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Understanding brain—behavior relationships and predicting cognitive and
clinical outcomes from neuromarkers are central tasks in neuroscience.
Connectome-based Predictive Modeling (CPM) has been widely adopted
to predict behavioral traits from brain connectivity data; however, existing
implementations are largely restricted to continuous outcomes, often overlook
essential non-imaging covariates, and are difficult to apply in clinical or disease
cohort settings. To address these limitations, we present GenCPM, a generalized
CPM framework implemented in open-source R software. GenCPM extends
traditional CPM by supporting binary, categorical, and time-to-event outcomes
and allows the integration of covariates such as demographic and genetic
information, thereby improving predictive accuracy and interpretability. To
handle high-dimensional data, GenCPM incorporates marginal screening and
regularized regression techniques, including LASSO, ridge, and elastic net, for
efficient selection of informative brain connections. We demonstrate the utility
of GenCPM through analyses of the Anti-Amyloid Treatment in Asymptomatic
Alzheimer's Disease (A4) Study and the Alzheimer’'s Disease Neuroimaging
Initiative (ADNI), showing enhanced predictive performance and improved signal
attribution compared to standard methods. GenCPM offers a flexible, scalable,
and interpretable solution for predictive modeling in brain connectivity research,
supporting broader applications in cognitive and clinical neuroscience.

KEYWORDS

brain connectome, generalized linear model, regularization, survival analysis,
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1 Introduction

Advancements in brain mapping technologies, such as diffusion magnetic resonance
imaging (MRI), functional MRI (fMRI), and electroencephalography (EEG), have
significantly expanded our ability to study brain connectivity or the connectome. These
techniques provide rich temporal and spatial data, allowing researchers to construct
connectivity maps that capture the intricate functional and structural relationships
between different brain regions. Functional connectivity (FC), mostly derived from
fMRI time series data, captures statistical dependencies between different brain nodes
and serves as an essential marker for studying individual differences in cognition and
mental health (Van Den Heuvel and Pol, 2010). Structural connectivity (SC), typically
derived from diffusion MRI, maps the anatomical pathways of white matter tracts that
physically link brain regions (Zhang et al., 2022), and provides complementary insight by
revealing the underlying architecture that constrains and supports functional interactions.
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The Connectome-based Predictive Modeling (CPM)
framework (Shen et al., 2017) is a widely used machine learning
framework to predict behavioral and cognitive outcomes from FC
or SC data. In brief, CPM extracts individual edges from brain
connectivity matrices to serve as input features and employs
penalized regression techniques such as ridge regression (Gao
et al, 2019), within a cross-validation framework to identify
informative brain connections and construct predictive models of
brain-behavior relationships. This approach has been successfully
applied across a variety of studies (Greene et al., 2018; Finn
et al., 2015; Rosenberg et al., 2016), particularly when the target
outcomes are continuous behavioral traits such as fluid intelligence.
Recent advances have sought to improve CPM’s interpretability
and generalization. For instance, Gao et al. (2018) introduced
a multidimensional CPM (mCPM) framework that integrates
connectivity matrices from various task states using canonical
correlation analysis to capture richer brain-behavior associations.
Similarly, Yang et al. (2023) developed a modular CPM approach
that leverages both task-based and resting-state fMRI to forecast
working memory performance, emphasizing modularity and
predictive generalizability. These studies highlight the field’s
ongoing efforts to extend CPM’s applicability and biological
interpretability, goals that align closely with the development
of GenCPM.

Despite its success, CPM has two key limitations that restrict
its applicability. First, most existing CPM implementations focus
exclusively on continuous outcomes (e.g., task performance,
their
neurobiological and clinical research questions. In clinical or

symptom  severity), limiting feasibility to broader
disease cohort studies, primary outcomes of interest often include
diagnostic status, disease progression, or time to symptom onset,
etc. These outcome traits are inherently categorical or time-to-
event variables, for which conventional CPM frameworks are not
equipped to handle. For instance, in the study of neurodegenerative
disorders like Alzheimer’s Disease (AD), the ability to predict time-
to-conversion from mild cognitive impairment (MCI) to AD
is crucial. Approximately 10%-15% of individuals with MCI
develop AD each year (Rosenberg and Lyketsos, 2008), and
survival analysis has been widely used to model disease progression
and mortality risk (Todd et al., 2013). However, current brain
connectome-based predictive studies have not fully integrated
connectivity data with survival analysis, limiting our scope to
characterize early and accurate predictions about disease onset and
progression. Second, existing CPM frameworks do not explicitly
incorporate non-imaging covariates, such as demographic factors,
genetic variants, and socioeconomic status, despite growing
evidence suggesting that these variables significantly influence
brain-behavior relationships (Ossenkoppele et al., 2020; Cuyvers
and Sleegers, 2016; Karp et al., 2004). While some studies aim to
isolate the unique contribution of brain connectivity, neglecting
non-imaging confounders and population heterogeneity may
lead to biased estimates and misleading conclusions. Notably, in
many mental health and neurological studies, brain connectivity
features may contribute only marginally to outcome prediction
once clinical and demographic variables are considered. Moreover,
interactions among non-imaging covariates can be crucial
for identifying meaningful subgroups and enhancing model
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interpretability. Ignoring these factors within the CPM framework
can substantially diminish both predictive performance and
scientific insight.

To address these limitations, we propose an enhanced
predictive modeling framework, Generalized Connectome-based
Predictive Modeling (GenCPM), that extends CPM in several key
directions. First, we introduce a flexible modeling pipeline that
accommodates binary, categorical, and time-to-event outcomes,
extending the applicability of CPM beyond continuous variables.
This is particularly valuable for disease cohort studies, including
characterizing progression in neurodegenerative diseases such as
AD. Additionally, our approach allows for the incorporation of
user-specified non-imaging covariates (e.g., demographic, genetic,
and socioeconomic factors) alongside connectivity data, thereby
improving predictive performance and interpretability. Analogous
to the original CPM framework, GenCPM includes a marginal
screening that filters irrelevant features before model fitting.
To induce sparsity while retaining key predictive signals, this
is followed by penalized regression techniques, including Least
Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani,
1996), ridge regression (Hoerl and Kennard, 1970), and the elastic
net (Zou and Hastie, 2005). Penalized regression methods are
well suited for high-dimensional datasets where the number of
predictors often exceeds the number of observations. By adding
a penalty term to the loss function, these methods constrain
model complexity and prevent overfitting, promoting sparsity
or shrinkage in the selected features and thereby enhancing
both predictive accuracy and model interpretability (Hastie et al.,
2015). Within the CPM framework, such regularization facilitates
robust edge selection and improves generalizability by identifying
the most predictive connectome among thousands of potential
edges in the brain network. By integrating these enhancements,
our approach provides a more versatile and robust framework
for studying brain-behavior relationships. Notably, our GenCPM
toolbox available to be downloaded at http://github.com/BXU69/
GenCPM is implemented in R, a freely available and open-source
statistical software platform, offering a cost-effective and accessible
alternative to those implemented in MATLAB, which requires a
paid license. Finally, to demonstrate the utility and flexibility of
the GenCPM toolbox, we apply it to achieve connectivity-based
prediction under two large AD neuroimaging datasets: the Anti-
Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4)
study and the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study. These applications demonstrate GenCPM’s improved
performance in predicting a range of outcomes, including
continuous cognitive measures, binary diagnostic classifications,
categorical memory scores, and time-to-event data for amyloid
positivity conversion.

