i.e., LR, EEGNet, CNN,
GCN-LSTM, and SAST-GCN. When trained by multi-domain
features, the M-GCN reaches the highest average prediction ACC
0f 73.60% (p = 7.1 x 1073), improving by 15.87% (p = 2.0 x 10™*)
compared to LR, by 9.47% (p = 1.3 x 1073) compared to CNN,
by 4.27% (p = 1.0 x 1073) compared to the EEGNet, by 1.60%
(p = 2.32 x 1072) compared to the GCN-LSTM, and by 3.06%
(p = 4.65 x 1072) compared to the SAST-GCN. This means that
GCN can better capture the intricate interactions between different
EEG features from multi-domain features and effectively improve
the performance of personalized MI action prediction.

3.1.2 Accuracy with different domains

To validate whether the fusion of the multi-domain influences
the performance of personalized MI action prediction, this study
sets up four groups with varying domain features. Table 3 lists
their corresponding F1, sensitivity, specificity, and ACC. The
performance difference is also observed from our results. All
models show improved metrics and achieve the state-of-the-art
performance in the multi-domain setting. Comparing different
single-domain features in GCN, the multi-domain exhibits the
highest ACC of 73.60% (p = 7.1 x 1073). Meanwhile, multi-
domain features improve by 7.20% (p = 4.0 x 107%), 6.8% (p = 4.0
x 1073), and 5.73% (6.00 x 10™%) compared to the time, frequency,
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FIGURE 4
The prediction ACC for different models.

and spatial domains, respectively. It can also be seen that the multi-
domain feature performs well in terms of F1 score, sensitivity, and
specificity compared with the other single-domain features. The
results demonstrate that the fusion of different domains of features
may better capture the intricate interactions between different
EEG features and improve the performance of personalized MI
action prediction. In general, the prediction ACC decreases as the
number of domains in a multi-domain feature decreases. While the
advantage of the GCN is better capturing the intricate interactions
between different EEG features from multi-domain features, when
only single-domains are used like frequency domain feature, the
GCN still retains the highest ACC of 66.80%, improving by 11.73%
(p = 2.0 x 1073) compared to LR, by 3.47% (p = 4.36 x 1072)
compared to EEGNet, by 5.20% (p = 1.52 x 1072) compared to
the CNN, by 0.79% (p = 3.28 x 1072) compared to the GCN-
LSTM and by 2.80% (p = 3.2 x 10~%) compared to the SAST-GCN.
This indicates that even when limited to a single domain, the GCN
maintains a strong predictive capability by effectively leveraging
the intrinsic structure of EEG features. Therefore, the M-GCN is
demonstrated to be a generalization model that can use single-
domain features to achieve personalized MI action prediction.

3.2 Confusion matrices and kappa
coefficient

Confusion matrices and the kappa coefficient are utilized
to verify the predicted consistency of the model. Figure 5A
shows the confusion matrices of the six models for multi-
domain features, arranged from top to bottom. The confusion
matrices include the predictions for the categories of strong
action and weak action, and the number of correct predictions
is indicated on the diagonal. Compared with the LR, EEGNet,
CNN, GCN-LSTM, and SAST-GCN. M-GCN shows higher TP
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TABLE 3 Performance metrics for different domains.

10.3389/fnins.2025.1637018

Model Domain F1 Sensitivity Specificity ACC
M-GCN Multi-domain 0.66 0.76 0.72 73.60%
GCN Time domain 0.59 0.72 0.64 66.40%
Frequency domain 0.55 0.64 0.66 66.80%
Spatial domain 0.61 0.76 0.64 67.87%
LR Multi-domain 0.47 0.56 0.58 57.73%
Time domain 0.43 0.52 0.54 53.47%
Frequency domain 0.43 0.52 0.56 55.07%
Spatial domain 0.46 0.56 0.56 56.40%
EEGNet Multi-domain 0.60 0.73 0.65 68.00%
Time domain 0.53 0.68 0.56 61.73%
Frequency domain 0.57 0.72 0.59 63.33%
Spatial domain 0.52 0.64 0.60 66.53%
CNN Multi-domain 0.56 0.68 0.62 64.13%
Time domain 0.49 0.60 0.58 58.93%
Frequency domain 0.52 0.64 0.60 61.60%
Spatial domain 0.52 0.64 0.58 63.20%
GCN-LSTM Multi-domain 0.64 0.76 0.70 72.00%
Time domain 0.56 0.68 0.62 64.00%
Frequency domain 0.53 0.64 0.62 62.67%
Spatial domain 0.58 0.72 0.62 65.33%
SAST-GCN Multi-domain 0.63 0.74 0.69 70.67%
Time domain 0.53 0.64 0.62 62.67%
Frequency domain 0.54 0.64 0.64 64.00%
Spatial domain 0.57 0.72 0.60 64.00%

Ttalic values indicate the best performance achieved under the corresponding domain.

and TN. This indicates that M-GCN in this study outperforms
the other three methods in terms of prediction performance.
Meanwhile, Figure 5B lists the kappa coefficients with four
models, demonstrating their superior consistency and reliability in
prediction. The significant improvement in kappa indicates that
incorporating multi-domain features into GCN-based modeling
effectively captures the intricate relationships within EEG data,
resulting in improved predictive performance.

