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Introduction: Mental stress affects nearly everyone, with individual responses 

varying greatly. The importance of studying mental stress has increased, 

particularly during the COVID-19 pandemic. Stress has wide-ranging health 

impacts, from elevating blood pressure to contributing to depression and 

neurodegenerative conditions. 

Methods: This work aimed to uncover reliable correlates of mental stress using 

Electroencephalogram (EEG) and Electrocardiogram (ECG) methods, with an 

additional focus on sex differences. Twenty-five volunteers performed time-

constrained mental arithmetic tasks under stress, amplified by workspace noise 

and negative feedback. 

Results: Response-locked heart rate (HR) data revealed a parasympathetic 

deceleration at response onset, followed by sympathetic rebound, with deeper 

HR dips linked to higher stress levels. Men showed earlier, longer-lasting 

HR decelerations, suggesting a time-based regulation strategy, while women 

exhibited larger, short-lived HR swings during slower responses, indicating an 

intensity-based response. Neural responses revealed also sex-specific stress 

effects: in females, stress modulated frontal theta, beta, and the theta/beta 

ratio–markers of cognitive control. In males, stress increased gamma and 

decreased delta power, indicating possibly heightened arousal and reduced 

motor preparation, respectively. While alpha asymmetry was modulated in both 

sexes, its behavioral relevance and spatial patterns differed. 

Discussion: These findings highlight the need for sex-specific models in 

neuroadaptive systems and stress-monitoring technologies. 

KEYWORDS 

mental stress, EEG, ECG, mental arithmetic task, response-locked heart rate, sex 
differences, alpha asymmetry 

1 Introduction 

To understand the role of mental stress in diseases and potential treatments (Sara 
et al., 2022), a precise definition is essential. According to Selye, known as the “father 
of stress research,” stress is defined as the body’s non-specific response to any demand 
(Tan and Yip, 2018). Lazarus (1984) proposed the transactional stress model, describing 
stress as arising when a person encounters a challenging situation and is unsure how to 
respond. They concluded that any situation could serve as a stressor. The stress response is 
influenced not only by the stressor itself but also by several factors, including an individual’s 
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perception of the stressor, their coping ability, personality type, 
and environmental factors (Bremner et al., 2020; Sara et al., 2022). 
In modern society, mental stress is prevalent in nearly everyone’s 
life, negatively aecting both physical and mental well-being (Esch 
et al., 2002; Zhang et al., 2025). The brain plays a crucial role 
in how the body responds to stress. The brain’s stress response 
is regulated by the sympathetic-adrenal-medullary axis and the 
hypothalamic-pituitary-adrenal axis, leading to both psychological 
and physiological changes (Alkadhi, 2013). Stress also induces both 
structural and functional changes in the brain (Yaribeygi et al., 
2017). Short-term stress can increase blood pressure, weaken the 
immune system, and cause a decline in productivity (Al-Shargie 
et al., 2016). Long-term stress, on the other hand, is linked to mental 
disorders such as depression and is a significant risk factor for 
cardiovascular and neurodegenerative diseases like Alzheimer’s and 
Parkinson’s (Alkadhi, 2013). Given that stress aects each person 
dierently and is a major risk factor for various diseases, a detailed 
understanding of its biological consequences and the identification 
of its correlates are necessary. There are already many tools and 
methods available for assessing mental stress in its early stages 
(Katmah et al., 2021). Psychologists often use subjective methods, 
such as self-reported questionnaires, to evaluate mental stress 
(Sara et al., 2022). Examples of these include the Self-Assessment 
Manikin Scale, the State-Trait Anxiety Inventory, and the Perceived 
Stress Questionnaire, which are commonly used in studies to assess 
an individual’s mental state (Halim and Rehan, 2020; Aspiotis et al., 
2022; Vanhollebeke et al., 2023). However, because self-reported 
questionnaires rely on subjective input, they may lack accuracy 
(Katmah et al., 2021). 

To address this issue, researchers often focus on biological 
and biochemical markers, such as salivary cortisol and salivary 
alpha-amylase levels (AlShorman et al., 2022). For instance, Al-
Shargie et al. (2016) observed an increase in salivary alpha-
amylase levels during stress, a finding corroborated by Hag et al. 
(2021), who also found elevated levels during stress conditions. 
Nevertheless, the accuracy of these measures can be limited 
by factors like the eect of physical activity on salivary alpha-
amylase levels (Katmah et al., 2021). Other approaches to assessing 
mental stress are based on physiological factors such as heart 
rate (HR), skin temperature, skin conductance, respiratory rate, 
speech, pupil size and eye activity (de Santos Sierra et al., 
2011; Hickey et al., 2021; Giannakakis et al., 2022). Among 
these, the most widely used method is the electrocardiogram 
(ECG; Hickey et al., 2021). In recent years, neuroimaging 
techniques have become increasingly popular for measuring 
mental stress with greater accuracy (Rahman et al., 2022). The 
most prominent methods include functional magnetic resonance 

Abbreviations: A, alpha; AIC, Akaike information criterion; B, beta; BMIS, 
Brief Mood Introspection Scale; D, delta; ECG, electrocardiography; EEG, 
electroencephalography; fMRI, functional magnetic resonance imaging; 
fNIRS, functional near-infrared spectroscopy; G, gamma; G/T, gamma-to-
theta ratio; GESD, generalized extreme studentized deviate; HR, heart rate; 
HRV, Heart Rate Variability; ICA, independent component analysis; LME, 
linear mixed effects; MRCP, movement related cortical potential; MIST, 
Montreal Imaging Stress Task; PASA, Primary Appraisal Secondary Appraisal; 
PET, positron emission tomography; PFC, prefrontal cortex; T, theta; T/B, 
theta-to-beta ratio. 

imaging (fMRI), electroencephalography (EEG), functional near-
infrared spectroscopy (fNIRS), and positron emission tomography 
(PET; Katmah et al., 2021; Vanhollebeke et al., 2022). 

The methods and biomarkers used to identify mental stress 
vary between studies, as do the techniques employed to artificially 
induce stress in individuals. A common approach in many studies 
is the use of an arithmetic challenge to induce stress (Al-Shargie 
et al., 2016; Li et al., 2020; Al-Shargie, 2021; Alyan et al., 2021; Hag 
et al., 2021). These studies often combine mental arithmetic tasks, 
based on the Montreal Imaging Stress Task (MIST), with additional 
stressors such as time pressure or negative feedback. In a study by 
Ahn et al. (2019), a mental arithmetic task was combined with the 
Stroop Color and Word Test, a method also employed by Attar 
et al. (2021). In another study by Ehrhardt et al. (2022), participants 
completed the Paced Auditory Serial Addition Test under stress-
inducing conditions, including time pressure and video recording. 
Vanhollebeke et al. (2023) used Raven’s Matrices with manipulated 
negative feedback to create stress in their participants, while 
Aspiotis et al. (2022) utilized virtual reality to simulate stress by 
exposing individuals to high altitudes. 

Assessing mental stress is highly challenging, with results 
influenced by numerous factors. The variation in methods and 
types of stressors across dierent studies adds to this complexity. 

1.1 EEG-based stress detection 

In EEG-based stress detection, the brain region, the extracted 
features, and the EEG processing techniques used can lead to 
varying results (Katmah et al., 2021). EEG features can be 
categorized into time-domain features, which contain temporal 
information, and frequency-domain features, which represent 
spectral information across various frequency bands (Katmah et al., 
2021). Many studies focus on the alpha, beta, and theta band 
powers in the prefrontal cortex (PFC) when analyzing mental 
stress. However, there are overlaps in the functional roles of these 
bands. Alpha and theta band powers are often associated with 
cognitive and memory performance (Klimesch, 1999). Theta band 
power is also known to increase during cognitive tasks such as 
mental arithmetic (Nigbur et al., 2011). Beta band power, linked 
to attention, is thought to increase during cognitive tasks and 
active concentration (Vanhollebeke et al., 2022). In our previous 
work (Wriessnegger et al., 2024), we examined how an arithmetic 
stress-inducing task impacted EEG. We introduced topographical 
maps to visualize the associations between EEG band power values 
in dierent frequency bands and several influencing factors such 
as task diÿculty, error rate, response time, questionnaire scores, 
and learning eects. We observed that these factors are not 
independent; they overlap and collectively influence EEG activity, 
highlighting the complexity of interpreting EEG signals in the 
context of mental stress. Thus, findings related to alpha, beta, 
and theta band power often dier across stress-related studies. 
For example, Hag et al. (2021) reported decreased relative alpha 
band power in the PFC, along with decreased beta band power 
and a slight increase in theta band power during a stressful 
mental arithmetic task with time pressure and negative feedback. 
They interpreted the reduced beta power as a sign of diminished 
cognitive performance under stress, while the elevated theta power 
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indicated increased cognitive eort and stress response. On the 
other hand, Al-Shargie et al. (2016) found a decrease in mean alpha 
power but an increase in mean beta power in the frontal lobe during 
stress. Furthermore, Halim and Rehan (2020) observed increased 
beta power in the parietal regions, indicating a state of heightened 
alertness and arousal. The findings of Al-Shargie et al. (2016) and 
Halim and Rehan (2020) align also with our results in Wriessnegger 
et al. (2024). In addition to band-specific analyses, EEG power 
ratios have been proposed as stress biomarkers. The gamma-to-
theta (G/T) ratio, particularly in the PFC, has been suggested by 
Minguillon et al. (2016) 2018 as an indicator of stress during tasks 
like the MIST. Meanwhile, the theta-to-beta (T/B) ratio has been 
linked to cognitive processing capacity (Clarke et al., 2001) and 
shows a negative correlation with stress levels, as reported by Wen 
and Aris (2020) and Wen et al. (2020). These findings were also 
supported by our previous study in Wriessnegger et al. (2024). 

