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Objective: Non-invasive Brain–Computer Interfaces provide accurate 
classification of hand movement lateralization. However, distinguishing 
activation patterns of individual fingers within the same hand remains challenging 
due to their overlapping representations in the motor cortex. Here, we validated 
a compact convolutional neural network for fast and reliable decoding of finger 
movements from non-invasive magnetoencephalographic (MEG) recordings.
Approach: We recorded healthy participants in MEG performing a serial reaction 
time task (SRTT), with buttons pressed by left and right index and middle fingers. 
We devised classifiers to identify left vs. right hand movements and among four 
finger movements using a recently proposed decoding approach, Linear Finite 
Impulse Response Convolutional Neural Network (LF-CNN). We also compared 
LF-CNN to existing deep learning architectures such as EEGNet, FBCSP-
ShallowNet, and VGG19.
Results: Sequence learning was reflected by a decrease in reaction times during 
SRTT performance. Movement laterality was decoded with an accuracy superior 
to 95% by all approaches, while for individual finger movement, decoding was 
in the 80–85% range. LF-CNN stood out for (1) its low computational time and 
(2) its interpretability in both spatial and spectral domains, allowing to examine 
neurophysiological patterns reflecting task-related motor cortex activity.
Significance: We demonstrated the feasibility of finger movement decoding with 
a tailored Convolutional Neural Network. The performance of our approach was 
comparable to complex deep learning architectures, while providing faster and 
interpretable outcome. This algorithmic strategy holds high potential for the 
investigation of the mechanisms underlying non-invasive neurophysiological 
recordings in cognitive neuroscience.
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1 Introduction

Decoding human brain activity is crucial for understanding and 
enhancing motor learning outcomes, as it provides insights into the 
neural mechanisms underlying movement control, skill acquisition, 
and adaptation. Brain signal patterns are associated with motor 
planning, execution, and learning, enabling the development of 
advanced neurorehabilitation strategies and personalized training 
protocols. For instance, studies have demonstrated that neurons in the 
primary motor cortex convey more information about movement 
direction after learning, indicating improved neuronal coding post-
training (Li et al., 2001). Decoding models are also instrumental in 
translating neuronal group activities into understandable stimulus 
features, such as stimulus orientation, which is essential for 
interpreting complex visual scenes or abstract semantic information 
(Mathis et  al., 2024). This knowledge is valuable for individuals 
recovering from neurological disorders, athletes seeking to optimize 
performance, and broader applications like brain-computer 
interfaces (BCI).

Achieving optimal performance in BCI systems requires a careful 
balance between interdependent factors of speed and accuracy when 
employing compact convolutional neural networks (CNNs) like 
EEGNet. While EEGNet often reports of improved accuracy over 
other CNNs (de Oliveira and Rodrigues, 2023; Rao et al., 2024), the 
computational demands associated with deep learning models can 
impact real-time decoding speed and hamper timely feedback in 
motor learning and control applications. Therefore, optimization of 
architecture and implementation of efficient computational CNN 
strategies are essential to maintain a favorable balance between speed 
and accuracy for practical BCI applications. Recently, a promising 
method called Linear Finite Impulse Response Convolutional Neural 
Network (LF-CNN) (Zubarev et al., 2019) emerged as a promising 
approach to substantially reduce CNN model complexity while 
preserving high accuracy and interpretability. However, the LF-CNN 
has only been tested in motor imagery tasks and must yet be validated 
in the context of more complex motor sequence learning task. The 
translation and decoding of finger-movements can provide essential 
information on the brain’s motor learning processes that can 
be applied to understand mechanisms of motor action, skill mastery, 
rehabilitation and training.

Understanding how the brain encodes and adapts during motor 
learning behavior is one of the main challenges in cognitive 
neuroscience. A key objective is to decompose complex, 
multidimensional brain data into interpretable representations, 
unveiling cognitive processes in motor learning (Bijsterbosch et al., 
2020). One widely used paradigm to study implicit motor learning is 
the Serial Reaction Time Task (SRTT), which involves a sequence of 
key presses in response to spatially mapped visual stimuli (Nissen and 
Bullemer, 1987; Robertson, 2007). The stimuli appear random and 
follow a repeating 12-key sequence, making it difficult for participants 
to identify clear start or end points. As learning progresses, responses 
typically shift from slow, stimulus-driven reactions to faster, more 
accurate movements guided by an internalized sequence 
representation (Chan et al., 2018; O'Connor et al., 2022). The SRTT is 
particularly well-suited for investigating the neural correlates of motor 
learning, as it elicits well-characterized changes in cortical activity. 
Early learning stages are associated with increased engagement of 
frontal and occipital regions (Albouy et al., 2015), while later stages 