3.3 Consistency between predicted and
ground truth Ml actions

Action exhibits a consistent pattern of neural activity across
both cognitive and MI EEG signals. Although the specific strong
and weak actions may differ across participants, the model is still
able to achieve the precise prediction of suitable MI action.

As shown in Figure 6, the prediction results and the true
MI classification ACC of three actions are compared for each
participant, where the upper panel presents the prediction of the
M-GCN, and the lower panel illustrates the classification ACC of
left- vs. right-hand MI under different action conditions. First, for
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most participants, the predicted strong action is consistent with
the action that achieves the highest MI-ACC, indicating that the
proposed model can effectively capture the individual differences
and provide reliable personalized action selection. Furthermore,
there are individual differences in strong and weak actions, and
each subject exhibits a distinct pattern. Finally, although subjects 3
and 8 exhibit inconsistencies in the results, this can be attributed
to the small differences in MI-ACC among the three actions,
so that the M-GCN could not clearly distinguish the optimal
action, resulting in minor inconsistencies between the predicted
and true strong actions. Overall, these findings demonstrate that
the proposed M-GCN can effectively predict the most suitable MI
action for each subject, corresponding well with the action with
high ACC.

3.4 Multi-domain brain networks of
cognitive data

The brain shows different network patterns for information
processing in various situations. The brain network for different

actions may reflect the characteristics across distinct brain regions.
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Comparison of true Ml classification-ACC and prediction results
across different actions for each subject.

Figure 7 shows the normalized multi-domain brain network of the
cognitive data of strong and weak actions, derived from the average
of all subjects. Each subfigure in one subject represents one domain,
and the color denotes the connection strength value between pairs
of channels, with warm colors indicating stronger connections and
cool colors indicating weaker connections. As shown in the figure,
the networks perform various connectivity patterns in the different
domains differ noticeably in terms of density, distribution, and
regional interaction, which suggests that the brain network shows
different behavioral characteristics in the different domains.
Moreover, within the same domain, the brain networks exhibit
distinct topological structures between strong and weak action. In
the time domain, strong actions exhibit denser and more uniformly
high connectivity than weak actions, suggesting more synchronized
temporal activity. In the frequency domain, strong actions lead to
distinct block structures, indicating localized frequency coupling,
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while weak actions show sparse and scattered connectivity. In the
spatial domain, although both conditions display lower overall
connectivity, strong actions still show more defined interaction
patterns between channels than weak actions. Meanwhile, across
all domains, a pronounced difference (p-value < 0.01) in the
average clustering coefficient between strong and weak actions can
be observed. These findings collectively demonstrate that brain
networks derived from multiple domains can effectively represent
the brain states of different actions from a multi-domain view.

3.5 Hyperparameter studies

This study also explores the impact of various hyperparameters
on model performance to optimize the balance between
implementation efficiency and computational ACC. Three
order, down-

sampling rates, and dropouts—are chosen to study. Over the

key hyperparameters—Chebyshev polynomial

M-GCN, we evaluate DGN by considering Chebyshev polynomial
order, down-sampling rate, and dropout from sets [1; 2], [20;
40; 60], and [0.25; 0.5], which are utilized to evaluate M-GCN,
respectively. Table 4 presents the scheme of the hyperparameter
studies with corresponding decoding results.

The order of the Chebyshev polynomial shows a nuanced
effect. Compared with the second order, the first order yields a
slight improvement of approximately 1-2%. The down-sampling
factor demonstrates a significant impact on model performance. By
comparing Scheme 1-40-0.5 and Scheme 1-20-0.5, while keeping
all other hyperparameters identical, the ACC increased by 2.75%
(p = 5.0 x 107*). Meanwhile, the dropout rate exhibits a
consistent positive correlation with prediction ACC across different
configurations. Under identical conditions, the scheme with a 0.5
dropout achieves a higher ACC than that with a 0.25 dropout.
Among all parameter combinations, the configuration with the
first-order Chebyshev polynomial, a down-sampling factor of 40,
and a dropout rate of 0.5 achieved the best prediction performance.
Therefore, Scheme 1-40-0.5 was also adopted in the experiments of
this study to ensure optimal performance of M-GCN.
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4 Discussion

4.1 Brain connectivity and brain activation

Brain connectivity and brain activation provide a clear
assessment for understanding the neural mechanisms of the
cognitive effects of action. Some findings have demonstrated that
the strength of connectivity in brain networks reflects functional
coordination among task-relevant regions. Si et al. (2021) used
the ERP and functional brain network to investigate the neural
mechanism underpinning decision-making differences between
adults and adolescents. Li et al. (2021) utilized the connectivity
of the brain network to study how the brain reconfigures its
architecture from the resting state to the stimulus task in the
visual oddball task. Distinct connectivity patterns corresponding to
different actions are shown in the multi-domain brain network. In
both the time-domain and frequency-domain brain networks, the
electrodes in the sensorimotor cortex exhibit strong connectivity.
It demonstrates that strong actions are associated with enhanced
functional interactions between motor-related regions, including
the primary motor cortex and premotor areas, as well as
coordinated activity with frontal and visual regions.