The rest of the paper is organized as follows. In Section
2, we present the GenCPM framework in detail, including
the underlying statistical models, marginal and regularized
feature selection strategies, and the design and implementation
of the toolbox. In Section 3, we showcase the predictive
performance and feature selection results obtained from
applications to the A4 and ADNI datasets. Finally, Section 4
discusses the implications of our findings and outlines potential
future directions.
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2 Materials and methods

2.1 Toolbox overview

Figure 1 illustrates the overall workflow of the proposed
GenCPM toolbox pipeline, consisting of two version, i.e. original
GenCPM and penalized GenCPM. For each subject, a connectivity
matrix generated from SC or FC and the behavioral or clinical
outcome of interest are input into the pipeline. In the first stage,
marginal screening is performed to select the K most significant
edges based on a threshold p of a statistical metric, e.g. p-value.
In the original GenCPM pipeline (Figure la), a scalar summary
a; is computed for each subject, forming an edge predictor A €
R”™. At this step, users can choose between two options for
edge predictor construction: (1) summarizing all selected edges,
without distinguishing positive or negative correlations, into a
single scalar predictor per subject; (2) categorizing selected edges
into positively or negatively correlated sets with the outcome, and
summarizing each set separately for two models. The resulting
edge predictor(s) are then combined with non-imaging variables
X, which may include demographic or clinical features such
as age, gender, and genetic information (e.g., APOE genotype).
Depending on the type of outcome variable, different statistical
models are applied, including linear regression, logistic regression,
multinomial regression, or Cox proportional hazards (CoxPH)
regression, using the combined set of edge-based and non-imaging
predictors. In the penalized GenCPM version (Figure 1b), rather
than computing a scalar summary, the full set of selected edge-
level features is retained for each subject, constructing a richer
predictor matrix A € R™K. As in the original GenCPM pipeline,
users can either fit a combined model using all selected edges or fit
separate models for the positive and negative sets. After integration
with non-imaging features X, penalized regression models are
applied, including LASSO, ridge, and elastic net. LASSO and
elastic net perform secondary screening, enabling edge selection,
whereas ridge regression shrinks coefficients without eliminating
any edges. Notably, secondary screening by regularization is
applied exclusively to the edges, without filtering the non-imaging
features. In other words, all non-imaging features are maintained
in the model fitting process.

Additionally, GenCPM offers an evaluation function to
assess the model fitting accuracy as well as a function to
visualize the selected edges at a large-scale brain network
level through heatmaps. The default map offered is based
on the Shen268 atlas (Shen et al., 2017), to 10 functional
networks: 1. Medial frontal, 2. Frontoparietal, 3. Default mode,
4. Motor, 5. Visual I, 6. Visual II, 7. Visual association, 8.
Limbic, 9. Barsal ganglia, and 10. Cerebellum (Greene et al,
2018).

2.2 Marginal screening

Marginal screening is a feature selection technique used
to reduce the dimensionality of datasets by evaluating each
feature individually based on its marginal association with the
response variable. This approach involves calculating a specific

Frontiersin Neuroscience

10.3389/fnins.2025.1627497

statistic (e.g., correlation coefficient, p-value, t-statistic, etc.)
for each feature to determine its relevance to the outcome
variable. Features that meet a predefined threshold for this
statistic are retained for further analysis, while those that do
not meet the threshold are discarded. Marginal screening is
particularly useful in high-dimensional datasets where the number
of features far exceeds the number of observations, as it helps
to eliminate irrelevant or redundant variables early in the
modeling process, thereby simplifying the model and reducing
computational complexity.

In this study, the marginal screening test is conducted
by correlating each edge with the behavior outcome and the
most significantly correlated edges are selected by a predefined
threshold of p. For continuous, binary, and categorical outcomes,
p is the cut-off value for the p-value in Spearman correlation.
In the context of survival data, marginal screening can be
adapted to identify important edges that are associated with
time-to-event outcomes. Marginal screening in survival analysis
often employs techniques such as the Cox proportional hazard
model or log-rank tests to evaluate the relationship between
each feature and the survival time. In our implementation,
for time-to-event outcomes, marginal screening is conducted
using the Cox Proportional Hazards regression model, where
the p-value from the univariate analysis serves as the screening
threshold. Edges exhibiting a strong marginal association with
the survival outcome are selected for inclusion in more complex
multivariate models.

2.3 Model construction

2.3.1 Generalized linear model for continuous,
binary and categorical outcome

During CPM, edges (i.e., correlations between nodes in a
FC or SC matrix) are correlated with outcome variables in a
training dataset to identify predictive networks. Single-subject
summary statistics are computed as the sum of edge weights in
each network and are used to generate linear predictions, which
are subsequently transformed into binary or categorical outcomes
via the appropriate link functions. The resultant coefficients
are applied to new subjects’ connectivity matrices (test data)
to produce independent sample predictions, which are again
transformed into discrete outcomes. A Generalized Linear Model
(GLM) is a flexible generalization of ordinary linear regression
that allows the response variable to follow error distributions
beyond the normal distribution, such as binomial or multinomial
distributions (Nelder and Wedderburn, 1972). Formally, let the
behavior outcome vector be denoted by y = (y1,)2,.., y,,)T,
assumed to be a realization of a random variable Y = (Y1, ..., Y;))T
whose components are independently distributed with means p =
(U1 oo ftn)T. Let A € RK represent the matrix of selected edge
measures after marginal screening, where each row corresponds
to a subject and each column to a selected edge, and let X €
R™J denote the matrix of non-imaging covariates. We define
the combined predictor matrix as X* = (4,X) € R K+,
integrating selected edges and non-imaging features across all
n subjects.
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FIGURE 1

Overview of the GenCPM toolbox. Each subject provides a connectivity matrix and an outcome variable (e.g., a behavior or clinical measure). (a) In
the original GenCPM framework, marginal screening is applied to select the top K significant edges based on a predefined threshold p. The selected
edges are separated into positively and negatively correlated sets, and summary measures, computed as sums of the average connectivity strength
within each set, are derived for each subject. These connectivity-derived predictors are then combined with optional non-imaging covariates and
entered into downstream models, including linear, logistic, multinomial, and CoxPH regression. (b) In the penalized GenCPM variant, the full set of
selected edge features is retained without aggregation, allowing the model to capture fine-grained individual edge-level contributions. The resulting
feature matrix, combined with non-imaging covariates, is then input into regularized regression models such as LASSO, ridge, and elastic net, where
penalization is applied only to edge features, for joint modeling and feature selection while preserving the contribution of non-imaging covariates.

