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Medical imaging has become an essential tool for identifying and treating

neurological conditions. Traditional deep learning (DL) models have made

tremendous advances in neuroimaging analysis; however, they face difficulties

when modeling complicated spatiotemporal brain data. Spiking Neural

Networks (SNNs), which are inspired by real neurons, provide a promising option

for efficiently processing spatiotemporal data. This review discusses current

improvements in using SNNs for multimodal neuroimaging analysis. Quantitative

and thematic analyses were conducted on 21 selected publications to assess

trends, research topics, and geographical contributions. Results show that SNNs

outperform traditional DL approaches in classification, feature extraction, and

prediction tasks, especially when combining multiple modalities. Despite their

potential, challenges of multimodal data fusion, computational demands, and

limited large-scale datasets persist. We discussed the growth of SNNs in analysis,

prediction, and diagnosis of neurological data, along with the emphasis on future

direction and improvements for more efficient and clinically applicable models.

KEYWORDS

neuroimaging, multimodalities, deep learning, machine learning, spiking neurons,
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1 Introduction

Medical imaging is a fundamental and widely used tool for diagnosing various
diseases and planning their treatments in the medical field. Different medical imaging
techniques, including X-ray, ultrasound, digital mammography, computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and
digital pathology, are used to produce images (Pham et al., 2000; Tsuneki, 2022). In
neuroscience, multimodal neuroimaging techniques, including functional MRI (fMRI),
structural MRI (sMRI), diffusion tensor imaging (DTI), and others provides distinct
yet interrelated aspects of neural anatomy and activity. Integrating these modalities
enables a more comprehensive understanding of neural mechanisms and disease processes.
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Furthermore, the healthcare sector focuses on adopting computer-
assisted tools to increase diagnostic accuracy and eÿciency because 
of the advancements in artificial intelligence and neuroimaging 
techniques. These AI-based systems facilitate real-time disease 
prediction and thoroughly evaluate treatment options (Tsuneki, 
2022; Yang and Yu, 2021). 

Rapid progress in artificial intelligence (AI) and machine 
learning has further advanced neuroimaging, especially through 
deep learning (DL) techniques that automate the analysis 
of complex, high-dimensional brain data. Compared with 
conventional machine learning methods, DL can handle high-
dimensional neuroimaging datasets with minimal manual 
preprocessing. As a result, multiple tasks like disease classification, 
predictive modeling, and the visualization of brain structure 
and function can be achieved more eÿciently and with increased 
productivity (Yan et al., 2022). These advances have been supported 
by the growing availability of large-scale datasets and increased 
computational power (Calhoun et al., 2014). 

However, most existing DL approaches rely on static or single 
modality data, which limits their ability to capture the complex 
patterns across space and time of the human brain (Plis et al., 
2014). This gap highlights the requirement of the models that are 
not only data-driven but also biologically interpretable Spiking 
Neural Networks (SNNs) eectively transform neuroimaging 
and help diagnose neurological disorders by stimulating the 
brain’s natural processing. This makes SNN highly eective 
for spatiotemporal data analysis. SNN enables early detection 
of conditions like dementia and predicts epileptic seizures by 
identifying complex EEG patterns. Additionally, integrating SNN 
with multimodal neuroimaging, such as EEG and MRI, can 
enhance diagnostic accuracy by highlighting their transformative 
potential in neurological healthcare (Kasabov, 2019). 

This study aims to critically evaluate the role of SNNs in 
multimodal MRI analysis and assess their potential to overcome 
the limitations of traditional deep learning models. The review will 
explore: 

1. How have SNNs been applied to neuroimaging, 
particularly multimodal MRI data? 

2. What are the advantages of SNNs over conventional deep 
learning models in capturing spatio-temporal features? 

3. How can SNNs integrate multiple MRI modalities to 
enhance diagnostic accuracy? 

4. What are the current challenges in implementing SNNs for 
large-scale multimodal MRI analysis? 

By answering these questions, the review aims to highlight 
the strengths, limitations, and clinical potential of SNNs in 
neuroimaging and the findings will contribute to the advancement 
of biologically inspired deep learning models for more accurate, 
interpretable, and clinically relevant neuroimaging solutions. 

1.1 Background 

Over the past decade, deep learning (DL) models, including 
convolutional neural networks (CNNs), recurrent neural networks 
(RNNs), and long short-term memory (LSTM) networks, have 

TABLE 1 Conceptual overview comparing deep learning (DL) and 
Spiking Neural Networks (SNN). 

