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Introduction: Mental stress affects nearly everyone, with individual responses
varying greatly. The importance of studying mental stress has increased,
particularly during the COVID-19 pandemic. Stress has wide-ranging health
impacts, from elevating blood pressure to contributing to depression and
neurodegenerative conditions.

Methods: This work aimed to uncover reliable correlates of mental stress using
Electroencephalogram (EEG) and Electrocardiogram (ECG) methods, with an
additional focus on sex differences. Twenty-five volunteers performed time-
constrained mental arithmetic tasks under stress, amplified by workspace noise
and negative feedback.

Results: Response-locked heart rate (HR) data revealed a parasympathetic
deceleration at response onset, followed by sympathetic rebound, with deeper
HR dips linked to higher stress levels. Men showed earlier, longer-lasting
HR decelerations, suggesting a time-based regulation strategy, while women
exhibited larger, short-lived HR swings during slower responses, indicating an
intensity-based response. Neural responses revealed also sex-specific stress
effects: in females, stress modulated frontal theta, beta, and the theta/beta
ratio—markers of cognitive control. In males, stress increased gamma and
decreased delta power, indicating possibly heightened arousal and reduced
motor preparation, respectively. While alpha asymmetry was modulated in both
sexes, its behavioral relevance and spatial patterns differed.

Discussion: These findings highlight the need for sex-specific models in
neuroadaptive systems and stress-monitoring technologies.

KEYWORDS

mental stress, EEG, ECG, mental arithmetic task, response-locked heart rate, sex
differences, alpha asymmetry

1 Introduction

To understand the role of mental stress in diseases and potential treatments (Sara
et al., 2022), a precise definition is essential. According to Selye, known as the “father
of stress research,” stress is defined as the body’s non-specific response to any demand
(Tan and Yip, 2018). Lazarus (1984) proposed the transactional stress model, describing
stress as arising when a person encounters a challenging situation and is unsure how to
respond. They concluded that any situation could serve as a stressor. The stress response is
influenced not only by the stressor itself but also by several factors, including an individual’s
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perception of the stressor, their coping ability, personality type,
and environmental factors (Bremner et al., 2020; Sara et al., 2022).
In modern society, mental stress is prevalent in nearly everyone’s
life, negatively affecting both physical and mental well-being (Esch
et al, 2002; Zhang et al, 2025). The brain plays a crucial role
in how the body responds to stress. The brain’s stress response
is regulated by the sympathetic-adrenal-medullary axis and the
hypothalamic-pituitary-adrenal axis, leading to both psychological
and physiological changes (Alkadhi, 2013). Stress also induces both
structural and functional changes in the brain (Yaribeygi et al,
2017). Short-term stress can increase blood pressure, weaken the
immune system, and cause a decline in productivity (Al-Shargie
etal., 2016). Long-term stress, on the other hand, is linked to mental
disorders such as depression and is a significant risk factor for
cardiovascular and neurodegenerative diseases like Alzheimer’s and
Parkinson’s (Alkadhi, 2013). Given that stress affects each person
differently and is a major risk factor for various diseases, a detailed
understanding of its biological consequences and the identification
of its correlates are necessary. There are already many tools and
methods available for assessing mental stress in its early stages
(Katmah et al., 2021). Psychologists often use subjective methods,
such as self-reported questionnaires, to evaluate mental stress
(Sara et al., 2022). Examples of these include the Self-Assessment
Manikin Scale, the State-Trait Anxiety Inventory, and the Perceived
Stress Questionnaire, which are commonly used in studies to assess
an individual’s mental state (Halim and Rehan, 2020; Aspiotis et al.,
2022; Vanhollebeke et al., 2023). However, because self-reported
questionnaires rely on subjective input, they may lack accuracy
(Katmah et al., 2021).

To address this issue, researchers often focus on biological
and biochemical markers, such as salivary cortisol and salivary
alpha-amylase levels (AlShorman et al., 2022). For instance, Al-
Shargie et al. (2016) observed an increase in salivary alpha-
amylase levels during stress, a finding corroborated by Hag et al.
(2021), who also found elevated levels during stress conditions.
Nevertheless, the accuracy of these measures can be limited
by factors like the effect of physical activity on salivary alpha-
amylase levels (Katmah et al., 2021). Other approaches to assessing
mental stress are based on physiological factors such as heart
rate (HR), skin temperature, skin conductance, respiratory rate,
speech, pupil size and eye activity (de Santos Sierra et al,
2011; Hickey et al., 2021; Giannakakis et al, 2022). Among
these, the most widely used method is the electrocardiogram
(ECG; Hickey et al, 2021). In recent years, neuroimaging
techniques have become increasingly popular for measuring
mental stress with greater accuracy (Rahman et al, 2022). The
most prominent methods include functional magnetic resonance

Abbreviations: A, alpha; AIC, Akaike information criterion; B, beta; BMIS,
Brief Mood Introspection Scale; D, delta; ECG, electrocardiography; EEG,
electroencephalography; fMRI, functional magnetic resonance imaging;
fNIRS, functional near-infrared spectroscopy; G, gamma; G/T, gamma-to-
theta ratio; GESD, generalized extreme studentized deviate; HR, heart rate;
HRV, Heart Rate Variability; ICA, independent component analysis; LME,
linear mixed effects; MRCP, movement related cortical potential; MIST,
Montreal Imaging Stress Task; PASA, Primary Appraisal Secondary Appraisal;
PET, positron emission tomography; PFC, prefrontal cortex; T, theta; T/B,
theta-to-beta ratio.
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imaging (fMRI), electroencephalography (EEG), functional near-
infrared spectroscopy (fNIRS), and positron emission tomography
(PET; Katmah et al., 2021; Vanhollebeke et al., 2022).

The methods and biomarkers used to identify mental stress
vary between studies, as do the techniques employed to artificially
induce stress in individuals. A common approach in many studies
is the use of an arithmetic challenge to induce stress (Al-Shargie
etal, 2016; Li et al., 2020; Al-Shargie, 2021; Alyan et al., 2021; Hag
et al.,, 2021). These studies often combine mental arithmetic tasks,
based on the Montreal Imaging Stress Task (MIST), with additional
stressors such as time pressure or negative feedback. In a study by
Ahn et al. (2019), a mental arithmetic task was combined with the
Stroop Color and Word Test, a method also employed by Attar
etal. (2021). In another study by Ehrhardt et al. (2022), participants
completed the Paced Auditory Serial Addition Test under stress-
inducing conditions, including time pressure and video recording.
Vanhollebeke et al. (2023) used Raven’s Matrices with manipulated
negative feedback to create stress in their participants, while
Aspiotis et al. (2022) utilized virtual reality to simulate stress by
exposing individuals to high altitudes.

Assessing mental stress is highly challenging, with results
influenced by numerous factors. The variation in methods and
types of stressors across different studies adds to this complexity.

1.1 EEG-based stress detection

In EEG-based stress detection, the brain region, the extracted
features, and the EEG processing techniques used can lead to
varying results (Katmah et al, 2021). EEG features can be
categorized into time-domain features, which contain temporal
information, and frequency-domain features, which represent
spectral information across various frequency bands (Katmah et al.,
2021). Many studies focus on the alpha, beta, and theta band
powers in the prefrontal cortex (PFC) when analyzing mental
stress. However, there are overlaps in the functional roles of these
bands. Alpha and theta band powers are often associated with
cognitive and memory performance (Klimesch, 1999). Theta band
power is also known to increase during cognitive tasks such as
mental arithmetic (Nigbur et al.,, 2011). Beta band power, linked
to attention, is thought to increase during cognitive tasks and
active concentration (Vanhollebeke et al., 2022). In our previous
work (Wriessnegger et al., 2024), we examined how an arithmetic
stress-inducing task impacted EEG. We introduced topographical
maps to visualize the associations between EEG band power values
in different frequency bands and several influencing factors such
as task diﬂiculty, error rate, response time, questionnaire scores,
and learning effects. We observed that these factors are not
independent; they overlap and collectively influence EEG activity,
highlighting the complexity of interpreting EEG signals in the
context of mental stress. Thus, findings related to alpha, beta,
and theta band power often differ across stress-related studies.
For example, Hag et al. (2021) reported decreased relative alpha
band power in the PFC, along with decreased beta band power
and a slight increase in theta band power during a stressful
mental arithmetic task with time pressure and negative feedback.
They interpreted the reduced beta power as a sign of diminished
cognitive performance under stress, while the elevated theta power
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indicated increased cognitive effort and stress response. On the
other hand, Al-Shargie et al. (2016) found a decrease in mean alpha
power but an increase in mean beta power in the frontal lobe during
stress. Furthermore, Halim and Rehan (2020) observed increased
beta power in the parietal regions, indicating a state of heightened
alertness and arousal. The findings of Al-Shargie et al. (2016) and
Halim and Rehan (2020) align also with our results in Wriessnegger
et al. (2024). In addition to band-specific analyses, EEG power
ratios have been proposed as stress biomarkers. The gamma-to-
theta (G/T) ratio, particularly in the PFC, has been suggested by
Minguillon et al. (2016) 2018 as an indicator of stress during tasks
like the MIST. Meanwhile, the theta-to-beta (T/B) ratio has been
linked to cognitive processing capacity (Clarke et al., 2001) and
shows a negative correlation with stress levels, as reported by Wen
and Aris (2020) and Wen et al. (2020). These findings were also
supported by our previous study in Wriessnegger et al. (2024).