Another measure related to emotions, motivation, and 
cognitive control is frontal alpha asymmetry (Smith et al., 2017). 
This asymmetry score is usually calculated by subtracting the alpha 
power value at F3 or F7 (left frontal electrodes) from the value at 
F4 or F8 (right frontal electrodes) (Vanhollebeke et al., 2022). The 
right hemisphere of the brain is linked to the regulation of negative 
emotions, while the left hemisphere is associated with positive 
emotion regulation (Tandle et al., 2018). As a result, increased 
activation of the right hemisphere (reflected by decreased alpha 
power relative to the left hemisphere) is expected during stress 
(Ocklenburg et al., 2016). Attar et al. (2021) observed an increase 
in frontal alpha asymmetry during stress, suggesting that the alpha 
power in the right hemisphere was more reduced than in the 
left hemisphere, indicating heightened cortical activity in the right 
hemisphere in response to stress. Similarly, Alyan et al. (2021) 
found that the right frontal hemisphere was more activated during 
stress compared to the left. In our previous study (Wriessnegger 
et al., 2024), we provided a more comprehensive view of the alpha 
asymmetry score, extending its analysis beyond the frontal channels 
to include the entire scalp. This was achieved using topographical 
maps to explore its relationship with stress. 

1.2 ECG based stress detection 

The most prominent physiological feature in ECG analysis is 
HR. During stress, HR increases due to heightened sympathetic 
activity, leading to a decrease in HR variability (HRV; Stauss, 
2003). Vanhollebeke et al. (2023) observed an increased HR during 
stressful conditions, reflecting higher sympathetic activity. Many 
studies use ECG markers as a supplementary source alongside 
EEG features for detecting mental stress. For instance, Adjei 
et al. (2018) measured HR while participants solved mental math 
problems and found significantly higher HR in men compared 
to women. In contrast, Lucas et al. (2020) observed the opposite 
trend during work shifts, with women exhibiting higher HR than 
men. Also, Aspiotis et al. (2022) used ECG in combination with 
EEG to confirm whether stress was successfully induced in their 
participants. Hemakom et al. (2023) demonstrated that using both 
ECG and EEG leads to higher classification accuracy than using 
either alone, consistent with the findings of Ahn et al. (2019). 
Furthermore, (Hemakom et al., 2023) accounted for sex dierences 

in their study, revealing that models trained separately for males 
and females delivered higher classification accuracy compared 
to mixed models. In a more recent study they observed that 
sex and menstrual phase dierences impact stress classification 
performance (Hemakom et al., 2024). Therefore, considering sex 
dierences is essential in mental stress detection research. 

1.3 Mental stress and sex differences 

It is well established that males and females exhibit dierent 
stress responses. Men typically display the “fight-or-flight” response 
to stress (Verma et al., 2011), while women’s reactions are 
additionally influenced by their menstrual cycle phase. During 
the follicular phase, elevated estrogen levels lead to greater 
parasympathetic nervous system activation, resulting in the “tend-
and-befriend” response (Hemakom et al., 2023). Beyond the 
dierences in stress responses, males and females also engage 
distinct brain areas under stress. In a study by Verma et al. 
(2011), participants completed mental arithmetic tasks during 
an fMRI scan. Men showed increased activation of the right 
frontal cortex, while women exhibited greater involvement of the 
limbic system. These findings align with those of Goldfarb et al. 
(2019), who showed participants both neutral (e.g., nature) and 
stressful (e.g., terror, fear) images. They found greater limbic region 
activation in women and higher PFC activation in men during 
stress. In a study using fNIRS (Zhao et al., 2021), male and female 
subjects solved mental arithmetic tasks of varying diÿculty while 
researchers examined the relationship between PFC activation and 
performance. Men demonstrated greater PFC activation on more 
diÿcult tasks compared to women. Similarly, Kavanaugh et al. 
(2024) explored absolute theta band power in the mid frontal cortex 
of children under stress, finding that theta power was higher in girls 
than in boys. 

Arithmetic tasks are commonly used to induce stress in 
research (Gärtner et al., 2015; Al-Shargie et al., 2016; Ahammed 
and Ahmed, 2020; Katmah et al., 2021; Wriessnegger et al., 2024). 
Furthermore, some studies suggest that males often outperform 
females in these tasks. For example, Lynn and Irwing (2008) 
reported that males perform better in mental arithmetic, as 
reflected in shorter response times and better overall performance, 
consistent with the findings of Yang and Yu (2021). However, 
Yu et al. (2024) noted that females are not inherently worse 
at mathematical tasks than males. They argued that social 
expectations may increase anxiety levels in females, leading to 
poorer performance. Demir and Turker (2021) focused on brain 
connectivity across dierent EEG bands to examine arithmetic 
performance dierences between sexes. Their study found that 
males exhibited greater overall brain connectivity during arithmetic 
tasks, with notable changes in connectivity patterns across various 
frequency bands, particularly increased theta band connectivity in 
response to mental activity. 

1.4 Motivation 

Mental stress significantly aects both physical and mental 
well-being, potentially leading to serious conditions such as 
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depression, cardiovascular diseases, and Alzheimer’s disease 
(Esch et al., 2002). To prevent stress and better understand 
stress-related illnesses, it is essential to thoroughly study its 
biological, physiological, and neurological eects. Furthermore, 
identifying sex-specific neural correlates of stress could pave 
the way for more personalized and eective prevention and 
treatment strategies for stress-related disorders. Understanding 
the underlying neurobiological dierences can help in developing 
therapies that target the specific neural circuits and mechanisms 
aected by stress in men and women. This study aims to provide 
new insights into mental stress by identifying its neurocardiac 
correlates using EEG and ECG, with a particular focus on sex-
related dierences. 

2 Materials and methods 

2.1 Participants 

Thirty healthy volunteers participated in this study, consisting 
of 16 females and 14 males, aged between 19 and 32 years. Five 
participants were excluded due to missing ECG signals and noisy 
EEG data, leaving a final sample of 25 participants, two of them 
were left-handed (13 females and 12 males) with a mean age of 
25.08 years (standard deviation: ± 3.40). All participants were 
healthy adults with no history of neurological, psychiatric, or 
cardiovascular disorders and were not using medications aecting 
brain function. They had normal or corrected-to-normal vision 
and hearing and were fluent in the language used for the task 
instructions. The participants were fully informed about the 
experimental procedure and given ample time to ask questions. 
All provided voluntary written consent. During the experiment, 
they were instructed to sit in a relaxed position and minimize eye 
and body movements to prevent unwanted artifacts. The study 
received approval from the ethics committee of Graz University of 
Technology (GZ/2024). 

2.2 Experimental paradigm 

The paradigm used in this study is based on the MIST, a 
commonly employed method for inducing stress in experimental 
conditions (Dedovic et al., 2005). At the beginning of the 
experiment, participants completed the Brief Mood Introspection 
Scale (BMIS) questionnaire (see section “2.3 Questionnaires” for 
more details). The experimental procedure consisted of three 
phases: a control phase, stress phase 1, and stress phase 2 in 
sequential order. In the control phase, participants were asked 
to solve mental arithmetic tasks without time pressure. These 
tasks included simple two-digit addition and subtraction (e.g., 
27 + 23) as well as more complex three-digit operations involving 
addition, subtraction, multiplication, and division (e.g., 25 + 52 / 4). 
Participants indicated their answers by left-clicking the mouse on 
one of three possible options, with the range of potential solutions 
limited to values between 0 and 99. Stress phase 1 involved only 
two-digit addition and subtraction problems, but the available time 
to answer was reduced by 10% compared to each participant’s 
average response time in the control phase. To heighten the stress 

experienced, participants were exposed to background workspace 
noise (e.g., phone ringing, laughter, or conversation) while solving 
the mathematical problems. Additionally, they received negative 
feedback for incorrect answers (“Wrong answer!”) or when the 
time limit was reached (“Time’s up”). Stress phase 2 was generally 
similar to stress phase 1, except that it utilized advanced three-
digit calculations. Each phase included five runs, each consisting of 
15 trials, with a 5-s break between runs during which participants 
focused on a fixation cross. This resulted in a total of 225 trials per 
participant. A baseline measurement was recorded for 10 s before 
each phase and after the final phase, during which participants 
again focused on a fixation cross. Additionally, after each 
phase, participants completed the Primary Appraisal Secondary 
Appraisal (PASA) questionnaire (see section “2.3 Questionnaires” 
for more details) to assess their self-reported stress levels, taking 
approximately 1–2 min. The experiment concluded with a second 
BMIS questionnaire. Figure 1 illustrates the complete experimental 
sequence (Figure 1a) and the details of a single phase (Figure 1b). 