show a shift toward motor cortex dominance as the sequence becomes 
more ingrained (Immink et  al., 2019; Verwey et  al., 2019). These 
dynamics make the SRTT a valuable tool for validating cortical 
decoding approaches and systematically examining the 
neurophysiological mechanisms underlying skill acquisition (Keele 
et  al., 2003). In this study, we  recorded magnetoencephalography 
(MEG) data during SRTT performance to evaluate the capacity of 
decoding models to capture learning-related changes in 
cortical activity.

Decoding brain activity associated with hand and finger 
movements is pivotal in advancing BCI technologies, with essential 
advances needed for accurate interpretation of neural signals. Recent 
advances in neural decoding have increasingly emphasized the 
importance of interpretable deep learning models for capturing fine-
grained motor information from non-invasive recordings. For 
example, Borra et al. (2023) demonstrated that convolutional neural 
networks can effectively decode movement kinematics from EEG 
while preserving interpretability, a critical feature for clinical 
applications. Similarly, Tian et al. (2025) and Jain and Kumar (2025) 
proposed regression-based and source-imaging approaches to 
estimate upper limb trajectories and grasp-lift dynamics, respectively, 
highlighting the growing interest in decoding continuous motor 
parameters and skill development. Borràs et  al. (2025) further 
emphasized the role of repetition in modulating motor cortical 
activity, reinforcing the need for models that can adapt to dynamic 
neural states. Compact CNNs such as those proposed by Cui et al. 
(2022) and Petrosyan et  al. (2021) have shown promise in cross-
subject decoding tasks, underscoring the potential of lightweight 
architectures for real-world BCI deployment.

MEG-based studies have begun to demonstrate the feasibility of 
decoding complex motor behaviors with high temporal resolution. 
For instance, Lévy et al. (2025) used MEG to decode sentence-level 
typing behavior, revealing hierarchical neural dynamics that span 
motor and cognitive processes. Their Brain2Qwerty model achieved 
a peak accuracy of ~74% from MEG signals, narrowing the gap 
between invasive and non-invasive BCI approaches. In another 
instance, Bu et al. (2023) developed MEG-RPSnet, a convolutional 
neural network designed to classify hand gestures (rock, paper, and 
scissors) using MEG data. Using data from 12 participants, the authors 
combined a tailored preprocessing pipeline with a deep learning 
architecture trained on single-trial and the model achieved an average 
classification accuracy of 85.6%, outperforming most traditional 
machine learning methods and EEG-based neural networks. Notably, 
the model maintained high performance even when restricted to 
central-parietal-occipital or occipitotemporal sensor regions, 
highlighting the spatial specificity of gesture-related neural activity. 
These recent studies underscore the potential of MEG for decoding 
fine motor actions such as finger movements and gestures and support 
the development of interpretable models that can bridge decoding 
performance with neuroscientific insight.

Despite advances in non-invasive BCIs, decoding individual finger 
movements using EEG remains challenging due to overlapping cortical 
representations (Alazrai et al., 2019; Gannouni et al., 2020), noise (Nam 
et  al., 2008), artifacts (Guarnieri et  al., 2018), and inter-individual 
variability (Allison et al., 2010; Volosyak et al., 2011). These factors often 
can degrade decoding accuracy and obscure causal relationships in 
neural signals (Mitra and Pesaran, 1999). Recent work by Kim et al. 
(2023) successfully identified the specific cerebral cortices involved in 
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processing acceleration, velocity, and position during directional 
reaching movements using MEG data and time-series deep neural 
network models. This approach not only facilitated the accurate decoding 
of kinematic parameters, but also utilized explainable AI to pinpoint the 
distinct and shared cortical regions responsible for each kinematic 
attribute, providing valuable insights into the neural underpinnings of 
motor control. Together, these studies underscore the value of MEG for 
decoding complex motor learning and support the development of 
interpretable, high-resolution models for gesture-based BCI applications.

