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TFANet: a temporal fusion
attention neural network for
motor imagery decoding

Chao Zhang, Ya Liu and Xiaopei Wu*

Anhui University Laboratory of Intelligent Information and Human-Computer Interaction, Anhui
University, Hefei, China

Introduction: In the field of brain-computer interfaces (BCI), motor imagery (MI)
classification is a critically important task, with the primary objective of decoding
an individual’s MI intentions from electroencephalogram (EEG) signals. However,
MI decoding faces significant challenges, primarily due to the inherent complex
temporal dependencies of EEG signals.
Methods: This paper proposes a temporal fusion attention network (TFANet),
which aims to improve the decoding performance of MI tasks by accurately
modeling the temporal dependencies in EEG signals. TFANet introduces a
multi-scale temporal self-attention (MSTSA) mechanism that captures temporal
variation in EEG signals across different time scales, enabling the model to
capture both local and global features. Moreover, the model adaptively adjusts
the channel weights through a channel attention module, allowing it to focus
on key signals related to motor imagery. This further enhances the utilization of
temporal features. Moreover, by integrating the temporal depthwise separable
convolution fusion network (TDSCFN) module, TFANet reduces computational
burden while enhancing the ability to capture temporal patterns.
Results: The proposed method achieves a within-subject classification accuracy
of 84.92% and 88.41% on the BCIC-IV-2a and BCIC-IV-2b datasets, respectively.
Furthermore, using a transfer learning approach on the BCIC-IV-2a dataset, a
cross-subject classification accuracy of 77.2% is attained.
Conclusion: These results demonstrate that TFANet is an effective approach for
decoding MI tasks with complex temporal dependencies.

KEYWORDS

brain-computer interface, motor imagery, electroencephalogram, temporal
dependencies, multi-scale temporal self-attention, temporal depthwise separable
convolutional fusion network

1 Introduction

Brain-computer interfaces (BCI) technology allows the human mind to directly
connect with external systems, enabling novel forms of interaction (Wolpaw et al., 2002).
Motor imagery (MI) based on electroencephalography (EEG) has emerged as a prominent
and widely studied paradigm in brain-computer interface research. In BCI research,
this methodology has demonstrated cross-disciplinary applicability, with particularly
transformative impacts in medical applications (Altaheri et al., 2023). However, the limited
robustness against noisy EEG signals and the inherent variability of brain activity pose
significant challenges to the accurate interpretation of neural signals (Hsu and Cheng,
2023). These factors can lead to inconsistent output results, thereby compromising the
reliability and efficacy of MI-EEG decoding.

Traditional machine learning generally consists of two stages: feature extraction
and classifier design. Common feature extraction methods include various techniques,
such as wavelet transform (WT) (Zhang and Zhang, 2019), which decomposes signals
into time-frequency representations and enables analysis of signal characteristics within
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specific time intervals and frequency bands; principal component
analysis (PCA) (Abdi and Williams, 2010), which extracts the
main directions of variance in the data through dimensionality
reduction and is often used to remove redundant information;
and common spatial pattern (CSP) (Ramoser et al., 2000),
which improves classification accuracy by identifying spatial
features associated with different tasks or states. Based on CSP,
numerous variants have been developed to enhance decoding
performance, such as regularized common spatial pattern (RCSP)
(Lotte and Guan, 2010) and filter bank common spatial pattern
(FBCSP) (Ang et al., 2008). After feature extraction, feature
classification is typically performed, using machine learning
algorithms to identify user intent. Commonly used classification
algorithms include k-nearest neighbors (KNN) (Peterson, 2009),
which classify data by calculating the distance between input
samples and training set samples; support vector machines (SVM)
(Hearst et al., 1998), which separate data into different classes
by finding an optimal hyperplane; linear discriminant analysis
(LDA) (Balakrishnama and Ganapathiraju, 1998), which effectively
reduces dimensionality for classification, and naive Bayes (NB)
(Murphy, 2006) classifier categorizes data by calculating the
posterior probability for each class. Although these methods
perform well in MI-EEG decoding, most still rely heavily on
handcrafted features.

The decoding problem of MI has become a key limiting
factor hindering the further development of the MI-BCI field
(Craik et al., 2019). With ongoing advancements in computer
science, deep learning (DL) (LeCun et al., 2015) has increasingly
been utilized in the development of decoding algorithms, with
convolutional neural networks (CNNs) (Li et al., 2021) being the
most popular among them. However, their fixed receptive field
limits their performance on time-series data, making it difficult
to effectively capture long-duration temporal dependencies. To
address this, a temporal convolutional network (TCN) (Bai et al.,
2018) based on CNNs has been proposed, focusing on time-
series modeling and classification. In comparison, recurrent neural
networks (RNNs) (Sherstinsky, 2020) are more susceptible to
issues like vanishing or exploding gradients. Compared to RNN-
based methods such as gate recurrent unit (GRU) (Chung et al.,
2014) and long short-term Memory (LSTM) (Graves, 2012),
TCNs have demonstrated superior performance in time-series
tasks. ETCNet (Qin et al., 2024) combines efficient channel
attention (ECA) (Wang et al., 2020) and TCN components to
extract channel features and temporal information. EEG-TCNet
(Ingolfsson et al., 2020) combines EEGNet with TCN, enabling
more effective processing and analysis of time series data. TCNet-
Fusion (Musallam et al., 2021) builds upon EEG-TCNet by
adding layer fusion, reducing feature loss, and constructing rich
feature mappings.

In recent years, researchers have discovered unexpected
advantages in integrating attention mechanisms into deep learning
models. The attention mechanism (Vaswani, 2017) simulates
the human process of selective information focus, enabling
models to concentrate on important elements while ignoring
irrelevant content. These mechanisms mimic human perception
patterns and attention behavior, allowing neural networks to
distinguish between key information and secondary data. The

Multi-Head Attention mechanism (MHA) (Vaswani, 2017) enables
the parallel processing of various global temporal features. In this
context, ATCNet (Altaheri et al., 2022) uses MHA to highlight
key information in EEG time series signals. Conformer (Song
et al., 2022) uses the MHA module to capture global long-term
dependencies on top of the local temporal features extracted by
CNN. TMSA-Net (Zhao and Zhu, 2025) integrates dual-scale
CNNs with the attention mechanism in MHA modules, effectively
capturing global dependencies. MSCFormer (Zhao et al., 2025)
combines multi-branch CNNs and MHA modules to address
individual variability in EEG signals. These methods dynamically
assign higher weights to task-relevant temporal segments in
the input sequence, thereby highlighting discriminative EEG
patterns. However, existing attention mechanisms typically focus
on dependencies at a single time scale, while EEG signals exhibit
multi-scale dependencies in the time domain. Existing models
struggle to simultaneously capture long- and short-term, multi-
scale temporal dependencies.