2.3 Questionnaires 

The BMIS was used to assess the participants mood before 
and after the experiment. Mayer and Gaschke (1988) developed 
the BMIS questionnaire, which comprises 16 adjectives describing 
various moods (Table 1). Participants rated each adjective on a 
four-point scale from 1 (“definitely do not feel”l) to 4 (“definitely 
feel”). The BMIS score is obtained by subtracting the total (i.e., 
sum) score of the negative adjectives from the total score of the 
positive adjectives. Additionally, there is a scale to rate overall 
mood, ranging from −10 (very unpleasant) to 10 (very pleasant). 
The BMIS questionnaire is frequently used to assess changes in an 
individual’s feelings before and after a specific situation. 

The PASA questionnaire was used to assess self-experienced 
stress after control, stress 1 and stress 2 phase (Gaab, 2009). It 
is based on the transactional stress model of Lazarus (Lazarus, 
1984) and used for the self-assessment of situation-specific stress. 
It includes 16 statements, whereby each statement can be rated 
from 1 (completely wrong) to 6 (completely right) points (Table 2). 
The measure consists of the four primary scales: threat, challenge, 
self-concept of own competence, and control expectancy (Table 2). 
Combining the primary scales threat and challenge results in 
the primary appraisal. The secondary appraisal is computed with 
the primary scales self-concept of own competence and control 
expectancy. The primary appraisal scale assesses the relevance 
of a situation to an individual’s well-being and the secondary 
appraisal scale reflects an individual’s perceived resources to cope 
with a stressor. Finally, the global PASA index can be calculated 
by the dierence between the primary and secondary appraisal 
scales, which determines the transactional stress perception of an 
individual person. A lower PASA index score can be interpreted as 
low cognitive stress level. 

2.4 Data acquisition 

The complete paradigm, including presenting arithmetic tasks 
for control phase, stress phase 1 and stress phase 2 as well 
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FIGURE 1 

(a) Sequence of experimental paradigm, (b) Sequence of a single phase and (c) sequence of a single trial. Participants first completed the Brief Mood 
Introspection Scale (BMIS), received task instructions, and then rested for a 10 s baseline. The experiment then unfolded in three consecutive 
phases: a control phase, stress phase 1, and stress phase 2, followed by the Primary Appraisal Secondary Appraisal (PASA) questionnaire. A second 
10 s baseline preceded the final BMIS assessment. In the control phase, participants had no time pressure (T s is assumed to be the average response 
time in this phase). In stress phase 1 and stress phase 2 the available time to answer was reduced by 10% compared to the average response time in 
the control phase (0.9 T s). Participants were also exposed to background workplace noise (such as phone ringing, laughter, or conversations) and 
received negative feedback for incorrect responses (“Wrong answer!”) or when exceeding the time limit (“Time’s up”). 

TABLE 1 BMIS adjectives used to describe the emotional state of the 
participant. The scale was defined as follows: a score of 1 indicated 
“definitely do not feel,” 2 corresponded to “do not feel,” 3 represented 
“slightly feel” and 4 signified “definitely feel.” 

Positive adjectives Negative adjectives 

Happy Sad 

Lively Tired 

Caring Jittery 

Content Drowsy 

Peppy Fed up 

Loving Gloomy 

Active Grouchy 

Calm Nervous 

as the PASA questionnaire, was designed with the Python 
toolbox PsychoPy. The time markers were also implemented with 
PsychoPy. To synchronize all signals from the paradigm and the 
recording devices, the Lab Streaming Layer software was used. For 
the EEG data acquisition, the mobile, active EEG system LiveAmp 
from Brain Products (Gilching, Germany) was used in combination 

with the actiCAP electrode cap. A total of 32 active electrodes 
were mounted according to the international 10–20 system (FP1, 
FP2, F3, F4, Fz, F7, F8, FC1, FC2, FC5, FC6, FT9, FT10, C3, C4, 
CZ, T7, T8, CP1, CP2, CP5, CP6, TP9, TP10, P3, P4, P7, P8, 
PZ, O1, O2, OZ). FCz was used as the reference electrode and 
FPz as the ground electrode. The sampling frequency of the EEG 
recordings was 500 Hz. 

For the first three participants the connectible box of the 
LiveAmp was used for ECG signal recording. It simultaneously 
recorded EEG and ECG signals using a sampling frequency of 
500 Hz. Due to problems with the connectible box of the LiveAmp 
the g.USBamp (Gtec medical engineering, Austria) was used to 
record ECG for the rest of the participants with a sampling 
frequency of 256 Hz. The setup used was a custom bipolar ECG 
configuration, with the ground electrode placed on the left side 
on the last ribcage and the cathode and anode directly below the 
collarbone symmetric on the right and left side, respectively. 

2.5 Signal preprocessing 

Signal preprocessing was performed in MATLAB 2024b, 
Mathworks. A zero-phase, fourth-order Butterworth IIR filter was 
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TABLE 2 PASA items for different subscales. Note that items marked with 
an asterisk were reverse-scored (i.e., assigned a value of 7 minus the 
original score), as they convey the opposite meaning and effect 
compared to the other items within the same category. The scale ranged 
from 1 to 6, where 1 corresponded to “completely wrong,” 2 to “mostly 
wrong,” 3 to “somewhat wrong,” 4 to “somewhat right,” 5 to “mostly 
right,” and 6 to “completely right.” 

Category Subcategory Questions 

Primary appraisal 

Threat I do not feel threatened by the 

situation* 

This situation is very uncomfortable 

for me 

I do not feel worried because the 

situation does not pose a threat to me* 

This situation scares me 

Challenge The situation is important to me 

I do not care about this situation* 

The situation is not a challenge for me* 

This situation challenges me 

Secondary appraisal 

Self-eÿcacy In this situation, I know what I can do 

I have no idea what I should do now* 

In this situation, I can think of many 

possible courses of action 

I can think of many solutions for this 
situation 

Control expectancy It mainly depends on me whether I can 

cope with the situation 

I can best protect myself against failure 

through my own behavior 

I can control a lot of what happens in 

this situation myself 

If I overcome this situation, it is the 

result of my eort and my personal 
commitment 

applied to bandpass filter the EEG and ECG signals between 0.5 
and 60 Hz. To attenuate power line interference at 50 Hz, a 
second-order Butterworth IIR notch filter was used. To exclude 
unwanted artifacts from the EEG signals, independent component 
analysis (ICA) was performed using the EEGLAB toolbox v.2023.0 
(Delorme and Makeig, 2004) with the default extended Infomax 
algorithm (runica) (Lee et al., 1999). No channel interpolation, 
rejection, or re-referencing was performed before applying ICA. 
To assist in identifying components reflecting artifacts such as 
eye movements, muscle activity, or noisy channels, we used the 
ICLabel (Pion-Tonachini et al., 2019) plugin as a guidance tool. 
However, final decisions on component rejection were based on 
careful visual inspection. Only components clearly identified as 
non-neural, whether due to physiological artifacts or channel 
noise, were removed (typically ranging from 1 to 5 components 
per participant). The HR signal was derived from the ECG 
using the Pan-Tompkins algorithm (Pan and Tompkins, 1985; 
Sedghamiz, 2025). Once the R-peaks were identified, HR was 
computed as the reciprocal of the R-R intervals (i.e., 1 / R-R 
interval), then multiplied by 60 to express the result in beats 
per minute (bpm). Prior to that, however, we identified and 

removed artifacts based on abrupt, physiologically implausible 
changes between successive heartbeats. After this, we manually 
corrected the cleaned R-R series by identifying remaining outliers 
using the generalized extreme studentized deviate (GESD) method 
(Rosner, 1983), implemented via MATLAB’s filloutliers function. 
The GESD approach is designed to detect multiple statistical 
outliers in a dataset, even when they occur in clusters or deviate 
strongly from normality. Detected outliers were then replaced using 
linear interpolation. Finally, any remaining missing values were 
filled using standard linear interpolation to produce a continuous, 
artifact-free R-R time series. Since R-R intervals are inherently 
non-uniformly sampled, the resulting HR signal was linearly 
interpolated and upsampled to match the EEG sampling rate, 
enabling synchronized analysis. We acknowledge that dierences 
in ECG acquisition systems can introduce variability in signal 
characteristics, even with consistent electrode placement. However, 
our analysis focused on HR rather than detailed ECG waveform 
morphology. Prior to HR extraction, we visually inspected all 
ECG recordings to ensure signal quality and found them to be 
suÿciently clean for reliable R-peak detection and R–R interval 
estimation across participants. For subsequent analysis, the HR 
signal was also baseline-corrected per phase by computing the HR 
change from the baseline period immediately preceding each phase, 
thereby accounting for individual dierences in resting HR and 
emphasizing task-evoked physiological reactivity. This procedure 
eectively removes any slow drifts or baseline shifts in HR over 
the course of the experiment, ensuring that all reported eects 
reflect true task-related changes. To ensure consistency across 
participants despite dierences in recording systems and sampling 
frequencies, all signals were ultimately resampled to 256 Hz using 
MATLAB’s resample function, which applies an anti-aliasing filter 
prior to downsampling. 