Another measure related to emotions, motivation, and
cognitive control is frontal alpha asymmetry (Smith et al., 2017).
This asymmetry score is usually calculated by subtracting the alpha
power value at F3 or F7 (left frontal electrodes) from the value at
F4 or F8 (right frontal electrodes) (Vanhollebeke et al., 2022). The
right hemisphere of the brain is linked to the regulation of negative
emotions, while the left hemisphere is associated with positive
emotion regulation (Tandle et al., 2018). As a result, increased
activation of the right hemisphere (reflected by decreased alpha
power relative to the left hemisphere) is expected during stress
(Ocklenburg et al., 2016). Attar et al. (2021) observed an increase
in frontal alpha asymmetry during stress, suggesting that the alpha
power in the right hemisphere was more reduced than in the
left hemisphere, indicating heightened cortical activity in the right
hemisphere in response to stress. Similarly, Alyan et al. (2021)
found that the right frontal hemisphere was more activated during
stress compared to the left. In our previous study (Wriessnegger
et al., 2024), we provided a more comprehensive view of the alpha
asymmetry score, extending its analysis beyond the frontal channels
to include the entire scalp. This was achieved using topographical
maps to explore its relationship with stress.

1.2 ECG based stress detection

The most prominent physiological feature in ECG analysis is
HR. During stress, HR increases due to heightened sympathetic
activity, leading to a decrease in HR variability (HRV; Stauss,
2003). Vanhollebeke et al. (2023) observed an increased HR during
stressful conditions, reflecting higher sympathetic activity. Many
studies use ECG markers as a supplementary source alongside
EEG features for detecting mental stress. For instance, Adjei
et al. (2018) measured HR while participants solved mental math
problems and found significantly higher HR in men compared
to women. In contrast, Lucas et al. (2020) observed the opposite
trend during work shifts, with women exhibiting higher HR than
men. Also, Aspiotis et al. (2022) used ECG in combination with
EEG to confirm whether stress was successfully induced in their
participants. Hemakom et al. (2023) demonstrated that using both
ECG and EEG leads to higher classification accuracy than using
either alone, consistent with the findings of Ahn et al. (2019).
Furthermore, (Hemakom et al., 2023) accounted for sex differences
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in their study, revealing that models trained separately for males
and females delivered higher classification accuracy compared
to mixed models. In a more recent study they observed that
sex and menstrual phase differences impact stress classification
performance (Hemakom et al., 2024). Therefore, considering sex
differences is essential in mental stress detection research.

1.3 Mental stress and sex differences

It is well established that males and females exhibit different
stress responses. Men typically display the “fight-or-flight” response
to stress (Verma et al, 2011), while women’s reactions are
additionally influenced by their menstrual cycle phase. During
the follicular phase, elevated estrogen levels lead to greater
parasympathetic nervous system activation, resulting in the “tend-
and-befriend” response (Hemakom et al, 2023). Beyond the
differences in stress responses, males and females also engage
distinct brain areas under stress. In a study by Verma et al.
(2011), participants completed mental arithmetic tasks during
an fMRI scan. Men showed increased activation of the right
frontal cortex, while women exhibited greater involvement of the
limbic system. These findings align with those of Goldfarb et al.
(2019), who showed participants both neutral (e.g., nature) and
stressful (e.g., terror, fear) images. They found greater limbic region
activation in women and higher PFC activation in men during
stress. In a study using fNIRS (Zhao et al., 2021), male and female
subjects solved mental arithmetic tasks of varying difficulty while
researchers examined the relationship between PFC activation and
performance. Men demonstrated greater PFC activation on more
difficult tasks compared to women. Similarly, Kavanaugh et al.
(2024) explored absolute theta band power in the mid frontal cortex
of children under stress, finding that theta power was higher in girls
than in boys.

Arithmetic tasks are commonly used to induce stress in
research (Girtner et al,, 2015; Al-Shargie et al., 2016; Ahammed
and Ahmed, 2020; Katmah et al., 2021; Wriessnegger et al., 2024).
Furthermore, some studies suggest that males often outperform
females in these tasks. For example, Lynn and Irwing (2008)
reported that males perform better in mental arithmetic, as
reflected in shorter response times and better overall performance,
consistent with the findings of Yang and Yu (2021). However,
Yu et al. (2024) noted that females are not inherently worse
at mathematical tasks than males. They argued that social
expectations may increase anxiety levels in females, leading to
poorer performance. Demir and Turker (2021) focused on brain
connectivity across different EEG bands to examine arithmetic
performance differences between sexes. Their study found that
males exhibited greater overall brain connectivity during arithmetic
tasks, with notable changes in connectivity patterns across various
frequency bands, particularly increased theta band connectivity in
response to mental activity.

1.4 Motivation

Mental stress significantly affects both physical and mental
well-being, potentially leading to serious conditions such as
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depression, cardiovascular diseases, and Alzheimers disease
(Esch et al, 2002). To prevent stress and better understand
stress-related illnesses, it is essential to thoroughly study its
biological, physiological, and neurological effects. Furthermore,
identifying sex-specific neural correlates of stress could pave
the way for more personalized and effective prevention and
treatment strategies for stress-related disorders. Understanding
the underlying neurobiological differences can help in developing
therapies that target the specific neural circuits and mechanisms
affected by stress in men and women. This study aims to provide
new insights into mental stress by identifying its neurocardiac
correlates using EEG and ECG, with a particular focus on sex-
related differences.

2 Materials and methods

2.1 Participants

Thirty healthy volunteers participated in this study, consisting
of 16 females and 14 males, aged between 19 and 32 years. Five
participants were excluded due to missing ECG signals and noisy
EEG data, leaving a final sample of 25 participants, two of them
were left-handed (13 females and 12 males) with a mean age of
25.08 years (standard deviation: & 3.40). All participants were
healthy adults with no history of neurological, psychiatric, or
cardiovascular disorders and were not using medications affecting
brain function. They had normal or corrected-to-normal vision
and hearing and were fluent in the language used for the task
instructions. The participants were fully informed about the
experimental procedure and given ample time to ask questions.
All provided voluntary written consent. During the experiment,
they were instructed to sit in a relaxed position and minimize eye
and body movements to prevent unwanted artifacts. The study
received approval from the ethics committee of Graz University of
Technology (GZ/2024).

2.2 Experimental paradigm

The paradigm used in this study is based on the MIST, a
commonly employed method for inducing stress in experimental
conditions (Dedovic et al., 2005). At the beginning of the
experiment, participants completed the Brief Mood Introspection
Scale (BMIS) questionnaire (see section “2.3 Questionnaires” for
more details). The experimental procedure consisted of three
phases: a control phase, stress phase 1, and stress phase 2 in
sequential order. In the control phase, participants were asked
to solve mental arithmetic tasks without time pressure. These
tasks included simple two-digit addition and subtraction (e.g.,
27 + 23) as well as more complex three-digit operations involving
addition, subtraction, multiplication, and division (e.g., 25 + 52/ 4).
Participants indicated their answers by left-clicking the mouse on
one of three possible options, with the range of potential solutions
limited to values between 0 and 99. Stress phase 1 involved only
two-digit addition and subtraction problems, but the available time
to answer was reduced by 10% compared to each participants
average response time in the control phase. To heighten the stress
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experienced, participants were exposed to background workspace
noise (e.g., phone ringing, laughter, or conversation) while solving
the mathematical problems. Additionally, they received negative
feedback for incorrect answers (“Wrong answer!”) or when the
time limit was reached (“Time’s up”). Stress phase 2 was generally
similar to stress phase 1, except that it utilized advanced three-
digit calculations. Each phase included five runs, each consisting of
15 trials, with a 5-s break between runs during which participants
focused on a fixation cross. This resulted in a total of 225 trials per
participant. A baseline measurement was recorded for 10 s before
each phase and after the final phase, during which participants
again focused on a fixation cross. Additionally, after each
phase, participants completed the Primary Appraisal Secondary
Appraisal (PASA) questionnaire (see section “2.3 Questionnaires”
for more details) to assess their self-reported stress levels, taking
approximately 1-2 min. The experiment concluded with a second
BMIS questionnaire. Figure 1 illustrates the complete experimental
sequence (Figure 1a) and the details of a single phase (Figure 1b).