Based on the aforementioned challenges, this paper proposes
an innovative end-to-end deep learning architecture. This
network is capable of accurately modeling the temporal
dependencies of EEG signals, thereby enhancing decoding
performance. First, the convolution extracts low-level features.
Second, an attention module is used to more effectively extract
and fuse features, highlighting the most important parts of
the time series. Finally, improved TCN extracts high-level
temporal features.

The contributions of the proposed TFANet model can be
summarized as follows:

1. A multi-scale temporal self-attention (MSTSA) module is
designed, integrating multi-scale temporal convolutional blocks
and self-attention blocks. This module can simultaneously capture
both local and global features while dynamically adjusting its focus
on critical information.

2. By combining the SE module with the MSTSA module,
an innovative spatio-temporal attention fusion is achieved. This
approach enhances the focus on temporal scales while also
improving the specificity of channel weights.

3. The TCN module has been improved by replacing the
expanded causal convolution with expanded causal depthwise
separable convolution in the first residual block. In the second
residual block, the residual connection of the TCN was modified
to a multi-level residual connection. These adjustments not only
maintain a low parameter count but also achieve multi-level
feature fusion.

4. To address the inherent challenge of limited EEG
trial samples in standard BCI datasets (due to clinical trial
limitations, there are 288 trials/subjects in the BCI-IV-2a
dataset), we developed a novel temporal segmentation and
recombination augmentation strategy. This approach divides each
trial into 8 physiologically meaningful segments and systematically
recombines them within the same class, thereby significantly
expanding training dataset diversity while maintaining the integrity
of task-relevant neural patterns.

The structure of this paper is as follows: Section 2 describes
the proposed model; Section 3 details the experimental setup and
discusses the results; Section 4 provides the conclusion.
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2 Materials and methods

2.1 Datasets

This study utilized the two most widely used public datasets in
the field of MI classification for evaluation: BCI Competition IV
2a (Brunner et al., 2008) and BCI Competition IV 2b (Leeb et al.,
2008).

2.1.1 BCIC-IV-2a
The BCIC-IV-2a dataset records four-class MI tasks (left hand,

right hand, both feet, and tongue) performed by 9 subjects, with
data collected from 22 channels at a sampling rate of 250 Hz.
For each subject, two separate sessions were recorded on different
days: the data from the first session were used for model training,
while the data from the second session were reserved for model
testing. Each session consists of 288 trials, with 72 trials per MI
task. In this experiment, the onset of the visual cue served as the
temporal anchor point (t = 0). Samples were extracted from EEG
segments within the (0,4) second window following the visual cue
onset (corresponding to the absolute time window of 2–6 s after
trial initiation, since the cue appeared 2 s into the trial in the BCIC-
IV-2a dataset), yielding 4 s of data. At a sampling rate of 250 Hz,
this resulted in 1,000 time points per sample.

2.1.2 BCIC-IV-2b
The BCIC-IV-2b dataset records EEG signals from 9 subjects

performing two-class MI tasks (left hand and right hand) using
three electrode channels (C3, Cz, C4) sampled at 250 Hz. Each
subject completed five recording sessions across different days, with
the first two sessions containing 120 feedback-free trials each and
the subsequent three sessions comprising 160 online feedback trials
each. For experimental purposes, the first three sessions (totaling
400 trials) were used for training while the remaining two sessions
(totaling 320 trials) served as the test set. In this experiment, the
onset of the visual cue served as the temporal anchor point (t =
0). Samples were extracted from EEG segments within the (0,4)
second window following the visual cue onset (corresponding to
the absolute time window of 3–7 s after trial initiation, since the
cue appeared 3 s into the trial in the BCIC-IV-2b dataset), yielding
4 s of data. At a sampling rate of 250 Hz, this resulted in 1,000 time
points per sample.

2.2 Input representation and preprocessing

The EEG signals used in this study were obtained from the
publicly available BCIC-IV-2a and BCIC-IV-2b datasets in their
originally distributed form. These datasets were preprocessed by
the providers with standard techniques prior to release, including:
A band-pass filter (0.5–100 Hz) to remove extremely low and high
frequency artifacts and a 50 Hz notch filter to eliminate power
line interference.

2.3 Data augmentation

To address the limited quantity of EEG trials and mitigate
class imbalance, this paper proposes a data augmentation method
based on temporal segmentation and recombination of time series.
This technique divides each multi-channel EEG trial into 8 non-
overlapping temporal segments (segment length = step size = 125
time points), while preserving the original channel groupings to
maintain spatial correlations. During the random recombination
of segments from the same class, these segments are concatenated
to generate new samples. This process preserves the consistency
of class-specific features while introducing data diversity. This
augmentation is exclusively applied to the training set, while
test data remains strictly unaugmented. Crucially, test data is
completely isolated from the augmented training set. This method
performs well on time series datasets, effectively improving the
model’s generalization ability in scenarios where class samples are
scarce or data distribution is imbalanced.

2.4 Proposed TFANet architecture

The framework of TFANet is shown in Figure 1. The model
consists of convolutional blocks, the MSTSA module, the SE
module, and the temporal depthwise separable convolution fusion
network (TDSCFN) module.

First, the augmented EEG signals are processed through
a convolutional block containing temporal and spatial filters
to extract preliminary temporal features. This step captures
spatiotemporal information in the signal through local convolution
operations, providing a foundation for subsequent temporal
modeling. The MSTSA module allows the model to apply attention
weighting across different temporal scales, enabling it to focus on
both local and global features. A channel compression module is
then added to reduce computational complexity and parameter
size, while further processing and optimizing the features. The
SE module further enhances feature selectivity, helping the model
focus on key moments within the global context. Subsequently, the
introduction of TDSCFN enables the model to handle advanced
temporal features. The final step of the classification process is to
pass the extracted features to the fully connected (FC) layer.

2.5 Convolution block

The convolutional module is comprised of a temporal and a
spatial filter. Initially, the EEG signal is processed by the temporal
filter, which is structured with a two-dimensional convolutional
layer and a batch normalization (BN) (Santurkar et al., 2018)
layer. This assembly can extract temporal characteristics across
varied frequency bands through the application of a convolutional
kernel (F1 = 16) characterized by a kernel dimension of (1, 32).
The second layer employs channel convolution, utilizing depthwise
convolution with F2 convolution kernels sized (C, 1) and groups
set to F1, to learn spatial filters specific to each band. The variable
C represents the number of channels, while F2 indicates the
dimensionality of the output features from the convolution block.
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FIGURE 1

The architecture of TFANet consists of four key components: a convolutional block, a multi-scale temporal self-attention (MSTSA) module, an
Squeeze-and-Excitation (SE) module, and a temporal depthwise separable convolution fusion network (TDSCFN) module.