Aspect Deep learning Spiking Neural 
Networks 

Information type Continuous 
activation 

Discrete spike events 

Temporal modeling Limited Strong temporal 
dynamics 

Biological realism Low High (mimics neuron 

firing) 

Energy eÿciency High computational 
cost 

Neuromorphic eÿciency 

Neuroimaging 

relevance 

Good for static data Eective for 

spatiotemporal data 

transformed neuroimaging research. These models excel at 
extracting hierarchical features from brain images and temporal 
sequences, enabling improvements in classification and disease 
prediction (Yan et al., 2022; Yang and Yu, 2021). However, the 
dynamic nature of brain data poses challenges for traditional deep 
learning models, especially basic feedforward architectures. Their 
primary shortcoming is that they are unable to eÿciently learn the 
temporal relationships that exist in spatiotemporal neurons due 
to a lack of internal state or memory. More importantly, their 
continuous, rate-based functioning is not well suited to mimic 
the sparse, event-driven communication of real neurons, where 
information is frequently contained in the exact timing of discrete 
spikes. Table 1 below represents a small conceptual comparison of 
other Deep Learning (DL) and Spiking Neural Networks (SNN) 
models for the most relevant aspects. 

Spiking Neural Networks (SNNs) process information through 
discrete spikes, mimicking the temporal firing patterns of biological 
neurons (Izhikevich, 2006). This spike-based communication 
allows SNNs to model time-dependent and event-driven brain 
dynamics more eectively. Especially for neuroimaging, this 
biologically plausible computation oers a promising bridge 
between neuroscience and AI, making the way for interpretable and 
energy-eÿcient models (Kasabov, 2019). Traditional deep learning 
models use continuous mathematical functions to represent neuron 
activations, whereas spiking neural networks transmit information 
through discrete spike events that occur over time. This dierence 
gives SNNs a temporal dimension that is absent in most deep 
learning models. While CNNs and RNNs can provide eÿciency in 
spatial or sequential pattern recognition, in contrast, SNNs capture 
both simultaneously, enabling eective modeling of dynamic 
brain processes (Ghosh-Dastidar and Adeli, 2009; Kasabov et al., 
2016). Moreover, SNNs have the potential for low-power and 
neuromorphic hardware implementation, making them especially 
suitable for real-time neuroimaging analysis (Ghosh-Dastidar and 
Adeli, 2009). 

2 Literature review methodology 

Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines are used for conducting this review 
(Moher et al., 2009). The primary purpose of conducting this 
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literature review is to analyze the trends and landscape of current 
advancements in deep learning models with SNN for multimodal 
neuroimaging data analysis. 

Multiple databases are used to extract articles for this study, 
including PubMed, IEEE Xplore, ScienceDirect, Scopus, and 
Nature. A few of the papers were added from other internet sources. 
The main keywords used are “Neuroimaging,” “Spiking Neural 
Networks,” and “Deep Learning,” refined with Boolean operators 
for accuracy. Ten years of studies are used to retrieve relevant 
data (ranging from 2015 to 2025 for thematic study) to ensure 
the inclusion of comprehensive coverage of the knowledge and 
up-to-date information, as fewer relevant studies have been found 
in recent years. 

Article selection followed PRISMA guidelines, with inclusion 
and exclusion determined through a three-phase process. In the 
identification section, all duplications are removed. During the 
screening phase, the title and abstract are used to identify articles 
that are irrelevant for exclusion and those that are relevant for 
inclusion. Afterward, the full text is used to extract the most 
relevant studies in this review. Full inclusion criteria and the list 
of keywords are provided in the Supplementary material. 

3 Search results 

Firstly, for conducting this research, the query was executed on 
March 10, 2025, considering the three main topics mentioned in 
the above section to align the study’s objectives. As a result of the 
query, 440 papers were retrieved from multiple databases, along 
with three articles from other sources. The PRISMA flowchart in 
Figure 1 illustrates the exclusion criteria applied to articles searched 
in each phase. After applying the exclusion criteria to the selected 
dataset in each phase, only 21 articles were chosen for this literature 
review. 

3.1 Quantitative analysis 

This section analyzes 21 selected articles categorized into three 
main perspectives quantitatively. Firstly, the study represents the 
annual publication trends focusing on tracking the progress of 
SNNs in healthcare. Secondly, research field analysis includes 
the articles’ distribution across various study domains. Lastly, 
geographical publication trends highlight contributions from 
dierent parts of the world. 

3.1.1 Annual publication trends: tracking progress 
in SNN adoption for healthcare 

The analysis of 21 selected publications highlights the evolving 
application of Spiking Neural Networks (SNNs) in neuroimaging 
over the past decade, as shown in Figure 2. The citations of all 21 
publications were collectively analyzed, as presented in Table 2. 

States reveal that, from 2015 to 2017, this area of study was 
in the early exploration phase, as only two publications from the 
selected studies were available each year. Moreover, the trend shows 
the same results for 2018, 2019 and 2020, limiting studies to just one 
article per year from the chosen dataset. The reason for this decline 
could be methodological challenges. 

However, there was a noticeable rise in research in 2021 
with four publications, suggesting increasing feasibility with 
advancements in deep learning. After a drop in 2022 to only one 
study (which could be due to the selected dataset), results showed 
a surge in 2023 in this research area, with five studies marking 
a significant shift toward SNN applications. The most probable 
reason for this growth could be the improvements in computational 
resources and model eÿciency. 

