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Medical imaging has become an essential tool for identifying and treating
neurological conditions. Traditional deep learning (DL) models have made
tremendous advances in neuroimaging analysis; however, they face difficulties
when modeling complicated spatiotemporal brain data. Spiking Neural
Networks (SNNs), which are inspired by real neurons, provide a promising option
for efficiently processing spatiotemporal data. This review discusses current
improvements in using SNNs for multimodal neuroimaging analysis. Quantitative
and thematic analyses were conducted on 21 selected publications to assess
trends, research topics, and geographical contributions. Results show that SNNs
outperform traditional DL approaches in classification, feature extraction, and
prediction tasks, especially when combining multiple modalities. Despite their
potential, challenges of multimodal data fusion, computational demands, and
limited large-scale datasets persist. We discussed the growth of SNNs in analysis,
prediction, and diagnosis of neurological data, along with the emphasis on future
direction and improvements for more efficient and clinically applicable models.

KEYWORDS
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1 Introduction

Medical imaging is a fundamental and widely used tool for diagnosing various
diseases and planning their treatments in the medical field. Different medical imaging
techniques, including X-ray, ultrasound, digital mammography, computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and
digital pathology, are used to produce images (Pham et al, 2000; Tsuneki, 2022). In
neuroscience, multimodal neuroimaging techniques, including functional MRI (fMRI),
structural MRI (sMRI), diffusion tensor imaging (DTI), and others provides distinct
yet interrelated aspects of neural anatomy and activity. Integrating these modalities
enables a more comprehensive understanding of neural mechanisms and disease processes.
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Furthermore, the healthcare sector focuses on adopting computer-
assisted tools to increase diagnostic accuracy and efficiency because
of the advancements in artificial intelligence and neuroimaging
techniques. These Al-based systems facilitate real-time disease
prediction and thoroughly evaluate treatment options (Tsuneki,
2022; Yang and Yu, 2021).

Rapid progress in artificial intelligence (AI) and machine
learning has further advanced neuroimaging, especially through
deep learning (DL) techniques that automate the analysis
of complex, high-dimensional brain data. Compared with
conventional machine learning methods, DL can handle high-
dimensional neuroimaging datasets with minimal manual
preprocessing. As a result, multiple tasks like disease classification,
predictive modeling, and the visualization of brain structure
and function can be achieved more efficiently and with increased
productivity (Yan et al., 2022). These advances have been supported
by the growing availability of large-scale datasets and increased
computational power (Calhoun et al., 2014).

However, most existing DL approaches rely on static or single
modality data, which limits their ability to capture the complex
patterns across space and time of the human brain (Plis et al,
2014). This gap highlights the requirement of the models that are
not only data-driven but also biologically interpretable Spiking
Neural Networks (SNNs) effectively transform neuroimaging
and help diagnose neurological disorders by stimulating the
brain’s natural processing. This makes SNN highly effective
for spatiotemporal data analysis. SNN enables early detection
of conditions like dementia and predicts epileptic seizures by
identifying complex EEG patterns. Additionally, integrating SNN
with multimodal neuroimaging, such as EEG and MRI, can
enhance diagnostic accuracy by highlighting their transformative
potential in neurological healthcare (Kasabov, 2019).

This study aims to critically evaluate the role of SNNs in
multimodal MRI analysis and assess their potential to overcome
the limitations of traditional deep learning models. The review will
explore:

1. How have SNNs been applied to neuroimaging,
particularly multimodal MRI data?

2. What are the advantages of SNNs over conventional deep
learning models in capturing spatio-temporal features?

3. How can SNNs integrate multiple MRI modalities to
enhance diagnostic accuracy?

4. What are the current challenges in implementing SNNs for
large-scale multimodal MRI analysis?

By answering these questions, the review aims to highlight
the strengths, limitations, and clinical potential of SNNs in
neuroimaging and the findings will contribute to the advancement
of biologically inspired deep learning models for more accurate,
interpretable, and clinically relevant neuroimaging solutions.

1.1 Background

Over the past decade, deep learning (DL) models, including
convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and long short-term memory (LSTM) networks, have
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TABLE1 Conceptual overview comparing deep learning (DL) and
Spiking Neural Networks (SNN).