The value of F2 is computed as F2 = D × F1, Where D represents
the connectivity degree between the preceding and the current
layer, which is empirically determined to be 2. Subsequently,
a BN layer and the exponential linear unit (ELU) (Clevert,
2015) activation function are applied to enhance the model’s
generalization ability and nonlinear expressive power. Next, by
applying an average pooling operation with a kernel size of (1, 8),
the temporal dimension of the input is effectively reduced. This
not only decreases the number of parameters but also enhances
computational efficiency. Dropout regularization is also applied to
prevent overfitting (Salehin and Kang, 2023). Table 1 provides the
specific parameters for constructing the convolution block.

2.6 Attention module

2.6.1 Multi-scale temporal self-attention
mechanism

In the BCI-MI decoding process, convolutional neural
networks with a single scale suffer from limited receptive fields,
which leads to inadequate feature extraction. This limitation
hinders the effective perception and capture of global dependencies
in EEG signals, thus restricting the model’s performance when
handling complex and global features. To address this, the MSTSA
designed in this paper effectively captures key features of EEG

signals at different time scales, overcoming the limitations of
CNNs in modeling temporal information, especially the challenges
posed by inter-individual differences in EEG signals. By adaptively
focusing on important information across different scales and
time periods, it overcomes the shortcomings of single-scale
feature extraction.

The MSTSA module consists of multi-scale temporal
convolutions and a self-attention (SA) module. The multi-scale
temporal convolution applies a group of temporal filters with four
2D convolution layers, having kernel sizes of (1, 15), (1, 31), (1,
51), and (1, 75), respectively, to extract local temporal information.
In Figure 2, the multi-scale temporal convolution, compared to a
single temporal filter, is capable of extracting features at different
time scales. The quartet of outputs from the temporal filter
ensemble is then concatenated along the convolutional feature
channel axis. Then, BN and the ELU activation function are applied
along the feature map dimension, followed by further average
pooling. The specific parameters for constructing the multi-scale
convolution block are provided in Table 2.

The self-attention (SA) module consists of two parts. The first
part is the MHA, which can be described as:

Attention(Q, K, V) = softmax(
QKT
√

dk
)V (1)
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TABLE 1 Architecture specification of the convblock module in TFANet.

Layer Filters Size Stride Padding Activation Out Parameters

Input – – – – – (1, C, T) 0

Conv2D F1 (1,32) (1,1) (0,16) – (F1, C, T) 512

BatchNorm2D – – – – – (F1, C, T) 32

DepthwiseConv2D D × F1 (C,1) (1,1) 0 – (F2, 1, T) 704

BatchNorm2D – – – – – (F2, 1, T) 64

Activation – – – – ELU (F2, 1, T) 0

AvgPool2D – (1,8) (1,8) – – (F2, 1, T/8) 0

Dropout = 0.3 – – – – – (F2, 1, T/8) 0

Total 1,312

FIGURE 2

Multi-scale temporal self-attention mechanism.

Queries (Q), Keys (K), and Values (V) are matrices composed
of vectors for parallel processing. The parameter dk represents the
dimension of each head. MHA learns different features of the input
data in parallel through multiple independent attention heads. The
attention process can be expressed as:

MHA(Q, K, V) = Concat(head1, . . . , headk)WO

headi = Attention(QWQ
i , KWK

i , VWV
i )

[PMHA = 4 × d × (d + 1) = 4 × 32 × (32 + 1) = 4224]
(2)

where headi is the output of the i th, WQ
i ∈ R

d×dq , WK
i ∈ R

d×dk ,
WV

i ∈ R
d×dv , WO

i ∈ R
hdv×d, dq = dk = dv = d

h = 32
8 = 4.

The second layer consists of linear transformations followed
by a GELU (Hendrycks and Gimpel, 2016) activation function.

Additionally, layer normalization (Ba, 2016) and residual
connections (He et al., 2016) are introduced.

2.6.2 Channel attention
Since the brain functional areas corresponding to different body

parts vary when performing different motor imagery tasks (Mnih
et al., 2014), treating all channels equally may fail to give more
attention to channels highly related to the motor imagery task. This
could negatively impact the quality of spatial feature extraction,
ultimately leading to poor classification performance. In the model,
the SE module is incorporated to dynamically weight each channel,
enhancing the representation of important features and reducing
the interference from irrelevant ones. The model not only enhances
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TABLE 2 Architecture specification of the multi-scale temporal convolution module in TFANet.

Layer Filters Size Stride Padding Activation Out Parameters

Input – – – – – (F2, 1, T/8) 0

TempConv1 F2/4 (1, 15) (1, 1) (0, 7) – (F2/4, 1, T/8) 3,848

TempConv2 F2/4 (1, 31) (1, 1) (0, 15) – (F2/4, 1, T/8) 7,944

TempConv3 F2/4 (1, 51) (1, 1) (0, 25) – (F2/4, 1, T/8) 13,064

TempConv4 F2/4 (1, 75) (1, 1) (0, 37) – (F2/4, 1, T/8) 19,208

Concat – – – – – (F2, 1, T/8) 0

BatchNorm2D – – – – – (F2, 1, T/8) 64

Activation – – – – ELU (F2, 1, T/8) 0

Shape – – – – – (F2, T/8) 0

Dropout = 0.3 – – – – – (F2, T/64) 0

AvgPool1D – 8 8 – – (F2, T/64) 0

Total 44,128

its expressive capability along the channel dimension but also
works synergistically with other time-series modules to leverage
their combined strengths. First, the input feature Xc ∈ R

F×C×T

is compressed into a feature vector through global average pooling,
where F, C, and T denote the quantities of feature maps, channels,
and sampling points, respectively. As follows:

zc = 1
C × T

C∑

j=1

T∑

j=1

Xc(i, j), c = 1, 2, . . . , F (3)

Subsequently, two FC layers are employed to capture the
intricate nonlinear dependencies among the various feature
representations. The process can be expressed as:

W = σ (W2δ(W1Z)) [PW = F
r
× F + F × F

r
= 4 × 16 + 16 × 4 = 128, r = 4]

(4)

Specifically, W represents the weights, where W1 ∈ R
F
r ×F is

the weight matrix of the initial FC layer, and W2 ∈ R
F× F

r is the
weight matrix of the subsequent FC layer that restores the features
to their original dimensions. ReLU (Agarap, 2018) and sigmoid
(Han and Moraga, 1995) activation functions are denoted by δ and
σ , respectively.

