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The small-conductance calcium-activated potassium channel SK3, encoded by 
the KCNN3 gene, plays a critical role in regulating dopaminergic neuron (DN) firing 
patterns by modulating after hyperpolarization currents. SK3 dysfunction has been 
implicated in neuropsychiatric and neurodegenerative disorders. We analyzed structural 
and functional consequences of KCNN3 splicing and genetic variation. Alternative 
splicing variants of the KCNN3 gene were retrieved from the Ensembl database 
and aligned using T-Coffee, manually inspected and curated. Protein domains 
were identified with Pfam 35.0, SMART 9.0, and InterPro 98.0, and visualized. An 
AlphaFold2 model of SK3 full-length protein (UniProt: Q9UGI6) used as reference and 
structural models of its splicing variants were predicted with ColabFold. Functional 
domains (S1–S6 transmembrane helices, H5 pore loop, and calmodulin-binding) 
were defined and superimposed onto the AlphaFold2 reference. Domain integrity 
was assessed based on completeness of all expected residue indices within each 
functional region. SNPs and CNVs across all coding KCNN3 splicing variants were 
analyzed, classified, and filtered to isolate pathogenic variants prioritizing non-
synonymous amino acid substitutions. Differential variant impacts across splicing 
isoforms were assessed by mapping variant positions to individual transcript protein 
sequences and used to predict functional consequences. Two long and two short 
splicing variants are known. Short variants lack the motif required for potassium 
channels. Pathogenic variants result from missense mutations resulting in amino 
acid substitutions. In all cases, the consequential effects depend on the specific 
location and role of the amino acid being changed.
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Introduction

During embryonic development in humans, dopaminergic neurons DN are formed in the 
mesencephalon and differentiate into three major clusters corresponding to the Retrobural 
Field (RRF), Substantia Nigra pars compacta (SNc) and Ventral Tegmental Area (VTA) 
respectively (Hegarty et al., 2013). DN in vivo typically fire either regularly, in a pacemaker 
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fashion, or in bursts (Grace and Bunney, 1984a, 1984b; Shepard & 
German, 1988a). Pacemaker activity produces a tonic release of 
dopamine (Grace, 1991; Overton and Clark, 1997), while burst firing 
results in phasic release of dopamine in terminal axonal fields (Bean 
and Roth, 1991; Gonon and Buda, 1985). When partially denervated 
in brain slices, DN only maintain pacemaker activity indicating that 
burst firing is driven by synaptic input (Kita et al., 1986; Sanghera 
et al., 1984). Bursts consists of 3–7 action potentials that progressively 
decrease in amplitude and increase in duration, followed by a pause. 
Non-burst firing patterns, whether pacemaking or not, consist of 
similarly shaped spikes (Grace and Bunney, 1984a, 1984b; Gu et al., 
1991; Shepard & German, 1988b). The controlling switch between 
regular and burst firing patterns is the small conductance potassium 
channel sensitive to calcium (SK) (Gu et al., 1991) which is the subject 
of this work.

There are four subfamilies of SK channels: SK1, SK2, SK3 and the 
intermediate conductance channel, IKCa1. The latter is encoded by 
the gene KCNN4 which is not expressed in neurons and therefore will 
not be discussed further (González et al., 2012). On the other hand. 
SK1 and SK2 channels are highly expressed in the hippocampus and 
cortex, whereas SK3 channels are abundant in the thalamus and 
hypothalamus and have the highest expression levels in the midbrain 
(Sah and Faber, 2002). All SK channels are voltage independent but 
open in response to nanomolar changes in cytosolic free calcium 
(Park, 1994); the ensuing outward potassium current contributes to 
afterhyperpolarization after a single spike event as well as in the 
pacemaker properties of neurons (Herrik et al., 2010; Ji et al., 2009; Ji 
and Shepard, 2006; Wolfart and Roeper, 2002). Following an action 
potential, potassium currents cause an after-hyperpolarization event 
(AHP) consisting of fast, medium and slow components (Lancaster 
and Nicoll, 1987; Sah, 1996; Storm, 1987, 1990). In midbrain DNs, 
SK3 channels mediate the medium AHP component and control 
firing frequency (Seutin and Liégeois, 2007; Waroux et  al., 2005; 
Wolfart and Roeper, 2002). Action potential-caused depolarization 
causes influx of ionized calcium into the cytosol via voltaje dependent 
calcium channels; further release from intracellular calcium stores is 
mediated by calcium-induced calcium release receptors (ryanodine 
receptors) leading to the activation of SK3 channels (Blatz and 
Magleby, 1986; Park, 1994) and Kd below 1 μmol/L (Halling et al., 
2022). SK3 channels do not have a calcium-binding motif; instead, 
gating is mediated by calmodulin binding to the heteromeric complex 
of four pore-forming α subunits (Lee et al., 2003). Adult SNpc neurons 
richly express SK3 mRNAs, whereas DN in the VTA do so much less, 
and accordingly have smaller AHP currents (Wolfart et al., 2001), but 
expression is more ubiquitous during embryonic development (Sarpal 
et al., 2004).