However, the publication trend declined to four in the 
year 2024, still reflecting that this research area is reaching 
stability and reflecting the growing integration of SNNs in 
neuroimaging. Overall, the research has progressively grown 
from initial exploration to more practical implementation and 
refinement, which reflects a growing confidence in the field. 

3.1.2 Research field analysis 
Based on classifications from the selected databases, the 

chosen articles are linked with 10 distinctive research fields, with 
some spanning multiple areas. In total, 40 connections have 
been established between the 21 publications and these research 
domains. As depicted in Figure 3, many publications fall within 
“Computer Science” (n = 14), followed by “Neuroscience” (n = 8) 
and “Medicine” (n = 6). 

From the perspective of the biomedical research field, a 
collective contribution is found to make it a multidisciplinary 
nature of studies, such as “Medicine” (n = 6), “Biochemistry, 
Genetics, and Molecular Biology” (n = 2), and “Immunology and 
Microbiology” (n = 1). 

From an engineering and computational standpoint, 
“Computer Science” (n = 15) and “Engineering” (n = 3) reflect a 
major division of the associations. 

Additionally, research contributions span other diverse fields, 
including “Mathematics” (n = 2), “Decision Sciences” (n = 1), 
“Multidisciplinary” (n = 1), and “Chemistry” (n = 1), further 
highlighting the interdisciplinary scope of the selected publications. 

3.1.3 Geographical publication trends 
In terms of geographical trend, each publication has been 

linked to the countries aÿliated with its authors. The study of 21 
selected publications reveals contributions from multiple countries. 
A single paper can be linked to one or multiple countries, as each 
publication might have multiple authors, and each author can be 
aÿliated with more than one country. However, if a paper has 
multiple authors from the same country, we only consider it once 
to avoid duplication. 

At the point of analysis, 10 countries have contributed to at 
least one publication. Figure 4 below categorizes the publications 
into single-country papers and international collaboration papers, 
highlighting the involvement of dierent countries. 

China is the most frequent among the contributing countries, 
participating in 8 publications from the selected studies. Afterward, 
the highest contribution is found from the authors from 
New Zealand and India, each contributing to 4 publications. The 
United States has been involved in 3 publications. Regarding 
international collaboration, contributions were found in this area 
of research from the United Kingdom, Iran, Australia, and 
New Zealand. Other contributing countries include Malaysia, 
Russia, Ghana, Spain, Bangladesh, South Korea, and Italy, all of 
whom have participated in at least one publication. 
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FIGURE 1 

Overview of the PRISMA flowchart for this research representing the complete process followed for selecting articles for this review paper for 
quantitative and qualitative analysis. 

FIGURE 2 

Overview of the annual publication trend, X-axis shows the years whereas the Y-axis represents the total number of publications (present on the 
bars) each year from the selected studies. 
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TABLE 2 Chronological overview of citations of the selected studies. 

Years No. of 
publications 

Total citations Citations ≤ 20 >20 & ≤50 
citations 

>50 & ≤100 
citations 

Average citations 
per year 

2015 2 49 1 1 0 24.5 

2017 2 100 0 1 1 50 

2018 1 25 0 1 0 25 

2019 1 12 1 0 0 12 

2020 1 0 1 0 0 0 

2021 4 128 2 2 0 32 

2022 1 21 0 1 0 21 

2023 5 49 4 1 0 8.17 

2024 4 9 1 0 0 2.25 

The bold values represent the average annual citations of the studies. 

Below is the comparison between a country’s contributions vs. 
international collaboration: -

• Results of single-country publications: 10 out of 21 papers 
(49%) were found to have authors solely from one country. 

• Results of international collaboration publications: 11 
out of 21 papers (51%) involved authors from multiple 
countries, demonstrating a strong trend of global 
cooperation in this study area. 

China is the most active in single-country and collaborative 
research, as signified by its leadership in this field from the 
selected studies. New Zealand and the United Kingdom are 
heavily engaged in international collaborations, reflecting their 
strong global research attitude and commitment to cross-border 
partnerships. India and China are leading in solely conducted 
research, showcasing their independent research contributions and 
advancements in the field. Notably, the United States appears only 
in collaborative research in our selected dataset. It suggests that the 
US primarily participates in multinational research projects rather 
than independent studies. 

3.2 Thematic analysis of selected studies 

This section provides a detailed insight into selected studies 
for the literature review. Neuroimaging, multimodal data analysis, 
utilization of spiking neural networks, and clinical applications are 
the focus of this review section. 