To generalize from ordinal linear models to generalized
linear models, we provide the following three-part specification
(McCullagh, 2019):

Each
a

of
from

Y
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1. Random component: component

is assumed to follow distribution
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where 6; is the canonical parameter, ¢ is the dispersion
parameter, and a(-), b(:), c(-) are known functions that
characterize the distribution.

2. Systematic component: A linear predictor § = (11,..,7,)" is
defined as

K+J
T
ni=y Bxs=x"B
j=1
where & = (x};, ,x:’;K +I))T denotes the covariate vector for

subject i from X*, and B = (Bi,... ﬂKH)T are unknown
parameters to be estimated.
3. Link function: A link between the random and systematic

components is established through:
ni = g(ui) = g(E(Y) = x{T B,

where g(-) is a monotonic and differentiable link function.

Therefore, generalized linear models extend ordinal linear models
by allowing the mean g and the linear predictor 5 to be related
through an arbitrary link function. In ordinary linear models,
the identity link is used, making 5 and p identical and suitable
for outcomes distributed over the entire real line (Nelder and
Wedderburn, 1972). In logistic regression, a GLM designed for
binary outcomes, the canonical link function is the logit function:

(i)

where p; denotes the probability that the binary response equals

1. For multinomial logistic regression, which handles response
variables with more than two categories, the logit link is extended:
ni = log(~L),
TCij*
where 7;; is the probability that subject i belongs to category j, and
mij« is the probability of reference category j*. This extension allows
the model to accommodate multi-class response variables.

By supporting non-normal distributions for the response
variables and by incorporating flexible link functions, GLMs extend
the applicability of linear models to a wider range of outcome
types. Such a framework is widely used for accurately modeling
the relationship between predictors and non-normally distributed
outcomes, which makes it suitable for a broad range of applications
(Agresti, 2015).

2.3.2 CoxPH model for time-to-event outcome
The CoxPH model (Cox, 1972), also known as the Cox
regression, is a principal statistical technique for analyzing censored
survival data and assessing the influence of multiple variables on
the time until an event occurs. It is the most widely used regression
model for time-to-event data due to its ability to model survival
outcomes without requiring specification of the baseline hazard
function. In recent years, the CoxPH model has proven to be a
reliable and efficient tool to analyze disease cohorts including those
in AD research (Spooner et al., 2020). For instance, in the context
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of our data applications, the survival time T is defined as the
time from a subject’s first clinical visit to either the date of AS
positivity diagnosis (for AD converters), or the last follow-up date
(for censored subjects). Subjects who received an AS pathology
diagnosis are considered AD converters, labeled with §; = 1,
while those without a diagnosis during the study period are treated
0. The CoxPH model specifies
the hazard function for subject i at time ¢ as the product of an

as censored, labeled with §; =

unspecified baseline hazard hy(¢) and an exponential function of
the subject’s covariates. In our framework, the covariates include
both the selected edges A and the non-imaging covariates X,
combined into a full predictor matrix X*.

Following the assumptions in Tibshirani (1997), we assume no
tied event times, that is, no two subjects convert from AS-negativity
to AB-positivity at exactly the same number of days. Additionally,
the CoxPH model assumes proportional hazards: the hazard ratio at
time ¢ to the baseline hazard remains constant over time. Assuming
that the effect of covariates on the hazard is constant over time, the
Cox model specifies the hazard function for subject i at time ¢ as

[h(tlx}) = ho(t) exp(x;T ), ]

where X* = (x’f,...,xfl)T € Rm*(K+)) represents the combined
predictor matrix, and 8 = (B, ..., ﬁKH)T are the unknown model
parameters to be estimated. Therefore, the hazard for an individual
is modeled as the product of two terms: hy(-), the baseline hazard
common to all individuals, and exp(-), the hazard ratio that captures
multiplicatively how much higher or lower that individual’s hazard
will be when compared to the baseline level, according to an
individual’s covariates.

Given that the baseline hazard h;(-) is unspecified, Cox (1972)
proposed estimating B through partial likelihood maximization,
defined as

*T
1p) = [] = 2P )

keb Lk, @ (5B

where D denotes the set of indices corresponding to observed
events (8 = 1), and Ry, is the risk set at time #;, consisting of all
individuals still at risk immediately prior to t.

2.4 Regularization methods in secondary
screening

Our toolbox provides three penalized regression techniques,
including LASSO, ridge, and elastic net, to improve model stability
and predictive performance. Among these, only LASSO and
elastic net are applicable for secondary edge selection following
the preliminary marginal screening, as ridge regression does not
perform variable selection and thus cannot be used for this purpose.
Importantly, penalization is applied exclusively to the screening of
edge features, while all non-imaging variables are retained as fixed
covariates during model fitting. These regularization techniques
can be applied in conjunction with various model types - linear,
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logistic, multinomial, and CoxPH regression — depending on the
nature of the response variable.

Considering the GLM introduced in Section 2.3.1 and the
CoxPH model in Section 2.3.2,let Y = (Y1,..., Yn)T € R" denote
the outcome vector and X* = (4,X) € R"™&H) denote the

full predictor matrix, where A € R<K

contains selected edge
measures after first screening and X € R™/ contains non-imaging
covariates. The coefficient vector is denoted by g = (ﬂg, ﬁ)T()T €
REXJ where B, € RX corresponds to edge features and By € R/
corresponds to non-imaging variables. By adding an L1-penalty
to the log likelihood function I(B; Y, X*) for the GLM or the log
partial likelihood for the CoxPH model (Tibshirani, 1996, 1997),

the LASSO estimate of f is obtained by

Brasso = argmin{—I(B; Y, X*) + A[|B4ll1).
B

The L1-penalty not only shrinks the coeflicients toward zero
but also sets some of them to exactly zero, thereby performing
variable selection. This enables the identification of the most
significant predictors, making the resulting model simpler and
more interpretable, particularly in high-dimensional settings.

Unlike LASSO, ridge regression (Hoerl and Kennard, 1970)
applies an L2-penalty term, which shrinks the coefficients toward
zero without setting any exactly to zero, effectively reducing the
variance of coefficients and improving the prediction accuracy. The
ridge estimator is given by

Brigge = argmin{—I(B: Y, X*) + A||B4|13}.
B

Although ridge regression does not perform variable selection,
it is especially useful when the number of predictors exceeds
the number of observations or when multicollinearity among
predictors is present, as it stabilizes coefficient estimates and
improves prediction accuracy.

Elastic net regression, proposed by Zou and Hastie (2005),
combines both L1 and L2 penalties. The elastic net estimator
minimizes

Ben = argmin{—1(8; Y, X*) + A1[1B4ll1 + A2l1B4l13).
B

Alternatively, introducing &« = A2/(A1 + A2), the elastic net
optimization can be rewritten as

BEN = argmin{—I(f; Y, X*)},
B
subject to(1 — )||B4 1l + «lIB4I3 < 1,

for some constant . When o = 1, the penalty reduces to the
LASSO penalty; when a = 0, it reduces to the ridge penalty (Hastie
etal,, 2015). This hybrid approach allows the elastic net to perform
both variable selection and coeflicient shrinkage simultaneously.
By balancing the strengths of LASSO and ridge, elastic net offers
a flexible and powerful method, particularly suited for scenarios
involving highly correlated predictors or when the number of

Frontiersin Neuroscience

10.3389/fnins.2025.1627497

features exceeds the number of observations. It often achieves
better generalization performance compared to either LASSO or
ridge regression alone (Zou and Hastie, 2005).