Aspect Deep learning Spiking Neural
Networks
Information type Continuous Discrete spike events
activation
Temporal modeling Limited Strong temporal
dynamics
Biological realism Low High (mimics neuron
firing)
Energy efficiency High computational Neuromorphic efficiency
cost
Neuroimaging Good for static data Effective for
relevance spatiotemporal data

transformed neuroimaging research. These models excel at
extracting hierarchical features from brain images and temporal
sequences, enabling improvements in classification and disease
prediction (Yan et al, 2022; Yang and Yu, 2021). However, the
dynamic nature of brain data poses challenges for traditional deep
learning models, especially basic feedforward architectures. Their
primary shortcoming is that they are unable to efficiently learn the
temporal relationships that exist in spatiotemporal neurons due
to a lack of internal state or memory. More importantly, their
continuous, rate-based functioning is not well suited to mimic
the sparse, event-driven communication of real neurons, where
information is frequently contained in the exact timing of discrete
spikes. Table 1 below represents a small conceptual comparison of
other Deep Learning (DL) and Spiking Neural Networks (SNN)
models for the most relevant aspects.

Spiking Neural Networks (SNNs) process information through
discrete spikes, mimicking the temporal firing patterns of biological
neurons (Izhikevich, 2006). This spike-based communication
allows SNNs to model time-dependent and event-driven brain
dynamics more effectively. Especially for neuroimaging, this
biologically plausible computation offers a promising bridge
between neuroscience and Al making the way for interpretable and
energy-efficient models (Kasabov, 2019). Traditional deep learning
models use continuous mathematical functions to represent neuron
activations, whereas spiking neural networks transmit information
through discrete spike events that occur over time. This difference
gives SNNs a temporal dimension that is absent in most deep
learning models. While CNNs and RNNs can provide efficiency in
spatial or sequential pattern recognition, in contrast, SNNs capture
both simultaneously, enabling effective modeling of dynamic
brain processes (Ghosh-Dastidar and Adeli, 2009; Kasabov et al.,
2016). Moreover, SNNs have the potential for low-power and
neuromorphic hardware implementation, making them especially
suitable for real-time neuroimaging analysis (Ghosh-Dastidar and
Adeli, 2009).

2 Literature review methodology

Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines are used for conducting this review
(Moher et al, 2009). The primary purpose of conducting this
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literature review is to analyze the trends and landscape of current
advancements in deep learning models with SNN for multimodal
neuroimaging data analysis.

Multiple databases are used to extract articles for this study,
including PubMed, IEEE Xplore, ScienceDirect, Scopus, and
Nature. A few of the papers were added from other internet sources.
The main keywords used are “Neuroimaging,” “Spiking Neural
Networks,” and “Deep Learning,” refined with Boolean operators
for accuracy. Ten years of studies are used to retrieve relevant
data (ranging from 2015 to 2025 for thematic study) to ensure
the inclusion of comprehensive coverage of the knowledge and
up-to-date information, as fewer relevant studies have been found
in recent years.

Article selection followed PRISMA guidelines, with inclusion
and exclusion determined through a three-phase process. In the
identification section, all duplications are removed. During the
screening phase, the title and abstract are used to identify articles
that are irrelevant for exclusion and those that are relevant for
inclusion. Afterward, the full text is used to extract the most
relevant studies in this review. Full inclusion criteria and the list
of keywords are provided in the Supplementary material.

3 Search results

Firstly, for conducting this research, the query was executed on
March 10, 2025, considering the three main topics mentioned in
the above section to align the study’s objectives. As a result of the
query, 440 papers were retrieved from multiple databases, along
with three articles from other sources. The PRISMA flowchart in
Figure 1 illustrates the exclusion criteria applied to articles searched
in each phase. After applying the exclusion criteria to the selected
dataset in each phase, only 21 articles were chosen for this literature
review.

3.1 Quantitative analysis

This section analyzes 21 selected articles categorized into three
main perspectives quantitatively. Firstly, the study represents the
annual publication trends focusing on tracking the progress of
SNNs in healthcare. Secondly, research field analysis includes
the articles’ distribution across various study domains. Lastly,
geographical publication trends highlight contributions from
different parts of the world.

3.1.1 Annual publication trends: tracking progress
in SNN adoption for healthcare

The analysis of 21 selected publications highlights the evolving
application of Spiking Neural Networks (SNNs) in neuroimaging
over the past decade, as shown in Figure 2. The citations of all 21
publications were collectively analyzed, as presented in Table 2.

States reveal that, from 2015 to 2017, this area of study was
in the early exploration phase, as only two publications from the
selected studies were available each year. Moreover, the trend shows
the same results for 2018, 2019 and 2020, limiting studies to just one
article per year from the chosen dataset. The reason for this decline
could be methodological challenges.
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However, there was a noticeable rise in research in 2021
with four publications, suggesting increasing feasibility with
advancements in deep learning. After a drop in 2022 to only one
study (which could be due to the selected dataset), results showed
a surge in 2023 in this research area, with five studies marking
a significant shift toward SNN applications. The most probable
reason for this growth could be the improvements in computational
resources and model efficiency.