3.2.1 Neuroimaging and multimodal data analysis 
Healthcare professionals have used multiple types of medical 

data, including biomedical data such as electroencephalography 
(EEG), electromyographic signal (EMG), electrocardiogram 
(ECG), ultrasound, X-rays, computed tomography and magnetic 
resonance imaging (MRI), for a long time to judge patients’ 
diseases, diagnoses, and health conditions. Neuroimaging 
techniques are one of the various types for dealing with a wide 
range of conditions in the brain. MRI has recently been the most 
used technique, and it is said to be a vital technique for diagnosing 

brain tumors (Ahmadi et al., 2021; Sam et al., 2023) because it 
can generate images without damaging brain tissues (Dong et al., 
2024). Furthermore, Kamal et al. (2023) used MRI to identify 
microbleeds in the brain, including the gene expression data, 
making it a multimodal analysis for determining the severity of 
Alzheimer’s disease. 

In addition to traditional imaging techniques, other non-
invasive methods such as functional magnetic resonance 
imaging (fMRI), diusion tensor imaging (DTI), and 
electroencephalography (EEG) have been used for brain 
data collection in the recent past. These techniques played 
a dynamic role in helping us understand the functional and 
structural characteristics of the human brain in a better way 
(Sengupta et al., 2018). Capecci et al. (2015b) presented that 
EEG spatiotemporal data were used to study brain pathology 
and degeneration to analyze the functional changes in the 
brain activities of the controlled and Alzheimer’s disease (AD) 
groups. Furthermore, Kasabov N. K. et al. (2017) used fMRI 
in their research to develop a methodology using the NeuCube 
architecture of spiking neural network (SNN) for visualization, 
classification, and dynamic learning for spatiotemporal brain 
data. Guo et al. (2023) also applied fMRI like (Kasabov 
N. K. et al., 2017) for their study based on a fMRI based 
SNN for verifying anti-damage capabilities under random 
attacks. 

In addition to the above-mentioned diseases, Sam et al. (2023) 
presented the use of EEG signal data for the quantitative assessment 
of depression levels by examining and categorizing EEG signals, 
and Francis and Al-Hababi (2023) utilized structural magnetic 
resonance images (sMRI) for early detection of suicidal ideation 
in youngsters and used depression as a biomarker in sMRI, 
respectively. 

Most studies used a single or a few modalities to analyze 
dierent areas. However, combining predictive modeling with 
multimodal brain data has great potential; research in this area 
is still in its early stages due to a lack of advanced methods. 
The major challenge in combining brain data into a single model 
captured from various modalities is that each modality uses 
dierent temporal and spatial characteristics. To address this, the 
recent advancement in Spiking neural network systems (SSNs) 
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FIGURE 3 

The figure provides an overview of 10 distinctive research fields and number of publications in each subject, selected for this review. 

FIGURE 4 

An overview of publication trends by geography highlights both the number of publications and the countries where the authors are based. 

makes it possible to incorporate multidimensional data within a 
single model (Sengupta et al., 2018). 

3.2.2 Integration of deep learning models with 
SNNs for neuroimaging 

Spiking neural networks are one of the most reliable techniques 
that computer simulations and computational models use to study 
the brain, e.g., brain-inspired machine learning. These techniques 
can reveal and learn frequency, time, and space information 
usually hidden in spatiotemporal brain data (STBD) Capecci 
et al. (2015a), Sengupta et al. (2018) presented an approach 
integrating multimodal information with a spiking neural network 
framework, creating a personalized SNNc-based architecture using 
the NeuCube. This experiment was run to represent the algorithm’s 

capabilities (oiSTDP) to capture discriminative join information 
from the data through its connection strengths. Utilizing this 
framework, the study showcases the integration of DTI and fMRI 
data of individuals who are beginning antipsychotic treatment to 
develop a personalized classifier for the prediction of treatment 
response in schizophrenia. Analysis with the SNNc network 
uncovered improved connectivity in the cerebellar region, which 
suggests that the captured activity of this area can be an aid as 
a potential biomarker that would help in treatment response in 
individuals with schizophrenia. 

Kamal et al. (2023) stated that machine learning techniques are 
practical for analyzing Alzheimer’s disease datasets. Machine 
learning techniques can predict the disease by detecting 
microbleeds in the brain. The study used MRI images and 
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gene expression data, making it multimodal for identifying 

microbleeds using SNN and decision trees. Afterward, pixel 
density analysis (PDA) was used to locate microbleed areas in MRI 
images. PDA and probabilistic graphical model (PGM) were also 

used to explain and decide on the diagnosis of microbleeds, and 

the severity of AD. Figure 5 represents the framework used in 

this research for identifying cerebral microbleeds and Alzheimer’s 
using multimodal data. 