2.5 Model evaluation

When fitting predictive models, it is essential to validate
model performance and assess the quality of model fitting.
Cross-validation helps mitigate overfitting and provides a more
generalizable estimate of predictive performance by averaging
Model
evaluation using cross-validation (Stone, 1974) involves splitting

evaluation metrics across multiple data partitions.

the dataset into subsets to systematically assess a model’s predictive
accuracy and generalizability. The GenCPM toolbox provides two
cross-validation options: K-fold cross-validation and leave-one-out
cross-validation (LOOCYV). In K-fold cross-validation, the dataset
is divided into K approximately equal folds. The model is trained on
K — 1 folds and tested on the remaining fold, repeating this process
K times so that each fold serves as a test set once. The resulting
performance metrics are then averaged across folds to provide
a robust estimate of model performance. Alternatively, LOOCV
leaves out one observation at a time for testing while training the
model on the remaining n — 1 observations. Although LOOCYV is
computationally expensive, it is especially useful for small datasets,
offering nearly unbiased performance estimates. In addition to
internal cross-validation procedures, GenCPM also supports
external validation using an independent dataset when available.
Users can supply an external connectome and corresponding
covariates through optional arguments (external.connectome
and external.x), enabling the model to generate predictions and
evaluate performance on unseen data. This allows for more robust
generalization assessment beyond cross-validation. When these
inputs are not provided, GenCPM defaults to internal K-fold or
LOOCY as described above.

The evaluation metrics used depend on the model types and
the prediction task. For linear regression models, the mean squared
error (MSE) and the Pearson correlation coefficient are commonly
used. MSE measures the average squared difference between
observed and predicted values, with lower values indicating better
predictive accuracy. Pearson correlation, on the other hand,
quantifies the strength of the linear association between predicted
and observed outcomes, with higher values indicating better
alignment in trend and directionality. Together, these metrics
provide a comprehensive assessment of model performance. For
logistic regression models, performance is typically evaluated
using the area under the receiver operating characteristic curve
(AUC) (Hanley and McNeil, 1982), which quantifies the model’s
ability to discriminate between binary classes. An AUC of 1
indicates perfect classification, whereas an AUC of 0.5 reflects
performance equivalent to random guessing. Thus, higher AUC
values indicate better classification performance. For multinomial
regression models, which address categorical outcomes with more
than two classes, the AUC can be generalized to multinomial AUC
using a one-vs-rest approach, where binary AUCs are computed
for each class separately. In survival analysis, where the outcomes
are time-to-event data, model performance is assessed using the
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TABLE 1 Main functions implemented in GenCPM package.

Function Description

Original GenCPM

linear. GenCPM Connectomes are used as linear predictors
for a continuous outcome.
logit.GenCPM Logistic regression for a binary-type

outcome.

multinom.GenCPM If the outcome is categorical, this function

implements multinomial logistic regression.

cox.GenCPM Generalized connectome-based survival
modeling with time-to-event outcome using

Cox regression.

Penalized GenCPM

linear.regularized. GenCPM Connectomes are used as linear predictors
for a continuous outcome with additional
regularization (LASSO, ridge, or elastic net

penalty).

logit.regularized. GenCPM Logistic regression for a binary-type outcome

with regularization on connectivity edges.

multinomial.regularized.GenCPM | Multinomial regression for a categorical

outcome with regularization.

Generalized connectome based survival
modeling with time-to-event outcome
adding regularization.

cox.regularized. GenCPM

Evaluation and visualization

assess.GenCPM Assessing the model performance across
testing folds with varying types of metrics
based on the specific model type.

heatmap.GenCPM Visualize the selected edges either from

thresholding or regularization based on the
10-node network label in Shen268 atlas.

concordance index (C-index) (Harrell et al., 1982). The C-index
measures the concordance between predicted and observed event
times by evaluating whether, for a randomly selected pair of
individuals, the subject with the higher predicted risk indeed
experiences the event earlier. The C-index ranges from 0.5 (no
better than random) to 1.0 (perfect concordance), with higher
values indicating better discriminative ability.

2.6 GenCPM design and implementation

2.6.1 Package structure and functionalities

The GenCPM package consists of three primary modules: (1).
Original GenCPM, (2). Penalized GenCPM, and (3). Evaluation
and Visualization. Table 1 provides a comprehensive overview
of the functions associated with each module, along with their
descriptions. The Original GenCPM and Penalized GenCPM
modules each include four functions designed to fit different
types of generalized models: linear regression, logistic regression,
multinomial regression, and Cox proportional hazards regression.
The Evaluation and Visualization module comprises functions for
model performance assessment and visualization of significant
networks identified by the pipeline through heatmaps.
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Table 2 outlines the input variables, customizable arguments,
and output variables for both Original GenCPM and Penalized
GenCPM functions. Inputs include the connectivity matrices,
outcome variables, and optional covariates. Arguments allow users
to specify key model parameters, such as the type of cross-
validation, penalty method, edge usage strategy, and regularization
hyperparameters. Outputs summarize the selected edges, predicted
outcomes, and statistical measures such as correlation coefficients
and p-values.

Similarly, Tables 3, 4 organize the key components associated
with the assess.GenCPM and heatmap.GenCPM  functions
respectively. Table 3 details the inputs, arguments, and outputs
for the assess.GenCPM function. The inputs include the GenCPM
object returned by either Original GenCPM or Penalized GenCPM
modules. The arguments specify model types and edge usage
settings, while the outputs provide a range of evaluation metrics,
including Pearson correlation coefficients (r), MSE, p-values, and
AUC. Table 4 focuses on the heatmap.GenCPM function, listing
its required inputs: the GenCPM object and a user-specified fold
threshold parameter, which defines the selection criteria for edges
based on their frequency of selection across cross-validation.
The heatmap.GenCPM function produces a heatmap visualizing
connectivity patterns between the 10 functional networks defined
by the Shen268 atlas. In the visualization, red and blue colors
represent positive and negative edges, respectively, with color
intensity reflecting the degree of significance for each network.