2.3 Questionnaires

The BMIS was used to assess the participants mood before
and after the experiment. Mayer and Gaschke (1988) developed
the BMIS questionnaire, which comprises 16 adjectives describing
various moods (Table 1). Participants rated each adjective on a
four-point scale from 1 (“definitely do not feel”l) to 4 (“definitely
feel”). The BMIS score is obtained by subtracting the total (i.e.,
sum) score of the negative adjectives from the total score of the
positive adjectives. Additionally, there is a scale to rate overall
mood, ranging from —10 (very unpleasant) to 10 (very pleasant).
The BMIS questionnaire is frequently used to assess changes in an
individual’s feelings before and after a specific situation.

The PASA questionnaire was used to assess self-experienced
stress after control, stress 1 and stress 2 phase (Gaab, 2009). It
is based on the transactional stress model of Lazarus (Lazarus,
1984) and used for the self-assessment of situation-specific stress.
It includes 16 statements, whereby each statement can be rated
from 1 (completely wrong) to 6 (completely right) points (Table 2).
The measure consists of the four primary scales: threat, challenge,
self-concept of own competence, and control expectancy (Table 2).
Combining the primary scales threat and challenge results in
the primary appraisal. The secondary appraisal is computed with
the primary scales self-concept of own competence and control
expectancy. The primary appraisal scale assesses the relevance
of a situation to an individual’s well-being and the secondary
appraisal scale reflects an individual’s perceived resources to cope
with a stressor. Finally, the global PASA index can be calculated
by the difference between the primary and secondary appraisal
scales, which determines the transactional stress perception of an
individual person. A lower PASA index score can be interpreted as
low cognitive stress level.

2.4 Data acquisition

The complete paradigm, including presenting arithmetic tasks
for control phase, stress phase 1 and stress phase 2 as well
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[ Run 1 ]—[ (5s) ]—[ Run 2 ]—[ (5s) ]—[ Run 3 ]—[ (5s) ]—[ Run 4 ]—[ (5s) ]—[ Run 5 ]

(c)
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FIGURE 1

(a) Sequence of experimental paradigm, (b) Sequence of a single phase and (c) sequence of a single trial. Participants first completed the Brief Mood
Introspection Scale (BMIS), received task instructions, and then rested for a 10 s baseline. The experiment then unfolded in three consecutive
phases: a control phase, stress phase 1, and stress phase 2, followed by the Primary Appraisal Secondary Appraisal (PASA) questionnaire. A second
10 s baseline preceded the final BMIS assessment. In the control phase, participants had no time pressure (T s is assumed to be the average response
time in this phase). In stress phase 1 and stress phase 2 the available time to answer was reduced by 10% compared to the average response time in
the control phase (0.9 T s). Participants were also exposed to background workplace noise (such as phone ringing, laughter, or conversations) and
received negative feedback for incorrect responses ("Wrong answer!”) or when exceeding the time limit (“Time's up”).

TABLE 1 BMIS adjectives used to describe the emotional state of the with the actiCAP electrode cap. A total of 32 active electrodes
participant. The scale was defined as follows: a score of 1 indicated

“definitely do not feel,” 2 corresponded to “do not feel,” 3 represented were mounted according to the international 10-20 system (FP1,
“slightly feel” and 4 signified “definitely feel.” FP2, F3, F4, Fz, F7, F8, FC1, FC2, FC5, FC6, FT9, FT10, C3, C4,

Cz, T7, T8, CP1, CP2, CP5, CP6, TP9, TP10, P3, P4, P7, P8,

Positive adjectives Negative adjectives ‘ PZ, O1, 02, OZ). FCz was used as the reference electrode and
Happy Sad FPz as the ground electrode. The sampling frequency of the EEG
Lively Tired recordings was 500 Hz.

. : For the first three participants the connectible box of the
Caring Jittery LiveAmp was used for ECG signal recording. It simultaneously
i Drowsy recorded EEG and ECG signals using a sampling frequency of
Peppy Fed up 500 Hz. Due to problems with the connectible box of the LiveAmp
Loving Gloomy the g.USBamp (Gtec medical engineering, Austria) was used to

record ECG for the rest of the participants with a sampling
Active Grouchy frequency of 256 Hz. The setup used was a custom bipolar ECG
Calm Nervous configuration, with the ground electrode placed on the left side

on the last ribcage and the cathode and anode directly below the
collarbone symmetric on the right and left side, respectively.

as the PASA questionnaire, was designed with the Python

toolbox PsychoPy. The time markers were also implemented with

PsychoPy. To synchronize all signals from the paradigm and the 2.5 Signal preprocessing

recording devices, the Lab Streaming Layer software was used. For

the EEG data acquisition, the mobile, active EEG system LiveAmp Signal preprocessing was performed in MATLAB 2024b,

from Brain Products (Gilching, Germany) was used in combination =~ Mathworks. A zero-phase, fourth-order Butterworth IIR filter was
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TABLE 2 PASA items for different subscales. Note that items marked with
an asterisk were reverse-scored (i.e., assigned a value of 7 minus the
original score), as they convey the opposite meaning and effect
compared to the other items within the same category. The scale ranged
from 1 to 6, where 1 corresponded to “completely wrong,” 2 to “mostly
wrong,” 3 to “somewhat wrong,” 4 to “somewhat right,” 5 to “mostly
right,” and 6 to “completely right.”

Threat I do not feel threatened by the
situation*

This situation is very uncomfortable
for me

I do not feel worried because the

. . situation does not pose a threat to me*
Primary appraisal

This situation scares me

Challenge The situation is important to me

I do not care about this situation*
The situation is not a challenge for me*
This situation challenges me

Self-efficacy In this situation, I know what I can do

I have no idea what I should do now*

In this situation, I can think of many

possible courses of action

I can think of many solutions for this
situation

Secondary appraisal | Control expectancy |It mainly depends on me whether I can

cope with the situation

I can best protect myself against failure

through my own behavior

I can control a lot of what happens in
this situation myself

If I overcome this situation, it is the
result of my effort and my personal
commitment

applied to bandpass filter the EEG and ECG signals between 0.5
and 60 Hz. To attenuate power line interference at 50 Hz, a
second-order Butterworth IIR notch filter was used. To exclude
unwanted artifacts from the EEG signals, independent component
analysis (ICA) was performed using the EEGLAB toolbox v.2023.0
(Delorme and Makeig, 2004) with the default extended Infomax
algorithm (runica) (Lee et al, 1999). No channel interpolation,
rejection, or re-referencing was performed before applying ICA.
To assist in identifying components reflecting artifacts such as
eye movements, muscle activity, or noisy channels, we used the
ICLabel (Pion-Tonachini et al.,, 2019) plugin as a guidance tool.
However, final decisions on component rejection were based on
careful visual inspection. Only components clearly identified as
non-neural, whether due to physiological artifacts or channel
noise, were removed (typically ranging from 1 to 5 components
per participant). The HR signal was derived from the ECG
using the Pan-Tompkins algorithm (Pan and Tompkins, 1985;
Sedghamiz, 2025). Once the R-peaks were identified, HR was
computed as the reciprocal of the R-R intervals (i.e., 1 / R-R
interval), then multiplied by 60 to express the result in beats
per minute (bpm). Prior to that, however, we identified and
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removed artifacts based on abrupt, physiologically implausible
changes between successive heartbeats. After this, we manually
corrected the cleaned R-R series by identifying remaining outliers
using the generalized extreme studentized deviate (GESD) method
(Rosner, 1983), implemented via MATLAB's filloutliers function.
The GESD approach is designed to detect multiple statistical
outliers in a dataset, even when they occur in clusters or deviate
strongly from normality. Detected outliers were then replaced using
linear interpolation. Finally, any remaining missing values were
filled using standard linear interpolation to produce a continuous,
artifact-free R-R time series. Since R-R intervals are inherently
non-uniformly sampled, the resulting HR signal was linearly
interpolated and upsampled to match the EEG sampling rate,
enabling synchronized analysis. We acknowledge that differences
in ECG acquisition systems can introduce variability in signal
characteristics, even with consistent electrode placement. However,
our analysis focused on HR rather than detailed ECG waveform
morphology. Prior to HR extraction, we visually inspected all
ECG recordings to ensure signal quality and found them to be
sufficiently clean for reliable R-peak detection and R-R interval
estimation across participants. For subsequent analysis, the HR
signal was also baseline-corrected per phase by computing the HR
change from the baseline period immediately preceding each phase,
thereby accounting for individual differences in resting HR and
emphasizing task-evoked physiological reactivity. This procedure
effectively removes any slow drifts or baseline shifts in HR over
the course of the experiment, ensuring that all reported effects
reflect true task-related changes. To ensure consistency across
participants despite differences in recording systems and sampling
frequencies, all signals were ultimately resampled to 256 Hz using
MATLAB’s resample function, which applies an anti-aliasing filter
prior to downsampling.