Furthermore, the study compared SNN with other state-of-
the-art methods for performance evaluation using recall, accuracy, 
precision, and F-score. Table 3 below shows that SNN yielded the 

highest performance with 96.13%, 97.02%, 97.13%, and 96.84% for 

recall, accuracy, precision, and F-score, respectively. 
Whereas Turkson et al. (2021) proposed a hybrid model, a 

spiking deep convolutional neural network architecture to classify 

MRI images to detect Alzheimer’s disease. Figure 6 shows the 

general architecture proposed in this study. The Alzheimer’s disease 

neuroimaging initiative (ADNI) dataset (450 scans) was used to 

perform three binary classification tasks (AD vs. NC, AD vs. MCI, 
and NC vs. MCI). The pre-processed images were used to extract 
AD key features using an unsupervised spiking neural network. 
The pre-trained spikes were then classified using a supervised deep 

convolutional neural network (CNN). The SNN was tested with 

two models, firstly with a model that was pre-trained with a spike, 
and secondly with a model without a pre-trained spike, and the 

results were more accurate with a pre-trained model for three 

binary classification tasks. The study stated that SNN improved 

performance, demonstrating the potential of spiking networks for 

reliable neuroimaging analysis. 

Moreover, Doborjeh et al. (2021) used longitudinal 
neuroimaging data to utilize the advancements in deep learning 
models through brain-inspired spiking neural networks (SNNs), 
which can model structural brain data across time and space. The 
study introduced a methodology and an SNN-based computational 
framework for developing personalized, predictive models from 
longitudinal brain data to detect, interpret, and predict changes 
in an individual’s functional brain state. The approach consists of 
several steps, such as clustering similar data, incorporating missing 
values, and training a 3D brain-template SNN for classifying and 
predicting outcomes and visualizing structural brain changes. 
All this information is then used to interpret results and identify 
predictive markers at both individual and group levels. As a result, 
the model successfully classified and predicted cognitive decline, 
for example, dementia and mild cognitive impairment (MCI), 
2 years ahead with 91% and 95% accuracy. 

3.2.3 Clinical applications 
Previous sections primarily focused on the types of modalities 

used by several researchers, along with the integration of 
machine learning models using SNN to analyze neuroimaging 
data (Doborjeh et al., 2019; Saeedinia et al., 2021; Ghazali et al., 
2020). Moreover, multiple studies highlight practical applications 
using neuroimaging and SNNs for several diseases, such as the 
detection of AD and the prediction of schizophrenia. However, 
neuroimaging, multimodal data analysis, and integration of deep 
learning with spiking neural networks are not only vital for AD but 
also for many other clinical areas, such as brain tumor classification 
(Kalpana et al., 2024) or segmentation (Ahmadi et al., 2021), suicide 
ideation assessment (Francis and Al-Hababi, 2023), Depression 

FIGURE 5 

A framework to identify cerebral microbleeds and Alzheimer from multimodal data (Kamal et al., 2023). 

TABLE 3 Performance evaluation for SNN and CNN (Kamal et al., 2023). 

Method Training Test PREC REC ACC F-score 

SNN 552 98 97.13 96.13 97.02 96.84 

520 1300 96.23 94.33 97.12 95.14 

487 163 95.19 96.23 96.82 96.04 

455 195 94.03 95.03 95.62 95.14 

CNN 552 98 91.53 93.43 94.61 94.05 

520 130 91.47 92.45 92.24 92.46 

487 163 91.19 94.39 92.53 93.24 

455 195 92.73 91.03 91.92 91.47 
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FIGURE 6 

An overview of the proposed hybrid model, called the spiking deep convolutional neural network, is shown in the figure. It highlights three main 
modules: raw data input, preprocessing, and the spiking model (Turkson et al., 2021). 

identification (Sam et al., 2023), Parkinson’s disease detection (Das 
et al., 2024), and so on. 

Kalpana et al. (2024) proposed a hybrid model integrating 
SNNs with convolutional neural networks (CNNs) for brain tumor 
classification. As per the results, the model achieved a testing 
accuracy of 97.50 % and a training accuracy of 97.79% with a slight 
loss value of 0.38%. Also stated, these results present the model’s 
strength in capturing complex data in medical imaging, which is 
promising for clinical applications within the biomedical field. On 
the other hand, Ahmadi et al. (2021) utilized MRI for tumor area 
segmentation using a deep spiking neural network. The process for 
achieving the results consists of preprocessing and segmentation 
using DSNN. Table 4 shows the accuracy percentages compared in 
this study for the proposed method and previous approaches. 

Furthermore, Francis and Al-Hababi (2023) also incorporated 
a hybrid version like Kalpana et al. (2024). However, they 
combined an attention mechanism (AM) with SNN for suicide 
ideation assessment using sMRI of healthy controls and depressive 
individuals who did not show any suicide ideation (SI). The hybrid 
model completed the classification tasks using stratified 5-fold 
cross-validation and achieved a test accuracy of 94%, sensitivity 
of 100%, specificity of 92%, and an area under the curve (AUC) 
of 0.96. The proposed algorithm provides an objective tool that 
can support clinical assessments in identifying early signs of SI 
risk among depressed patients who are currently not showing any 
suicidal thoughts. 

TABLE 4 Performance evaluation for QAIS-DSNN and other methods 
(Ahmadi et al., 2021). 