2.6.2 Implementation example in R

To illustrate the usage of the GenCPM toolbox, Figure 2
presents a code example demonstrating model construction,
evaluation, and visualization. First, a linear GenCPM model is fitted
using the linear. GenCPM function, requiring the input connectivity
array (“A1588”), behavioral response variable (“Y”), and non-
imaging covariate matrix (“x1588”). Key parameters include k =
10 (10-fold cross-validation), thresh = 0.07 (edge selection
threshold), and edge = “combined” (combining positive
and negative edges). Penalized linear modeling is conducted
using linear.regularized. GenCPM function, specifying the type
= "lasso” parameter to apply LASSO regularization. Model
performance is then evaluated with assess.GenCPM function.
It is critical to ensure that model type and edge usage
match the input object returned by the linear.GenCPM or
linear.regularized. GenCPM function to avoid evaluation errors.
Finally, the heatmap.GenCPM function visualizes significant edges
selected across folds, mapped onto 10 functional networks. The
foldThreshold parameter controls which edges are visualized
based on their selection frequency and defaults to 0.5. For example,
setting “foldThreshold = 0.7” visualizes only those edges selected
in at least 70% of folds.

2.7 Datasets for toolbox demonstration
To demonstrate the utility and flexibility of GenCPM, we apply

the toolbox to two independent neuroimaging AD cohorts. The A4
study is used to showcase generalized linear models for continuous,
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TABLE 2 Variables and descriptions of original GenCPM and penalized GenCPM functions.

‘ Variable Description ‘
Input
connectome Input connectivity array for model fitting, of dimension M(edges) x M(edges) x N(obs).
behavior Response variable vector. Continuous for linear. GenCPM and linear.regularized. GenCPM.
A factor with two levels for logit. GenCPM and logit.regularized. GenCPM.
A more-than-two-level factor for multinom.GenCPM and multinom.regularized. GenCPM.
Not applicable for cox.GenCPM and cox.regularized. GenCPM.
X Non-imaging covariates matrix for model fitting, of dimension n(obs) x p(vars).

external.connectome

External connectivity array for prediction, of dimension M(edges) x M (edges) x N(obs).

external.x External non-imaging covariate matrix for prediction, of dimension n(obs) x p(vars).

time The follow-up time. Only applicable for cox.GenCPM and cox.regularized. GenCPM.

status The status indicator, normally 0 = alive, 1 = dead. Only applicable for cox.GenCPM and cox.regularized.GenCPM.

Argument

cv Type of cross-validation. The default is leave-one-out CV. “k-fold” for K-fold CV.

k The number of folds. The default is the sample size (leave-one-out CV).

correlation The method for finding the correlation between edge and behavior. The default is “pearson.” Alternative approaches are “spearman”
and “kendall.”

thresh Threshold used for selecting significant edges. The default is 0.01.

edge Usage of edges to fit models. “separate” for fitting two separate models using positive correlated edges and negative correlated edges
respectively,
and “combined” for fitting only one model using all edges selected. The default is “separate.”

type Type of penalty. “lasso” for LASSO, “ridge” for ridge, and “EN” for elastic net. The default is “lasso.”

lambda A user-specified lambda sequence or the optimal one automatically searched by cv.glmnet.

alpha The elastic net mixing parameter, ranging from 0 to 1. The default is 0.95.

seed A single value to specify a seed when generating training and test sets. The default is 1220.

Output

positive_edges

All selected edges having a significantly positive relationship with behavior response.

negative_edges

All selected edges having a significantly negative relationship with behavior response.

r_mat A list of matrices consisting of correlation coeflicient between edges and behavior.
Not applicable for cox.GenCPM and all .regularized.GenCPM functions.
p_mat A list of matrices consisting of p-value from correlation between edges and behavior.

Not applicable for cox.GenCPM and all .regularized.GenCPM functions.

positive_model

Fitted model using positive edges. Only applicable when users input external.connectome.

negative_model

Fitted model using negative edges. Only applicable when users input external.connectome.

combined_model

Fitted model using both positive and negative edges. Only applicable when users input external.connectome.

positive_predicted_behavior

Predicted behaviors from the positive model. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

negative_predicted_behavior

Predicted behaviors from the negative model. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

predicted_behavior

Predicted behaviors from the combined model. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

positive_predicted_linear_predictor

Predicted linear predictors from the positive Cox regression model.

Only applicable for cox.GenCPM and cox.regularized. GenCPM.

negative_predicted_linear_predictor

Predicted linear predictors from the negative Cox regression model.

Only applicable for cox.GenCPM and cox.regularized. GenCPM.

predicted_linear_predictor

Predicted linear predictors from the combined Cox regression model.
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Only applicable for cox.GenCPM and cox.regularized. GenCPM.

actual_behavior

Actual values of behavior response. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

actual_time

Actual values of survival time. Only applicable for cox.GenCPM and cox.regularized. GenCPM.

actual_status

Actual values of status indicator. Only applicable for cox.GenCPM and cox.regularized.GenCPM.

positive_lambda_total

The final lambda indicating penalty used in the positive model for each fold during cross-validation.

Only applicable for .regularized.GenCPM functions.

negative_lambda_total

The final lambda indicating penalty used in the negative model for each fold during cross-validation.

Only applicable for .regularized.GenCPM functions.

lambda_ total

The final lambda indicating penalty used in the combined model for each fold during cross-validation.

Only applicable for .regularized.GenCPM functions.

assess.GenCPM(1inearCPM, model =
assess.GenCPM(1linear.lassoCPM, model =

heatmap .GenCPM(1linear.lassoCPM)

FIGURE 2
Examples of GenCPM implementation in R.

linearCPM <- linear.GenCPM(connectome = A1588,
behavior = Y, x = x1588,
k = 1@, thresh = 0.01,
edge = "combined")
linear.lassoCPM <- linear.regularized.GenCPM(connectome = A1588,
behavior = Y, x = x1588,

"linear", edge =

heatmap.GenCPM(1linearCPM, foldThreshold = 0.7)

k=10, thresh = 0.01,
edge = "combined", type = "lasso")

"combined")
"linear", edge = "separate")

binary, and categorical outcomes based on FC; and the ADNI study
is used to demonstrate survival analysis with Cox proportional
hazards modeling based on SC.

2.7.1 A4 study: application for generalized linear
model

We demonstrate the generalized modeling functions on the
preclinical cohort from the A4 Study, a major clinical trial
aiming at preventing AD by targeting cognitively normal older
adults (ages 65-85) with elevated amyloid plaque levels. The
study assesses whether reducing the amyloid burden can delay
or prevent cognitive decline. To construct FC for each subject,
T1-weighted (T1w) MRI scans are skull stripped using optiBET
and nonlinearly aligned to the MNI-152 template using Biolmage
Suite (BIS). Functional MRI scans are preprocessed through
slice timing correction and motion correction using SPM12,
followed by motion scrubbing (mean frame-to-frame displacement
[FFD] > 0.3 mm). Nuisance regression is performed to remove
confounds using a 24-parameter motion model and signals from
cerebrospinal fluid, white matter, and global signal. Data are
smoothed using a 6 mm full-width at half-maximum (FWHM)
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Gaussian kernel and normalized to standard space. FC matrices
are constructed by computing the Pearson correlation between the
mean time series of each pair of regions defined by the Shen268
functional atlas.