All EEG signals were subsequently segmented into trials
centered on each participant’s response time, covering a window
from —3 to —0.5 s relative to the response. This alignment was
chosen to capture the neural and physiological processes leading
up to the behavioral response, such as attentional engagement,
motor preparation, and autonomic adjustments, while avoiding
the influence of early sensory components such as visual-evoked
potentials triggered by the initial presentation of the mathematical
problems. Aligning to the response, rather than the stimulus, also
minimized variability due to individual differences in reaction
time, enabling more accurate comparisons across participants and
conditions. EEG trials exhibiting excessive noise were excluded
based on amplitude thresholding at & 100 V. On average,
2.23 £ 2.23 trials per participant were discarded. For HR analysis,
we used a time window from -4 to + 6 s relative to the
response, allowing us to capture both pre-response and post-
response dynamics.

2.6 Feature extraction

For each epoched EEG trial, we extracted spectral features
across five standard frequency bands: delta (D; 0.5-3.5 Hz), theta
(T 4-7.5 Hz), alpha (A; 8-12.5 Hz), beta (B; 13-30 Hz), and gamma
(G; 30-60 Hz). Band power within each range was computed using
MATLAB’s bandpower function. Because our 10-s pre-phase resting
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segments are too brief and contaminated by anticipatory arousal
to provide a stable reference, we opted not to baseline correct
the EEG band power values. Instead, similarly to our previous
work (Wriessnegger et al., 2024), to reduce inter-subject and inter-
channel variability, we calculated relative band power by dividing
the absolute power in each band by the total power summed
across the broad (0.5-60 Hz) band within each trial. In this way,
spectral power was normalized on a per-trial basis, allowing us to
focus on the relative distribution of power across frequency bands.
Moreover, given our cumulative stress design, imposing a single
“fixed” EEG baseline at the start would obscure the progressive,
phase-by-phase buildup of stress.

In addition to relative power, we computed the T/B and G/T
power ratios, which serve as established indicators of cognitive and
attentional states (Clarke et al., 2001; Arns et al., 2013; Putman et al.,
2014; Angelidis et al., 2016; Minguillon et al., 2016, 2018; Wen and
Aris, 2020; Wen et al., 2020; Zivan et al., 2023). We also examined
hemispheric asymmetries in the alpha band by calculating laterality
indices: In(L)-In(R) for left hemisphere channels and In(R)-In(L)
for right hemisphere channels, where L and R denote relative
power. This approach captures shifts in hemispheric dominance,

=
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with increases in one hemisphere mirrored by reductions in the
other. Importantly, using relative power to estimate laterality
indices helps mitigate the impact of referencing artifacts and global
amplitude fluctuations. In (Vincent et al., 2021) frontal asymmetry
estimates based on relative power were found to provide more
reliable and interpretable results compared to those based on
absolute power measures. Thus, here we used the relative power
to estimate laterality indices. While asymmetry analyses typically
focus on predefined electrode pairs—especially in frontal regions—
our aim was to capture more global lateralization effects. To
this end, we performed a whole-head analysis by computing the
laterality index across all homologous electrode pairs.

2.7 Error rates and response times

For each participant, the error rate (%) was calculated as the
proportion of incorrect responses within each run (comprising 15
trials) and task phase. Response time was measured in seconds. If
a participant did not provide a response, the trial was treated as an
error, and the maximum allotted time for that subject and phase was
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FIGURE 2

(a) BMIS overall mood scores before and after the experiment, and (b) comparison between sexes. (c) PASA stress scores across the control phase,
stress phase 1, and stress phase 2. Statistically significant differences between conditions are indicated by asterisks (*p < 0.05, **p < 0.01,

***p < 0.001).
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assigned as the response time. We also computed relative response
times defined as each subject’s response time divided by the average
response time of all participants for the respective phase across all
runs, in order to account for phase-related differences in maximum
allotted response times.

2.8 Linear mixed effects models

Building on our previous study (Wriessnegger et al,
2024), we employed linear mixed-effects (LME) models to
investigate the between variables (MATLAB
function fitlme). The model structure used was: Y ~ X +
(1| Participant), which includes a random intercept for each
participant to account for individual baseline variability—
such as differences in EEG power. This formulation captures
both fixed effects of the predictor (X) and random effects
due to participant-level differences. Consistent with our prior
findings (Wriessnegger et al., 2024), we observed that including a
random intercept substantially improved model fit, as evidenced

relationships

10.3389/fnins.2025.1633295

by lower Akaike information criterion (AIC) values when
compared to models that excluded this random effect. Model
parameters were estimated using maximum likelihood. The
strength and direction of the relationship between X and the
outcome variable Y were evaluated using the t-statistic of the
fixed effect, defined as the estimated coefficient divided by its
standard error. Positive or negative t-values reflect the nature of
the association.

The variables of interest included EEG band power across
five frequency ranges (D, T, A, B, G), T/B and G/T ratios, and
laterality scores for the A band. These features were examined in
relation to a set of predictors: experimental phase (i.e., control
phase, stress phase 1 and stress phase 2), error rate and stress
ratings derived from the PASA questionnaires (administered
after each phase). For each model, the dependent variable (Y)
represented the average EEG measure across each run at a specific
electrode, aggregated across all participants, while the predictor
(X) corresponded to one of the aforementioned factors. Fixed-
effect t-values from each channel were extracted and compiled into
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(a) Error rate (%), and (b) response time (s) across the control phase, stress phase 1, and stress phase 2. (c) Error rate (%), and (d) response time (s),
separated by sex. Statistically significant differences between conditions are indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001).
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spatial representations—referred to as t-maps—to visualize how
EEG features relate to each factor.

2.9 Statistical analysis

In the LME models, degrees of freedom for fixed effects
were computed using the residual method, defined as the
number of observations minus the number of fixed-effect
parameters, and two-tailed p-values were obtained from the
corresponding t-distribution, as implemented in MATLAB'’s
fitlme function. Significant effects across EEG channels in the
t-maps were determined by applying the Benjamini-Hochberg
(Benjamini and Hochberg, 1995) procedure to control for multiple
comparisons on the p-values obtained from the LME models.
To assess differences between males and females, we employed
the Wilcoxon rank-sum test for questionnaire responses, error
rates, response times, and HRs. For within-group comparisons
(i.e., within the same sex), we used the Wilcoxon signed-
rank test. Note that the Benjamini-Hochberg correction was
applied consistently in all analyses involving multiple statistical
tests. For all tests based on Wilcoxon tests (i.e., rank-sum and
signed-rank), we also computed effect sizes using Cohen’s 7,
calculated by dividing the standardized test statistic (Z) by the
square root of the total number of observations, providing a
consistent measure of effect magnitude across both independent
and paired comparisons. For LME models, we extracted each
fixed-effect term’s f-statistic (f) and its associated degrees of
freedom (df). We then converted these into Cohen’s r using

sign(t) 2 (Fritz et al, 2012), which yields

the formula r P
a signed, unit-less measure of effect magnitude (-1 to + 1).

24df
This approach provides an effect-size metric directly comparable
to the Wilcoxon-test r, interpretable with the same benchmarks
(0.1 small, ~0.3 medium, >0.5 large), and allows standardized
comparison across both mixed-model predictors and non-
parametric tests.
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(a) Error rate (%), and (b) response time (s) across runs for the control phase,
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3 Results

3.1 Behavioral results

We compared BMIS and overall mood scores before and after
the experiment. The BMIS mood score significantly decreased after
the experiment (p = 0.025, r = 0.631; Figure 2a), indicating a shift
toward more negative feelings. No general sex-related differences
were observed (Figure 2b). However, males reported significantly
lower overall mood scores than females prior to the experiment
(p = 0.039, r = 0.513; Figure 2b). Similarly, PASA stress scores—
which reflect perceived stress levels—increased significantly from
the control phase to stress phase 1 (p = 0.014, r = 0.642) and stress
phase 2 (p < 0.001, r = 0.657) (Figure 2c), with no significant sex
differences observed.