However, the publication trend declined to four in the
year 2024, still reflecting that this research area is reaching
stability and reflecting the growing integration of SNNs in
neuroimaging. Overall, the research has progressively grown
from initial exploration to more practical implementation and
refinement, which reflects a growing confidence in the field.

3.1.2 Research field analysis

Based on classifications from the selected databases, the
chosen articles are linked with 10 distinctive research fields, with
some spanning multiple areas. In total, 40 connections have
been established between the 21 publications and these research
domains. As depicted in Figure 3, many publications fall within
“Computer Science” (n = 14), followed by “Neuroscience” (n = 8)
and “Medicine” (n = 6).

From the perspective of the biomedical research field, a
collective contribution is found to make it a multidisciplinary
nature of studies, such as “Medicine” (n = 6), “Biochemistry,
Genetics, and Molecular Biology” (n = 2), and “Immunology and
Microbiology” (n = 1).

From an engineering and computational standpoint,
“Computer Science” (n = 15) and “Engineering” (n = 3) reflect a
major division of the associations.

Additionally, research contributions span other diverse fields,
including “Mathematics” (n = 2), “Decision Sciences” (n = 1),
“Multidisciplinary” (n = 1), and “Chemistry” (n = 1), further
highlighting the interdisciplinary scope of the selected publications.

3.1.3 Geographical publication trends

In terms of geographical trend, each publication has been
linked to the countries affiliated with its authors. The study of 21
selected publications reveals contributions from multiple countries.
A single paper can be linked to one or multiple countries, as each
publication might have multiple authors, and each author can be
affiliated with more than one country. However, if a paper has
multiple authors from the same country, we only consider it once
to avoid duplication.

At the point of analysis, 10 countries have contributed to at
least one publication. Figure 4 below categorizes the publications
into single-country papers and international collaboration papers,
highlighting the involvement of different countries.

China is the most frequent among the contributing countries,
participating in 8 publications from the selected studies. Afterward,
the highest contribution is found from the authors from
New Zealand and India, each contributing to 4 publications. The
United States has been involved in 3 publications. Regarding
international collaboration, contributions were found in this area
of research from the United Kingdom, Iran, Australia, and
New Zealand. Other contributing countries include Malaysia,
Russia, Ghana, Spain, Bangladesh, South Korea, and Italy, all of
whom have participated in at least one publication.
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Overview of the PRISMA flowchart for this research representing the complete process followed for selecting articles for this review paper for
quantitative and qualitative analysis.

S

Number of Publications
N w

—

FIGURE 2

2015 2017 2018

2019

2020 2021 2022 2023 2024

Years

Overview of the annual publication trend, X-axis shows the years whereas the Y-axis represents the total number of publications (present on the
bars) each year from the selected studies.
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TABLE 2 Chronological overview of citations of the selected studies.

No. of Total citations | Citations <20 | >20 & <50 >50 & <100
publications citations citat
2 49 1 1 0

10.3389/fnins.2025.1623497

Average citations
per year

2015 24.5
2017 2 100 0 1 1 50
2018 1 25 0 1 0 25
2019 1 12 0 0 12
2020 1 0 0 0 0
2021 4 128 2 2 0 32
2022 1 21 0 1 0 21
2023 5 49 4 1 0 8.17
2024 4 9 0 0 2.25

The bold values represent the average annual citations of the studies.

Below is the comparison between a country’s contributions vs.
international collaboration: -

e Results of single-country publications: 10 out of 21 papers
(49%) were found to have authors solely from one country.

e Results of international collaboration publications: 11
out of 21 papers (51%) involved authors from multiple
countries, demonstrating a strong trend of global
cooperation in this study area.

China is the most active in single-country and collaborative
research, as signified by its leadership in this field from the
selected studies. New Zealand and the United Kingdom are
heavily engaged in international collaborations, reflecting their
strong global research attitude and commitment to cross-border
partnerships. India and China are leading in solely conducted
research, showcasing their independent research contributions and
advancements in the field. Notably, the United States appears only
in collaborative research in our selected dataset. It suggests that the
US primarily participates in multinational research projects rather
than independent studies.

3.2 Thematic analysis of selected studies

This section provides a detailed insight into selected studies
for the literature review. Neuroimaging, multimodal data analysis,
utilization of spiking neural networks, and clinical applications are
the focus of this review section.