The final dataset includes 1,588 subjects (954 females, 634
males), with a mean age of 71.54 years and an average of 16.62
years of education. Non-imaging covariates incorporated into the
analysis include age, gender, years of education, and APOE4 carrier
status (Safieh et al., 2019). Inclusion of APOE4 enables exploration
of how biomarker trajectories prior to pathology onset may differ
by genetic risk group. We apply GenCPM to model three types of
outcomes:

(1) Continuous outcome: The amyloid composition score, used in
the linear regression model, reflecting the belief of underlying AD
pathology driven by B-amyloid (AB) production and deposition
(Murphy and LeVine III, 2010);

(2) Binary outcome: Elevated amyloid status, defined by
thresholding the amyloid composition score at a predefined cutoff,
and modeled using logistic regression;

(3) Categorical outcome: Immediate recall total scores from
a memory test, binned into five discrete classes (0-10, 10-12,
12-14, 14-16, and 16-25) (Helkala et al., 1988), used as the
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TABLE 3 Variables and descriptions of assess.GenCPM function.

‘ Variable Description ‘

Input

object ‘ Returned GenCPM object from one of .GenCPM or .regularized. GenCPM functions.

Argument

model A character string representing one of the built-in regression models.
“linear” for linear.GenCPM and linear.regularized. GenCPM; “logistic” for logit. GenCPM and logit.regularized.GenCPM;
“multinom” for multinom.GenCPM and multinom.regularized.GenCPM;
and “cox” for cox.GenCPM and cox.regularized. GenCPM. The default is “linear”.

edge Usage of edges to fit models. “separate” for fitting two separate models using positive edges and negative edges respectively,
and “combined” for fitting only one model use all edges selected. The default is “separate”.

Output

positive_r Pearson correlation coefficient between predicted values from the input model and actual values.
Only applicable for positive models fitted by linear. GenCPM and linear.regularized.GenCPM.

negative_r Pearson correlation coefficient between predicted values from the input model and actual values.
Only applicable for negative models fitted by linear. GenCPM and linear.regularized.GenCPM.

r Pearson correlation coefficient between predicted values from the input model and actual values.

Only applicable for combined models fitted by linear. GenCPM and linear.regularized. GenCPM.

positive_MSE

Mean Square Error of predicted values from the input model.

Only applicable for positive models fitted by linear. GenCPM and linear.regularized. GenCPM.

negative_MSE

Mean Square Error of predicted values from the input model.

Only applicable for negative models fitted by linear. GenCPM and linear.regularized.GenCPM.

MSE

Mean Square Error of predicted values from the input model.

Only applicable for combined models fitted by linear. GenCPM and linear.regularized.GenCPM.

positive_AUC

Area Under Curve (AUC) values for logistic and multinomial logistic models.

Only applicable for positive models fitted by logit. and multinom. functions.

negative_ AUC

Area Under Curve (AUC) values for logistic and multinomial logistic models.

Only applicable for negative models fitted by logit. and multinom. functions.

AUC

Area Under Curve (AUC) values for logistic and multinomial logistic models.

Only applicable for combined models fitted by logit. and multinom. functions.

positive_cindex

Concordance index evaluated for the Cox regression model.

Only applicable for positive models fitted by cox.GenCPM and cox.regularized. GenCPM.

negative_cindex

Concordance index evaluated for the Cox regression model.

Only applicable for negative models fitted by cox.GenCPM and cox.regularized. GenCPM.

cindex

Concordance index evaluated for the Cox regression model.

Only applicable for combined models fitted by cox.GenCPM and cox.regularized.GenCPM.

positive_predicted_behavior

Predicted behaviors from positive models. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

negative_predicted_behavior

Predicted behaviors from negative models. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

predicted_behavior

Predicted behaviors from combined models. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

positive_predicted_linear_predictor

Predicted linear predictors from positive Cox regression models. Only applicable for cox.GenCPM and cox.regularized. GenCPM.

negative_predicted_linear_predictor

Predicted linear predictors from negative Cox regression models. Only applicable for cox.GenCPM and cox.regularized. GenCPM.

predicted_linear_predictor

Predicted linear predictors from combined Cox regression models. Only applicable for cox.GenCPM and cox.regularized. GenCPM.

actual_behavior

Observed values of behavior response. Not applicable for cox.GenCPM and cox.regularized. GenCPM.

actual_time

Observed values of survival time. Only applicable for cox.GenCPM and cox.regularized. GenCPM.

actual_status

Observed values of status indicator. Only applicable for cox.GenCPM and cox.regularized. GenCPM.
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TABLE 4 Variable and description of heatmap.GenCPM function.

Input Description

object A GenCPM object output from one of the generalized
regression model functions (linear.GenCPM,
logit.regularized.GenCPM, etc.)

foldThreshold Edges selected for over this many folds will be plotted.

For example, if “foldThreshold” is set to be 1, then all selected
edges across all folds are plotted.

If it is set as 0.5, edges selected at least half of the time are
plotted. The default is 0.5.

outcome in multinomial logistic regression to reflect memory
performance levels. While the immediate recall score was treated
as a nominal variable and modeled using multinomial logistic
regression as a demonstration of our toolboxs functionality,
we acknowledge that the variable should more appropriately be
treated as ordinal. In future analyses, we may extend the toolbox
to include ordinal logistic regression, which would be a more
suitable approach to account for the ordered nature of the memory
performance categories.

2.7.2 ADNI study: application for CoxPH model

For survival modeling, we use data from the ADNI, a
longitudinal study launched in 2003 to investigate multi-modal
neuroimaging, biological markers, and clinical predictors of mild
cognitive impairment (MCI) and AD progression. Our analyses
use a recent data release, encompassing recruitment phases ADNI-
1 (2004-2010), ADNI-GO (2009-2011), ADNI-2 (2011-2016),
and the latest ADNI-3 (2016-present) cohort. ADNI involves
various participant groups, including cognitively normal adults,
individuals with significant memory concerns, early and late
MCI participants, and those diagnosed with AD. For further
information on data collection and processing, interested readers
can consult the official website at http://www.adni-info.org. To
construct SC matrices based on the MRI and DTI data from the
ADNI study, regions of interest (ROIs) are first generated through
anatomical parcellation of high-resolution T1-weighted MRI scans.
The Lausanne parcellation scheme further subdivide these ROIs
into smaller units, allowing for brain network construction at
various scales (e.g., 83, 129, 234, 463, or 1,015 ROIs/nodes). The
scale of connectivity that we put in our GenCPM pipeline is 83
ROIs. The T1-weighted MRI image is then registered to the low-
resolution b0 image from DTI data to create a new set of ROIs in
the DTI image space for structural network construction. The DTI
data are then preprocessed to correct for motion and eddy current
effects and fiber tracking was conducted using fiber assignment
by continuous tracking (FACT). Nodes and edges are defined to
create a weighted, undirected connectivity network represented by
a matrix, where rows and columns correspond to the nodes and
matrix elements indicate the weights of connections between nodes.
The nodes are derived from the Lausanne parcellation and the edge
weight between each pair of nodes is determined by the density of
fibers connecting them.