The mean error rate increased significantly across phases: from
3.1 & 2.5% in the control phase to 14.8 &= 5.7% in stress phase 1
(p < 0.001, r = 0.873), and further to 37.8 & 7.0% in stress phase 2
(p <0.001, r = 0.873; Figure 3a). Mean response time in the control
phase was 7.0 & 2.5 s, which significantly decreased to 3.7 = 1.1's
in stress phase 1 (p < 0.001, r = 0.347), and then significantly
increased again to 5.1 £ 1.6 s in stress phase 2 compared to stress
phase 1 (p < 0.001, r = 0.873; Figure 3b). This corresponds to
total durations of approximately 8.8 min for the control phase,
4.6 min for stress phase 1, and 6.4 min for stress phase 2. These
estimates exclude the 5-s inter-run fixation breaks and the time
required for completing the PASA questionnaire after each phase.
No significant differences were found between sexes in either error
rate or response time (Figures 3¢, d).

To assess potential practice-related improvements, we analyzed
trends in error rates and response times across repeated task runs.
LME models were fitted separately for each phase, with run number
as the predictor and either error rate or response time as the
dependent variable. During the control phase, error rates showed
a significant linear decline (t = —4.59, p = 1.06 x 1072, r = 0.380),
indicating improvement over time (Figure 4a). In stress phase 1,
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although a downward trend was observed, the change was not
statistically significant decline (t = —1.813, p = 0.072, r = 0.161).
Interestingly, in stress phase 2, a significant time effect emerged
(t =2.29, p = 0.023, r = 0.201), characterized by a drop in error
rate up to run 3, followed by an increase through run 5. No
significant run-related effects were observed for response times in
any phase (Figure 4b), and there were no sex-related differences in
the patterns of error rates or response times.

3.2 ECGresults

To capture task-evoked autonomic dynamics, HR was time-
locked to response onset (tf = 0 s), a behavioral marker

reflecting decision or motor action. This alignment allows

10.3389/fnins.2025.1633295

precise comparisons of anticipatory, reactive, and recovery-related
cardiovascular changes across conditions and participants.

Figure 5 shows grand average HR responses time-locked to
response onset for three phases—control, stress 1, and stress 2-
presented in bpm and as changes from baseline (herein referred
to as baseline-corrected HR). Data are separated by sex: females
in Figures 5a, ¢ and males in Figures 5b, d. Significant phase
differences at each time point are marked by filled circles, with
edge/fill color indicating the comparison.

Raw and baseline-corrected HR captured complementary
aspects of stress responses. The sequential design (control —
stress 1 — stress 2) means raw HR reflects both immediate
stress effects and cumulative physiological changes (e.g., fatigue
or adaptation). In all participants, HR dipped around response
onset, then rebounded—indicating parasympathetic deceleration
followed by sympathetic activation
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Grand average ( + standard error) across all participants of (a,b) HR in beats per minute (bpm), and (c,d) HR change relative to baseline (bpm),
time-locked to the response onset (t = 0 s), for the control phase, stress phase 1, and stress phase 2 for (a,c) females and (b,d) males. Statistically
significant differences between phases at each time point are indicated by filled circles along the x-axis (p < 0.05, corrected for multiple
comparisons). Each cluster comparison is color-coded, with the outer edge and inner fill colors denoting the corresponding phase comparison
(e.g., green-edged circles with a yellow fill indicate significant differences between the control phase and stress phase 1). Asterisk (x), circle (o), and
diamond (o) markers on each HR trajectory indicate the HR dip onset time, the time of the HR minimum (dip), and the HR rebound time, respectively.
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Females (Figure 5a) showed higher raw HR than males, with
HR peaking in control and dropping in both stress phases. Post-dip
HR stayed elevated in control but remained suppressed in stress
phases. Differences between control and each stress phase were
significant; subtler distinctions emerged between the two stress
levels. Males (Figure 5b) showed a more graded pattern: highest
HR in control, lowest in stress 1, intermediate in stress 2. Post-dip
recovery followed the same order, suggesting a stepwise modulation
by stress and time-on-task.

Baseline-corrected HR isolated within-phase changes that were
less apparent in raw data. In females (Figure 5¢), this approach
clarified the stress effects: although raw HR looked similar across
stress phases, baseline-corrected data revealed a significant HR
increase above baseline in stress phase 1, while both control and
stress phase 2 showed suppression-most strongly in the latter.
These patterns indicate enhanced HR reactivity under moderate
stress and reduced responsiveness under high stress. In males
(Figure 5d), baseline-corrected HR revealed a more linear trend.
HR was elevated above baseline only during the control phase,
whereas both stress phases showed reductions, with the strongest
suppression in stress phase 2. These graded decreases suggest
a monotonic decline in autonomic reactivity as stress intensity
increases.

The dynamics of the HR dip and rebound varied across
To quantify these
dynamics, several features were extracted from the average

experimental phases and between sexes.

baseline-corrected HR trajectories, computed separately for each
participant and phase. The HR dip onset was identified as the first
point before the HR minimum where the HR velocity became
negative following a period of near-zero change (Figure 5). The
HR dip magnitude was defined as the difference between the HR
at onset and the minimum HR value, and the HR dip timing
corresponded to the time of this minimum. The HR dip duration
was the interval from onset to minimum. The HR rebound
magnitude was the difference between the minimum HR and the
subsequent local maximum, with HR rebound timing and HR

10.3389/fnins.2025.1633295

rebound duration referring to the time and interval from the
minimum to this peak, respectively.

To statistically assess these changes and identify the
contributing factors, we applied linear regression models of
the following form in Wilkinson notation: Y ~ sex*X, where Y
represents one of the previously defined baseline-corrected HR
trajectory features, estimated from the average responses of each
participant and X represents one of the following predictors: error
rate, PASA stress score, task phase, or relative response time. This
formulation expands to include both the main effects of each
variable and their interaction with sex. Error rate and response
time were computed as the participants total values for each
respective phase. The variable phase was treated as a categorical
factor coded as 1 (control), 2 (stress 1), and 3 (stress 2), while sex
was coded as 1 for females and 2 for males.

Figure 6 shows, in panel (a), a heatmap of predictors that
reached statistical significance (p < 0.05), and in panel (b), the
corresponding effect sizes. These panels summarize the outcomes
of linear regression models assessing how each factor impacts
various HR response features. The rows correspond to specific HR
features while the columns represent significant main effects and
interaction terms. The color scale reflects the t-statistics of each
effect, with red colors indicating positive associations and blue
colors indicating negative associations.

Several key patterns emerge from this analysis. Relative
response time was significantly associated with multiple HR
features: individuals with slower responses exhibited earlier HR dip
onset and dip timing, longer dip duration, and greater rebound
magnitude and duration, indicating that delayed behavioral
responses were linked to earlier and stronger autonomic reactivity.
PASA stress scores were positively associated with HR dip
magnitude, suggesting that higher stress was linked to larger
initial HR drops. HR dip magnitude increased from control to
stress phases and rebound timing was delayed. Significant sex
interactions highlighted sex-specific differences in the temporal
dynamics of HR regulation. For example, in response to increased
stress, males showed an earlier onset and timing of the HR dip,

(a)

t-statistic
HR Dip Onset Timing 5

HR Dip Timing
HR Dip Magnitude

HR Dip Duration 0

HR Rebound Duration 5

L s L L L L

HR Rebound Timing

HR Rebound Magnitude

?‘\,ﬁe ot ?N,a\z («“0 @ eet *%g# o et
« PRSI q:b\ <@ _o®
S %‘?00 5‘° R o e
N QP~5 « 5@6
N
?\e\'& AN oM
?\0\

FIGURE 6

females and males. (b) Corresponding effect sizes (Cohen's r).

(b)

HR Rebound Magnitude

(a) Significant predictors of baseline-corrected HR response metrics based on linear models. The heatmap displays t-statistics for predictors (x-axis)
significantly associated with different HR features (y-axis), including dip timing, magnitude, onset, rebound timing, and rebound magnitude. Only
predictors with p < 0.05 (corrected for multiple comparisons) are shown. Red colors indicate positive associations, and blue colors indicate negative
associations. Significant interaction terms involving sex highlight sex-dependent effects and how the influence of other predictors varies between

Effect Size

ie

?‘\age %@b ‘m\e (\6@ 0@ ‘%e} ~5°* 6@# «‘50*

HR Dip Onset Timing
HR Dip Timing

HR Dip Magnitude
HR Dip Duration

HR Rebound Timing

HR Rebound Duration

?"‘05'9 N 6\@5 Qv'b @@ga—\@e%oo‘
e <@ (L
S0 o S
<@ R \’a‘\\, s
@6

Frontiers in Neuroscience

11

frontiersin.org


https://doi.org/10.3389/fnins.2025.1633295
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/

Wriessnegger et al.

along with a longer dip duration compared to females (PASA
* Sex). In contrast, females exhibited a delayed HR dip with a
shorter duration. Additionally, women demonstrated greater HR
dip and rebound magnitudes associated with longer response times
(Response Time * Sex).