All EEG signals were subsequently segmented into trials 
centered on each participant’s response time, covering a window 
from −3 to −0.5 s relative to the response. This alignment was 
chosen to capture the neural and physiological processes leading 
up to the behavioral response, such as attentional engagement, 
motor preparation, and autonomic adjustments, while avoiding 
the influence of early sensory components such as visual-evoked 
potentials triggered by the initial presentation of the mathematical 
problems. Aligning to the response, rather than the stimulus, also 
minimized variability due to individual dierences in reaction 
time, enabling more accurate comparisons across participants and 
conditions. EEG trials exhibiting excessive noise were excluded 
based on amplitude thresholding at ± 100 µV. On average, 
2.23 ± 2.23 trials per participant were discarded. For HR analysis, 
we used a time window from –4 to + 6 s relative to the 
response, allowing us to capture both pre-response and post-
response dynamics. 

2.6 Feature extraction 

For each epoched EEG trial, we extracted spectral features 
across five standard frequency bands: delta (D; 0.5–3.5 Hz), theta 
(T; 4–7.5 Hz), alpha (A; 8–12.5 Hz), beta (B; 13–30 Hz), and gamma 
(G; 30–60 Hz). Band power within each range was computed using 
MATLAB’s bandpower function. Because our 10-s pre-phase resting 
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segments are too brief and contaminated by anticipatory arousal 
to provide a stable reference, we opted not to baseline correct 
the EEG band power values. Instead, similarly to our previous 
work (Wriessnegger et al., 2024), to reduce inter-subject and inter-
channel variability, we calculated relative band power by dividing 
the absolute power in each band by the total power summed 
across the broad (0.5–60 Hz) band within each trial. In this way, 
spectral power was normalized on a per-trial basis, allowing us to 
focus on the relative distribution of power across frequency bands. 
Moreover, given our cumulative stress design, imposing a single 
“fixed” EEG baseline at the start would obscure the progressive, 
phase-by-phase buildup of stress. 

In addition to relative power, we computed the T/B and G/T 
power ratios, which serve as established indicators of cognitive and 
attentional states (Clarke et al., 2001; Arns et al., 2013; Putman et al., 
2014; Angelidis et al., 2016; Minguillon et al., 2016, 2018; Wen and 
Aris, 2020; Wen et al., 2020; Zivan et al., 2023). We also examined 
hemispheric asymmetries in the alpha band by calculating laterality 
indices: ln(L)-ln(R) for left hemisphere channels and ln(R)-ln(L) 
for right hemisphere channels, where L and R denote relative 
power. This approach captures shifts in hemispheric dominance, 

with increases in one hemisphere mirrored by reductions in the 
other. Importantly, using relative power to estimate laterality 
indices helps mitigate the impact of referencing artifacts and global 
amplitude fluctuations. In (Vincent et al., 2021) frontal asymmetry 
estimates based on relative power were found to provide more 
reliable and interpretable results compared to those based on 
absolute power measures. Thus, here we used the relative power 
to estimate laterality indices. While asymmetry analyses typically 
focus on predefined electrode pairs—especially in frontal regions— 
our aim was to capture more global lateralization eects. To 
this end, we performed a whole-head analysis by computing the 
laterality index across all homologous electrode pairs. 

2.7 Error rates and response times 

For each participant, the error rate (%) was calculated as the 
proportion of incorrect responses within each run (comprising 15 
trials) and task phase. Response time was measured in seconds. If 
a participant did not provide a response, the trial was treated as an 
error, and the maximum allotted time for that subject and phase was 

FIGURE 2 

(a) BMIS overall mood scores before and after the experiment, and (b) comparison between sexes. (c) PASA stress scores across the control phase, 
stress phase 1, and stress phase 2. Statistically significant differences between conditions are indicated by asterisks (*p < 0.05, **p < 0.01, 
***p < 0.001). 
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assigned as the response time. We also computed relative response 
times defined as each subject’s response time divided by the average 
response time of all participants for the respective phase across all 
runs, in order to account for phase-related dierences in maximum 
allotted response times. 

2.8 Linear mixed effects models 

Building on our previous study (Wriessnegger et al., 
2024), we employed linear mixed-eects (LME) models to 
investigate the relationships between variables (MATLAB 
function fitlme). The model structure used was: Y ∼ X + 
(1| Participant), which includes a random intercept for each 
participant to account for individual baseline variability— 
such as dierences in EEG power. This formulation captures 
both fixed eects of the predictor (X) and random eects 
due to participant-level dierences. Consistent with our prior 
findings (Wriessnegger et al., 2024), we observed that including a 
random intercept substantially improved model fit, as evidenced 

by lower Akaike information criterion (AIC) values when 
compared to models that excluded this random eect. Model 
parameters were estimated using maximum likelihood. The 
strength and direction of the relationship between X and the 
outcome variable Y were evaluated using the t-statistic of the 
fixed eect, defined as the estimated coeÿcient divided by its 
standard error. Positive or negative t-values reflect the nature of 
the association. 

The variables of interest included EEG band power across 
five frequency ranges (D, T, A, B, G), T/B and G/T ratios, and 
laterality scores for the A band. These features were examined in 
relation to a set of predictors: experimental phase (i.e., control 
phase, stress phase 1 and stress phase 2), error rate and stress 
ratings derived from the PASA questionnaires (administered 
after each phase). For each model, the dependent variable (Y) 
represented the average EEG measure across each run at a specific 
electrode, aggregated across all participants, while the predictor 
(X) corresponded to one of the aforementioned factors. Fixed-
eect t-values from each channel were extracted and compiled into 

FIGURE 3 

(a) Error rate (%), and (b) response time (s) across the control phase, stress phase 1, and stress phase 2. (c) Error rate (%), and (d) response time (s), 
separated by sex. Statistically significant differences between conditions are indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). 
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spatial representations—referred to as t-maps—to visualize how 
EEG features relate to each factor. 

2.9 Statistical analysis 

In the LME models, degrees of freedom for fixed eects 
were computed using the residual method, defined as the 
number of observations minus the number of fixed-eect 
parameters, and two-tailed p-values were obtained from the 
corresponding t-distribution, as implemented in MATLAB’s 
fitlme function. Significant eects across EEG channels in the 
t-maps were determined by applying the Benjamini-Hochberg 
(Benjamini and Hochberg, 1995) procedure to control for multiple 
comparisons on the p-values obtained from the LME models. 
To assess dierences between males and females, we employed 
the Wilcoxon rank-sum test for questionnaire responses, error 
rates, response times, and HRs. For within-group comparisons 
(i.e., within the same sex), we used the Wilcoxon signed-
rank test. Note that the Benjamini-Hochberg correction was 
applied consistently in all analyses involving multiple statistical 
tests. For all tests based on Wilcoxon tests (i.e., rank-sum and 
signed-rank), we also computed eect sizes using Cohen’s r, 
calculated by dividing the standardized test statistic (Z) by the 
square root of the total number of observations, providing a 
consistent measure of eect magnitude across both independent 
and paired comparisons. For LME models, we extracted each 
fixed-eect term’s t-statistic (t) and its associated degrees of 
freedom (df ). We then converted these into Cohen’s r using 

the formula r sign(t) 
q 

t2 

t2+df (Fritz et al., 2012), which yields 
a signed, unit-less measure of eect magnitude (–1 to + 1). 
This approach provides an eect-size metric directly comparable 
to the Wilcoxon-test r, interpretable with the same benchmarks 
(≈0.1 small, ≈0.3 medium, ≥0.5 large), and allows standardized 
comparison across both mixed-model predictors and non-
parametric tests. 

3 Results 

3.1 Behavioral results 

We compared BMIS and overall mood scores before and after 
the experiment. The BMIS mood score significantly decreased after 
the experiment (p = 0.025, r = 0.631; Figure 2a), indicating a shift 
toward more negative feelings. No general sex-related dierences 
were observed (Figure 2b). However, males reported significantly 
lower overall mood scores than females prior to the experiment 
(p = 0.039, r = 0.513; Figure 2b). Similarly, PASA stress scores— 
which reflect perceived stress levels—increased significantly from 
the control phase to stress phase 1 (p = 0.014, r = 0.642) and stress 
phase 2 (p < 0.001, r = 0.657) (Figure 2c), with no significant sex 
dierences observed. 