SK channel protein subfamily members in humans are encoded 
by the genes KCNN1, KCNN2 and KCNN3 (Faber and Sah, 2007; 
Kshatri et al., 2018). Genetic mutations in KCNN3 are associated with 
risk of disease (Chandy et al., 1998; Gargus et al., 1998; Stöber et al., 
1998) but their impact in channel conductance and neuronal function 
are poorly understood. Mutations in the KCNN3 gene are associated 
with risk of schizophrenia and bipolar disorder type 1 (Chandy et al., 
1998; Gargus et al., 1998; Stöber et al., 1998), as well as of Huntington’s 
disease and anorexia nervosa (Dallérac et al., 2015; Koronyo-Hamaoui 
et al., 2002; Saleem et al., 2000).

The KCNN3 gene contains two regions with CAG trinucleotide 
repeats encoding polyglutamine segments in the protein (Chandy 
et  al., 1998). Because trinucleotide expansions have known 

pathological impact, the triplet expansion found in the sequence 
of the KCNN3 gene is of interest. Somewhat surprisingly, an 
association was found between reduced number of CAG repeats 
in KCNN3 with schizophrenia (Chandy et al., 1998; Gargus et al., 
1998; Ivković et al., 2006; Stöber et al., 1998) but several replication 
studies failed to confirm the finding (Glatt et al., 2003; Laurent 
et al., 2003; Li et al., 1998; Ritsner et al., 2003; Saleem et al., 2000; 
Tsai et  al., 1999; Ujike et  al., 2001; Wittekindt et  al., 1998). 
Nevertheless, the number of CAG repeats and the differences in 
allele size may be related with specific disease features, such as 
time of onset or cognitive performance (Grube et  al., 2011; 
Mitas, 1997).

Cells transfected with transgenic KCNN3 constructs with 
increasing number of CAG showed a significant reduction in overall 
conductance and stronger inward rectification (Grube et al., 2011). A 
4-base pair deletion in this gene was identified in a patient with 
schizophrenia and this mutation generated a truncated protein 
(hSK3Δ) without channel function (Bowen et al., 2001; Miller et al., 
2001). In DN, expression of hSK3Δ also suppressed the SK 
endogenous current and caused increased burst firing activity and 
increased intracellular calcium signaling (Soden et al., 2013). In this 
article we provide new data on the impact of known human genetic 
variations in KCNN3 on its probably channel properties and 
associated conductance, and discuss possible impact of SK3 channels 
modifications in DN function.

Materials and methods

Data acquisition and sequence alignments

Sequence retrieval and alignment
Alternative splicing variants of the potassium calcium-activated 

channel subfamily N member 3 (KCNN3) gene were retrieved from 
the Ensembl database (release 110) (Martin et al., 2023). Multiple 
sequence alignment of the variant transcripts was performed using 
T-Coffee version 11.00.8cbe486 with default parameters. The resulting 
alignments were manually inspected and curated to ensure accuracy, 
with particular attention to splice junction regions and protein-coding 
segments (Figure 1).

Functional domain analysis
Protein domain identification was performed using three 

complementary databases: Pfam 35.0, SMART 9.0, and InterPro 98.0. 
Results were cross-referenced to identify conserved and variant-
specific domains. Domain architectures were visualized using the 
Ensembl genome browser protein schematic representation tool 
(Figure 2). Differences in domain content, organization, and integrity 
between splicing variants were systematically cataloged.