3.3 EEG results

In Figure 7, each t-map shows the spatial distribution of
associations (t-values) between a predictor variable (experimental
phase, PASA stress score, error rate) and EEG features (columns: D,

10.3389/fnins.2025.1633295

T, A, B, G power, and the T/B and G/T ratios) for females and males
separately. Red indicates a positive relationship; blue, a negative
one. Statistically significant associations (p < 0.05) within channels
are marked by filled black circles. Effect sizes are also provided
(Figure 7d). Across all three predictors, highly similar spatial and
spectral patterns of EEG modulation were observed in both sexes.
These consistent effects suggest that all three factors likely index a
common underlying process, such as stress-induced cognitive load
or mental effort.

In Figure 7a, which reflects the effect of experimental phase
(from control to stress phase 2), females showed significant negative

associations with T power at frontal electrodes and corresponding
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t-maps showing the relationships between EEG features (from left to right: D power, T power, A power, B power, G power, T/B ratio, and G/T ratio)
and various variables: (a) experimental phase (as 1 for control, 2 for stress phase 1, and 3 for stress phase 2—red shading indicates an increase in the
EEG feature from control phase to stress phase 2, while blue indicates a decrease), (b) PASA stress scores (from questionnaires administered after
each phase) and (c) error rate (%) for males and females separately. Red gradients denote positive associations, while blue gradients indicate
negative associations. Channels showing statistically significant effects (p < 0.05) are marked with filled black circles. (d) presents boxplots of the
corresponding effect sizes (Cohen'’s r) calculated across all channels and bands for each variable and sex.
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(a) t-maps illustrating the relationship between alpha asymmetry and the experimental phase (coded as 1 for control, 2 for stress phase 1, and 3 for
stress phase 2), PASA stress scores, and error rate (%) separately for females (top panel) and males (bottom panel). Red regions indicate areas where
laterality power scores increase with increasing values of the corresponding variable, while blue regions reflect a decrease. Laterality values along
the midline were set to zero. Statistically significant channel effects (p < 0.05) are denoted by solid black dots. (b) presents boxplots of the
corresponding effect sizes (Cohen'’s r) calculated across all channels for each variable and sex.

reductions in the T/B ratio (i.e., T frontal power and T/B ratio = modulation of EEG features, D and G band power changes—
decreased as the experiment progressed from control to stress  particularly G—emerge as the most consistently significant in
phase 2). In addition, B power significantly increased at right  males, while T power, B power, and T/B ratio show stronger and

parietal electrodes, indicating a localized shift toward higher- ~ morelocalized effects in females.
Figure 8 illustrates the relationship between alpha laterality and

three key variables—experimental phase, PASA stress score, and
error rate—displayed separately for females (top row) and males

frequency activity under stress. In males, although similar overall
patterns were observed, the most statistically significant effects were
found in the D and G bands. Specifically, D power significantly

decreased over central and parietal electrodes especially on the (bottom row). Red regions indicate increased laterality values (i.e.,

left hemisphere, while G power showed widespread and robust greater relative left- or right-hemisphere alpha power dominance
depending on the side), while blue regions reflect decreased
laterality. Statistically significant effects (p < 0.05) are denoted
by solid black dots. In females, significant effects were observed
over left and right frontocentral and centroparietal electrodes for
both the experimental phase and PASA stress scores, indicating
that A asymmetry in these regions reliably tracked increases in
task-induced stress and self-reported stress. Additionally, for error
that females displayed significant reductions in T power and rate, a significant effect was observed over frontocentral channels
increases in B power at frontal electrodes, as well as decreased T/B  (3nd specifically FC5/FC6), suggesting that increased error rates
ratios over mid-frontal sites with increasing error rates. In males,  were associated with a shift in frontal A asymmetry. In males,
significant widespread increases in G power, especially across  significant effects for experimental phase were found over frontal
posterior electrodes were observed. Taken together, these results  (FP1/FP2) and frontocentral electrodes (FC5/FC6), while PASA
show that while both sexes exhibit stress- and performance-related  stress scores showed significant associations with frontal (FP1/FP2)

increases across posterior and parietal regions. These changes were
accompanied by significant increases in the frontal G/T ratio. In
Figure 7b, relating EEG features to PASA stress scores, females
showed significant negative associations with frontal T power and
decreased frontal T/B ratios. Males again displayed significant
increases in G power. In Figure 7c, examining error rate, revealed
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and occipital (O1/02) regions. For error rate, no significant effects
were observed.

Visual comparison of the t-maps in Figure 8 reveals that
the experimental phase effects closely resemble a combination of
the PASA stress score and error rate maps. This suggests that
experimental phase effects largely reflect a composite of increasing
subjective stress and accumulating performance variability across
phases, rather than an independent source of EEG asymmetry
modulation.

4 Discussion

The primary objective of this study was to identify reliable
indicators of mental stress using EEG and ECG features. Well-
established indicators were employed based on prior research
(Attar et al., 2021; Hag et al., 2021; AlShorman et al., 2022; Aspiotis
et al., 2022). In addition to these objective measures, subjective
experiences of mood and perceived stress were assessed using two
validated questionnaires: the BMIS and the PASA scale. A key
objective of the study was also to investigate sex-related differences
in the neurophysiological and behavioral responses to stress. The
following discussion integrates findings from the EEG, ECG, and
questionnaire data, with an emphasis on how stress responses may
differ between males and females across multiple domains.

4.1 Subjective and behavioral indicators
of stress

The behavioral and self-report data provide clear evidence that
the experimental manipulation successfully induced psychological
stress and impacted task performance. Participants mood, as
assessed by the BMIS, declined significantly following the
experiment, indicating a shift toward more negative affective states.
This supports the notion that the cognitive load and emotional
strain associated with the task were impactful. Interestingly, while
no overall sex differences emerged in the direction of mood change,
males reported significantly lower baseline mood prior to the
experiment. This baseline gap may reflect pre-existing differences
in emotional state or expectations about task performance, though
post-task mood converged across sexes.

Primary Appraisal Secondary Appraisal stress scores increased
stepwise across phases, confirming that participants subjectively
experienced greater stress as the task progressed from control to
stress phase 1 and stress phase 2. The lack of sex differences in
PASA responses suggests that, despite the observed differences
in physiological and neural patterns (as seen in EEG and
ECG results), subjective stress appraisal was comparable across
males and females.

Performance measures mirrored these subjective effects. Error
rates increased dramatically across phases, reflecting the growing
cognitive demands and stress-related attentional disruption.
Response times followed a non-linear trend: participants responded
faster under moderate stress (stress phase 1), potentially due to
heightened arousal, but slowed down under higher stress (stress
phase 2), consistent with cognitive overload or disengagement.
These patterns were similar across sexes, reinforcing that the task’s
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difficulty scaling and its impact on behavior were robust and
comparable across groups.

Practice-related improvements were also modulated by stress
context. During the control phase, error rates declined across
task runs, indicating typical learning effects. This trend was
blunted in stress phase 1 and reversed in stress phase 2, where
early improvements gave way to performance degradation. These
findings suggest that while participants can adapt and improve
under low-stress conditions, stress impairs the application of
learning especially under sustained high demand.

4.2 ECG features as reliable stress
markers?

Raw HR data showed that females exhibited overall higher HR
than males, consistent with sex-based differences in cardiovascular
physiology—such as smaller stroke volume and greater resting HR.

In females, raw HR indicates that overall autonomic tone
decreases with stress and then plateaus, suggesting a general
suppression in cardiovascular activation once stress is introduced.
The elevated HR observed during the control phase may
also reflect anticipatory anxiety related to the upcoming math
stressor. Such anticipatory responses are consistent with literature
showing that mere anticipation of performance-related stress can
activate the sympathetic nervous system (Roos et al, 2021).
The progressive HR decline across stress phases could possibly
also be linked to mental fatigue, as supported by findings from
Matuz et al. (2021), who demonstrated that mental fatigue from
prolonged cognitive engagement leads to reduced HR, reflecting
diminished energetic arousal and decreased task engagement.
Consistently, in our previous work (Riedl et al., 2023), we reported
that videoconference fatigue—another cognitively demanding
condition—was associated with decreased HR as well. While in
Riedl et al. (2023) we observed significantly increased frontal and
occipital T and A power associated with fatigue, herein we did
not identify such changes with experimental phase (Figure 7),
suggesting that the observed effects are likely not attributable
to mental fatigue. We also did not find statistically significant
differences in the BMIS scores for the adjectives “tired” and
“active” before and after the experiment (for either males or
females), which could have indicated the presence of fatigue.
Furthermore, baseline-corrected data reveal that stress phase 1 still
triggers a stronger phasic response relative to its own baseline —
suggesting moderate stress briefly activates the system, while high
stress leads to blunted reactivity. This supports the idea of an
initial overactivation followed by physiological fatigue or reduced
flexibility under continued stress exposure.