Deep learning (DL) has emerged as a powerful solution to many of 
these challenges by integrating feature extraction and classification into 
a unified framework, reducing the need for manual data engineering 
(Mahmud et al., 2018). DL models still offer improved performance but 
often demand large datasets and high computational resources 
(Gutierrez-Martinez et al., 2021; Rashid et al., 2020; Saha et al., 2021; 
Zhang et al., 2021), limiting their use in time-sensitive applications like 
real-time rehabilitation feedback for BCI applications (Yeager et al., 
2016). Effective BCIs must therefore balance accuracy, adaptability, and 
efficiency for these systems to translate neural signals into timely 
control commands for assistive technologies (King et al., 2018).

Architectures such as FBCSP ShallowNet (Amin et  al., 2019; 
Schirrmeister et al., 2017) and EEGNet (Al-Saegh et al., 2021; Gemein 
et  al., 2020; Lawhern et  al., 2018) have demonstrated strong 
performance in motor imagery classification, with EEGNet in 
particular showing high generalizability across paradigms and tasks. 
Recent work has shown that EEGNet can decode individual finger 
movements with promising accuracy (Rao et al., 2024). Similarly, the 
VGG19 architecture, originally developed for image classification, has 
been adapted for EEG decoding due to its ability to capture complex 
spatiotemporal features (Bagherzadeh et  al., 2023; Simonyan and 
Zisserman, 2015; Vignesh et al., 2023).

Among these models, the Linear Finite Impulse Response 
Convolutional Neural Network (LF-CNN) introduced by Zubarev et al. 
(2019) stands out for its interpretability. Unlike conventional CNNs, 
LF-CNN employs fully linear spatial and temporal filters, allowing 
direct visualization of learned weights and facilitating neuroscientific 
insight. It has demonstrated competitive accuracy in motor imagery 
tasks while offering enhanced transparency and generalizability. Its 
lightweight design and interpretability make it particularly suitable for 
clinical applications where explainability is essential.

In the current study, we aimed to investigate the applicability of 
the LF-CNN beyond motor imagery by using MEG recordings of 
motor learning. We applied a two-layer LF-CNN to classify finger 
movements during the SRTT at the single-trial level. We hypothesized 
that LF-CNN would be capable of accurately decoding individual 
finger movements and that its performance would be comparable to 
more complex deep learning architectures. Additionally, we expected 
the model to offer faster computational times and interpretable 
patterns across spatial, temporal, and spectral domains, making it a 
promising tool for both research and clinical applications.

2 Methods and materials

2.1 Participants

Eight right-handed subjects (4 females, mean age = 25 years, 
SD = 6.8) participated to the study. Eligibility criteria included no 

severe health issues, psychological, neurological, or medical 
disorders, with a normal vision. The study was conducted 
according to the Institutional and Ethical Review Board (IRB) 
guidelines and regulations of the Higher School of Economics. All 
participants signed the informed consent form and 
participation agreement.

2.2 Experimental protocol

The Serial Reaction Time Task (SRTT) stimuli consisted of a series 
of four empty boxes, which were spatially mapped to four response 
keys in that participants used their left middle finger for Key 1 and left 
index finger for Key 2, right index finger for Key 3 and right middle 
finger for Key 4 (see Figure  1) on a color-coded controller pad. 
Participants responded when one of the four boxes turned red. The 
monitor was set to 64-bit color and had a screen refresh rate of 120 Hz. 
The participants were sitting in the MEG chair at 1.5 m from the 
monitor. Each box had a visual angle dimension of 2° × 2°, with a 
separation of 2° between each box. Following each response, there was 
a 338 ms interval before the next stimulus was presented. The SRTT 
consisted of a 12-item sequence (121342314324) repeating for 
10 cycles for 12 learning blocks - 120 keypress trials per block, 1,440 
keypress trials in total. After each block, participants received 
performance feedback, including the average reaction time and the 
number of error trials in that block. Following the feedback 
presentation, a rest interval of 30 s was given to the participants. The 
structure of the SRTT is depicted in Figure 1. The SRTT experiment 
was implemented in E-Prime® 2.0 Software (Psychology Software 
Tools Inc., Sharpsburg, USA). Participants were presented with 
on-screen written instructions for the SRTT and also explicitly told 
that the participants should use the designated fingers to press the 
corresponding response keys, prioritizing both speed and accuracy. 
The instructions emphasized that achieving a balance between 
response speed and accuracy was crucial for optimal performance.