The mean error rate increased significantly across phases: from 
3.1 ± 2.5% in the control phase to 14.8 ± 5.7% in stress phase 1 
(p < 0.001, r = 0.873), and further to 37.8 ± 7.0% in stress phase 2 
(p < 0.001, r = 0.873; Figure 3a). Mean response time in the control 
phase was 7.0 ± 2.5 s, which significantly decreased to 3.7 ± 1.1 s 
in stress phase 1 (p < 0.001, r = 0.347), and then significantly 
increased again to 5.1 ± 1.6 s in stress phase 2 compared to stress 
phase 1 (p < 0.001, r = 0.873; Figure 3b). This corresponds to 
total durations of approximately 8.8 min for the control phase, 
4.6 min for stress phase 1, and 6.4 min for stress phase 2. These 
estimates exclude the 5-s inter-run fixation breaks and the time 
required for completing the PASA questionnaire after each phase. 
No significant dierences were found between sexes in either error 
rate or response time (Figures 3c, d). 

To assess potential practice-related improvements, we analyzed 
trends in error rates and response times across repeated task runs. 
LME models were fitted separately for each phase, with run number 
as the predictor and either error rate or response time as the 
dependent variable. During the control phase, error rates showed 
a significant linear decline (t = −4.59, p = 1.06 × 10−5 , r = 0.380), 
indicating improvement over time (Figure 4a). In stress phase 1, 

FIGURE 4 

(a) Error rate (%), and (b) response time (s) across runs for the control phase, stress phase 1, and stress phase 2. 
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although a downward trend was observed, the change was not 
statistically significant decline (t = −1.813, p = 0.072, r = 0.161). 
Interestingly, in stress phase 2, a significant time eect emerged 
(t = 2.29, p = 0.023, r = 0.201), characterized by a drop in error 
rate up to run 3, followed by an increase through run 5. No 
significant run-related eects were observed for response times in 
any phase (Figure 4b), and there were no sex-related dierences in 
the patterns of error rates or response times. 

3.2 ECG results 

To capture task-evoked autonomic dynamics, HR was time-
locked to response onset (t = 0 s), a behavioral marker 
reflecting decision or motor action. This alignment allows 

precise comparisons of anticipatory, reactive, and recovery-related 
cardiovascular changes across conditions and participants. 

Figure 5 shows grand average HR responses time-locked to 
response onset for three phases–control, stress 1, and stress 2– 
presented in bpm and as changes from baseline (herein referred 
to as baseline-corrected HR). Data are separated by sex: females 
in Figures 5a, c and males in Figures 5b, d. Significant phase 
dierences at each time point are marked by filled circles, with 
edge/fill color indicating the comparison. 

Raw and baseline-corrected HR captured complementary 
aspects of stress responses. The sequential design (control → 
stress 1 → stress 2) means raw HR reflects both immediate 
stress eects and cumulative physiological changes (e.g., fatigue 
or adaptation). In all participants, HR dipped around response 
onset, then rebounded—indicating parasympathetic deceleration 
followed by sympathetic activation 

FIGURE 5 

Grand average ( ± standard error) across all participants of (a,b) HR in beats per minute (bpm), and (c,d) HR change relative to baseline (bpm), 
time-locked to the response onset (t = 0 s), for the control phase, stress phase 1, and stress phase 2 for (a,c) females and (b,d) males. Statistically 
significant differences between phases at each time point are indicated by filled circles along the x-axis (p < 0.05, corrected for multiple 
comparisons). Each cluster comparison is color-coded, with the outer edge and inner fill colors denoting the corresponding phase comparison 
(e.g., green-edged circles with a yellow fill indicate significant differences between the control phase and stress phase 1). Asterisk (∗), circle (◦), and 
diamond () markers on each HR trajectory indicate the HR dip onset time, the time of the HR minimum (dip), and the HR rebound time, respectively. 
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Females (Figure 5a) showed higher raw HR than males, with 
HR peaking in control and dropping in both stress phases. Post-dip 
HR stayed elevated in control but remained suppressed in stress 
phases. Dierences between control and each stress phase were 
significant; subtler distinctions emerged between the two stress 
levels. Males (Figure 5b) showed a more graded pattern: highest 
HR in control, lowest in stress 1, intermediate in stress 2. Post-dip 
recovery followed the same order, suggesting a stepwise modulation 
by stress and time-on-task. 

Baseline-corrected HR isolated within-phase changes that were 
less apparent in raw data. In females (Figure 5c), this approach 
clarified the stress eects: although raw HR looked similar across 
stress phases, baseline-corrected data revealed a significant HR 
increase above baseline in stress phase 1, while both control and 
stress phase 2 showed suppression–most strongly in the latter. 
These patterns indicate enhanced HR reactivity under moderate 
stress and reduced responsiveness under high stress. In males 
(Figure 5d), baseline-corrected HR revealed a more linear trend. 
HR was elevated above baseline only during the control phase, 
whereas both stress phases showed reductions, with the strongest 
suppression in stress phase 2. These graded decreases suggest 
a monotonic decline in autonomic reactivity as stress intensity 
increases. 

The dynamics of the HR dip and rebound varied across 
experimental phases and between sexes. To quantify these 
dynamics, several features were extracted from the average 
baseline-corrected HR trajectories, computed separately for each 
participant and phase. The HR dip onset was identified as the first 
point before the HR minimum where the HR velocity became 
negative following a period of near-zero change (Figure 5). The 
HR dip magnitude was defined as the dierence between the HR 
at onset and the minimum HR value, and the HR dip timing 
corresponded to the time of this minimum. The HR dip duration 
was the interval from onset to minimum. The HR rebound 
magnitude was the dierence between the minimum HR and the 
subsequent local maximum, with HR rebound timing and HR 

rebound duration referring to the time and interval from the 
minimum to this peak, respectively. 

To statistically assess these changes and identify the 
contributing factors, we applied linear regression models of 
the following form in Wilkinson notation: Y ∼ sex∗X, where Y 
represents one of the previously defined baseline-corrected HR 
trajectory features, estimated from the average responses of each 
participant and X represents one of the following predictors: error 
rate, PASA stress score, task phase, or relative response time. This 
formulation expands to include both the main eects of each 
variable and their interaction with sex. Error rate and response 
time were computed as the participant’s total values for each 
respective phase. The variable phase was treated as a categorical 
factor coded as 1 (control), 2 (stress 1), and 3 (stress 2), while sex 
was coded as 1 for females and 2 for males. 

Figure 6 shows, in panel (a), a heatmap of predictors that 
reached statistical significance (p < 0.05), and in panel (b), the 
corresponding eect sizes. These panels summarize the outcomes 
of linear regression models assessing how each factor impacts 
various HR response features. The rows correspond to specific HR 
features while the columns represent significant main eects and 
interaction terms. The color scale reflects the t-statistics of each 
eect, with red colors indicating positive associations and blue 
colors indicating negative associations. 

Several key patterns emerge from this analysis. Relative 
response time was significantly associated with multiple HR 
features: individuals with slower responses exhibited earlier HR dip 
onset and dip timing, longer dip duration, and greater rebound 
magnitude and duration, indicating that delayed behavioral 
responses were linked to earlier and stronger autonomic reactivity. 
PASA stress scores were positively associated with HR dip 
magnitude, suggesting that higher stress was linked to larger 
initial HR drops. HR dip magnitude increased from control to 
stress phases and rebound timing was delayed. Significant sex 
interactions highlighted sex-specific dierences in the temporal 
dynamics of HR regulation. For example, in response to increased 
stress, males showed an earlier onset and timing of the HR dip, 

FIGURE 6 

(a) Significant predictors of baseline-corrected HR response metrics based on linear models. The heatmap displays t-statistics for predictors (x-axis) 
significantly associated with different HR features (y-axis), including dip timing, magnitude, onset, rebound timing, and rebound magnitude. Only 
predictors with p < 0.05 (corrected for multiple comparisons) are shown. Red colors indicate positive associations, and blue colors indicate negative 
associations. Significant interaction terms involving sex highlight sex-dependent effects and how the influence of other predictors varies between 
females and males. (b) Corresponding effect sizes (Cohen’s r). 
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along with a longer dip duration compared to females (PASA 
∗ Sex). In contrast, females exhibited a delayed HR dip with a 
shorter duration. Additionally, women demonstrated greater HR 
dip and rebound magnitudes associated with longer response times 
(Response Time ∗ Sex). 