In males, raw HR declined from control to stress phase 1
and showed partial recovery in stress phase 2, suggesting some
reactivation of autonomic activity under higher stress. However,
baseline-corrected HR revealed a monotonic decrease in reactivity,
with HR falling below baseline in both stress phases and reaching
its lowest point in stress phase 2. This indicates that despite the
apparent rebound in raw HR, the cardiovascular system remained
less responsive relative to its pre-phase state. The combined pattern
suggests reduced physiological flexibility or gradual disengagement
in response to increasing cognitive demands.
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Across all participants, a brief dip in HR was observed around
the time of response onset-a characteristic cardiac deceleration
typically attributed to parasympathetic activation. This transient
bradycardia is commonly associated with focused cognitive
engagement and motor preparation, serving to enhance attentional
and sensorimotor control during response execution (Jennings
et al., 1980; Jennings, 1982; Pfurtscheller et al., 2013; Skora et al,,
2022; Henderson et al., 2024). After the brief parasympathetic
deceleration, there is typically a reactivation of sympathetic nervous
system activity as the individual executes the response or processes
its outcome, which results in a post-response acceleration of HR.
Skora et al. (2022) proposed a mechanistic explanation: event-
related HR deceleration sharpens perceptual focus by reducing
baroreceptor noise via vagal activation, facilitating more efficient
sensorimotor control. After response execution, parasympathetic
withdrawal and sympathetic rebound promote action and recovery.

Consistent with this view, multiple studies using choice
1982; Zimmer et 1990)
have shown anticipatory HR slowing that intensifies with task

reaction time tasks (Jennings, al,,
repetition, predicting faster but more impulsive responses. In
error-related paradigms, (Danev and de Winter, 1971; Wimmer
et al, 2024) found that correct performance was followed by
HR rebound, while errors prolonged HR deceleration, suggesting
prolonged parasympathetic engagement during error monitoring.
Pfurtscheller et al. (2013) observed initial HR deceleration in both
action and no-action conditions during motor imagery Go/No-Go
tasks, with a quicker rebound in active trials, highlighting the role
of movement preparation in cardiac dynamics. In tasks requiring

TABLE 3 Summary of ECG and EEG results.

10.3389/fnins.2025.1633295

(2024) showed that
higher difficulty led to earlier and more gradual HR deceleration,
while Dennis and Mulcahy (1980) emphasized that HR deceleration
reflects cognitive load during stimulus evaluation. Kaiser and

increased cognitive load, Henderson et al.

Sandman (1975) found greater HR deceleration during the warning
period of anagram problem-solving, with more difficult anagrams
linked to higher HR deceleration, indicating greater attentional
demands. Finally, De Pascalis et al. (1995) found that stress slowed
HR deceleration before the probe stimulus in a visual recognition
task, suggesting that stress reduces processing capacity, making it
harder to prepare for stimuli.

In the present study, these prior findings are projected in
the observed HR dip and rebound patterns, but with modulation
by stress level and sex. Participants who felt more stressed had
larger HR dips, showing that the body reacts more forcefully to
higher perceived stress. Importantly, males and females managed
these stress responses in different ways. Men tended to show
earlier and longer-lasting HR dips, suggesting a strategy based on
timing—they start reacting earlier and maintain a steady response
over time. Women, on the other hand, showed larger dip and
rebound magnitudes, especially during slower responses, indicating
a strategy based on intensity—their bodies react more forcefully,
though for a shorter duration.

These results underscore that temporal features of HR
regulation may offer sensitive indices of physiological states that
are not captured by average HR levels alone and further reveal
sex-related differences in the timing and dynamics of autonomic
responses (Table 3).

Baseline HR (Raw) Higher than males; possible anticipatory

anxiety

HR trend across phases Decrease from control to stress, then

plateau
ECG
Baseline-corrected HR Phasic response in stress 1; blunted in
stress 2
Response-locked HR dip Larger dips and rebounds
(intensity-driven)
Interpretation Suppression after stress onset; strong
short-duration reactions
Frontal theta and beta power Increased; linked to attentional control
and cognitive load
Frontal T/B ratio Sensitive marker across stress,
performance, and PASA score
Gamma power Moderate increase under stress
EEG
Delta power Less affected
Alpha asymmetry Left > right; linked to negative affect and

emotional regulation

Performance link EEG features correlate with performance

and stress ratings

Mechanism interpretation Engages localized, frequency-specific

networks
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Lower than females

Decrease in stress 1, partial rebound in | Initial activation then reduced reactivity

stress 2 (raw)

Monotonic decrease below baseline
across phases

Earlier, longer dips (timing-driven) Brief dip followed by rebound

post-response

Steady, early engagement with reduced | Cardiac deceleration and rebound align

flexibility with cognitive engagement

Less prominent changes Stress modulates T and B power in frontal

regions

Not a consistent marker

Strong increases across stress and errors; | Stress increases G power, more so in males
frontal/posterior

Decreased in central/parietal left Stress may reduce MRCPs

hemisphere; reduced motor readiness

Left frontal dominance; right PFC Asymmetry modulated by stress in both

activation under stress sexes

EEG markers reflect both stress and

cognitive effort

Less direct, more influenced by

cumulative stress-performance effects

Broader, high-frequency cortical Sex-dependent EEG strategies under stress

activation patterns
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4.3 EEG features as reliable stress
markers?

The EEG findings demonstrate that both task-induced
and self-reported stress are associated with robust neural
changes. Importantly, the overall patterns of stress-induced EEG
power changes observed here closely mirror the t-map results
reported in our previous work (Wriessnegger et al., 2024). This
consistency across studies reinforces the robustness of these
neurophysiological markers in capturing stress-related cognitive
and affective dynamics. The nature, however, and distribution
of these changes differ between females and males. While
similar topographic patterns were observed across sexes, the
underlying spectral and lateralization profiles point to distinct
neurophysiological strategies. Specifically, D power significantly
decreased in men over central and parietal electrodes especially
on the left hemisphere. Studies show greater hemispheric
lateralization in males, while females exhibit more bilateral
activation, especially in prefrontal and limbic areas. This may
correspond to more synchronized theta or alpha activity in
females during emotionally charged tasks and increased gamma
or beta in males due to lateralized, goal-oriented processing
(Hodgetts and Hausmann, 2022).

In females, stress consistently modulated frontal T, B power,
and the T/B ratio—features tightly linked to cognitive control and
attentional regulation. This aligns with previous findings showing
that frontal-midline theta and beta oscillations are highly sensitive
to cognitive load and stress (Putman et al., 2014). Wen and Aris
(2020) and Wen et al. (2020) also reported a negative correlation
between T/B and stress. Herein, the frontal T/B ratio emerged as
a sensitive marker across experimental phase, PASA stress scores,
and error rate, which may reflect increased attentional demands
and emotional processing.

Prior studies already reported on sex-related neurotransmitter
system differences, specifically serotonin, dopamine, and
GABAergic systems are modulated differently by sex hormones,
impacting stress reactivity and EEG markers. For example,
estrogen upregulates serotonin and GABA receptors, which may
contribute to increased alpha/theta power, associated with emotion
regulation and internal attention (Bangasser and Valentino, 2014;
Bangasser and Wicks, 2017). Neurochemically, estrogen modulates
limbic-frontal interactions, enhancing women’s sensitivity to
emotional and cognitive stressors and likely contributing to the
observed EEG profiles. Neurohormonal influences, particularly
the modulatory role of estrogen and testosterone, likely shape
oscillatory dynamics by influencing cortical excitability and
connectivity in regions such as the PFC and limbic system
(Shansky et al., 2004; Barth et al., 2015). Estrogen has a profound
effect on brain function, particularly in modulating limbic
system activity (amygdala, hippocampus) and PFC regions
responsible for emotional regulation and executive control.
Whereas estrogen enhances synaptic plasticity, cortical excitability,
and can influence oscillatory patterns, especially in theta and alpha
bands, testosterone is associated with greater activation in brain
areas linked to goal-directed behavior and risk-taking, potentially
increasing beta and gamma activity under stress.