2.3 MEG data recording and preprocessing

MEG data was recorded using the Vectorview Neuromag system, 
which comprised 306 channels including 204 gradiometers and 102 
magnetometers, at a sampling frequency of 1,000 Hz. Data were then 
downsampled at 200 Hz. For subsequent analysis, only the 
gradiometer data was utilized. To mitigate artifacts, like eye-blinks and 
heartbeats, an independent component analysis (ICA) was performed. 
Trials affected by muscle artefacts (Muthukumaraswamy, 2013) were 
removed by visual inspection resulting in rejection of 5.7 ± 2.5% trials 
per participant. Following artifact removal, a high-pass finite impulse 
response (FIR) filter with a cutoff frequency of 0.5 Hz was applied to 
the signals to prevent data drift.

2.4 Data analysis

2.4.1 Data preparation
The MEG continuous data were sorted in epochs of ± 500 ms 

around the button press (1 trial): movement of left index finger, left 
middle finger, right index finger and right middle finger. Only trials 
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with correct responses were considered for further analysis. These data 
underwent 4 classification tasks:

	 1.	 Left hand versus right hand (2 classes: left index and left middle 
is class 1; right index and right middle is class 2),

	 2.	 Classification within left hand (2 classes: left index is class 1; left 
middle is class 2),

	 3.	 Classification within right hand (2 classes: right index is class 
1; right middle is class 2)

	 4.	 4-fingers classification (4 classes: left index is class 1; left middle 
is class 2; right index is class 3; right middle is class 4).

Prior to the decoder training procedure, the data were 
z-scored in each epoch with respect to the mean and standard 
deviation computed across all channels. We present the analysis 
of response-locked trials rather than stimulus-locked to 
investigate the anticipation of the motor response. This is 
motivated by the fact that initial responses are triggered by visual 
input in the first blocks of the task (referred as learning phase), 
and anticipated by accumulated knowledge in the last blocks of 
the SRTT (referred as learned phase). For completeness, 
we included the outcome of four fingers decoding of the stimulus-
locked trials in Supplementary Table S7.

2.4.2 Data decoding
The generative model for MEG data can be formulated as in 

Equation 1

	 ε= +t tX AS 	 (1)

where tX  is the data observed at the sensor level at the timepoint 
t, tS  are underlying sources projecting their activity to the sensors 
through the mixing matrix A, and ε is Gaussian white observation 
noise. Regression-based decoders are models that relate stimulus to 
encoded neural information. The basic principle of regression 
decoding (Warren et al., 2016) is presented in the computing of a 
matrix of spatial filters (demixing matrix), such that:

	 =ˆ ·T
t tS W X 	 (2)

where W is the demixing matrix, which allows retrieving the 
estimated sources t̂S  from the data tX . The demixing matrix W of 
Equation 2 can be computed with some optimization technique that 
aims to minimize predetermined cost function (for example stochastic 
gradient decent) to extract components containing the largest possible 
amount of information relating the underlying neural activity with the 
recorded data. Importantly, we emphasize that the matrix W is not itself 
a representation of such neural activity, but just a transfer function 
enhancing source related components and suppressing noise related 
components. To reconstruct the activation pattens mimicking the source 
of interest, we adopted the methodology described in Haufe et al. (2014):

	
−= 1A xx ssK WK 	 (3)

where A represents the activation patterns, while Kxx represent 
covariance matrices of data in sensor space and Kss is a covariance 

FIGURE 1

Scheme of one block of the SRTT. The stimulus presentation and subsequent responses followed a specific pattern across 12 learning blocks of the 
SRTT.
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matrix of feature space, respectively. In our approach, the demixing 
matrix is obtained in two steps, decomposing and reconstructing the 
observed data in the spatial and temporal dimension. To this aim, 
we  validated the performance Linear-Finite-Impulse-Response 
Filtering Convolutional Neural Network (LF-CNN) (Zubarev et al., 
2019) on our SRTT dataset. The neural network consists only of 4 
layers (Figure 2): (1) a spatial demixing layer applying k filters of size 
[n × 1] (red) to the input data of shape [n × t], producing latent sources 
[t × k]; (2) a temporal-filtering layer convolving k filters of size [p × 1] 
(green) to k latent sources extracted from the spatial demixing layer, 
producing a temporal filtering output of size [k × t]; (3) a temporal 
pooling layer (yellow) decreasing the temporal resolution by a factor 
of 10; (4) a fully connected layer with softmax activation to make 
prediction. Details on the hyperparameters of the LF-CNN are in 
Supplementary Table S3.