Additionally, a 1×1 convolution is performed between MSTSA
and SE to reduce the input feature channel dimension from F2
to F1. This adjustment in the number of channels helps reduce
computational cost, control the model size, and facilitates further
feature extraction and processing. The specific parameters of the
channel module are shown in Table 3.

2.7 Temporal depthwise separable
convolutional fusion network

The design of the TDSCFN model is similar to the TCN
network proposed in Bai et al. (2018). As show in Figure 3.

To streamline the module’s parameter count, an expanded
causal depthwise separable convolution is used in the first
residual unit, replacing the original expanded causal convolution,
while preserving its decoding performance. This improvement
includes a layer of dilated causal depthwise convolution and a
layer of pointwise convolution. In the second residual block,
the fusion block in the TDSCFN module replaces the TCN
residual block, substituting the original residual connection with
a multi-level residual connection, achieving multi-level feature
fusion, which enriches the feature information while alleviating
model overfitting.

The dilated convolution employed in this architecture employs
an exponentially increasing dilation factor across the causal depth.
Specifically, for the i th residual block, the dilation factor is defined
as 2i − 1. The exponential advancements in dilation effectively
expand the temporal receptive field without a proportional increase
in computational complexity. Its receptive field size (RFS) is
defined as

RFS = 1 + 2(Kt − 1)(2L − 1), (5)

where Kt represents the size of the convolution kernel, while L
denotes the number of residual blocks. In the TFANet model, the
input data for the TDSCFN has a time point of 15, with L = 2. The
information will be omitted only when RFS is larger than the input
sequence length. To this end, we set Kt = 4 for all convolution
layers (RFS = 19 > 15). The specific parameters of the TDSCFN
module can be found in Table 4.

2.8 Performance indicators

The TFANet model was developed using Python 3.10 and
PyTorch 2.1.0, and trained and evaluated on an NVIDIA GTX
4090 GPU with 24GB of memory. TFANet uses the Adam
optimizer (Kingma, 2014) as the optimization strategy for network
training, with the cross-entropy criterion as the loss function.
Reported accuracy/kappa scores reflect performance from a single
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TABLE 3 Architecture specification of the channel processing module in TFANet.

Layer Filters Size Stride Padding Activation Out Parameters

Input – – – – – (F2, 1, T/8) 0

Conv2D F1 (1, 1) (1, 1) 0 – (F1, 1, T/8) 512

BatchNorm2D – – – – – (F1, 1, T/8) 32

ELU – – – – ELU (F1, 1, T/8) 0

AdaptiveAvgPool2D – – – – – (F1, 1, 1) 0

Conv2D (FC1) F1/4 (1, 1) (1, 1) 0 ReLU (F1/4, 1, 1) 64

Conv2D (FC2) F1 (1, 1) (1, 1) 0 Sigmoid (F1, 1, 1) 64

Scale multiply – – – – – (F1, 1, T/8) 0

Total 672

FIGURE 3

Visualization of the feature map of the TDSCFN module based on 15 time elements.

deterministic run on the held-out test set. No cross-validation
or repeated trials were used for averaging. The training phase is
conducted with a batch size of 32, a random seed of 0, and no
weight decay. The model is trained for a total of 1,000 epochs with
a learning rate of 0.0005.

To provide a comprehensive evaluation of the model’s
performance, this experiment utilized two key assessment metrics:
accuracy and kappa score.

Classification accuracy provides an intuitive metric for
evaluating the overall predictive performance of the model. The
accuracy was calculated as:

Acc = TP + TN
TP + TN + FP + FN

(6)

where TP, TN, FP, and FN denote the number of true positives,
true negatives, false positives, and false negatives, respectively. In
addition, the accuracy of the classification results was assessed using
the Kappa coefficient, which measures the degree of agreement

between actual classifications and expected classifications.

kappa = p0 − pe

1 − pe
(7)

where p0 represents the average accuracy and pe represents the
expected consistency level.

3 Experimental study

3.1 Within-subject performance of TFANet

To validate the effectiveness and accuracy of the proposed
method, we first conducted within-subject classification
experiments on both the BCIC-IV-2a and BCIC-IV-2b datasets.
The performance of our approach was compared with six state-
of-the-art models, including EEGNet (Lawhern et al., 2018)
(implemented independently under MI-optimized parameters:
0.005 learning rate, 100 epochs, identical preprocessing/data
format), TSFCNet (Zhi et al., 2023), MSCFormer (Zhao et al.,

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2025.1635588
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fnins.2025.1635588

TABLE 4 Architecture specification of the TDSCFN module in TFANet.

Layer Filters Size Stride Padding Activation Out Parameters

Block 1

Depthwise Conv1D F1 4 1 3 – F1 80

Pointwise Conv1D F2 1 1 0 – F2 576

BatchNorm1D – – – – – F2 64

Dropout = 0.3 – – – – – F2 0

Conv1D F2 4 1 3 ELU F2 4,160

BatchNorm1D – – – – – F2 64

Dropout = 0.3 – – – – – F2 0

Conv1D F2 1 1 0 ELU F2 544

Block 0 total 5,488

Block 2

Depthwise Conv1D F2 4 1 6 – F2 160

Pointwise Conv1D F2 1 1 0 – F2 1,088

BatchNorm1D – – – – – F2 64

Dropout = 0.3 – – – – – F2 0

Conv1D F2 4 1 6 ELU F2 4,160

BatchNorm1D – – – – – F2 64

Dropout = 0.3 – – – – – F2 0

ELU – – – – ELU F2 0

Block 1 total 5,536

TDSFCN total 11,024

TABLE 5 Comparison of within-subject classification accuracy with different methods on BCIC-IV-2a.

Method A01 A02 A03 A04 A05 A06 A07 A08 A09 Avg Std. Kappa

EEGNet-8,2 78.82 56.26 88.54 69.44 75.00 60.76 72.92 76.04 74.31 72.45 9.56 0.6327

TSFCNet 90.28 62.50 93.40 83.33 75.35 68.06 95.4995.4995.49 88.19 87.85 82.72 11.56 0.7695

MSCFormer 86.11 65.42 94.10 85.9785.9785.97 80.42 74.5874.5874.58 89.93 84.79 85.21 82.95 8.06 0.7622

TCNet-Fusion 90.7490.7490.74 70.67 95.23 76.75 82.2482.2482.24 68.83 94.22 88.92 85.98 83.73 9.79 0.7778

EEG-TCNet 85.77 65.02 94.51 64.91 75.36 61.4 87.36 83.76 78.03 77.35 11.58 0.6978

Conformer 88.19 61.46 93.40 78.13 52.08 65.28 92.36 88.19 88.8988.8988.89 78.66 15.30 0.7155

Proposed 88.19 75.3575.3575.35 95.4995.4995.49 84.72 77.78 71.53 95.14 89.2489.2489.24 86.81 84.9284.9284.92 8.458.458.45 0.79890.79890.7989

EEGNet-8,2 denotes the configuration with 8 temporal filters and a depthwise multiplication factor of 2. The bold font highlights the best results among different models.