3.2.1 Neuroimaging and multimodal data analysis

Healthcare professionals have used multiple types of medical
data, including biomedical data such as electroencephalography
(EEG), electromyographic signal (EMG), electrocardiogram
(ECQG), ultrasound, X-rays, computed tomography and magnetic
resonance imaging (MRI), for a long time to judge patients’
diseases, diagnoses, and health conditions. Neuroimaging
techniques are one of the various types for dealing with a wide
range of conditions in the brain. MRI has recently been the most

used technique, and it is said to be a vital technique for diagnosing
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brain tumors (Ahmadi et al., 2021; Sam et al., 2023) because it
can generate images without damaging brain tissues (Dong et al.,
2024). Furthermore, Kamal et al. (2023) used MRI to identify
microbleeds in the brain, including the gene expression data,
making it a multimodal analysis for determining the severity of
Alzheimer’s disease.

In addition to traditional imaging techniques, other non-
invasive methods such as functional
(fMRI),

electroencephalography

magnetic resonance
tensor imaging (DTI), and
(EEG) have been used for
data collection in the recent past. These techniques played

imaging diffusion

brain

a dynamic role in helping us understand the functional and
structural characteristics of the human brain in a better way
(Sengupta et al, 2018). Capecci et al. (2015b) presented that
EEG spatiotemporal data were used to study brain pathology
and degeneration to analyze the functional changes in the
brain activities of the controlled and Alzheimer’s disease (AD)
groups. Furthermore, Kasabov N. K. et al. (2017) used fMRI
in their research to develop a methodology using the NeuCube
architecture of spiking neural network (SNN) for visualization,
classification, and dynamic learning for spatiotemporal brain
data. Guo et al. (2023) also applied fMRI like (Kasabov
N. K. et al, 2017) for their study based on a fMRI based
SNN for verifying anti-damage capabilities under random
attacks.

In addition to the above-mentioned diseases, Sam et al. (2023)
presented the use of EEG signal data for the quantitative assessment
of depression levels by examining and categorizing EEG signals,
and Francis and Al-Hababi (2023) utilized structural magnetic
resonance images (sMRI) for early detection of suicidal ideation
in youngsters and used depression as a biomarker in sMRI,
respectively.

Most studies used a single or a few modalities to analyze
different areas. However, combining predictive modeling with
multimodal brain data has great potential; research in this area
is still in its early stages due to a lack of advanced methods.
The major challenge in combining brain data into a single model
captured from various modalities is that each modality uses
different temporal and spatial characteristics. To address this, the
recent advancement in Spiking neural network systems (SSNs)

frontiersin.org
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An overview of publication trends by geography highlights both the number of publications and the countries where the authors are based.

makes it possible to incorporate multidimensional data within a
single model (Sengupta et al., 2018).

3.2.2 Integration of deep learning models with
SNNs for neuroimaging

Spiking neural networks are one of the most reliable techniques
that computer simulations and computational models use to study
the brain, e.g., brain-inspired machine learning. These techniques
can reveal and learn frequency, time, and space information
usually hidden in spatiotemporal brain data (STBD) Capecci
et al. (2015a), Sengupta et al. (2018) presented an approach
integrating multimodal information with a spiking neural network
framework, creating a personalized SNNc-based architecture using
the NeuCube. This experiment was run to represent the algorithm’s

Frontiers in Neuroscience

capabilities (0iSTDP) to capture discriminative join information
from the data through its connection strengths. Utilizing this
framework, the study showcases the integration of DTI and fMRI
data of individuals who are beginning antipsychotic treatment to
develop a personalized classifier for the prediction of treatment
response in schizophrenia. Analysis with the SNNc network
uncovered improved connectivity in the cerebellar region, which
suggests that the captured activity of this area can be an aid as
a potential biomarker that would help in treatment response in
individuals with schizophrenia.

Kamal et al. (2023) stated that machine learning techniques are
practical for analyzing Alzheimer’s disease datasets. Machine
learning techniques can predict the disease by detecting
microbleeds in the brain. The study used MRI images and
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gene expression data, making it multimodal for identifying
microbleeds using SNN and decision trees. Afterward, pixel
density analysis (PDA) was used to locate microbleed areas in MRI
images. PDA and probabilistic graphical model (PGM) were also
used to explain and decide on the diagnosis of microbleeds, and
the severity of AD. Figure 5 represents the framework used in
this research for identifying cerebral microbleeds and Alzheimer’s
using multimodal data.

Furthermore, the study compared SNN with other state-of-
the-art methods for performance evaluation using recall, accuracy,
precision, and F-score. Table 3 below shows that SNN yielded the
highest performance with 96.13%, 97.02%, 97.13%, and 96.84% for
recall, accuracy, precision, and F-score, respectively.