Structural model and analysis

Reference structure acquisition
The high-confidence AlphaFold2 (Jumper et al., 2021) model for 

human SK3 full-length protein (AF-Q9UGI6-F1) was obtained from the 
AlphaFold Protein Structure Database (Varadi et  al., 2024). The 
canonical KCNN3 sequence (UniProt: Q9UGI6) (Ahmad et al., 2025) 
served as the reference for comparative analysis. Two-dimensional 
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(Figures 2A, 3) and three-dimensional (Figures 2B–E) structural models 
of SK3 splicing variants (Variant 202, Variant 203, Variant 205) were 
predicted using ColabFold (Mirdita et  al., 2022), a high-efficiency 
AlphaFold2 (Jumper et al., 2021) implementation. Structural predictions 
were performed in batch mode using the following parameters: --model-
type alphafold2_ptm, --num-models 5, --num-recycles 3, --rank-by 
confidence, --use-templates (Abramson et al., 2024), with the wild-type 
AlphaFold2 model supplied as a template. The top-ranked model based 
on predicted local distance difference test (pLDDT) scores was selected 
for each variant.

Structure processing and domain annotation
PDB models were parsed using Biopython’s PDBParser (Cock 

et al., 2009) to verify AlphaFold confidence scores in the B-factor field. 
Residues with confidence scores below 70 were flagged for cautious 
interpretation. Functional domains were defined based on literature-
curated regions including S1–S6 transmembrane helices, the pore 
(H5) loop, and the C-terminal calmodulin-binding domain 
(Supplementary Table 1) (Ahmad et al., 2025).

Structural comparison analysis
Cα-based root-mean-square deviation (RMSD) values were 

calculated using Biopython’s Superimposer for both global (residues 
1-731) and domain-specific alignments. Each variant was 
superimposed onto the AlphaFold2 reference using common 
residues within each domain. Domain RMSD calculations required 
≥5 aligned Cα pairs; otherwise, values were assigned as not 
available. Per-residue confidence scores (pLDDT) were extracted 
and mapped to assess regional reliability, with mean pLDDT values 
reported per domain. Domain integrity was assessed based on 
completeness of all expected residue indices within each 
functional region.

Genetic variant analysis

Variant data collection
Single nucleotide polymorphisms (SNPs) and copy number 

variants (CNVs) across all coding KCNN3 gene splicing variants were 

FIGURE 1

Comparative analysis of KCNN3 splicing variants. (A) Sequence alignment of four KCNN3 transcripts reveal two distinct length categories. Long variants 
(ENST00000271915.9 and ENST00000618040.4) differ only by a 16-amino acid insertion at position 484, while short variants (ENST00000358505.2 
and ENST00000361147.8) exhibit a 5-amino acids difference in the region spanning positions 309–314. (B) Schematic representation of the coding 
regions for the main functional domains of the SK3 channel protein.
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FIGURE 2

Structural characterization of KCNN3 protein isoforms. (A) Domain architecture of KCNN3 (743 amino acids) and its splicing variants. Functional 
domains and conserved motifs are mapped to their respective positions, with domain boundaries indicated by amino acid position. High-confidence 
domains (Pfam/SMART identified) are shown in darker colors, while lower-confidence predictions appear in lighter shades. This representation was 

(Continued)
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analyzed using the Ensembl Variant Effect Predictor (VEP) tool 
(release 110) (Martin et al., 2023). Variant data were retrieved from 
gnomAD v3.1.2 (Chen et al., 2024) and ClinVar (Landrum et al., 
2014) databases. VEP analysis was performed with parameters: 
“--species homo_sapiens --assembly GRCh38 --cache --offline 
--symbol --af --af_1kg --af_gnomad --pubmed --domains --regulatory 
--biotype --check_existing.” All KCNN3 transcript identifiers 
(ENST00000618040.4, ENST00000271915.9, ENST00000361147.8, 
ENST00000358505.2) were specified for targeted analysis.

Pathogenicity assessment
Variants were classified according to ACMG/AMP guidelines 

(Martin et  al., 2023; Richards et  al., 2015) and filtered to isolate 
pathogenic and likely pathogenic variants. Non-synonymous amino 
acid substitutions were prioritized and categorized into four primary 
types: (1) Alanine to Threonine, (2) Serine to Cysteine, (3) Glycine to 
Aspartic acid, and (4) Lysine to Glutamic acid conversions. Variant 
positions were analyzed relative to functional domains identified 
through domain analysis.