2025), TCNet-Fusion (Musallam et al., 2021), EEG-TCNet
(Ingolfsson et al., 2020), and Conformer (Song et al., 2022) (results
reproduced from cited literature). As shown in Tables 5, 7, the
proposed method demonstrated outstanding performance across
both datasets, achieving the highest decoding accuracy and Kappa
coefficient while maintaining the lowest standard deviation.

In Table 5, the average decoding accuracy of TFANet is 12.47%
and 2.2% higher than that of the CNN-based EEGNet-8,2 and
TSFCNet, respectively. These convolutional neural network-based
methods primarily focus on extracting local feature information
within a limited receptive field. However, this may overlook
the crucial importance of capturing global dependencies within

the time series. This method integrates the SA mechanism
into a multi-scale CNN framework, effectively capturing both
local and global dependencies, thereby significantly enhancing
decoding performance. Compared with the MSA-based Conformer
and MSCFormer architectures, the proposed method achieves
significant improvements in decoding accuracy, demonstrating
6.26% and 1.97% enhancement respectively. By incorporating
multi-scale temporal convolution, our method has the ability to
capture multi-scale features, thereby enhancing decoding accuracy,
while the standard deviation is reduced by 44.77%, indicating that
our model has stronger individual adaptability. Compared to the
TCN-based EEGTCNet, accuracy improves by 7.57%. Compared
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TABLE 6 Paired t-test results comparing TFANet with baseline methods on BCIC-IV-2a (α = 0.05).

Comparison (TFANet vs.) Mean diff. (%) t-statistic p-value Cohen’s d 95% CI

Lower Upper

EEGNet-8,2 12.47 6.273 0.0002 2.091 7.881 17.044

TSFCNet 2.20 1.512 0.1690 0.504 -1.156 5.556

MSCFormer 1.97 1.426 0.1918 0.475 -1.216 5.154

TCNet-Fusion 1.19 0.967 0.3617 0.322 -1.641 4.012

EEG-TCNet 7.57 3.936 0.0043 1.312 3.135 12.005

Conformer +6.26 2.163 0.0625 0.721 -0.414 12.918

Positive mean difference indicates superior performance of TFANet, Effect size interpretation: d = 0.2 (small), 0.5 (medium), 0.8 (large), Significant results (p < 0.05) shown in bold, Effect size
interpretation: d = 0.2 (small), 0.5 (medium), 0.8 (large), Baseline accuracies from Table 5: EEGNet (72.45% ± 9.56), TSFCNet (82.72% ± 11.56), MSCFormer (82.95% ± 8.06), TCNet-Fusion
(83.73% ± 9.79), EEG-TCNet (77.35% ± 11.58), Conformer (78.66% ± 15.30), TFANet (84.92% ± 8.45).

TABLE 7 Comparison of within-subject classification accuracy with different methods on BCIC-IV-2b.

Method B01 B02 B03 B04 B05 B06 B07 B08 B09 Avg Std. Kappa

EEGNet 71.88 70.71 88.7588.7588.75 96.56 94.69 76.56 89.06 95.00 78.44 84.63 10.29 0.6926

TSFCNet 76.25 70.00 83.75 97.50 92.81 86.56 88.44 92.50 89.69 86.39 8.63 0.7324

MSCFormer 78.06 71.21 82.75 97.69 96.81 87.81 94.00 94.75 88.88 88.00 9.10 0.7599

Conformer 82.5082.5082.50 65.71 63.75 98.4498.4498.44 86.56 90.3190.3190.31 87.81 94.38 92.1992.1992.19 84.63 12.18 0.6926

Proposed 81.25 73.2173.2173.21 87.81 98.12 97.19 85.00 95.0095.0095.00 95.0095.0095.00 83.13 88.4188.4188.41 8.528.528.52 0.76820.76820.7682

EEGNet-8,2 denotes the configuration with 8 temporal filters and a depthwise multiplication factor of 2. The bold font highlights the best results among different models.

TABLE 8 Paired t-test results comparing TFANet with baseline methods on BCIC-IV-2b (α = 0.05).

Comparison (TFANet vs.) Mean diff. (%) t-statistic p-value Cohen’s d 95% CI

Lower Upper

EEGNet +3.78 3.161 0.0134 1.053 1.023 6.546

TSFCNet +2.02 1.510 0.1695 0.503 -1.066 5.113

MSCFormer +0.41 0.394 0.7040 0.131 -2.023 2.856

Conformer +3.78 1.147 0.2844 0.382 -3.821 11.390

Positive mean difference indicates superior performance of TFANet, Effect size interpretation: d = 0.2 (small), 0.5 (medium), 0.8 (large), Effect size interpretation: d = 0.2 (small), 0.5 (medium),
0.8 (large), Baseline accuracies: EEGNet (84.63% ± 10.29), TSFCNet (86.39% ± 8.63), MSCFormer (88.00% ± 9.10), Conformer (84.63% ± 12.18), TFANet (88.41% ± 8.52). Significant results
(p < 0.05) shown in bold.

to the model fusion-based TCNet-Fusion, accuracy improves
by 1.19%, as the embedding of SE enhances feature extraction
capabilities and improves model performance.

As shown in Table 6, TFANet demonstrated statistically
significant improvements over EEGNet-8,2 (t = 6.27, p = 0.0002, d
= 2.09) and EEG-TCNet (t = 3.94, p = 0.004, d = 1.31). Although
outperforming TSFCNet, MSCFormer and TCNet-Fusion by
1.19–2.20%, these differences were not statistically significant (p
> 0.16). Notably, the 6.25% advantage over Conformer approached
significance (p = 0.063) with medium-to-large effect size (d = 0.72).

As Table 7 shows, the proposed method maintains a
competitive edge, outperforming other approaches in binary
classification decoding performance and achieving better results
in most subjects. TFANet’s decoding performance in binary
classification remains superior to CNN- and MSA-based models,
surpassing the latest MSCFormer model by 0.41%.