Whereas Turkson et al. (2021) proposed a hybrid model, a
spiking deep convolutional neural network architecture to classify
MRI images to detect Alzheimers disease. Figure 6 shows the
general architecture proposed in this study. The Alzheimer’s disease
neuroimaging initiative (ADNI) dataset (450 scans) was used to
perform three binary classification tasks (AD vs. NC, AD vs. MCI,
and NC vs. MCI). The pre-processed images were used to extract
AD key features using an unsupervised spiking neural network.
The pre-trained spikes were then classified using a supervised deep
convolutional neural network (CNN). The SNN was tested with
two models, firstly with a model that was pre-trained with a spike,
and secondly with a model without a pre-trained spike, and the
results were more accurate with a pre-trained model for three
binary classification tasks. The study stated that SNN improved
performance, demonstrating the potential of spiking networks for
reliable neuroimaging analysis.

Input File Format

10.3389/fnins.2025.1623497

Moreover, Doborjeh et al. (2021) wused longitudinal
neuroimaging data to utilize the advancements in deep learning
models through brain-inspired spiking neural networks (SNNs),
which can model structural brain data across time and space. The
study introduced a methodology and an SNN-based computational
framework for developing personalized, predictive models from
longitudinal brain data to detect, interpret, and predict changes
in an individual’s functional brain state. The approach consists of
several steps, such as clustering similar data, incorporating missing
values, and training a 3D brain-template SNN for classifying and
predicting outcomes and visualizing structural brain changes.
All this information is then used to interpret results and identify
predictive markers at both individual and group levels. As a result,
the model successfully classified and predicted cognitive decline,
for example, dementia and mild cognitive impairment (MCI),
2 years ahead with 91% and 95% accuracy.

3.2.3 Clinical applications

Previous sections primarily focused on the types of modalities
used by several researchers, along with the integration of
machine learning models using SNN to analyze neuroimaging
data (Doborjeh et al., 2019; Saeedinia et al., 2021; Ghazali et al,,
2020). Moreover, multiple studies highlight practical applications
using neuroimaging and SNNs for several diseases, such as the
detection of AD and the prediction of schizophrenia. However,
neuroimaging, multimodal data analysis, and integration of deep
learning with spiking neural networks are not only vital for AD but
also for many other clinical areas, such as brain tumor classification
(Kalpana etal., 2024) or segmentation (Ahmadi et al., 2021), suicide
ideation assessment (Francis and Al-Hababi, 2023), Depression
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A framework to identify cerebral microbleeds and Alzheimer from multimodal data (Kamal et al., 2023).

TABLE 3 Performance evaluation for SNN and CNN (Kamal et al., 2023).

SNN 552 98

97.13 96.13 97.02 96.84

520 1300 96.23 94.33 97.12 95.14

487 163 95.19 96.23 96.82 96.04

455 195 94.03 95.03 95.62 95.14

CNN 552 98 91.53 93.43 94.61 94.05
520 130 91.47 92.45 92.24 92.46

487 163 91.19 94.39 92.53 93.24

455 195 92.73 91.03 91.92 91.47
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An overview of the proposed hybrid model, called the spiking deep convolutional neural network, is shown in the figure. It highlights three main
modules: raw data input, preprocessing, and the spiking model (Turkson et al., 2021).
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identification (Sam et al., 2023), Parkinson’s disease detection (Das
etal., 2024), and so on.

Kalpana et al. (2024) proposed a hybrid model integrating
SNNs with convolutional neural networks (CNNs) for brain tumor
classification. As per the results, the model achieved a testing
accuracy of 97.50 % and a training accuracy of 97.79% with a slight
loss value of 0.38%. Also stated, these results present the model’s
strength in capturing complex data in medical imaging, which is
promising for clinical applications within the biomedical field. On
the other hand, Ahmadi et al. (2021) utilized MRI for tumor area
segmentation using a deep spiking neural network. The process for
achieving the results consists of preprocessing and segmentation
using DSNN. Table 4 shows the accuracy percentages compared in
this study for the proposed method and previous approaches.

Furthermore, Francis and Al-Hababi (2023) also incorporated
(2024).
combined an attention mechanism (AM) with SNN for suicide

a hybrid version like Kalpana et al However, they
ideation assessment using sMRI of healthy controls and depressive
individuals who did not show any suicide ideation (SI). The hybrid
model completed the classification tasks using stratified 5-fold
cross-validation and achieved a test accuracy of 94%, sensitivity
of 100%, specificity of 92%, and an area under the curve (AUC)
of 0.96. The proposed algorithm provides an objective tool that
can support clinical assessments in identifying early signs of SI
risk among depressed patients who are currently not showing any
suicidal thoughts.

TABLE 4 Performance evaluation for QAIS-DSNN and other methods
(Ahmadi et al., 2021).