Transcript-specific impact analysis
Differential variant impacts across splicing variants were 

assessed by mapping variant positions to individual transcript 
protein sequences. Analysis focused on variants affecting 
conserved functional domains versus transcript-specific regions, 
with particular attention to differences between long and short 
SK3 isoforms. Functional consequences were predicted based on 
amino acid changes, structural location, and cross-species 
conservation patterns.

Results

Overview of variant structures and domains

We analyzed splicing variants and known structural mutations of 
the gene to predict their functional impact. Currently, there are five 
known splicing variants of the KCNN3 gene, only four of which are in 
coding regions. Variants ENST00000618040.4 and 
ENST00000271915.9 encompass 746 and 731 amino acids, 
respectively. The other two coding variants, ENST00000361147.8 and 
ENST00000358505.2 respectively, are much shorter encompassing 426 
and 418 amino acids (Figure 1). Variants ENST00000618040.4 and 
ENST00000271915.9 have a nearly identical sequence, the only 

difference being a segment insertion in position 484. Variants 
ENST00000361147.8 and ENST00000358505.2 are also nearly 
identical, except for positions 309–314. Three dimensional structures 
obtained using AlphaFold reveal visible differences in the protein 
conformation as the result of each variant (Figures 2B–E).

Global structural divergence from the 
AlphaFold reference model

The global Cα RMSD values revealed a step-wise divergence 
among the splice isoforms (Table 1). Variant 202 and Variant 203 
produced global RMSD values > 48 Å, whereas Variant_205 deviated 
by 17.6 Å. The wild type variant (Variant 201) aligned almost perfectly 
with the AlphaFold model (RMSD ~0 Å), validating the reference 
structure. We believe that the extreme RMSD of Variants 202/203 is 
driven primarily by sequence truncations rather than wholesale 
mis-folding; absent segments inflate RMSD because no equivalent C-α 
positions exist for superposition.

Analysis of the short variants and their coding regions with 
more detail using Ensembl data base (Martin et al., 2023) revealed 
absence of the motif required for potassium channels (PF03530 
Potassium channel, calcium-activated SK) (Figures  2A, 3). In 
contrast, the two longer variants express all the segments for that 
motif and are both functional despite the segment insertion. This 
led us to do a more detailed investigation at the domain 
structure level.

Domain-level RMSD analysis and structural 
integrity

When dissected by domain, all transmembrane (TM) regions 
(S1–S6) and the pore loop (H5) were preserved in variant 201 and 
AlphaFold model, as expected (RMSD < 3e−14 Å, all domains 
present). Variant 205 showed very low RMSD values across all TM 
domains (≤0.38 Å), indicating a structurally intact pore-forming 
unit. In contrast, Variant 202 and Variant 203 retained the S1–S3 
regions with minimal divergence (RMSD ~0.9–5.5 Å) but exhibited 
markedly higher RMSD values and missing data across S4, S5, H5, 
and S6 domains. Specifically; Variant_202 showed complete loss of 
domains from S4 onwards. Variant 203 retained S4 
(RMSD = 9.00 Å) but was missing S5–S6 and the pore loop 
(Table 1).

generated using the Ensembl Protein Feature View tool, integrating data from multiple prediction algorithms and experimental validation. Only domain 
predictions with significant scores (E-value < 0.001) are included. Annotated protein structure of the human KCNN3 gene product (SK3 channel), 
highlighting key functional domains across its isoforms. Conserved regions include six transmembrane domains (S1–S6), a pore-forming loop between 
S5 and S6, and a C-terminal calmodulin-binding domain. Protein domains were mapped using Pfam, PRINTS, PROSITE, and SUPERFAMILY databases. 
Functional annotations include: PF07885: Two pore domain potassium channel domain; PF03530: Potassium channel, calcium-activated, SK 
subfamily; PF02888: Calmodulin-binding domain; PR01451/PS00322/PS00909: Signatures of calcium-activated potassium channels. These structural 
features are critical for the calcium sensitivity and electrophysiological function of SK3 channels. Variability across transcript isoforms may influence 
channel gating, localization, and regulatory interactions. (B–E) Three-dimensional protein structures of KCNN3 splicing variants predicted using the 
AlphaFold 3 (Abramson et al., 2024). (B) Functional variant ENST00000618040.4, (C) functional variant ENST00000271915.9, (D,E) shorter non-
functional variants ENST00000361147.8 and ENST00000358505.2, respectively, revealing the absence of key transmembrane helices in the truncated 
isoforms (Martin et al., 2023). Renderings were generated in the Human Protein Atlas (https://www.proteinatlas.org/ENSG00000143603-KCNN3/
structure+interaction).