Accuracy (%) Method Reference 

98.20% GCNN Mittal et al., 2019 

95% 3D cascaded 

CNN-TTA 

Wang et al., 2019 

88.50% MCCNN Hu et al., 2019 

96.12% BAT-IT2FCM Alagarsamy et al., 2019 

92% ADNN-PSO Sharif M. I. et al., 2020 

98% PSO-LDA-GA-ANN Sharif M. et al., 2020 

98.21% QAIS-DSNN Proposed approach 

(Ahmadi et al., 2021) 

Sam et al. (2023) performed a similar study to Francis and 
Al-Hababi (2023) by combining long short-term memory (LSTM) 
and SNN using EGG signals for depression identification. These 
models were used for the first time to analyze and categorize 
EEG signals according to the level of depression (minimum, mild, 
moderate, and severe). The model utilized spatial data mapping 
using SNN, leading to unsupervised learning and visualization of 
spiking patterns and unique perceptions about brain mechanisms. 
Comparative analysis of time-space brain data showed that SNN 
is more advantageous than other deep learning models. The study 
achieved higher accuracy in classifying samples from various 
groups and disclosed dierent patterns of brain activity, helping 
to understand the severity of depression. The findings in the 
study have the potential for early prediction and, thus, preventing 
depression by using the brain data acquired from dierent 
depression levels. The methodology used in this study showcases 
excellent potential for application in neuroimaging and clinical 
longitudinal data. 

Apart from the above-mentioned clinical applications, SNN 
and neuroimaging are also helpful for Parkinson’s disease (PD) 
detection, as presented by Das et al. (2024). This study investigated 
the SEFRON (time-varying synaptic eÿcacy function based leaky 
integrate and fire neuron model) model and compared it with other 
previously used neural network models such as RBF, RNN, LSTM, 
and MLP. Results showed a higher accuracy for this model over 
others, making it reliable for clinical trials. Moreover, because of 
its performance, this model can help develop an automated PD 
detection device that physicians can utilize to diagnose PD in its 
early stages. However, this study has a limitation in that the sample 
size of the dataset used is small. 

Another study proposed by Gowsikraja et al. (2025) uses MRI 
for AD classification using a model named SBERO_Deep SNN 
(skill Al-Biruni Earth Radius Optimization-enabled Deep Spiking 
Neural Network), encompassing the benefits of SNN. Segmentation 
was performed using a hybrid algorithm using UNeXt, combining 
the Skill Optimization Algorithm (SOA) and the Al-Biruni Earth 
Radius (BER). In the next step, statistical features were extracted 
and classified using a Deep SNN trained with SBERO. The 
study achieved the highest accuracy rate compared to other 
AD classification techniques. It also states that the proposed 
methodology is reliable for AD identification, allowing timely 
intervention to slow the disease progression and improve patient 
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TABLE 5 Overview of selected literature. 

References Models used Modalities Compared with Accuracy %/ 
performance 

Ahmadi et al., 2021 QAIS-DSNN MRI KNN, Genetic algorithm, SVM, SOM, 
CNN, GCNN, BAT-IT2FCM 

DSNN with 98.21 % 

Dong et al., 2024 ONSNPSamos MRI ABC, CMA-ES, SHADE, CSO, 
RMSProp, FROFI, DAOSNPS, 

ONSNPS, FCN8s, FCNs16, FCNs32, 
Unet, HybridUnet, NestedUnet 

Eective for a Single-area 

brain tumor 

Kamal et al., 2023 SNN MRI & Gene expression CNN 97.02% 

Sengupta et al., 2018 SNN DTI & fMRI Not applicable Eective 

Capecci et al., 2015b SNN EEG MLP, SVM, IECF, ECMC 100% 

Capecci et al., 2015a SNN (NeuCube) EEG MLR, SVM, MLP, ECM 86%, 79% 

Kasabov N. K. et al., 2017 SNN (NeuCube) fMRI SVM, MLP, ECF, ECMC, MLR 90%, 85%, 85% 

Guo et al., 2023 SNN fMRI SFSNN, SWSNN Outperformed 

Sam et al., 2023 SNN EEG CNN-TCN, CNN-LSTM, Deep CNN 98%: 96%, Eyes-Closed: 
Eyes-Open 

Francis and Al-Hababi, 
2023 

SNN sMRI CNN, SVM, FCNN 94% 

Turkson et al., 2021 Spiking deep convolutional 
neural network 

MRI SVM, CNN, random forest, KNN, NB 90.15% 

Doborjeh et al., 2021 SNN Longitudinal MRI Not applicable 95% & 91% 

Doborjeh et al., 2019 Personalized SNN -
d2WKNN 

EEG WWKNN, WKNN, KNN 80% to 93% 

Saeedinia et al., 2021 MRI-SNNr MRI, EEG Random walk, NeuCube Better prediction 

accuracy 

Murli et al., 2020 eSNN (NeuCube) fMRI SVM, MLP 85% 

Kalpana et al., 2024 Hybrid SCNN MRI Not applicable 97.50% 

Das et al., 2024 SEFRON (SNN-based) speech measurements RBF-NN, MLP-NN, RNN, LSTM 94% to 91.94% 

collected/acoustic features 

Kasabov N. et al., 2017 SNN (NeuCube) fMRI Not applicable Compatible 

Gowsikraja et al., 2025 Hybrid SBERO_Deep SNN MRI CNN+LSTM, Deep ensemble model, 
Hybrid DNN, TL, Deep SNN, 