The spatial demixing layer allows deriving spatially interpretable 
patterns. Weights estimated by the temporal-filtering layer can 
be  considered as finite-impulse-response filters applied to spatial 
features, providing insights into the spectral and temporal properties 
of the extracted components as described in Petrosyan et al. (2021).

2.4.3 Results visualization
In the results section, we propose representative patterns for each 

set of decoders obtained, showing:
1. Spatial patterns, obtained in accordance to Equation 3 (Haufe 

et al., 2014), with W being the weights obtained in the first layer of 
the LF-CNN. These two elements are depicted in the upper panels  
of Figures in sections 3.2–3.3.

2. Temporal patterns. Obtained by convolving the output of 
the spatial filtering layer with the temporal filter weights (LF-CNN 
second layer). After applying the convolution separately to each 
trial, we averaged the time-resolved signal and also computed the 
average of the single-trial time–frequency representation. These 
two elements are superimposed in the middle panels of Figures in 
sections 3.2–3.3.

3. Spectral representation of input, transfer function and output 
of the second layer. The frequency spectra of the input to the temporal 
filter in the second layer (blue), the frequency spectra of the temporal 
filter convolution kernel, or filter response (filter green), and the 
frequency spectra of the output of the second layer (orange) are 
displayed in the bottom panels of Figures in sections 3.2–3.3.

2.4.4 Cross validation schema
To rigorously assess model performance, we adopted a 6-fold 

split strategy. In each iteration, five folds (83.3%) were used for 
training, while the remaining fold (16.6%) served as the held-out test 
set. Within the training phase, we  further applied a 5-fold cross-
validation on the training portion to create dynamic validation sets. 
This nested validation approach allowed for continuous monitoring 
and fine-tuning of the model’s generalization capability across 
training runs.

This strategy was used to train a decoder for each individual 
subject. The number of trials used in each subject for training and test 
are listed in Supplementary Table S2.

We benchmarked this approach with less interpretable deep-
learning architectures: Shallow Filter-Bank Common Spatial Patterns 
CNN (FBCSP-CNN) (Schirrmeister et al., 2017), EEG-Net (Lawhern 
et al., 2018), VGG-19 (Simonyan and Zisserman, 2015).

2.4.5 Classification performance
To evaluate the performance of each classifier, we computed the 

accuracy, defined as the percentage of correctly classified items over 
the total amount of items in the test set. Successful decoding must 
provide a performance at least above chance level, which is the 
probability of a correct prediction when randomly choosing one of the 
options. Thus, for two-classes problem a chance level is 50% and for 
four-classes problem a chance level is 25%. For the multiclass problem 
(four classes problem) we  also provided a confusion matrix 
(Markoulidakis et al., 2021) to understand how classes are related to 
each other or which class is easier to classify.

2.4.6 Effect of learning
To investigate the effect of motor learning, we divided the data 

into two groups: learning  – while the subjects are acquiring the 
sequence – and learned – at the end of the learning phase when the 
subjects already learnt the sequence. To define the learning phase, 
we compared the last block (when subjects was trained to perform the 
experimental task) versus all previous blocks, and to define the learned 
phase we compared the first block (when subjects are not yet trained) 
versus all following blocks (paired t-test, α = p < 0.05). Next, 
we applied the decoding strategy to a subset of trials to evaluate the 
sensitivity of the decoding on the change in underlying neural pattern. 
Specifically, we  generated two classifiers, one trained on learning 
phase, and one trained on the learned phase. Both classifiers were 
tested against learning and learned test trials. Performances are 
compared (paired t-test, α = p < 0.05).

FIGURE 2

Linear-Finite-Impulse-Response Convolution Neural Network (LF-
CNN). n, number of observation (MEG channels), k, number of 
extracted components, t, time (epochs length), p, length of temporal 
convolutional filters in the second layer.
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Differences between the temporal latent sources of the learning 
and learned phases of the paradigm were quantified by non-parametric 
cluster statistics in terms of F-values. The similarity across spectral 
patterns was quantified in terms of scalar product among spatial 
patterns coefficients.