3.3 EEG results 

In Figure 7, each t-map shows the spatial distribution of 
associations (t-values) between a predictor variable (experimental 
phase, PASA stress score, error rate) and EEG features (columns: D, 

T, A, B, G power, and the T/B and G/T ratios) for females and males 
separately. Red indicates a positive relationship; blue, a negative 

one. Statistically significant associations (p < 0.05) within channels 
are marked by filled black circles. Eect sizes are also provided 

(Figure 7d). Across all three predictors, highly similar spatial and 

spectral patterns of EEG modulation were observed in both sexes. 
These consistent eects suggest that all three factors likely index a 

common underlying process, such as stress-induced cognitive load 

or mental eort. 
In Figure 7a, which reflects the eect of experimental phase 

(from control to stress phase 2), females showed significant negative 

associations with T power at frontal electrodes and corresponding 

FIGURE 7 

t-maps showing the relationships between EEG features (from left to right: D power, T power, A power, B power, G power, T/B ratio, and G/T ratio) 
and various variables: (a) experimental phase (as 1 for control, 2 for stress phase 1, and 3 for stress phase 2—red shading indicates an increase in the 
EEG feature from control phase to stress phase 2, while blue indicates a decrease), (b) PASA stress scores (from questionnaires administered after 
each phase) and (c) error rate (%) for males and females separately. Red gradients denote positive associations, while blue gradients indicate 
negative associations. Channels showing statistically significant effects (p < 0.05) are marked with filled black circles. (d) presents boxplots of the 
corresponding effect sizes (Cohen’s r) calculated across all channels and bands for each variable and sex. 
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FIGURE 8 

(a) t-maps illustrating the relationship between alpha asymmetry and the experimental phase (coded as 1 for control, 2 for stress phase 1, and 3 for 
stress phase 2), PASA stress scores, and error rate (%) separately for females (top panel) and males (bottom panel). Red regions indicate areas where 
laterality power scores increase with increasing values of the corresponding variable, while blue regions reflect a decrease. Laterality values along 
the midline were set to zero. Statistically significant channel effects (p < 0.05) are denoted by solid black dots. (b) presents boxplots of the 
corresponding effect sizes (Cohen’s r) calculated across all channels for each variable and sex. 

reductions in the T/B ratio (i.e., T frontal power and T/B ratio 

decreased as the experiment progressed from control to stress 
phase 2). In addition, B power significantly increased at right 
parietal electrodes, indicating a localized shift toward higher-
frequency activity under stress. In males, although similar overall 
patterns were observed, the most statistically significant eects were 

found in the D and G bands. Specifically, D power significantly 

decreased over central and parietal electrodes especially on the 

left hemisphere, while G power showed widespread and robust 
increases across posterior and parietal regions. These changes were 

accompanied by significant increases in the frontal G/T ratio. In 

Figure 7b, relating EEG features to PASA stress scores, females 
showed significant negative associations with frontal T power and 

decreased frontal T/B ratios. Males again displayed significant 
increases in G power. In Figure 7c, examining error rate, revealed 

that females displayed significant reductions in T power and 

increases in B power at frontal electrodes, as well as decreased T/B 

ratios over mid-frontal sites with increasing error rates. In males, 
significant widespread increases in G power, especially across 
posterior electrodes were observed. Taken together, these results 
show that while both sexes exhibit stress- and performance-related 

modulation of EEG features, D and G band power changes— 
particularly G—emerge as the most consistently significant in 
males, while T power, B power, and T/B ratio show stronger and 
more localized eects in females. 

Figure 8 illustrates the relationship between alpha laterality and 
three key variables—experimental phase, PASA stress score, and 
error rate—displayed separately for females (top row) and males 
(bottom row). Red regions indicate increased laterality values (i.e., 
greater relative left- or right-hemisphere alpha power dominance 
depending on the side), while blue regions reflect decreased 
laterality. Statistically significant eects (p < 0.05) are denoted 
by solid black dots. In females, significant eects were observed 
over left and right frontocentral and centroparietal electrodes for 
both the experimental phase and PASA stress scores, indicating 
that A asymmetry in these regions reliably tracked increases in 
task-induced stress and self-reported stress. Additionally, for error 
rate, a significant eect was observed over frontocentral channels 
(and specifically FC5/FC6), suggesting that increased error rates 
were associated with a shift in frontal A asymmetry. In males, 
significant eects for experimental phase were found over frontal 
(FP1/FP2) and frontocentral electrodes (FC5/FC6), while PASA 
stress scores showed significant associations with frontal (FP1/FP2) 
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and occipital (O1/O2) regions. For error rate, no significant eects 
were observed. 

Visual comparison of the t-maps in Figure 8 reveals that 
the experimental phase eects closely resemble a combination of 
the PASA stress score and error rate maps. This suggests that 
experimental phase eects largely reflect a composite of increasing 
subjective stress and accumulating performance variability across 
phases, rather than an independent source of EEG asymmetry 
modulation. 

4 Discussion 

The primary objective of this study was to identify reliable 
indicators of mental stress using EEG and ECG features. Well-
established indicators were employed based on prior research 
(Attar et al., 2021; Hag et al., 2021; AlShorman et al., 2022; Aspiotis 
et al., 2022). In addition to these objective measures, subjective 
experiences of mood and perceived stress were assessed using two 
validated questionnaires: the BMIS and the PASA scale. A key 
objective of the study was also to investigate sex-related dierences 
in the neurophysiological and behavioral responses to stress. The 
following discussion integrates findings from the EEG, ECG, and 
questionnaire data, with an emphasis on how stress responses may 
dier between males and females across multiple domains. 

4.1 Subjective and behavioral indicators 
of stress 

The behavioral and self-report data provide clear evidence that 
the experimental manipulation successfully induced psychological 
stress and impacted task performance. Participants’ mood, as 
assessed by the BMIS, declined significantly following the 
experiment, indicating a shift toward more negative aective states. 
This supports the notion that the cognitive load and emotional 
strain associated with the task were impactful. Interestingly, while 
no overall sex dierences emerged in the direction of mood change, 
males reported significantly lower baseline mood prior to the 
experiment. This baseline gap may reflect pre-existing dierences 
in emotional state or expectations about task performance, though 
post-task mood converged across sexes. 

Primary Appraisal Secondary Appraisal stress scores increased 
stepwise across phases, confirming that participants subjectively 
experienced greater stress as the task progressed from control to 
stress phase 1 and stress phase 2. The lack of sex dierences in 
PASA responses suggests that, despite the observed dierences 
in physiological and neural patterns (as seen in EEG and 
ECG results), subjective stress appraisal was comparable across 
males and females. 

Performance measures mirrored these subjective eects. Error 
rates increased dramatically across phases, reflecting the growing 
cognitive demands and stress-related attentional disruption. 
Response times followed a non-linear trend: participants responded 
faster under moderate stress (stress phase 1), potentially due to 
heightened arousal, but slowed down under higher stress (stress 
phase 2), consistent with cognitive overload or disengagement. 
These patterns were similar across sexes, reinforcing that the task’s 

diÿculty scaling and its impact on behavior were robust and 
comparable across groups. 

Practice-related improvements were also modulated by stress 
context. During the control phase, error rates declined across 
task runs, indicating typical learning eects. This trend was 
blunted in stress phase 1 and reversed in stress phase 2, where 
early improvements gave way to performance degradation. These 
findings suggest that while participants can adapt and improve 
under low-stress conditions, stress impairs the application of 
learning especially under sustained high demand. 

4.2 ECG features as reliable stress 
markers? 

Raw HR data showed that females exhibited overall higher HR 
than males, consistent with sex-based dierences in cardiovascular 
physiology—such as smaller stroke volume and greater resting HR. 

In females, raw HR indicates that overall autonomic tone 
decreases with stress and then plateaus, suggesting a general 
suppression in cardiovascular activation once stress is introduced. 
The elevated HR observed during the control phase may 
also reflect anticipatory anxiety related to the upcoming math 
stressor. Such anticipatory responses are consistent with literature 
showing that mere anticipation of performance-related stress can 
activate the sympathetic nervous system (Roos et al., 2021). 
The progressive HR decline across stress phases could possibly 
also be linked to mental fatigue, as supported by findings from 
Matuz et al. (2021), who demonstrated that mental fatigue from 
prolonged cognitive engagement leads to reduced HR, reflecting 
diminished energetic arousal and decreased task engagement. 
Consistently, in our previous work (Riedl et al., 2023), we reported 
that videoconference fatigue—another cognitively demanding 
condition—was associated with decreased HR as well. While in 
Riedl et al. (2023) we observed significantly increased frontal and 
occipital T and A power associated with fatigue, herein we did 
not identify such changes with experimental phase (Figure 7), 
suggesting that the observed eects are likely not attributable 
to mental fatigue. We also did not find statistically significant 
dierences in the BMIS scores for the adjectives “tired” and 
“active” before and after the experiment (for either males or 
females), which could have indicated the presence of fatigue. 
Furthermore, baseline-corrected data reveal that stress phase 1 still 
triggers a stronger phasic response relative to its own baseline – 
suggesting moderate stress briefly activates the system, while high 
stress leads to blunted reactivity. This supports the idea of an 
initial overactivation followed by physiological fatigue or reduced 
flexibility under continued stress exposure. 