SOA_Deep SNN, BER_Deep SNN 

90.49% 

Zhu et al., 2022 DenseNet-based SNN MRI Restricted DenseNet, SNN, 98.46% ± 2.05% 

Dong et al., 2023 STPD-based SNN CIFAR10 random images MNIST, FashionMNIST 81.45% 

quality of life. Table 5 represents the overview of selected studies 
below. 

4 Discussion 

This section provides a detailed discussion of principal findings, 
including neuroimaging and analysis of clinical features and use 
of SNN. The section also discusses this review’s challenges, gaps, 
future direction, and limitations. 

4.1 Principal findings 

The primary findings of the literature review of the selected 21 
studies expose a massive gap in defusing multiple modalities for 

developing a deep learning model using SNN for real-time clinical 
applications. Out of 21, only a few studies proposed the utilization 
of two or more modalities together for analysis. The rest of the 
studies focused on a single modality in their research. 

The literature review reveals a significant trend toward utilizing 
the benefits of neuroimaging data combined with deep learning 
models, specifically SNN, for understanding and diagnosing 
neurological disorders. Researchers are applying spiking neural 
networks with MRI, EEG, fMRI, and DTI for personalized and 
dynamic modeling of brain functionalities. A comparative analysis 
of the selected studies on SNNs shows that SNNs provide more 
accuracy than other previously used methods, such as traditional 
CNNs, in terms of precision, recall, and accuracy. Furthermore, 
conventional neural networks have a significant disadvantage 
of slower computational speed and higher energy consumption 
(Xiaoxue et al., 2023). 
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4.2 Neuroimaging and clinical features 

Neuroimaging, including structural MRI (sMRI), fMRI, DTI, 
and EEG are important in understanding the clinical features of 
psychiatric and neurological disorders. All these modalities provide 

a detailed map of brain structure, activity, and function, which 

is helpful for clinicians and researchers in making more accurate 

diagnoses and guiding the right treatments. 
As per the selected studies, researchers emphasize the 

importance of neuroimaging in identifying biomarkers such as 
microbleeds, structural abnormalities, and functional connectivity 

changes. However, using multiple modalities can enhance the depth 

of clinical insights. Figure 7 represents the overview of clinical 
features from the selected studies. 

4.3 Use of deep learning with SNN and 
neuroimaging 

Spiking Neural Networks (SNNs) are computational models 
consisting of spiking neurons, interconnections, and learning 
algorithms designed for processing data (Izhikevich, 2006; Kasabov 
et al., 2016). Unlike traditional neural networks, SNNs capture 
spatial and temporal data as inputs. SNN incorporates not 
only neural synaptic states but also the concept of time within 

FIGURE 7 

Overview of the clinical features from the selected studies, X-axis represents the clinical features, and Y-axis is used to display the number of times a 
clinical feature used in selected research articles. 

FIGURE 8 

A schematic diagram of a general NeuCube architecture, consisting of, input encoding module, SNN Cube, Output module, and gene regulatory 
module (Kasabov, 2014). 
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its computational framework. This computational framework 
makes SNNs a more biologically realistic approach for modeling 
spatiotemporal brain dynamics (STBD) (Kasabov N. et al., 2017). 
Other than that, SNN techniques oer many benefits, including 
fast information processing and memory-based processing. It 
also supports frequency- and time-based data, allowing for 
post-training analysis and data interpretation (Capecci et al., 
2015b). 

Spiking Neural Networks (SNNs), especially implemented as 
NeuCube, are gaining importance due to their ability to model 
spatiotemporal data more eÿciently and naturally (Kasabov, 
2014). As aforementioned, SNNs process data in both space 
and time using discrete spike trains, oering an alternative 
that closely resembles neuronal communication in the brain, 
contrasting traditional artificial neural networks (ANNs) like 
MLPs or Transformers (Ghosh-Dastidar and Adeli, 2009; 
Kasabov, 2014). NeuCube provides a structured framework 
for developing models that process spatiotemporal brain data 
(STBD). It mirrors how the brain encodes and learns information 
through spikes, using spatial mapping and brain-inspired 
learning rules. The model evolves over time, continuously 
learning and adapting to new patterns while maintaining a 
spatiotemporal memory that supports the analysis of cognitive 
functions. The overall architecture of NeuCube is illustrated in 
Figure 8. 