The code is available at: https://github.com/1101AlexZab1011/
FingerMovementDecoder

3 Results

3.1 Behavioral performance

We first quantified behavioral responses across the 12 blocks of 
our experimental design. No significant differences in accuracy (1st 
vs. 12th block, paired t-test, p = 0.80) were found, which was on 
average 97.48 ± 2.51% (Figure 3A). The profile of the response times 

mirrored the learning effect, with slowest responses in the first blocks 
and fastest responses in the last blocks of the experimental paradigm. 
We observed faster reaction times for blocks 8–12 compared to block 
1 (Figure 3B) and in block 12 compared with block 1–5 (Figure 3B; 
Supplementary Table S1).

From the results, we  concluded that subjects were still in the 
learning phase until the end of block 5, and that they might have 
already learned the sequence by the start of block 8. To maximize the 
separation between these two phases, we  subsequently considered 
Blocks 1–3 as the learning phase and Blocks 10–12 as the learned phase.

3.2 Left vs. right-hand movement decoding

We validated the performance of LF-CNN on the laterality of the 
button press, between left- and right-hand side. Across participants, 

FIGURE 3

Behavioral performance in the SRTT. (A) Mean accuracy and (B) mean reaction times across subjects for each of the 12 blocks. Upper line: paired t-test 
results between 1st block and all the others. Bottom line: paired t-test results between 12th block and all the previous. *p < 0.05 and **p < 0.01.
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the average performance of LF-CNN was above 95% (98.5 ± 1.2%). 
Typical patterns for the spatial, spectral and temporal filters optimized 
by the LF-CNN are depicted in Figure 4. The first layer of LF-CNN 
returns spatial patterns with focal maxima in central areas (Figure 4A), 
therefore mirroring the relevance of motor activity. The second layer 
of LF-CNN returns time-frequency power patterns (Figure 4B), with 
modulations in alpha (8–15 Hz), beta (15–30 Hz) and gamma 
(>30 Hz) bands around the button press (t = 0) (Mohseni et al., 2020). 
Interestingly, the spectral properties of the temporal filter extracted 
from the second layer (Figure 4C, green trace) shows the prominent 
contribution of low frequency power. Therefore, the LF-CNN not only 
provides high classification performance, but also returns 
physiologically interpretable patterns in spatial, temporal and 
spectral domains.

3.3 Four finger movement decoding

Next, we validated the LF-CNN on the classification of four finger 
movements. We obtained a test classification accuracy of 82.0 ± 0.3%, 
which was in range with the performance of more complex 
architecture as FBCSP ShallowNet, EEGNet and Vgg19 (Table 1).

Importantly, given the simpler architecture and the lower number 
of parameters to train, LF-CNN reached this level of accuracy in a 
runtime which was one order magnitude faster than FBSCP and 
around two orders of magnitude faster than Vgg19. Interestingly, the 
runtime was also superior to EEGNet, despite the comparable number 
of parameters to be trained. Runtimes reported here were evaluated 

on a Workstation, operative system Ubuntu 22.04.1 LTS, Processor 
Intel@ Xeon(R) CPU 2.10 GHz, RAM 128 GB.

We controlled for the distribution of misclassified trials reporting 
the performance in a confusion matrix (Table 2), which shows that the 
tendency to misclassify one finger with the ipsilateral finger is higher 
than with a contralateral finger. Beside the highly overlapping 
anatomical representation of ipsilateral fingers (Beisteiner et al., 2001; 
Liao et al., 2014), the correct performance holds stable at or above 
80%, with chance level at 25% for the four fingers and at 50% for the 
ipsilateral hand.

The LF-CNN decoder provides physiologically interpretable spatial, 
temporal and spectral patterns. LF-CNN first layer returns spatial 
patterns with highest values over central areas (Figure 5A), while the 
second layer shows marked power modulation in the alpha and beta 
range (Figure 5B) and a temporal filter response with a low-pass spectral 
profile (Figure 5C). We performed an ablation study by systematically 
suppressing the contribution of spatial, temporal and fully connected 
layers. This revealed a prominent role of the spatial and fully connected 
layer (Supplementary Table S9). We  tested the relevance of low 
frequencies for decoding high-pass filtering the data at 5 Hz, and 
observed a decrease in the LF-CNN accuracy to 0.64 (± 0.03). We tested 
the temporal sensitivity of the decoding and observed maximal 
performance for a 300 ms window centered at 50 ms after the button 
press (accuracy 78.67 ± 5.53%, Supplementary Figure S1). As an 
additional control, we also trained LF-CNN for classification of finger 
movements within the left hand and within the right hand. These models 
provided an accuracy 77.95 ± 5.06% for within left-hand movements 
82.88 ± 5.19% for within right-hand movements (Figure 6).