In males, raw HR declined from control to stress phase 1 
and showed partial recovery in stress phase 2, suggesting some 
reactivation of autonomic activity under higher stress. However, 
baseline-corrected HR revealed a monotonic decrease in reactivity, 
with HR falling below baseline in both stress phases and reaching 
its lowest point in stress phase 2. This indicates that despite the 
apparent rebound in raw HR, the cardiovascular system remained 
less responsive relative to its pre-phase state. The combined pattern 
suggests reduced physiological flexibility or gradual disengagement 
in response to increasing cognitive demands. 
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Across all participants, a brief dip in HR was observed around 
the time of response onset–a characteristic cardiac deceleration 
typically attributed to parasympathetic activation. This transient 
bradycardia is commonly associated with focused cognitive 
engagement and motor preparation, serving to enhance attentional 
and sensorimotor control during response execution (Jennings 
et al., 1980; Jennings, 1982; Pfurtscheller et al., 2013; Skora et al., 
2022; Henderson et al., 2024). After the brief parasympathetic 
deceleration, there is typically a reactivation of sympathetic nervous 
system activity as the individual executes the response or processes 
its outcome, which results in a post-response acceleration of HR. 
Skora et al. (2022) proposed a mechanistic explanation: event-
related HR deceleration sharpens perceptual focus by reducing 
baroreceptor noise via vagal activation, facilitating more eÿcient 
sensorimotor control. After response execution, parasympathetic 
withdrawal and sympathetic rebound promote action and recovery. 

Consistent with this view, multiple studies using choice 
reaction time tasks (Jennings, 1982; Zimmer et al., 1990) 
have shown anticipatory HR slowing that intensifies with task 
repetition, predicting faster but more impulsive responses. In 
error-related paradigms, (Danev and de Winter, 1971; Wimmer 
et al., 2024) found that correct performance was followed by 
HR rebound, while errors prolonged HR deceleration, suggesting 
prolonged parasympathetic engagement during error monitoring. 
Pfurtscheller et al. (2013) observed initial HR deceleration in both 
action and no-action conditions during motor imagery Go/No-Go 
tasks, with a quicker rebound in active trials, highlighting the role 
of movement preparation in cardiac dynamics. In tasks requiring 

increased cognitive load, Henderson et al. (2024) showed that 
higher diÿculty led to earlier and more gradual HR deceleration, 
while Dennis and Mulcahy (1980) emphasized that HR deceleration 
reflects cognitive load during stimulus evaluation. Kaiser and 
Sandman (1975) found greater HR deceleration during the warning 
period of anagram problem-solving, with more diÿcult anagrams 
linked to higher HR deceleration, indicating greater attentional 
demands. Finally, De Pascalis et al. (1995) found that stress slowed 
HR deceleration before the probe stimulus in a visual recognition 
task, suggesting that stress reduces processing capacity, making it 
harder to prepare for stimuli. 

In the present study, these prior findings are projected in 
the observed HR dip and rebound patterns, but with modulation 
by stress level and sex. Participants who felt more stressed had 
larger HR dips, showing that the body reacts more forcefully to 
higher perceived stress. Importantly, males and females managed 
these stress responses in dierent ways. Men tended to show 
earlier and longer-lasting HR dips, suggesting a strategy based on 
timing—they start reacting earlier and maintain a steady response 
over time. Women, on the other hand, showed larger dip and 
rebound magnitudes, especially during slower responses, indicating 
a strategy based on intensity—their bodies react more forcefully, 
though for a shorter duration. 

These results underscore that temporal features of HR 
regulation may oer sensitive indices of physiological states that 
are not captured by average HR levels alone and further reveal 
sex-related dierences in the timing and dynamics of autonomic 
responses (Table 3). 

TABLE 3 Summary of ECG and EEG results. 

Data Aspect Females Males All participants 

ECG 

Baseline HR (Raw) Higher than males; possible anticipatory 

anxiety 

Lower than females ___ 

HR trend across phases Decrease from control to stress, then 

plateau 

Decrease in stress 1, partial rebound in 

stress 2 (raw) 
Initial activation then reduced reactivity 

Baseline-corrected HR Phasic response in stress 1; blunted in 

stress 2 

Monotonic decrease below baseline 

across phases 
___ 

Response-locked HR dip Larger dips and rebounds 
(intensity-driven) 

Earlier, longer dips (timing-driven) Brief dip followed by rebound 

post-response 

Interpretation Suppression after stress onset; strong 

short-duration reactions 
Steady, early engagement with reduced 

flexibility 

Cardiac deceleration and rebound align 

with cognitive engagement 

EEG 

Frontal theta and beta power Increased; linked to attentional control 
and cognitive load 

Less prominent changes Stress modulates T and B power in frontal 
regions 

Frontal T/B ratio Sensitive marker across stress, 
performance, and PASA score 

Not a consistent marker ___ 

Gamma power Moderate increase under stress Strong increases across stress and errors; 
frontal/posterior 

Stress increases G power, more so in males 

Delta power Less aected Decreased in central/parietal left 
hemisphere; reduced motor readiness 

Stress may reduce MRCPs 

Alpha asymmetry Left > right; linked to negative aect and 

emotional regulation 

Left frontal dominance; right PFC 

activation under stress 
Asymmetry modulated by stress in both 

sexes 

Performance link EEG features correlate with performance 

and stress ratings 
Less direct, more influenced by 

cumulative stress-performance eects 
EEG markers reflect both stress and 

cognitive eort 

Mechanism interpretation Engages localized, frequency-specific 

networks 
Broader, high-frequency cortical 

activation patterns 
Sex-dependent EEG strategies under stress 
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4.3 EEG features as reliable stress 
markers? 

The EEG findings demonstrate that both task-induced 
and self-reported stress are associated with robust neural 
changes. Importantly, the overall patterns of stress-induced EEG 
power changes observed here closely mirror the t-map results 
reported in our previous work (Wriessnegger et al., 2024). This 
consistency across studies reinforces the robustness of these 
neurophysiological markers in capturing stress-related cognitive 
and aective dynamics. The nature, however, and distribution 
of these changes dier between females and males. While 
similar topographic patterns were observed across sexes, the 
underlying spectral and lateralization profiles point to distinct 
neurophysiological strategies. Specifically, D power significantly 
decreased in men over central and parietal electrodes especially 
on the left hemisphere. Studies show greater hemispheric 
lateralization in males, while females exhibit more bilateral 
activation, especially in prefrontal and limbic areas. This may 
correspond to more synchronized theta or alpha activity in 
females during emotionally charged tasks and increased gamma 
or beta in males due to lateralized, goal-oriented processing 
(Hodgetts and Hausmann, 2022). 

In females, stress consistently modulated frontal T, B power, 
and the T/B ratio–features tightly linked to cognitive control and 
attentional regulation. This aligns with previous findings showing 
that frontal-midline theta and beta oscillations are highly sensitive 
to cognitive load and stress (Putman et al., 2014). Wen and Aris 
(2020) and Wen et al. (2020) also reported a negative correlation 
between T/B and stress. Herein, the frontal T/B ratio emerged as 
a sensitive marker across experimental phase, PASA stress scores, 
and error rate, which may reflect increased attentional demands 
and emotional processing. 

Prior studies already reported on sex-related neurotransmitter 
system dierences, specifically serotonin, dopamine, and 
GABAergic systems are modulated dierently by sex hormones, 
impacting stress reactivity and EEG markers. For example, 
estrogen upregulates serotonin and GABA receptors, which may 
contribute to increased alpha/theta power, associated with emotion 
regulation and internal attention (Bangasser and Valentino, 2014; 
Bangasser and Wicks, 2017). Neurochemically, estrogen modulates 
limbic-frontal interactions, enhancing women’s sensitivity to 
emotional and cognitive stressors and likely contributing to the 
observed EEG profiles. Neurohormonal influences, particularly 
the modulatory role of estrogen and testosterone, likely shape 
oscillatory dynamics by influencing cortical excitability and 
connectivity in regions such as the PFC and limbic system 
(Shansky et al., 2004; Barth et al., 2015). Estrogen has a profound 
eect on brain function, particularly in modulating limbic 
system activity (amygdala, hippocampus) and PFC regions 
responsible for emotional regulation and executive control. 
Whereas estrogen enhances synaptic plasticity, cortical excitability, 
and can influence oscillatory patterns, especially in theta and alpha 
bands, testosterone is associated with greater activation in brain 
areas linked to goal-directed behavior and risk-taking, potentially 
increasing beta and gamma activity under stress. 