The CoxPH model is applied to examine the effect of
connectomes prior to the onset of AB pathology. In accordance
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with the literature on preclinical AD, we define the event of interest
as the emergence of S-amyloid (AB) positivity, which indicates
ApB pathology accumulation during the asymptomatic stage of
AD (Jack Jr et al., 2018). To determine AS positivity, we utilize
the cortical-to-cerebellum standardized uptake value ratio (SUVR)
measured via amyloid florbetapir '*F PET imaging and define AS
positivity as having a global SUVR value above a specified cutoff
of 1.4 (Vemuri et al, 2017). For our analysis, we include 1,217
participants from the ADNI cohorts who were initially event-free
at the baseline visit. Among these subjects, the median follow-up
time is 2.12 years, with initial follow-ups occurring every 6 months
for the first 2 years and annually thereafter. During the follow-up
period, 326 of the eligible participants developed A pathology as
defined, and 70 died without experiencing the event. As for non-
imaging covariates, we take into account APOE4, gender (female
vs. male) and handedness (left vs. right) in our model.

3 Results

3.1 Predictive performance

Figure 3 presents the boxplots demonstrating the performance
of different generalized CPM models in predicting amyloid
composition score, elevated amyloid status, binned immediate
recall score, and time to AB positive identification. The models
compared include GenCPM models both with and without non-
imaging covariates as well as GenCPM models with LASSO, ridge,
and elastic net penalty. The comparison also varies across different
edge selection thresholds at 0.0001, 0.01, and 1. Specifically, when
the threshold is specified as 1, no edge is preselected, and all edges
are used for model fitting.

In the linear model (Figure 3a), assessing the amyloid
composition score, the boxplots represent the distribution of
the Pearson correlation coefficient. The Pearson correlation
corresponding to GenCPM model introducing non-imaging
covariates shows a marked difference from GenCPM without non-
imaging covariates, suggesting that the additional non-imaging
information may significantly influence the prediction of the
amyloid composition score. The LASSO GenCPM, ridge GenCPM,
and elastic net GenCPM, show performances that are similar
to each other, but all offer a slight improvement over the
original GenCPM approach without any penalization. In the
original GenCPM without non-imaging covariates, the increase in
threshold leads to a general pattern where the estimated correlation
coefficient tends to decrease and the variability of the correlation
tends to increase. This could indicate that there is a stronger
and more consistent linear relationship between the predicted and
observed behavioral measure when less edges are included at lower
thresholds. However, the changes of estimated Pearson correlation
and its variance across various thresholds are less pronounced
in original GenCPM models with non-imaging covariates and
penalized GenCPM models, which implies that the edge selection
tends to play a more vital role when no non-imaging features
are included.

The binary elevated amyloid status in the logistic model
(Figure 3b) captures the same underlying clinical concept as
the continuous amyloid composition score. This is reflected in
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FIGURE 3

Predictive performance from 10-fold cross-validation of various GenCPM models in predicting amyloid composition score, elevated amyloid status,
binned immediate recall score, and time to AB positive identification at different edge selection thresholds.

the analogous patterns observed in Figures 3a, b, where (b)
presents the distribution of AUC for elevated amyloid status
prediction from 10-fold cross-validation. The correspondence
in patterns across (a) and (b) underscores the conceptual
similarity between the two amyloid measures. The boxplots
in (b) also suggest that incorporating additional non-imaging
features may significantly enhance the prediction of elevated
amyloid status. The advanced regularized techniques consistently
exceed the original GenCPM model, regardless of the inclusion
of non-imaging features. Although the median AUC values of
penalized GenCPM are approximately the same as those of the
original GenCPM, this superiority is evidenced by the narrower
interquartile ranges observed for these penalization methods,
indicating enhanced predictive accuracy and increased stability
across varying model thresholds.

In Figure 3¢, we examine the distribution of multinomial
AUC from a multinomial model aimed at predicting the binned
immediate recall score. Similarly, the original GenCPM model
is expected to improve the model’s prediction by adding more
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features beyond connectivity. However, the observed improvement
in this model is not as pronounced as it is in the linear and logistic
models. At the lowest edge selection threshold of 0.0001, the three
regularized methods instead have inferior performance compared
to the original GenCPM method. This could be attributed to
the limited number of significant edges selected at such a low
threshold, leading to potential overfitting issues. This problem
does not appear as the threshold increases to 0.01 and 1, which
indicates a threshold-dependent performance characteristic of our
pipeline. Furthermore, the predictive stability of the multinomial
model is not as robust as that of the linear or logistic model.
This suggests that the immediate score, perhaps due to its inherent
complexity or the nature of the data, presents more challenges for
stable modeling, particularly at lower thresholds where overfitting
potentially happens. In Figure 3d, which compares the performance
of a CoxPH model among different settings, the event of interest
is the emergence of S-amyloid (AB) positivity and the model
performance is evaluated using C-index. The boxplots demonstrate
that while the regularized methods—LASSO GenCPM, ridge
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GenCPM, and elastic net GenCPM, have improved performance
compared to the original GenCPM approach without non-imaging
features, their predictive accuracy aligns closely with that of the
original GenCPM method that includes non-imaging features.
Another characteristic revealed in (d) is the relative insensitivity of
the CoxPH model predictive accuracy to the number of significant
edges included, as indicated by the minor change in performance
across different threshold levels.

3.2 Edge selection

Figures 4a, b present positively and negatively significant edges
correlated with various behavioral or clinical responses selected
by different statistical models in the GenCPM with and without
penalization. In both figures, the models include linear, logistic,
multinomial, and CoxPH models, which respectively correspond
to fit amyloid composition score, elevated amyloid status, binned
immediate recall score, and time to the emergence of B-amyloid
(AB) positivity. The matrices show the strength and direction of
the associations between various brain functional networks and
these four outcomes, which are indicated by the color gradient from
negative (blue) to positive (red) correlations. Rows and columns of
the heatmap represent 10 brain functional networks: MF, Medial
Frontal; FP, Frontal-parietal; DM, Default Mode; MDT, Motor; V1,
Visual I; V2, Visual II; VA, Visual Association; LIM, Limbic; BG,
Basal Ganglia; CER, Cerebellum. Two significant thresholds (0.01
and 0.0001) are used to illustrate the robustness of the correlations
across models.

It is intuitive and reasonable to see that the edge selection
is sparser when the threshold decreases from 0.01 to 0.0001,
demonstrated by less edges with color, no matter for which model
and whether penalization applies or not. The more stringent
threshold of 0.0001 filters out weaker associations that do not
meet the strict criteria for significance. As a result, fewer edges
are highlighted but with a deeper color indicating the strength
of these associations. In Figure 4a, it is notable that the linear
and logistic models show highly similar patterns of association
due to their focus on amyloid composition score and elevated
amyloid status that share closely related underlying information.
Specifically, the intra-edges within MOT and V1 network show
the most significantly negative correlation with both amyloid
composition score and elevated amyloid status, and the pattern
holds for both thresholds. At the selection threshold of 0.01, inter-
edges between V1 and FP as well as V1 and MOT show the
most significantly positive association with amyloid composition
score while such positive association with elevated amyloid status
identified by the logistic model is not as obvious as that by the
linear model. The condition is slightly different when the threshold
is 0.0001. In terms of significant edges correlated to amyloid
composition score, positive edges mostly located in the network
between V1 and FP as well as V2 and FP while the most significantly
positive edge selected by the logistic model are between V1 and
MOT. In the multinomial model, edges correlated to immediate
recall score show a completely different pattern where the network
between MOT and CER show the strongest negative association
and a strong positive association is appeared in the network within
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MOT itself. As for the time to AB positivity, the correlated edges
seem to be more spread out and not focused on a few individual
networks. There is even no negative correlated edge selected when
the threshold is too small at 0.0001.