FIGURE 2 (Continued)
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FIGURE 3

Structural and functional annotation of KCNN3 transcript isoforms. Schematic representation of four transcript isoforms of the KCNN3 gene (KCNN3-
201, -202, -203, and -205), including exon-intron structures and corresponding protein features. Top panel: Genomic organization and alternative 
splicing patterns of the four KCNN3 transcripts. Black boxes represent coding exons; gray lines represent introns. Panels 201–205: Isoform-specific 

(Continued)
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Functional consequences of domain loss 
across SK3 variants

To contextualize the structural observations, we  assessed the 
functional implications of domain-level disruptions observed in each 
SK3 isoform. Transmembrane (TM) integrity and the calmodulin-
binding domain were evaluated for presence and AlphaFold-predicted 
confidence (Supplementary Table  S1). Wild-Type and AlphaFold 
models presented all gating and pore motifs intact indicating that 
likely expected to conduct K+ and respond to Ca2+. In Variant 205, all 
TM and regulatory domains were also present, with minor structural 
deviations from AlphaFold but preserved architecture. Thus, this 
variant likely retains most functional properties of the wild-type 
channel, including potassium conductance and calcium sensitivity.

Variant 203 presents a deletion of S5, pore (H5), and S6 domains, 
which abolished the K + permeation pathway; the CaM-BD region 
loss removes the Ca2 sensor suggesting a disrupted gating and 
compromised ion selectivity, consistent with severe functional 
impairment. Lastly, Variant_202 exhibited an even greater truncation 
(S4-S6 absent) which predicts a complete loss-of-function.

Structural variants were studied in Ensembl in an effort to study the 
documented mutations that have a known pathogenic effect and further 
analyzed with SIFT, Polyphen, CADD, REVEL y MetaLR (Martin et al., 
2023), eventually settling on SIFT. From the 2,394 reported variants 
(Supplementary Table  S2) 13 variants were identified that were 
predicted as pathogenic with SIFT (Table  2) and were backed by 
supportive literature. As shown in Table 2, the 13 pathogenic variants 
result from missense mutations, in which the resulting protein is largely 

annotations including Antibody target regions (green bars) for antibodies HPA017990 and HPA057127. Sequence alignment reliability from Human 
Protein Atlas (HsID 10 and HsID 50), where the red-yellow line indicates alignment confidence across the amino acid sequence; Predicted functional 
and structural features, including: MDM domains (brown); Low complexity regions and intrinsically disordered regions (green and gray); Common and 
isoform-specific immunogenic regions (purple and orange). Predicted secondary structure elements (alpha helices in red, beta strands in blue, coils in 
green). Together, these annotations highlight key structural and functional differences among KCNN3 isoforms, which may influence protein stability, 
localization, and interaction profiles. Data adapted from the Human Protein Atlas (https://www.proteinatlas.org/ENSG00000143603-KCNN3/
structure+interaction).

FIGURE 3 (Continued)

TABLE 1  Per-domain RMSD mapping: structural elements that are retained or deleted.

Variant S1–S3 S4 S5–S6 + pore (H5) CaM-binding 
domain (561–

637)

Comment

WT/AlphaFold RMSD ≤ 0.4 Å ″ ″ Present (pLDDT ≈ 91) Complete channel bundle

205 RMSD ≤ 0.38 Å ″ ″ Present (pLDDT ≈ 91) Near-WT geometry

203 RMSD ≤ 5.5 Å 9.0 Å Deleted Deleted Partial bundle (S1–S4)

202 RMSD ≤ 5.5 Å Deleted Deleted Deleted S1–S3 only

No RMS or pLDDT values are reported for domains absent from the input sequence.

TABLE 2  List of pathogenic variants predicted with SIFT.