Structurally, females show more bilateral activation during 
cognitive-emotional tasks, which may relate to greater theta 

and alpha power, supporting emotion-focused coping. Males, 
on the other hand, showed a dierent pattern of modulation. 
Gamma power was the most consistently aected feature across all 
predictors, with particularly strong increases under stress and high 
error rates. This aligns with prior findings showing that prefrontal 
G power significantly increases under acute psychosocial stress 
(Minguillon et al., 2016). Similarly, recent work by Pei et al. (2023) 
demonstrated that task diÿculty systematically increases G band 
amplitude, particularly in posterior regions, reflecting elevated 
cortical arousal and high-load cognitive processing. Furthermore, 
males often exhibit lateralized activity patterns associated with 
heightened beta and gamma power, supporting rapid, action-
oriented coping mechanisms (Bangasser and Valentino, 2014). This 
also aligns with evolutionary theories proposing the “fight-or-
flight” stress responses wherein sex-specific EEG activation may 
represent adaptive neural strategies to environmental stressors 
(Taylor et al., 2002; Gur and Gur, 2016). Males may prioritize 
rapid problem-solving and response execution, reflected in more 
high-frequency EEG activity, like the observed gamma power. 
Although G activity increases can sometimes reflect residual EMG 
contamination, we consider this unlikely to fully account for our 
findings. First, our ICA and artifact rejection steps specifically 
targeted muscular sources. Second, the topographical patterns we 
observe, which are characterized by more global increases, do not 
match the typical peripheral distributions of muscle signals near the 
scalp, and these global increases were more pronounced in male 
participants than in female. 

We also observed significant decreases in D power in 
central and parietal regions under stress, particularly in the 
left hemisphere. This lateralized D reduction (i.e., mainly 
in the left hemisphere) may reflect decreased amplitudes of 
movement-related cortical potentials (MRCPs), which reside 
in the D band and are associated with motor preparation 
processes involved in generating a response (Shibasaki et al., 
1980; Shibasaki and Hallett, 2006). These findings suggest 
that stress may impair or reduce the eÿciency of motor 
preparation processes in men. Mental stress and anxiety have 
been shown to attenuate MRCPs (Glanzmann and Froehlich, 
1984), particularly the Bereitschaftspotential, which reflects motor 
preparation (Shibasaki et al., 1980). High-anxiety individuals 
exhibit significantly reduced Bereitschaftspotential amplitude and 
diminished prefrontal negativity, indicating impaired preparatory 
brain activity. This reduction is linked to weakened top-down 
attentional control and slower, less accurate responses during tasks 
(Olsen et al., 2021). However, studies also show that task-related 
feedback can partially restore MRCP amplitude and normalize 
performance in anxious individuals, suggesting that stress-induced 
suppression of motor preparatory signals may be modulated by 
cognitive context and external cues (Mussini and Di Russo, 2023). 
Overall, these findings highlight that anxiety impairs the neural 
readiness for movement, which can be detected through reduced 
MRCP amplitude. 

In females, experimental phase, stress and error rate 
induced higher A power on the left hemisphere (i.e., greater 
right hemispheric activation) especially in frontocentral and 
centroparietal sites. Greater right hemispheric activation is 
linked to withdrawal and negative aect, while frontocentral 
asymmetries are consistent with greater integration of emotional 
regulation and task-related cognitive eort (Smith et al., 2017). 
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In contrast to females, A asymmetry eects in males were present 
for stress-related predictors but not for performance, and were 
more fronto-occipitally distributed, with A power being more 
pronounced in the left frontal areas and reduced in the left 
occipital areas. This is supported by the work of Earle and Pikus 
(1982) who found that in males A asymmetry was not significantly 
correlated with task performance, unlike in females. Furthermore, 
our findings align with Wang et al. (2007), who showed that stress 
in males primarily activated the right PFC and suppressed the 
left orbitofrontal cortex, reflecting an executive-focused “fight-
or-flight” neural response, whereas females exhibited stronger 
limbic system activation (including the insula, striatum, and 
anterior cingulate cortex) linked to emotional and integrative stress 
processing. Although no significant asymmetry eects were found 
for error rate alone in males, the similarity between the error rate 
and experimental phase topographies suggests that performance 
variability may have contributed to experimental phase eects 
when combined with stress-related factors. These results indicate 
that, in males, EEG asymmetry shifts are likely driven by the 
cumulative interaction of subjective stress and task performance, 
rather than performance decline alone. 

While both sexes show EEG sensitivity to stress and 
performance, the underlying mechanisms seem to dier (Table 3). 
Females appear to engage more frequency-specific and functionally 
localized control systems, while males rely on broader, high-
frequency activation patterns. Alpha asymmetry oers a common 
axis of modulation, but with dierent behavioral correlates 
and topographies across sexes. These distinctions have practical 
implications for the design of neuroadaptive interfaces and stress 
monitoring systems, which may require sex-specific models or 
feature weighting to accurately capture neural signatures of mental 
eort and performance. 

4.4 Limitations and future work 

It is worth noting that HRV is often considered a key 
physiological marker in stress-related research (Hickey et al., 2021). 
However, in the present study, our analysis focused solely on 
HR, as several methodological limitations prevented reliable HRV 
estimation. Specifically, the analysis window of 2.5 s per trial 
was too brief to derive meaningful HRV measures. Although we 
attempted to compute HRV indices using the full duration of 
each experimental phase, variability in phase lengths, driven by 
individual dierences in response times, limited our analysis to 
a minimum segment of approximately 3 min, starting from the 
onset of each phase. According to Shaer and Ginsberg (2017), 
even short-term HRV assessments typically require at least 5 min 
of continuous data. Our HRV analysis (specifically using low-
frequency/high-frequency HR power, and root mean square of 
successive dierences metrics) yielded no significant findings, likely 
due to the insuÿcient duration of usable data segments. 

Another methodological limitation concerns the duration of 
the baseline recordings. While we applied baseline correction 
using 10-s resting segments before each phase, longer baseline 
periods (e.g., 2–5 min) could provide more stable reference. Our 
design prioritized phase-specific normalization to account for 
immediate physiological state shifts. Nevertheless, longer resting-
state baselines, especially at the beginning of the experiment, 

would strengthen absolute comparisons and improve between-
subject normalization. 

While our findings suggest potential sex-related dierences, 
it is important to acknowledge that the sample size limits 
the generalizability of these results. As such, the observed 
eects should be interpreted with caution and considered 
exploratory. Furthermore, we did not record menstrual cycle phase, 
contraceptive use, or hormone levels in our female participants, 
which are known to aect EEG and autonomic stress responses 
(Solís-Ortiz et al., 1994; Baehr et al., 2004; Bazanova et al., 
2014; Solís-Ortiz et al., 2019; Torbaghan et al., 2023; Gaižauskait˙ e
et al., 2024; Hemakom et al., 2024), the lack of hormonal-status 
control may limit the specificity of our sex-based comparisons. 
Future studies should include these measures to clarify hormonally 
driven eects. 

The current study also relies solely on mathematical stress tasks, 
which may not fully capture real-world stress responses. Future 
paradigms should consider social, emotional, or multitasking 
stressors. Finally, although the study was motivated by interest 
in neurocardiac correlates of stress, EEG and ECG features 
were analyzed independently. A promising direction for future 
research involves implementing joint EEG–ECG modeling (using 
e.g. multivariate autoregressive models (Kostoglou et al., 2019)) to 
better capture the integrated dynamics of brain–heart interactions 
under stress. 

Additionally, our ECG preprocessing and QRS detection relied 
on the classical Pan–Tompkins algorithm (Pan and Tompkins, 
1985; Sedghamiz, 2025). Although visual inspection confirmed 
that detected QRS complexes align accurately with true R-peak 
locations in our dataset, the algorithm’s fixed filter parameters, 
hard-coded decision thresholds, and limited adaptability render 
it less robust than more recent detection methods (Martínez 
et al., 2004; Zhang and Lian, 2009; Abibullaev and Seo, 2011). 
We therefore acknowledge these constraints as limitations of the 
present study and plan to address them in future work. 

One further limitation is the missing formal statistical testing 
of sex × predictor interactions which would strengthen the 
interpretation of sex-specific EEG findings. However, given the 
high dimensionality of the EEG data, across many channels and 
frequency bands, introducing interaction terms would substantially 
increase model complexity and make the results diÿcult to 
visualize and interpret. For this reason, we opted to present 
EEG topographies separately for females and males to highlight 
qualitative dierences, while keeping the analysis tractable and 
interpretable. We plan to explore formal cross-sex statistical 
models in future work. 

5 Conclusion 

Mental stress is typically assessed by doctors or experts 
through interviews and psychological questionnaires. However, 
these methods rely on subjective responses, which can lead to 
inaccurate assessments and hinder eective treatment. Moreover, 
such evaluations are often conducted long after the stress exposure, 
by which time mental or physical damage may have already 
occurred. In contrast, assessing stress through physiological signals, 
directly linked to autonomic nervous system responses, oers 
a more immediate and objective approach. Summarizing our 
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findings, the questionnaire and performance data validated the 
stress manipulation and revealed distinct behavioral consequences 
of increased cognitive-emotional load. While males and females 
reported similar subjective experiences and showed no behavioral 
performance dierences, earlier baseline mood dierences and 
distinct neurophysiological patterns suggest that the same external 
stressors may be internally processed through dierent pathways. 
Females seem to use a combined emotional and cognitive 
control strategy, involving frontal brain networks and stronger 
HR reactions, while males rely more on executive and vigilance 
control, shown by frontal and occipital brain activity and earlier 
HR adjustments. This underscores the value of integrating 
physiological, subjective, and behavioral data to fully capture 
individual and sex-specific responses to cognitive stress. 
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