Compared to Figure 4a, which demonstrates few significant
associations and indicates that models may be conservative in
identifying connections without penalization, there is a denser
pattern of significant associations shown in Figure 4b including
penalization. It suggests that penalization may help in revealing
more associations that are potentially obscured by noise in the
non-penalized models. The penalization appears to improve the
sensitivity of the models by uncovering associations between
connectivity and the outcomes of interest that may otherwise be
difficult to detect, possibly due to weaker effect sizes or lower signal-
to-noise ratios, making them more apparent when penalization
is applied.

One output of our GenCPM pipeline is the selected
edges, including positive and negative ones. By importing
them into Biolmage Suite Web Connectivity Viewer https://
bioimagesuiteweb.github.io/webapp/connviewer.html, we can have
a better visualization of how edges intra- or inter-networks
correlated with different behavioral and clinical responses. Node
numbers are based on the Shen 268 atlas parcellation definition
(Shen et al., 2013) and network are based on Yale network
definition. Figures 5a, b illustrate the pattern of brain connectivity
identified by the original GenCPM method (threshold = 0.0001)
and by the LASSO GenCPM method (threshold = 0.01)
respectively. Nodes that represent different regions of the brain are
arranged in two half circles approximately reflecting brain anatomy
from anterior (front) to posterior (back).

4 Discussion

In this study, we introduce GenCPM, a generalized
connectome-based predictive modeling framework that extends
traditional CPM by supporting a broader range of outcome types
beyond continuous variables and by incorporating non-imaging
covariates and confounders. These enhancements are particularly
valuable in disease-focused connectomics research, where primary
outcomes often include categorical diagnoses or time-to-event
measures, and where non-imaging factors such as demographic,
genetic, and clinical variables can substantially influence disease
expression and progression. GenCPM offers two flexible analytical
pipelines, allowing users to choose the optimal approach based on
performance in their specific application. The toolbox is designed
to be user-friendly and is implemented in R, a freely available
and open-source platform, promoting accessibility without the
need for proprietary software licenses. Through applications
to two major Alzheimer’s Disease studies, we demonstrate that
GenCPM enables more comprehensive and interpretable modeling
of disease mechanisms and cognitive variability. These capabilities
make GenCPM a versatile and powerful tool for researchers
and clinicians working to understand complex brain-behavior
relationships in both health and disease.

To effectively handle the high dimensionality of connectivity
data, GenCPM employs a two-stage feature selection strategy that
balances interpretability and predictive performance. Marginal
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screening serves as an initial dimensionality reduction step to
filter out features lacking a clear univariate association with
the outcome; however, this approach does not account for
dependencies or redundancies among predictors. This can lead
to retaining correlated features together or excluding biologically
meaningful variables whose information overlaps with others,
an important limitation in neuroimaging where interpretability
is critical. To address this limitation, the filtered features are

Frontiersin Neuroscience

subsequently analyzed using a generalized CPM with a user-
selected penalization method (LASSO, ridge, or elastic net).
These multivariate regularization techniques jointly consider
correlations among predictors and encourage sparsity, resulting
in a more stable and interpretable model. Together, our two-
stage approach reduces noise while effectively managing inter-
feature relationships, thereby enhancing the identification of key
connectivity features that drive brain-behavior associations.
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While GenCPM significantly advances the CPM framework,  (XAI) help address such challenges. While neural networks and
it remains linear in its modeling of covariates. Moving beyond  ensemble methods (e.g., random forests and gradient boosting)
linear models represents an important direction for future are often viewed as “black boxes,” XAI techniques such as SHAP
development. Mutual information-based feature selection offers and LIME provide interpretable importance scores (Lundberg
a compelling alternative to traditional marginal screening, as  and Lee, 2017; Ribeiro et al., 2016). Integrating these tools
it captures non-linear dependencies without assuming specific  in future versions of GenCPM may enable greater modeling
functional forms (Vergara and Estévez, 2014). However, it can  flexibility while retaining transparency. Probabilistic graphical
be sensitive to noise and less interpretable in high-dimensional — models, such as Bayesian networks, offer another promising
settings. Recent advances in explainable artificial intelligence  direction. These models capture conditional dependencies and
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quantify uncertainty, valuable for analyzing interactions among
imaging and non-imaging features (Koller and Friedman, 2009).
Although they can be computationally intensive and sensitive to
model specification, their ability to incorporate prior knowledge
and handle missing data makes them appealing for integrative
neuroimaging analysis. In summary, extending GenCPM to
incorporate nonlinear frameworks could improve predictive
performance and capture richer data structures. However, this
requires balance with interpretability, which remains essential for
scientific understanding and translational impact in neuroscience.
Furthermore, as we continue to explore more suitable approaches
for categorical outcomes, extending GenCPM to include ordinal
logistic regression is a potential future improvement. This
extension would better accommodate the ordered nature of certain
outcome variables, such as memory scores, and provide more
appropriate statistical modeling for these types of data.

Currently, GenCPM operates with the Shen268 functional
atlas, which offers a practical balance between spatial resolution
and computational efficiency. This fixed parcellation enables
consistent edge definition and visualization across subjects but
limits compatibility with alternative atlases and user-defined
parcellation schemes. For example, the heatmap.GenCPM function
currently supports only a fixed 10-network mapping based on the
Shen268 atlas, which may not align with anatomical boundaries
or white matter tracts when applied to structural connectivity
data. This restriction can introduce ambiguity when interpreting
selected edges in terms of network-level patterns. While GenCPM
has been successfully applied to moderately large connectomes
(e.g., 1,500-1,600 subjects), scalability remains a consideration as
atlas resolution increases. Larger parcellations lead to quadratic
growth in the number of edges, resulting in greater memory usage
and longer runtimes during model fitting and cross-validation.
Under the current implementation, typical GenCPM analyses
with the Shen268 atlas complete within 1-4 h on a single CPU
core with 30 GB of RAM, and peak memory usage remains
under 20 GB. This makes GenCPM computationally feasible for
standard datasets without requiring access to high-performance
computing resources. To improve flexibility and scalability, future
development will incorporate support for multiple parcellation
schemes, including user-defined atlases. Planned enhancements
include parallelized cross-validation and memory-efficient data
structures to reduce runtime and accommodate higher-resolution
connectomes. These improvements will broaden the applicability
of GenCPM to a wider range of datasets and enhance the
interpretability of network-level results across various brain
mapping frameworks.
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