FIGURE 4

Example of spatial temporal and spectral patterns for left- vs. right-hand movement decoding. Each column is a representative component of the 
LF-CNN featuring: (A) spatial patterns; (B) latent sources: time resolved average (gray line) and average of the single trial time frequency representation 
obtained with Morlet complex wavelet (background). Time = 0 indicates response time; (C) FIR filter input (blue), filter response (green), and filter 
output (orange).
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TABLE 1  Performance (test accuracy), runtime (training, validation and 
testing for all subjects, in seconds) and number of parameters for 
comparative deep-learning approaches for the decoding of finger 
movement in a motor sequence learning task.

Subjects LFCNN FBCSP EEGNet VGG19

1 0.79 0.79 0.80 0.78

2 0.85 0.82 0.83 0.84

3 0.81 0.79 0.84 0.83

4 0.88 0.87 0.90 0.91

5 0.85 0.79 0.83 0.81

6 0.81 0.79 0.84 0.79

7 0.86 0.84 0.85 0.90

8 0.81 0.76 0.83 0.86

Accuracy 0.83 ± 0.03 0.81 ± 0.03 0.84 ± 0.03 0.84 ± 0.05

Runtime 20 ± 1.35 126.69 ± 5.48 57.22 ± 6.04 1,307 ± 19.4

n_params 17,092 216,452 14,268 1,072,356

Additional performance metric and comparative statistics are provided in 
Supplementary Tables S4–S6.

TABLE 2  Confusion matrix for four finger movement decoding by LF-CNN.

Predicted RM Predicted RI Predicted LM Predicted LI

Actual RM 83 (7) 19 (4) 1 (1) 1 (1)

Actual RI 14 (8) 83 (5) 1 (1) 2 (1)

Actual LM 1 (1) 1 (1) 86 (7) 12 (4)

Actual LI 4 (1) 4 (1) 13 (6) 82 (4)

Predictions (%) as average (standard deviation) across all eight participants. RM, right middle, RI, right index, LM, left middle, LI, left index.

3.4 MEG—cognitive status

The SRTT is designed to induce sequence learning, with the 
motor planning strategy changing between the early and later blocks 
of the experiment. To evaluate the effect of learning on the decoding 
performance, we generated two sets of models, one trained on the 
learning phase (blocks 1–3) and one on learned phase (blocks 10–12, 
see 3.1). We then tested these two sets of models on test data from 
both phases.

In the finger movement decoding, both models performed better 
on test trials extracted from within the same phase (learning or 
learned) used for model training (Figure 7). The effect of phase on 
decoding was less visible in the hand decoding. For decoding within 
the same hand, we observed a significant phase effect for the right but 
not left-hand.

To explain the difference in decoding performance, we investigated 
the difference in latent sources obtained by feeding trials from the 
learning phase and the learned phase of the SRTT to the four-finger 
decoder trained on learning phase. Figure 8A shows the comparison 
between the obtained latent sources over time. Across subjects, only a 
minor number of temporal latent sources showed significant 
difference (range 1 to 4 out of 32 estimated components in each 
subject). In those components showing difference in the temporal 
trend, the spatial pattern was highly similar as shown by the scalar 
product in the inset of Figure 8A, and in the distribution of the scalar 
product computed for all significant clusters in Figure  8B. The 

difference in the temporal latent sources obtained injecting data from 
the learning vs. learned phases was distributed mostly in the – 200 to 
+ 200 ms interval around button press (Figure 8C: two curves for two 
decoders trained on the learning and learned phases). Therefore, the 
difference in the properties of the decoders were minimal, distributed 
on different components, and variable across individuals.

4 Discussion

In this study, we showed that it was possible to reliably decode 
finger movements from non-invasive neurophysiological data in 
healthy participants performing the SRTT, operationalized as a motor 
learning task. Through our compact deep learning model, the 
LF-CNN, we  showcased high classification accuracy and 
physiologically interpretable results.