Based on the paired t-test results comparing TFANet
with baseline methods on the BCIC-IV-2b (Table 8), TFANet
demonstrates statistically significant and substantial superiority

specifically over EEGNet, achieving a mean improvement of
+3.78% (t = 3.161, p = 0.0134) with a large effect size (d = 1.053).
The 95% CI [1.023%, 6.546%] robustly confirms this advantage.
While TFANet shows non-significant performance gains against
TSFCNet (+2.02%) and Conformer (+3.78%), and comparable
results to MSCFormer (+0.41%), its marked improvement over
EEGNet highlights its critical strength in enhancing EEG decoding
accuracy. This evidence positions TFANet as a competitively
superior framework for specific baseline model comparisons.

3.2 Ablation study

In order to investigate the effects of the MSTSA, SE,
and TDSCFN modules, as well as data augmentation, ablation
experiments were conducted on the TFANet model. Specific
modules were systematically removed to analyze their effects on the
model’s performance.
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TABLE 9 Ablation experiment results of TFANet on BCIC-IV-2a.

Removed block Accuracy% k-score

None (TFANet) 84.9284.9284.92 0.79890.79890.7989

MSTSA 72.72 0.6363

SE 84.68 0.7958

TDSCFN 84.41 0.7922

Data augmentation 78.82 0.7176

MSTSA, Multi scale temporal self-attention; SE, Squeeze-and-Excitation; TDSCFN, temporal
depthwise separable convolution fusion network. The bold font highlights the best results
among different models.

As Table 9 shows, the MSTSA module demonstrates the most
significant performance improvement among the various modules
of TFANet, when the MSTSA module is removed, the model’s
average decoding accuracy decreases by 12.22%. The SE and
TDSCFN modules also make positive contributions, though they
play a secondary role in performance optimization, with model
accuracy dropping by 0.24% and 0.51%, respectively. Furthermore,
the use of data augmentation effectively mitigates overfitting and
enhances the overall efficiency of network training. In conclusion,
our ablation experiments show that each module makes a positive
contribution to the model’s decoding accuracy.

To evaluate the impact of multi-head attention configurations
on model performance, we conducted experiments with four
attention head settings (head = 2, 4, 8, 16) as shown in
Figure 4. The boxplots demonstrate that varying the number
of attention heads does not produce statistically significant
differences in decoding performance across configurations, with all
median accuracies stabilizing around 0.84. However, the head=8
configuration exhibits a marginally higher median accuracy than
other settings. Given this subtle performance advantage, we
ultimately set the number of attention heads to 8.

3.3 Spatio-temporal resolution
preservation validation via perturbation
analysis

This experiment aims to verify whether the TFANet model
effectively maintains the spatiotemporal resolution of EEG signals
when processing the BCI-IV-2a dataset through systematic
perturbation analysis, quantitatively evaluating the model’s ability
to capture key EEG features. In terms of perturbation experiment
design, we implemented four types of systematic perturbation
tests: time-slice perturbation, where randomly selected 10–50% of
time points were zeroed out to assess the model’s dependence on
the integrity of temporal information; time-segment perturbation,
where continuous 200-time-point segments were zeroed out at
different temporal positions to identify critical time windows;
channel perturbation, where randomly selected 10–50% of EEG
channels were zeroed out to evaluate the utilization of spatial
information; and spatial-region perturbation, where spatial blocks
of 5 channels × 200 time points were zeroed out to identify critical
spatiotemporal regions. All experimental results were quantified
using the output difference (Euclidean distance) as the metric.

The experimental results are shown in Figure 5. In the time-
slice perturbation test, the output difference exhibited a significant
monotonic increasing trend as the perturbation ratio increased,
indicating the model’s high sensitivity to the integrity of temporal
information. In the time-segment perturbation test, the output
difference peaked significantly higher in segments 4–5 compared to
other segments, which aligns perfectly with the typical time window
of event-related desynchronization (ERD) during motor imagery
tasks. The channel perturbation test revealed that the maximum
output difference (16.5) occurred at a 30% perturbation ratio,
demonstrating that the model possesses channel selection capability
while avoiding over-reliance on any single channel. The spatial-
region perturbation test showed that region 8 had the greatest
impact (output difference of 10), confirming the model’s ability to
effectively identify critical spatial regions.

Comprehensive analysis indicates that the TFANet model
successfully maintains the spatiotemporal resolution of EEG
signals, exhibiting not only high sensitivity to temporal information
integrity but also the ability to distinguish critical time segments.
Additionally, it demonstrates strong spatial selectivity and
robustness. These characteristics enable the model to effectively
capture key EEG features such as ERD/ERS in motor imagery
tasks, providing a reliable theoretical foundation for high-precision
BCI systems.

3.4 Evaluation of temporal dependencies

This experiment assessed the ability of various models to
establish temporal dependencies in the MI classification task. Five
different model architectures were compared, including a basic
convolution block, a convolution block combined with TDSCFN,
a convolution block combined with SA, a convolution block
combined with MSTSA, and the composite model proposed in
this paper. Figure 6 shows that TFANet achieved the highest
accuracy in most participants. This confirms its effectiveness
in capturing the temporal dependencies in sequential data.
MSTSA effectively captured key features across different time
scales, the SE module further optimized channel information
selection, and TDSCFN enables the model to handle advanced
temporal features. The results demonstrate that each module
is indispensable for improving the model’s decoding accuracy,
although to varying degrees.

3.5 Effectiveness of multi-scale temporal
self-attention mechanisms

The experiment compared the impact on EEG-MI classification
between single-scale temporal self-attention (SSTSA) with four
convolutional kernels of size (1, 31) and multi-scale temporal
self-attention (MSTSA) with four convolutional kernels of sizes
(1, 15), (1, 31), (1, 51), and (1, 75). The results are shown
in Figure 7. MSTSA achieves higher classification accuracy than
SSTSA for most subjects. The multi-scale temporal self-attention
model leverages convolutional kernels of different scales to capture
features across various time ranges in the time series data.
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FIGURE 4

Comparison of accuracy across different numbers of attention heads in BCIC-IV-2a.

FIGURE 5

Perturbation sensitivity analysis of subject A01 in BCIC-IV-2a.
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This enables the extraction of more comprehensive information,
going beyond the analysis of features limited to a single time
dimension, which may contribute to improving recognition
accuracy. Additionally, this demonstrates that multi-scale temporal

FIGURE 6

Comparison of different models in capturing temporal
dependencies on the BCIC-IV-2a.

convolution enhances the model’s generalization capability when
handling individual variability.