Accuracy (%) Method Reference
98.20% GCNN Mittal et al., 2019
95% 3D cascaded Wang et al., 2019
CNN-TTA
88.50% MCCNN Huetal,, 2019
96.12% BAT-IT2FCM Alagarsamy et al.,, 2019
92% ADNN-PSO Sharif M. I. et al., 2020
98% PSO-LDA-GA-ANN Sharif M. et al., 2020
98.21% QAIS-DSNN Proposed approach
(Ahmadi et al., 2021)
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Sam et al. (2023) performed a similar study to Francis and
Al-Hababi (2023) by combining long short-term memory (LSTM)
and SNN using EGG signals for depression identification. These
models were used for the first time to analyze and categorize
EEG signals according to the level of depression (minimum, mild,
moderate, and severe). The model utilized spatial data mapping
using SNN, leading to unsupervised learning and visualization of
spiking patterns and unique perceptions about brain mechanisms.
Comparative analysis of time-space brain data showed that SNN
is more advantageous than other deep learning models. The study
achieved higher accuracy in classifying samples from various
groups and disclosed different patterns of brain activity, helping
to understand the severity of depression. The findings in the
study have the potential for early prediction and, thus, preventing
depression by using the brain data acquired from different
depression levels. The methodology used in this study showcases
excellent potential for application in neuroimaging and clinical
longitudinal data.

Apart from the above-mentioned clinical applications, SNN
and neuroimaging are also helpful for Parkinson’s disease (PD)
detection, as presented by Das et al. (2024). This study investigated
the SEFRON (time-varying synaptic efficacy function based leaky
integrate and fire neuron model) model and compared it with other
previously used neural network models such as RBE, RNN, LSTM,
and MLP. Results showed a higher accuracy for this model over
others, making it reliable for clinical trials. Moreover, because of
its performance, this model can help develop an automated PD
detection device that physicians can utilize to diagnose PD in its
early stages. However, this study has a limitation in that the sample
size of the dataset used is small.

Another study proposed by Gowsikraja et al. (2025) uses MRI
for AD classification using a model named SBERO_Deep SNN
(skill Al-Biruni Earth Radius Optimization-enabled Deep Spiking
Neural Network), encompassing the benefits of SNN. Segmentation
was performed using a hybrid algorithm using UNeXt, combining
the Skill Optimization Algorithm (SOA) and the Al-Biruni Earth
Radius (BER). In the next step, statistical features were extracted
and classified using a Deep SNN trained with SBERO. The
study achieved the highest accuracy rate compared to other
AD classification techniques. It also states that the proposed
methodology is reliable for AD identification, allowing timely
intervention to slow the disease progression and improve patient
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TABLE 5 Overview of selected literature.

10.3389/fnins.2025.1623497

References Models used Modalities Compared with Accuracy %/
performance
Ahmadi et al., 2021 QAIS-DSNN MRI KNN, Genetic algorithm, SVM, SOM, DSNN with 98.21 %
CNN, GCNN, BAT-IT2FCM
Dong et al., 2024 ONSNPSamos MRI ABC, CMA-ES, SHADE, CSO, Effective for a Single-area
RMSProp, FROFI, DAOSNPS, brain tumor
ONSNPS, FCN8s, FCNs16, FCNs32,
Unet, HybridUnet, NestedUnet
Kamal et al., 2023 SNN MRI & Gene expression CNN 97.02%
Sengupta et al., 2018 SNN DTI & fMRI Not applicable Effective
Capecci et al., 2015b SNN EEG MLP, SVM, IECE, ECMC 100%
Capecci et al., 2015a SNN (NeuCube) EEG MLR, SVM, MLP, ECM 86%, 79%
Kasabov N. K. et al., 2017 SNN (NeuCube) fMRI SVM, MLP, ECE ECMC, MLR 90%, 85%, 85%
Guo et al., 2023 SNN fMRI SFSNN, SWSNN Outperformed
Sam et al., 2023 SNN EEG CNN-TCN, CNN-LSTM, Deep CNN 98%: 96%, Eyes-Closed:
Eyes-Open
Francis and Al-Hababi, SNN sMRI CNN, SVM, FCNN 94%
2023
Turkson et al., 2021 Spiking deep convolutional MRI SVM, CNN, random forest, KNN, NB 90.15%
neural network
Doborjeh et al., 2021 SNN Longitudinal MRI Not applicable 95% & 91%
Doborjeh et al., 2019 Personalized SNN - EEG WWKNN, WKNN, KNN 80% to 93%
d2WKNN
Saeedinia et al., 2021 MRI-SNNr MRI, EEG Random walk, NeuCube Better prediction
accuracy
Murli et al., 2020 eSNN (NeuCube) fMRI SVM, MLP 85%
Kalpana et al., 2024 Hybrid SCNN MRI Not applicable 97.50%
Das et al., 2024 SEFRON (SNN-based) speech measurements RBF-NN, MLP-NN, RNN, LSTM 94% to 91.94%
collected/acoustic features
Kasabov N. et al., 2017 SNN (NeuCube) fMRI Not applicable Compatible
Gowsikraja et al., 2025 Hybrid SBERO_Deep SNN MRI CNN+LSTM, Deep ensemble model, 90.49%
Hybrid DNN, TL, Deep SNN,
SOA_Deep SNN, BER_Deep SNN
Zhu et al., 2022 DenseNet-based SNN MRI Restricted DenseNet, SNN, 98.46% =+ 2.05%
Dong et al., 2023 STPD-based SNN CIFAR10 random images MNIST, FashionMNIST 81.45%