Analysis of brain activation patterns revealed that different
actions elicited distinct activity in specific cortical regions. For
instance, strong actions were associated with greater activation
in motor-related areas, such as the primary motor cortex and
premotor cortex, while frontal and parietal regions were more
involved in cognitive processing related to action planning and
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TABLE 4 Scheme of the ablation experiment with corresponding
decoding results.

Scheme Order of Down- Dropout ACC
Chebyshev  sampling
polynomial factor
1-20-0.25 1 20 025 69.58%
1-20-0.5 1 20 0.5 70.85%
1-40-0.25 1 40 025 71.57%
1-40-0.5 1 40 0.5 73.60%
2-20-0.25 2 20 025 68.57%
2-20-0.5 2 20 05 69.20%
2-40-0.25 2 40 025 70.03%
2-40-0.5 2 40 0.5 72.64%

Bold values indicate the specific scheme that achieved the best performance (highest accuracy)
among all the configurations.

decision-making. These activation patterns align with the observed
connectivity differences, indicating that coordinated network
interactions and localized cortical activations jointly contribute
to individual differences in MI performance. Building on these
findings, future work could explore more complex or diverse
action paradigms and further refine brain network analysis
methods, such as incorporating additional network features or
advanced graph-based models, to capture richer inter-regional
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interactions. By doing so, it may be possible to better link
observed network connectivity patterns with the link between
cognitive task and MI, thereby improving both interpretability and
predictive performance.

4.2 Hyperparameter analysis of M-GCN

The design of hyperparameters plays a crucial role in
determining the performance of M-GCN. The first-order
Chebyshev polynomial not only achieves slightly higher ACC
but also improves computational efficiency by ~30% compared
with the second-order setting. This improvement arises because a
lower-order approximation effectively captures local neighborhood
interactions while avoiding the inclusion of redundant or
noisy higher-order information, thus enhancing computational
efficiency without compromising discriminative power. The
down-sampling factor also demonstrates a significant impact
on model performance. According to the Nyquist sampling
theorem, the sampling frequency must be at least twice the highest
frequency to avoid aliasing. Experimental results demonstrate
that a down-sampling factor of 40 effectively preserves ERP
components associated with cognitive potentials, thereby
enhancing the performance of M-GCN. Regarding dropout, a
rate of 0.5 demonstrates an optimal balance between mitigating
overfitting and preserving model capacity. This is reflected in
an increase in validation ACC compared to lower dropout rates,
indicating that moderate regularization is beneficial for stabilizing

M-GCN training.

5 Conclusion

This study proposes a multi-domain graph convolutional
network model for personalized MI action prediction to optimize
MI-BCIs performance used for active rehabilitation. The M-
GCN extracts multi-domain features to construct multi-domain
brain networks using different EEG quantization methods.
Moreover, the M-GCN utilizes spectral GCN to learn the topology
relationship between EEG channels by analyzing functional
connection strength, enabling personalized MI action prediction.
By comparing with other models, the proposed M-GCN achieves
state-of-the-art performance with 73.60% prediction ACC. This
indicates that the M-GCN has adequate prediction performance
and model generalization, thereby improving personalized motor
imagery prediction. Overall, this study proves that the M-GCN
can achieve precise prediction of personalized MI action, reflecting
that multi-domain feature fusion based on cognitive task and
GCN are effective computational methods for personalized MI
action prediction. This research could provide a novel method for
personalized BCI.

This study focuses on fusing multi-domain features and
decoding cognitive EEG for personalized MI action prediction,
while there is space for improvement. However, personalized
MI actions exhibit significant differences across multi-domains
among different subjects, which may impose challenges for
predictive performance across subjects. Meanwhile, the neural
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basis underlying brain networks derived from cognitive data
warrants further investigation. These networks may reflect the
coordinated activity among cortical regions, revealing the potential
links between cognitive processes and MI. Furthermore, the
relatively small number of participants in the current study also
limits the generalizability of the findings. The aforementioned
issues highlight the necessity of developing new approaches to
characterize the effects of actions on the brain. Therefore, strategies
such as transfer learning, brain network, and increasing the data
size are necessary in future studies.
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