Furthermore, Kasabov et al. (2016) mentioned that the 
NeuCube can be used for the visualization of input features 
interactions at the group level as well as the individual level. 
It provides a more profound understanding of underlying 
data relationships and their impact on the individual risk of 
stroke. 

However, this review demonstrated that SNN is also being 
integrated with other models, such as CNNs and LSTMs, making 
it a hybrid model for more eÿcient spatiotemporal data modeling 
using neuroimaging. Turkson et al. (2021), Kalpana et al. (2024) 
and Francis and Al-Hababi (2023) proposed a hybrid model 
integrating other models with SNNs using neuroimaging for the 
assessment of suicidal ideations, brain tumor classification, and 
detection of Alzheimer’s diseases, showcasing better results in terms 
of accuracy than other previously used deep learning models. 

Likewise, SNN-based frameworks such as NeuCube (Kasabov, 
2014) and other brain-inspired models make it easy to learn and 
utilize multiple modalities, improving accuracy even at a higher 
level. Capecci et al. (2015b) stated that the overall performance of 
NeuCube was considerably better in terms of highest precision and 
sensitivity than other compared classification methods, including 
multilayer perceptron (MLP), inductive evolving classification 
function (IECF) (Kasabov, 2007), support vector machine (SVM), 
and evolving clustering method for classification (ECMC) (Song 
and Kasabov, 2002). The literature review also uncovers the 
performance of SNNs in longitudinal studies and real-time 
prediction tasks, confirming their potential for future clinical 
applications. 

Furthermore, Kundu et al. (2024) presented the recent progress 
in SNN algorithms and their integration with sensor and memory 
technologies. It underscores how SNNs enable deployable AI 
systems that are energy-eÿcient, reliable, and well-suited for real-
world tasks. 

5 Conclusion, and future research 
directions 

As per the scope of this literature review, the aim was to 

incorporate neuroimaging data and SNN-based models. According 

to the available evidence suggests that SNN-based models may 

oer advantages over traditional neural networks when applied 

to neuroimaging data. Furthermore, these studies represent the 

integration of neuroimaging and deep learning models using 

SNN for analysis, classification, feature extraction, and diagnosis 
of diseases. Dierent types of modalities were utilized in these 

studies, including MRI, fMRI, DTI, and EEG. However, MRI-
based modalities dominated either as a single modality or by 

defusing a few others. It is observed that there are only a few 

studies that use multimodality, either combining MRI with DTI 
or EEG, or with another type of data, such as gene expression. 
Multiple studies on Alzheimer’s disease use only a single modality. 
Furthermore, many studies use small or specific datasets, maybe 

due to the high computational power SNNs require for training. 
Furthermore, it is stated that the diusion of modalities with 

dierent spatial and temporal resolutions remains a key barrier 

Sengupta et al. (2018). While current SNN studies have mainly 

focused on sMRI, fMRI, or EEG, primarily using single-modality 

data for Alzheimer’s disease, the study by Li and Yap (2022), 
which employs generative modeling, particularly for fMRI and DTI, 
oers a path toward mechanistic connectomes that extends beyond 

descriptive connectivity and explains how it captures the brain 

connectivity changes in response to tasks, stimuli, or internal states. 
The presented approach could have a significant impact on future 

SNN frameworks by providing better integration of multimodal 
data, thereby supporting improved prediction and classification 

accuracy. 
Hence, the review suggests that exploring multiple modalities 

like MRI, fMRI, DTI, and perfusing MRI defusing together to 

develop a deep learning model using SNN for better analyses 
and use of clinical features for disease diagnosis, prevention, and 

to provide treatment plans for slower progression. Improvement 
in methods for multimodal data fusion is required. Moreover, 
large and more diverse datasets should be utilized to increase 

the accuracy of the models. Additionally, integrating the above-
mentioned modalities with PET images can provide a critical 
analysis of specific disease detection, such as Alzheimer’s disease, as 
PET imaging techniques are a popular and non-invasive technique 

used to capture brain tissue characteristics, as explained by Song 

et al. (2021) in their study, along with the ability to directly visualize 

AD-specific biomarkers. 
Furthermore, future studies can aim to develop a sophisticated 

AI partner for Alzheimer’s patients and their families or friends 
to help them with their diagnosis, treatment plans, reports, and 

daily queries. It will be helpful support for healthcare professionals 
in dealing with their patients. The AI model and agent should 

integrate all international guidelines relating to Alzheimer’s disease 

treatment plans and patient care. 
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5.1 Limitations 

Firstly, the literature review is conducted with a few limitations, 
including a narrow picture of current trends in this area, as it 
only considers papers in English that are published in conferences 
or journals. This review may not cover all relevant work due to 
inclusion/exclusion criteria. Secondly, the review was conducted 
using specific keywords and databases, because of which many 
relevant studies might be overlooked, as limited datasets can reduce 
external validations. 
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