quality of life. Table 5 represents the overview of selected studies
below.

4 Discussion

This section provides a detailed discussion of principal findings,
including neuroimaging and analysis of clinical features and use
of SNN. The section also discusses this review’s challenges, gaps,
future direction, and limitations.

4.1 Principal findings

The primary findings of the literature review of the selected 21
studies expose a massive gap in defusing multiple modalities for

Frontiers in Neuroscience

developing a deep learning model using SNN for real-time clinical
applications. Out of 21, only a few studies proposed the utilization
of two or more modalities together for analysis. The rest of the
studies focused on a single modality in their research.

The literature review reveals a significant trend toward utilizing
the benefits of neuroimaging data combined with deep learning
models, specifically SNN, for understanding and diagnosing
neurological disorders. Researchers are applying spiking neural
networks with MRI, EEG, fMRI, and DTI for personalized and
dynamic modeling of brain functionalities. A comparative analysis
of the selected studies on SNNs shows that SNNs provide more
accuracy than other previously used methods, such as traditional
CNNs, in terms of precision, recall, and accuracy. Furthermore,
conventional neural networks have a significant disadvantage
of slower computational speed and higher energy consumption
(Xiaoxue et al., 2023).
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4.2 Neuroimaging and clinical features

Neuroimaging, including structural MRI (sMRI), fMRI, DTI,
and EEG are important in understanding the clinical features of
psychiatric and neurological disorders. All these modalities provide
a detailed map of brain structure, activity, and function, which
is helpful for clinicians and researchers in making more accurate
diagnoses and guiding the right treatments.

As per the selected studies, researchers emphasize the
importance of neuroimaging in identifying biomarkers such as
microbleeds, structural abnormalities, and functional connectivity

changes. However, using multiple modalities can enhance the depth

10.3389/fnins.2025.1623497

of clinical insights. Figure 7 represents the overview of clinical
features from the selected studies.

4.3 Use of deep learning with SNN and
neuroimaging

Spiking Neural Networks (SNNs) are computational models
consisting of spiking neurons, interconnections, and learning
algorithms designed for processing data (Izhikevich, 2006; Kasabov
et al., 2016). Unlike traditional neural networks, SNNs capture
spatial and temporal data as inputs. SNN incorporates not
only neural synaptic states but also the concept of time within

2

FIGURE 7

clinical feature used in selected research articles.

Overview of the clinical features from the selected studies, X-axis represents the clinical features, and Y-axis is used to display the number of times a
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its computational framework. This computational framework
makes SNNs a more biologically realistic approach for modeling
spatiotemporal brain dynamics (STBD) (Kasabov N. et al., 2017).
Other than that, SNN techniques offer many benefits, including
fast information processing and memory-based processing. It
also supports frequency- and time-based data, allowing for
post-training analysis and data interpretation (Capecci et al,
2015b).

Spiking Neural Networks (SNNs), especially implemented as
NeuCube, are gaining importance due to their ability to model
spatiotemporal data more efficiently and naturally (Kasabov,
2014). As aforementioned, SNNs process data in both space
and time using discrete spike trains, offering an alternative
that closely resembles neuronal communication in the brain,
contrasting traditional artificial neural networks (ANNs) like
MLPs (Ghosh-Dastidar and Adeli, 2009;
Kasabov, 2014). NeuCube provides a structured framework

or Transformers

for developing models that process spatiotemporal brain data
(STBD). It mirrors how the brain encodes and learns information
through spikes, using spatial mapping and brain-inspired
learning rules. The model evolves over time, continuously
learning and adapting to new patterns while maintaining a
spatiotemporal memory that supports the analysis of cognitive
functions. The overall architecture of NeuCube is illustrated in
Figure 8.