Transcript Variant 
ID

Location Alleles Class Source Clinical 
significance

Consequence 
type

AA AA 
coordinate

ENST00000271915.9 rs2101782564 1:154726011 C/T SNP dbSNP Pathogenic Missense variant A/T 536

ENST00000271915.9 rs1571259807 1:154772117 T/A SNP dbSNP Pathogenic Missense variant S/C 436

ENST00000271915.9 rs1571260285 1:154772374 C/T SNP dbSNP Pathogenic Missense variant G/D 350

ENST00000271915.9 rs1571353663 1:154869160 T/C SNP dbSNP Pathogenic Missense variant K/E 269

ENST00000358505.2 rs2101782564 1:154726011 C/T SNP dbSNP Pathogenic Missense variant A/T 223

ENST00000358505.2 rs1571259807 1:154772117 T/A SNP dbSNP Pathogenic Missense variant S/C 123

ENST00000358505.2 rs1571260285 1:154772374 C/T SNP dbSNP Pathogenic Missense variant G/D 37

ENST00000361147.8 rs2101782564 1:154726011 C/T SNP dbSNP Pathogenic Missense variant A/T 231

ENST00000361147.8 rs1571259807 1:154772117 T/A SNP dbSNP Pathogenic Missense variant S/C 131

ENST00000361147.8 rs1571260285 1:154772374 C/T SNP dbSNP Pathogenic Missense variant G/D 45

ENST00000618040.4 rs2101782564 1:154726011 C/T SNP dbSNP Pathogenic Missense variant A/T 551

ENST00000618040.4 rs1571259807 1:154772117 T/A SNP dbSNP Pathogenic Missense variant S/C 436

ENST00000618040.4 rs1571260285 1:154772374 C/T SNP dbSNP Pathogenic Missense variant G/D 350

ENST00000618040.4 rs1571353663 1:154869160 T/C SNP dbSNP Pathogenic Missense variant K/E 269

Ensembl was used to study documented mutations known as pathogenic (Martin et al., 2023). All the variants present missense mutations and have been reported in literature. All are 
deleterious variants with low confidence.
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FIGURE 4

Proposed role of SK3 channels in excitotoxicity-mediated dopaminergic neuronal death: A toxic amount of α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) contacts the GluRAMPA receptor in dopaminergic neurons (DNs), (2) allowing sodium (Na+) into the DNs, causing 
depolarization in the membrane. (3) This depolarization activates voltage-dependent L-type calcium channels (LTCC), triggering an influx of calcium 
(Ca2+) into the DNs, (4) which further releases intracellular Ca2+ stores through the IP3 pathway and ryanodine receptors (RyR). (5) At this point in a 
normal cell an afterhyperpolarization current (IAHP) would occur, with potassium (K+) exiting the cell through SK3. However, experimental data shows 
that under AMPA excitotoxicity, the IAHP is significantly reduced or does not take place at all. Meaning that, while the mechanism of this inhibition is not 
fully understood, it is safe to assume that calmodulin, the calcium-binding protein that activates SK3, is unable to bind normally during AMPA 
excitotoxicity, which is hypothesized in the above figure. Also, due to their unique sensitivity to AMPA-induced excitotoxicity, DNs are unable to 
regulate the intracellular levels of Ca2+. This creates a (6) destabilization of neuronal ionized Ca2+ ([Ca2+]i) homeostasis, (7) leading to oxidative stress, 
mitochondrial swelling, increased levels of reactive oxygen species (ROS) and the release of cytochrome C (cyt c). (8) The commitment to die is 
determined by the phosphatidylserine (PS) translocation to the cellular membrane, which is determined by its attachment to annexin V. (9) After 
phosphorylation, inhibitor of nuclear factor κ B (IκB) is separated from nuclear factor κ B (NFκB) and then degraded. NFκB then translocates to the 
nucleus, (10) where it activates transcription of protein p53, which later phosphorylates into phos-p53. (11) This is the last step in the dopaminergic 
neuron-specific programmed death pathway.

the same but will encode a different amino acid at a given position due 
to a nucleotide substitution. In all cases, the consequential effects depend 
on the specific location and role of the amino acid being changed.

Discussion

KCNN3 genomic variants have been associated with brain disease 
and SK channels are expressed widely in brain and play a key role in 
the control of neuronal activity; thus, drugs modulating SK3 activity 
may be useful to treat neuropsychiatric disorders (Blank et al., 2004).

SK3 conductance is specifically blocked by apamin and activated 
by 1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (1-EBIO) and NS309. 
Another activator, cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-
methyl-pyrimidin-4-yl]-amine (CyPPA) is an SK2- and SK3-specific 
positive modulator (Hougaard et al., 2007). Generally, positive SK3 
modulators decrease neuronal activity whereas negative modulation 

increases firing rate and bursting in neurons (Herrik et al., 2010). 
Blocking SK3 channels with apamin changes DN pacemaking into a 
burst firing pattern (Gu et al., 1991; Waroux et al., 2005).