3.6 Comparing different channel attention
mechanism

This experiment explores the optimal choice of channel
attention mechanisms by using three different attention modules:
ECA (Wang et al., 2020), CBAM (Woo et al., 2018), and SE (Hu
et al., 2018). Table 10 presents the performance of the model across
three channel attention modules, indicating that the SE module
achieved the highest decoding accuracy. The baseline model,
which does not utilize a channel attention mechanism, achieved
an accuracy of 84.68%. When the SE module is introduced, the
accuracy increases to 84.92%, a 0.24% improvement, demonstrating
the effectiveness of the SE module in enhancing channel feature
representation. In contrast, the ECA and CBAM modules show

TABLE 10 Evaluation of the TFANet model’s performance using various
channel attention mechanisms: ECA, CBAM, and SE.

Changed block Accuracy% k-score

SE 84.9284.9284.92 0.79890.79890.7989

CBAM 84.49 0.7932

ECA 84.57 0.7943

The bold font highlights the best results among different models.

FIGURE 7

Comparison of classification performance between SSTSA and MSTSA on the BCIC-IV-2a.
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FIGURE 8

Training loss and test accuracy trends with respect to epochs on BCIC-IV-2a.

FIGURE 9

The impact of adaptive learning rate on transfer learning classification results.

slight performance degradation, with accuracies of 84.57% and
84.49%, respectively, a decrease of 0.11% and 0.19% compared
to the baseline model. Although the performance improvement
is small, the SE module still shows a clear advantage in this

task, particularly in capturing inter-channel dependencies and
strengthening feature representation. In comparison, the ECA and
CBAM modules did not significantly improve performance and
did not provide enough advantage in terms of complexity. Overall,
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TABLE 11 Comparison of cross-subject classification accuracy with different methods on BCIC-IV-2a.

Method A01 A02 A03 A04 A05 A06 A07 A08 A09 Avg Std. Kappa

WTLT 76.00 55.20 83.04 60.11 65.79 60.00 73.12 70.83 71.33 68.38 8.878.878.87 0.5471

EA-CSP-LDA 69.50 40.25 83.01 51.61 38.20 46.58 53.25 68.88 56.12 56.37 14.82 0.4702

C2CM 87.5087.5087.50 65.28 90.28 66.67 62.50 45.49 89.5889.5889.58 83.33 79.51 74.46 15.33 0.6596

DRDA 83.19 55.14 87.43 75.2875.2875.28 62.29 57.15 86.18 83.61 82.00 74.75 12.96 0.6633

DAFS 81.94 64.5864.5864.58 88.89 73.61 70.49 56.60 85.42 79.51 81.60 75.85 10.47 0.6780

Proposed 81.60 63.89 90.2890.2890.28 74.65 72.5772.5772.57 62.8562.8562.85 80.21 84.7284.7284.72 84.0384.0384.03 77.2077.2077.20 9.45 0.69600.69600.6960

The bold font highlights the best results among different models.

TABLE 12 Computational complexity of TFANet.

Metric Value Details

Parameters 109,876 Trainable parameters (109.9 K)

FLOPs 45.68 G Total operations per forward pass

FLOPs/Parameter ratio 415,707.39 Key measure of computational efficiency

Inference latency 5.00 ms Per trial (mean over 100 runs)

the SE module provides a stable performance improvement with
relatively low computational cost, making it the preferred choice
for this task.

3.7 Model training process and effect
evaluation

To investigate the intrinsic mechanism of network
optimization, we conduct a thorough investigation of the
training loss and testing accuracy on the BCIC-IV-2a. In Figure 8,
at the beginning of the training, the training loss is high due
to random initialization of the model parameters. However, as
training progressed, the training loss decreased significantly and
stabilized after ∼100 iterations, while the test accuracy quickly
rises and remains at a high level. A comprehensive analysis of the
results indicates that TFANet has successfully achieved a significant
improvement in decoding performance while maintaining model
simplicity and efficiency.

3.8 Cross-subject performance of TFANet

This study investigates the cross-subject decoding performance
of TFANet on the BCIC-IV-2a using transfer learning under
leave-one-subject-out cross-validation. For each target subject,
EEG data from the first session of all remaining N-1 subjects
(N = total subjects) were pooled to form a source domain training
set. The model was pre-trained from scratch on this set for 200
epochs to learn generalized motor imagery features. Fine-tuning
subsequently employed the target subject’s first-session data with no
layers frozen, using a single randomly selected subset for each data
percentage (10–100% in 10% increments), and applying the Adam
optimizer at a fixed 0.0005 learning rate for exactly 200 epochs

per subset without validation or early stopping. Performance was
evaluated on the target’s entire second session.

In Figure 9, the horizontal axis represents the adaptation rate of
the target subject, while the vertical axis indicates the classification
accuracy of the target subject. The results show that as the
adaptation rate increases, the test accuracy gradually improves,
indicating that fine-tuning for the target subjects significantly
enhances the performance of cross-subject transfer learning.
Specifically, when the adaptation rate is 0%, the accuracy is 62.92%,
and when the adaptation rate is 100%, the accuracy reaches 77.20%.

Table 11 compares the decoding performance of our proposed
method with conventional transfer learning approaches on the
BCI-IV-2a dataset. The results demonstrate that our method
outperforms others across multiple metrics. Compared to
traditional transfer learning techniques [WTLT (Azab et al.,
2019) and EA-CSP-LDA (He and Wu, 2020)], our approach
achieves significantly higher average accuracy and Cohen’s
Kappa coefficients. Notably, our model improves the average
accuracy by ∼2% over deep learning-based transfer learning
methods [including C2CMD (Sakhavi et al., 2018), DRDA (Zhao
et al., 2021), and DAFS (Phunruangsakao et al., 2022)]. This
enhancement highlights the efficacy of our method in leveraging
cross-domain information and adapting to individual variability
in EEG patterns. Moreover, the lower standard deviation values
indicate improved stability and consistency in cross-subject
classification for MI-EEG.

Table 12 quantitatively summarizes the computational
complexity of TFANet during transfer learning. The architecture
contains 109,876 trainable parameters, requiring 45.68 GFLOPs
per forward pass. he FLOPs-to-parameter ratio demonstrates
substantial computational intensity per network weight. Most
critically, TFANet achieves an average inference latency of 5.00 ms
per EEG trial, demonstrating real-time processing capability for
brain-computer interface applications.

3.9 Visualization

Figure 10 presents the confusion matrices of TFANet
classification results for four subjects (A01, A03, A07, and A09)
from the BCIC-IV-2a. These matrices represent the model’s
classification performance for the four different MI intentions.
The diagonal elements of the matrix represent the classification
accuracy of the model for each category. Although TFANet
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FIGURE 10

Confusion matrices for subjects A01, A03, A07, and A09 on BCIC-IV-2a.