Furthermore, Kasabov et al. (2016) mentioned that the
NeuCube can be used for the visualization of input features
interactions at the group level as well as the individual level.
It provides a more profound understanding of underlying
data relationships and their impact on the individual risk of
stroke.

However, this review demonstrated that SNN is also being
integrated with other models, such as CNNs and LSTMs, making
it a hybrid model for more efficient spatiotemporal data modeling
using neuroimaging. Turkson et al. (2021), Kalpana et al. (2024)
and Francis and Al-Hababi (2023) proposed a hybrid model
integrating other models with SNNs using neuroimaging for the
assessment of suicidal ideations, brain tumor classification, and
detection of Alzheimer’s diseases, showcasing better results in terms
of accuracy than other previously used deep learning models.

Likewise, SNN-based frameworks such as NeuCube (Kasabov,
2014) and other brain-inspired models make it easy to learn and
utilize multiple modalities, improving accuracy even at a higher
level. Capecci et al. (2015b) stated that the overall performance of
NeuCube was considerably better in terms of highest precision and
sensitivity than other compared classification methods, including
multilayer perceptron (MLP), inductive evolving classification
function (IECF) (Kasabov, 2007), support vector machine (SVM),
and evolving clustering method for classification (ECMC) (Song
and Kasabov, 2002). The literature review also uncovers the
performance of SNNs in longitudinal studies and real-time
prediction tasks, confirming their potential for future clinical
applications.

Furthermore, Kundu et al. (2024) presented the recent progress
in SNN algorithms and their integration with sensor and memory
technologies. It underscores how SNNs enable deployable AI
systems that are energy-efficient, reliable, and well-suited for real-
world tasks.
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5 Conclusion, and future research
directions

As per the scope of this literature review, the aim was to
incorporate neuroimaging data and SNN-based models. According
to the available evidence suggests that SNN-based models may
offer advantages over traditional neural networks when applied
to neuroimaging data. Furthermore, these studies represent the
integration of neuroimaging and deep learning models using
SNN for analysis, classification, feature extraction, and diagnosis
of diseases. Different types of modalities were utilized in these
studies, including MRI, fMRI, DTI, and EEG. However, MRI-
based modalities dominated either as a single modality or by
defusing a few others. It is observed that there are only a few
studies that use multimodality, either combining MRI with DTI
or EEG, or with another type of data, such as gene expression.
Multiple studies on Alzheimer’s disease use only a single modality.
Furthermore, many studies use small or specific datasets, maybe
due to the high computational power SNNs require for training.
Furthermore, it is stated that the diffusion of modalities with
different spatial and temporal resolutions remains a key barrier
Sengupta et al. (2018). While current SNN studies have mainly
focused on sMRI, fMRI, or EEG, primarily using single-modality
data for Alzheimers disease, the study by Li and Yap (2022),
which employs generative modeling, particularly for fMRI and DTI,
offers a path toward mechanistic connectomes that extends beyond
descriptive connectivity and explains how it captures the brain
connectivity changes in response to tasks, stimuli, or internal states.
The presented approach could have a significant impact on future
SNN frameworks by providing better integration of multimodal
data, thereby supporting improved prediction and classification
accuracy.

Hence, the review suggests that exploring multiple modalities
like MRI, fMRI, DTI, and perfusing MRI defusing together to
develop a deep learning model using SNN for better analyses
and use of clinical features for disease diagnosis, prevention, and
to provide treatment plans for slower progression. Improvement
in methods for multimodal data fusion is required. Moreover,
large and more diverse datasets should be utilized to increase
the accuracy of the models. Additionally, integrating the above-
mentioned modalities with PET images can provide a critical
analysis of specific disease detection, such as Alzheimer’s disease, as
PET imaging techniques are a popular and non-invasive technique
used to capture brain tissue characteristics, as explained by Song
etal. (2021) in their study, along with the ability to directly visualize
AD-specific biomarkers.

Furthermore, future studies can aim to develop a sophisticated
AT partner for Alzheimer’s patients and their families or friends
to help them with their diagnosis, treatment plans, reports, and
daily queries. It will be helpful support for healthcare professionals
in dealing with their patients. The AI model and agent should
integrate all international guidelines relating to Alzheimer’s disease

treatment plans and patient care.
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5.1 Limitations

Firstly, the literature review is conducted with a few limitations,
including a narrow picture of current trends in this area, as it
only considers papers in English that are published in conferences
or journals. This review may not cover all relevant work due to
inclusion/exclusion criteria. Secondly, the review was conducted
using specific keywords and databases, because of which many
relevant studies might be overlooked, as limited datasets can reduce
external validations.
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