In cell cultures of DN, the DN-specific death pathway produced 
by excitotoxicity (Figure  4), is prevented by SK3 activation with 
1-EBIO or CyPPA and facilitated by the SK3 antagonist apamin 
(Benítez et  al., 2011). Likewise, SK channel activation by NS309 
confers neuroprotection against oxidative stress with rotenone (Dolga 
et al., 2014), and 1-EBIO protects DN in organotypic cultures from the 
neurotoxic effect of 6-hydroxydopamine (6-OHDA) (Wang et  al., 
2015). In intact animals, 6-OHDA reduces expression of SK3 channels 
in the substantia nigra pars compacta of the lesioned animals (Mourre 
et al., 2017).

Mutations in KCNN3 have been associated with schizophrenia 
(Chandy et  al., 1998; Gargus et  al., 1998; Stöber et  al., 1998). 
KCNN3 contains two regions with CAG repeats (Chandy et al., 
1998) with expansions reported in association with schizophrenia 

https://doi.org/10.3389/fnins.2025.1631536
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Padilla et al.� 10.3389/fnins.2025.1631536

Frontiers in Neuroscience 09 frontiersin.org

(Mitas, 1997), and with earlier onset of the disease (Ritsner et al., 
2003). Other studies found no relation between the CAG 
trinucleotide repeat and schizophrenia disease or even the onset 
age (Glatt et al., 2003; Laurent et al., 2003; Li et al., 1998; Saleem 
et al., 2000; Tsai et al., 1999; Ujike et al., 2001; Wittekindt et al., 
1998). A truncated variant of the SK3 with 283 amino acids instead 
of usual 731 (Bowen et al., 2001) results in a loss of function SK3 
channel enhancing the excitability of DN in  vivo (Soden 
et al., 2013).

Regarding the gene structure of KCNN3, splicing variants can 
result in lack of the potassium channel or the calmodulin-binding 
domain. A truncated SK3 variant similar to a schizophrenia-related 
mutation did not produce functional channels but selectively 
suppressed endogenous SK3 currents in a dominant-negative fashion 
(Tomita et  al., 2003). Although the splicing variants 
ENST00000361147.8 and ENST00000358505.2 are not identical to 
this truncated variant, the results presented here strongly suggest a 
similar or identical effect.

The current data consolidate a dual structural/functional role for 
the Calmodulin-binding domain. Its deletion in Variants 202/203 
coincides with wholesale loss of the distal TM bundle (S4-S6) and the 
pore helix, producing the highest global RMSD (> 48 Å) and 
predicting non-conductive, Ca2+-insensitive channels. Conversely, its 
retention in WT and Variant 205 correlates with an intact pore and 
minimal RMSD (<18 Å). These observations extend previous 
biochemical findings that Calmodulin binding both senses 
intracellular Ca2+ and stabilizes channel architecture. While 
structurally coherent, the conclusions remain predictive. Post-
translational modifications, membrane lipid composition, and protein 
dynamics are not captured by static in-silico models. Rigorous 
functional assays are therefore essential before any assertion of clinical 
impact, particularly regarding neurodegeneration or psychiatric risk, 
can be made.

We studied in detail 13 documented variants reported in 
Zimmermann-Laband Syndrome (Bauer et al., 2019; Nam et al., 2023; 
Schwarz et al., 2022). In further review of the literature, no documented 
studies were found that focused solely on the possible link of the 
structural variants of KCNN3 with brain diseases. It is important to note, 
however, that mutations in KCNN3 that have been related with 
Zimmermann-Laband are a gain-of-function mutation or mutations 
that involve a loss of function of the channel have been linked with 
neurodevelopmental disorders (Nam et al., 2023). Figure 4 provides a 
model for the role of SK3 channels in dopaminergic neuronal death 
which may be used as a framework to understand the pathogenicity of 
channel variants (Maldonado et  al., 2020; Benítez et  al., 2011; de 
Erausquin et  al., 2003; Dorsey et  al., 2006). Further investigation is 
needed to elucidate the possible effects of the splicing variants in disease 
is likely to yield new therapeutic targets of possible relevance for 
Parkinson’s disease, schizophrenia, or both.
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