FIGURE 11

The t-SNE visualization of raw data distribution (without feature extraction) for subjects A03, A07, and A09 on the BCIC-IV-2a. Different colors
represent different categories.

demonstrates excellent overall classification performance, there
are still significant differences in classification results among
subjects, which can be attributed to the unique characteristics
of individuals. From the confusion matrices, we can observe
that classification accuracy varies across subjects, reflecting the
impact of individual differences in EEG signals. Among them, the
left-hand task achieved a higher accuracy, likely because subjects

have clearer imagery when imagining the left hand, resulting in
more distinct EEG features of motor imagery. Furthermore, we
employed the t-SNE algorithm to create visual representations
of both the feature extraction results and the original raw data.
Figures 11, 12 show the visualization results of participant A03,
A07, and A09 in BCI Competition IV-2a before and after model
feature extraction. The analysis reveals that distinguishing between
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FIGURE 12

The t-SNE visualization of feature-extracted data distributions for subjects A03, A07, and A09 on the BCIC-IV-2a. Different colors represent different
categories.

the four MI tasks within the unprocessed data presents significant
challenges. However, after feature extraction using the proposed
method, the distributions of each motor imagery task become
more concentrated.

Figure 13 illustrates the attention distribution across different
layers in our proposed multi-scale temporal self-attention model
when processing time-series data. The x-axis and y-axis represent
time points, indicating the temporal relationships in the attention
patterns. The color bar on the right illustrates attention
weights, ranging from purple (low attention) to yellow (high
attention). Each subplot corresponds to one attention head (8
heads total) across 4 layers (L1-L4), visualizing how different
heads capture temporal dependencies in the EEG signals.
In the shallow layers (L1 and L2), the attention patterns
exhibit relatively dispersed distributions, primarily capturing
fundamental temporal structures. In contrast, deeper layers
(L3 and L4) demonstrate pronounced focusing tendencies,
particularly evidenced by enhanced diagonal patterns (self-
attention) and significantly elevated weight values, indicating the
network’s capacity to integrate temporal contextual information
for higher-level feature representation. Notably, our multi-scale
temporal self-attention mechanism reveals substantial functional
diversity. For instance, in layer L4: Head1 and Head4 specialize
in position-specific focus, Head2 and Head8 perform global
integration, while Head5 and Head6 concentrate on specific
temporal intervals. This structural specialization validates the
superior capability of multi-head attention in modeling complex
temporal dynamics.

To enhance the interpretability of the features learned by the
TFANet model, we employed Grad-CAM (Selvaraju et al., 2020)
to visualize critical EEG signal patterns on the topographic map.
Figure 14 presents the resulting visualizations for subject A03 from
the BCIC-IV-2a. In this approach, the gradients of the class scores
with respect to the feature maps of the TDSCFN layer are first
calculated. These gradients are then globally averaged over the
spatial dimensions of the feature map to obtain a weight vector
for each feature map. Subsequently, a 2D importance heatmap is
generated by performing a weighted combination of the feature
maps using these weights and summing the weighted results

along the channel dimension. To visualize these relevance scores
spatially over the scalp, the computed heatmap is projected onto
a standardized 2D topographic map representation of the scalp
based on the electrode positions defined by the international
10–20 system. This colored relevance map is then overlaid on
the corresponding raw EEG topographic map. The color bar in
Figure 14 explicitly defines the scale of this overlay: regions shaded
in red indicate areas with a stronger positive correlation, while
regions shaded in blue indicate areas with a stronger negative
correlation. The comparison reveals that TFANet’s activation
focuses primarily on channels over the motor cortex region.
This specific activation pattern signifies that the model effectively
identifies and amplifies interactions between channels with similar
feature representations, specifically within the brain area known
to be centrally involved in motor execution and imagination.
The precise localization of the most discriminative features to the
sensorimotor cortex provides strong neurophysiological validation
for TFANet, as it aligns directly with the established mechanisms
underlying the MI paradigm used in this study. This demonstrates
that TFANet successfully extracts physiologically relevant, spatially
coherent, and highly discriminative features EEG signals.

4 Conclusion

This paper presents an innovative end-to-end MI-EEG
decoding model, TFANet. To address the challenge of modeling
temporal dependencies in MI decoding tasks, the model introduces
the MSTSA module, which captures dependencies across
different time scales, thereby providing a richer temporal feature
representation. At the same time, the SE module further enhances
feature selectivity, helping the model focus on key moments
within the global context. TDSCFN integrates these features
to capture global temporal dependencies, further improving
decoding performance.

It is important to acknowledge that while the absolute
performance improvement in classification accuracy over existing
benchmarks may appear modest, the primary contribution
of this work extends beyond marginal metric gains. The
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FIGURE 13

Visualization of attention maps from 8 heads of MSTSA module for subject A01 in BCIC-IV-2a, showing attention weights between time steps. Both
axes (x/y) represent time points (0–14) with color intensity indicating attention strength.

FIGURE 14

Topographical maps compare raw EEG and TFANet-activated patterns for subject A03 from 22 Ag/AgCl electrodes (10–20 system). Color overlay:
red = positive correlation (ERS, amplitude increase); blue = negative correlation (ERD, amplitude decrease). Intensity scales with correlation
magnitude relative to baseline.

TFANet architecture demonstrates a superior balance between
performance, computational efficiency, and practicality. Our model
achieves highly competitive results on the challenging BCIC-
IV-2a dataset with a simple and efficient training strategy
consisting of 1,000 epochs and a learning rate of 0.0001. This
contrasts with several contemporary models which require multi-
stage training or substantially higher computational budgets,
such as EISATC-Fusion which utilizes 3,800 epochs. This

efficiency, coupled with a low parameter count of 109.9K and
rapid inference speed of 5.00 ms per sample, underscores
the model’s potential for real-world, resource-constrained BCI
applications. Furthermore, the in-depth ablation studies and
mechanistic analyses including feature visualizations and attention
weight distributions provide valuable insights into the model’s
decision-making process, enhancing its interpretability for clinical
translation. These characteristics collectively indicate that TFANet
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provides an efficient and practical solution for MI-EEG decoding
tasks, with strong potential for real-time BCI applications and
clinical translation.

Building on this framework, we will focus on two parallel
advancements: optimizing lightweight architecture through
pruning/quantization strategies to reduce FLOPs by >50%
while maintaining >95% accuracy for mobile deployment;
and implementing adversarial domain-invariant learning to
personalize domain adaptation by minimizing individual
differences using unlabeled target subject data along with
conducting extensive cross-subject validation on additional
datasets including BCIC-IV-2b.
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