Structurally, females show more bilateral activation during
cognitive-emotional tasks, which may relate to greater theta
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and alpha power, supporting emotion-focused coping. Males,
on the other hand, showed a different pattern of modulation.
Gamma power was the most consistently affected feature across all
predictors, with particularly strong increases under stress and high
error rates. This aligns with prior findings showing that prefrontal
G power significantly increases under acute psychosocial stress
(Minguillon et al., 2016). Similarly, recent work by Pei et al. (2023)
demonstrated that task difficulty systematically increases G band
amplitude, particularly in posterior regions, reflecting elevated
cortical arousal and high-load cognitive processing. Furthermore,
males often exhibit lateralized activity patterns associated with
heightened beta and gamma power, supporting rapid, action-
oriented coping mechanisms (Bangasser and Valentino, 2014). This
also aligns with evolutionary theories proposing the “fight-or-
flight” stress responses wherein sex-specific EEG activation may
represent adaptive neural strategies to environmental stressors
(Taylor et al, 2002; Gur and Gur, 2016). Males may prioritize
rapid problem-solving and response execution, reflected in more
high-frequency EEG activity, like the observed gamma power.
Although G activity increases can sometimes reflect residual EMG
contamination, we consider this unlikely to fully account for our
findings. First, our ICA and artifact rejection steps specifically
targeted muscular sources. Second, the topographical patterns we
observe, which are characterized by more global increases, do not
match the typical peripheral distributions of muscle signals near the
scalp, and these global increases were more pronounced in male
participants than in female.

We also observed significant decreases in D power in
central and parietal regions under stress, particularly in the
left hemisphere. This lateralized D reduction (ie., mainly
in the left hemisphere) may reflect decreased amplitudes of
movement-related cortical potentials (MRCPs), which reside
in the D band and are associated with motor preparation
processes involved in generating a response (Shibasaki et al,
1980; Shibasaki and Hallett, 2006). These findings suggest
that stress may impair or reduce the efficiency of motor
preparation processes in men. Mental stress and anxiety have
been shown to attenuate MRCPs (Glanzmann and Froehlich,
1984), particularly the Bereitschaftspotential, which reflects motor
preparation (Shibasaki et al., 1980). High-anxiety individuals
exhibit significantly reduced Bereitschaftspotential amplitude and
diminished prefrontal negativity, indicating impaired preparatory
brain activity. This reduction is linked to weakened top-down
attentional control and slower, less accurate responses during tasks
(Olsen et al., 2021). However, studies also show that task-related
feedback can partially restore MRCP amplitude and normalize
performance in anxious individuals, suggesting that stress-induced
suppression of motor preparatory signals may be modulated by
cognitive context and external cues (Mussini and Di Russo, 2023).
Overall, these findings highlight that anxiety impairs the neural
readiness for movement, which can be detected through reduced
MRCP amplitude.

In females, experimental phase, stress and error rate
induced higher A power on the left hemisphere (i.e., greater
right hemispheric activation) especially in frontocentral and
centroparietal sites. Greater right hemispheric activation is
linked to withdrawal and negative affect, while frontocentral
asymmetries are consistent with greater integration of emotional
regulation and task-related cognitive effort (Smith et al., 2017).
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In contrast to females, A asymmetry effects in males were present
for stress-related predictors but not for performance, and were
more fronto-occipitally distributed, with A power being more
pronounced in the left frontal areas and reduced in the left
occipital areas. This is supported by the work of Earle and Pikus
(1982) who found that in males A asymmetry was not significantly
correlated with task performance, unlike in females. Furthermore,
our findings align with Wang et al. (2007), who showed that stress
in males primarily activated the right PFC and suppressed the
left orbitofrontal cortex, reflecting an executive-focused “fight-
or-flight” neural response, whereas females exhibited stronger
limbic system activation (including the insula, striatum, and
anterior cingulate cortex) linked to emotional and integrative stress
processing. Although no significant asymmetry effects were found
for error rate alone in males, the similarity between the error rate
and experimental phase topographies suggests that performance
variability may have contributed to experimental phase effects
when combined with stress-related factors. These results indicate
that, in males, EEG asymmetry shifts are likely driven by the
cumulative interaction of subjective stress and task performance,
rather than performance decline alone.

While both sexes show EEG sensitivity to stress and
performance, the underlying mechanisms seem to differ (Table 3).
Females appear to engage more frequency-specific and functionally
localized control systems, while males rely on broader, high-
frequency activation patterns. Alpha asymmetry offers a common
axis of modulation, but with different behavioral correlates
and topographies across sexes. These distinctions have practical
implications for the design of neuroadaptive interfaces and stress
monitoring systems, which may require sex-specific models or
feature weighting to accurately capture neural signatures of mental
effort and performance.

4.4 Limitations and future work

It is worth noting that HRV is often considered a key
physiological marker in stress-related research (Hickey et al., 2021).
However, in the present study, our analysis focused solely on
HR, as several methodological limitations prevented reliable HRV
estimation. Specifically, the analysis window of 2.5 s per trial
was too brief to derive meaningful HRV measures. Although we
attempted to compute HRV indices using the full duration of
each experimental phase, variability in phase lengths, driven by
individual differences in response times, limited our analysis to
a minimum segment of approximately 3 min, starting from the
onset of each phase. According to Shaffer and Ginsberg (2017),
even short-term HRV assessments typically require at least 5 min
of continuous data. Our HRV analysis (specifically using low-
frequency/high-frequency HR power, and root mean square of
successive differences metrics) yielded no significant findings, likely
due to the insufficient duration of usable data segments.

Another methodological limitation concerns the duration of
the baseline recordings. While we applied baseline correction
using 10-s resting segments before each phase, longer baseline
periods (e.g., 2-5 min) could provide more stable reference. Our
design prioritized phase-specific normalization to account for
immediate physiological state shifts. Nevertheless, longer resting-
state baselines, especially at the beginning of the experiment,
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would strengthen absolute comparisons and improve between-
subject normalization.

While our findings suggest potential sex-related differences,
it is important to acknowledge that the sample size limits
the generalizability of these results. As such, the observed
effects should be interpreted with caution and considered
exploratory. Furthermore, we did not record menstrual cycle phase,
contraceptive use, or hormone levels in our female participants,
which are known to affect EEG and autonomic stress responses
(Solis-Ortiz et al., 1994; Baehr et al., 2004; Bazanova et al.,
2014; Solis-Ortiz et al., 2019; Torbaghan et al., 2023; Gaizauskaité
et al., 2024; Hemakom et al., 2024), the lack of hormonal-status
control may limit the specificity of our sex-based comparisons.
Future studies should include these measures to clarify hormonally
driven effects.

The current study also relies solely on mathematical stress tasks,
which may not fully capture real-world stress responses. Future
paradigms should consider social, emotional, or multitasking
stressors. Finally, although the study was motivated by interest
in neurocardiac correlates of stress, EEG and ECG features
were analyzed independently. A promising direction for future
research involves implementing joint EEG-ECG modeling (using
e.g. multivariate autoregressive models (Kostoglou et al., 2019)) to
better capture the integrated dynamics of brain-heart interactions
under stress.

Additionally, our ECG preprocessing and QRS detection relied
on the classical Pan-Tompkins algorithm (Pan and Tompkins,
1985; Sedghamiz, 2025). Although visual inspection confirmed
that detected QRS complexes align accurately with true R-peak
locations in our dataset, the algorithm’s fixed filter parameters,
hard-coded decision thresholds, and limited adaptability render
it less robust than more recent detection methods (Martinez
et al., 2004; Zhang and Lian, 2009; Abibullaev and Seo, 2011).
We therefore acknowledge these constraints as limitations of the
present study and plan to address them in future work.

One further limitation is the missing formal statistical testing
of sex x predictor interactions which would strengthen the
interpretation of sex-specific EEG findings. However, given the
high dimensionality of the EEG data, across many channels and
frequency bands, introducing interaction terms would substantially
increase model complexity and make the results difficult to
visualize and interpret. For this reason, we opted to present
EEG topographies separately for females and males to highlight
qualitative differences, while keeping the analysis tractable and
interpretable. We plan to explore formal cross-sex statistical
models in future work.

5 Conclusion

Mental stress is typically assessed by doctors or experts
through interviews and psychological questionnaires. However,
these methods rely on subjective responses, which can lead to
inaccurate assessments and hinder effective treatment. Moreover,
such evaluations are often conducted long after the stress exposure,
by which time mental or physical damage may have already
occurred. In contrast, assessing stress through physiological signals,
directly linked to autonomic nervous system responses, offers
a more immediate and objective approach. Summarizing our
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findings, the questionnaire and performance data validated the
stress manipulation and revealed distinct behavioral consequences
of increased cognitive-emotional load. While males and females
reported similar subjective experiences and showed no behavioral
performance differences, earlier baseline mood differences and
distinct neurophysiological patterns suggest that the same external
stressors may be internally processed through different pathways.
Females seem to use a combined emotional and cognitive
control strategy, involving frontal brain networks and stronger
HR reactions, while males rely more on executive and vigilance
control, shown by frontal and occipital brain activity and earlier
HR adjustments. This underscores the value of integrating
physiological, subjective, and behavioral data to fully capture
individual and sex-specific responses to cognitive stress.
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