The LF-CNN accuracy performance was comparable to that of 
more complex deep learning architectures, with significantly reduced 
training time. This was due to a lower number of parameters to 
be optimized (Schirrmeister et al., 2017; Simonyan and Zisserman, 
2015) and without the need of a dense layer, thus reducing time-
consuming convolutions (Lawhern et  al., 2018). Specifically, the 
LF-CNN was able to decode dynamically changing spatio-temporal 
parameters in approximately 20 s compared to almost 60 s of EEGNet 
(Table 1). This decoding efficiency and performance gain can improve 
the timing of essential information in applied rehabilitation situations, 
whereby feedback on cortical contributions to motor learning is 
essential. In the next sections, we go into the details of the decoding 
structure from our model and their role in understanding of motor 
and cognitive processing.

4.1 Finger movement decoding and motor 
learning

In the current study, the LF-CNN approach appears to utilize both 
spatial and temporal filters, represented by the weights of the trained 
network layers, to support the decoding of finger movements. While 
these weights may not directly reflect neural activity (Haufe et al., 
2014; Petrosyan et al., 2021), they can offer insights into the underlying 
signal structure. The resulting patterns may inform a generative model 
that characterizes the potential relationship between sensor-level 
recordings and neural sources (Cui et al., 2022; Petrosyan et al., 2021).

The first convolutional layer applies spatial filters across the 
MEG sensor array, performing a one-dimensional convolution to 
project the high-dimensional MEG signals into a lower-dimensional 
latent space. This projection captures dominant spatial features 
related to neural sources, significantly reducing the complexity of 
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FIGURE 6

Example of spatial temporal and spectral patterns for ipsilateral fingers decoding. Each column is a representative component of the LF-CNN. 
(A) spatial patterns; (B) latent sources: time resolved average (gray line) and average of the single trial time frequency representation (background). 
Time = 0 indicates response time; (C) FIR filter input (blue), filter response (green), and filter output (orange).

FIGURE 5

Example of spatial temporal and spectral patterns for four finger movement decoding. Each column is a representative component of the LF-CNN. 
(A) spatial patterns; (B) latent sources: time resolved average (gray line) and average of the single trial time frequency representation (background). 
Time = 0 indicates response time; (C) FIR filter input (blue), filter response (green), and filter output (orange).
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the data while preserving key information. Notably, the spatial 
patterns revealed prominent activity in sensorimotor cortices, areas 
known to be critical for motor planning and execution (Cheyne, 
2013; Pfurtscheller and Lopes da Silva, 1999). These regions 
exhibited event-related synchronization (ERS) and 
desynchronization (ERD) in the alpha and beta frequency bands 
that are well-established markers of motor preparation and 
execution (Kilavik et al., 2013; Pfurtscheller and Neuper, 2003).

The second convolutional layer uses temporal filters that behave 
like univariate autoregressive (AR) models, allowing for direct 
interpretation in the frequency domain. These temporal filters 
decompose the signal into oscillatory components, forming spectral 
patterns that reflect the dynamics of brain rhythms associated with 
motor control. The learned filters predominantly exhibited low-pass 
characteristics, emphasizing slow oscillations (<30 Hz) that have been 
repeatedly implicated in motor behavior and skill acquisition (Engel 
and Fries, 2010; Tan et al., 2016).

Our key contribution of this study is the ability to distinguish 
movements of the ipsilateral index and middle fingers with a mean 
classification accuracy of 82%, that is performing as well as current 
popular CNNs with a significant reduction of computation time. Early 
work demonstrated somatotopic segregation of individual fingers in 
the somatosensory cortex (Kleinschmidt et al., 1997), a finding later 
refined through modelling approaches using Gaussian receptive fields 
(Schellekens et al., 2018). Invasive recordings using ECoG revealed 

distinct broadband spectral patterns for individual finger movements 
and movement trajectories (Miller et  al., 2009), leading to highly 
accurate finger decoding for prosthetic control (up to 92%; see Hotson 
et  al. (2016)). However, translating these results to non-invasive 
modalities like EEG and MEG typically reduces classification 
performance (Liao et al., 2014). Still, notable progress has been made: 
Quandt et al. (2012) initiated non-invasive finger decoding efforts, 
while more recent approaches, such as wavelet-based feature 
extraction with SVM-RBF classifiers (Alazrai et  al., 2019) and 
optimized channel selection strategies (Gannouni et al., 2020) have 
achieved accuracies around 81–86% for finger classification. Our 
findings build on this momentum, demonstrating robust decoding of 
fine motor learning that dynamically progresses in a non-invasive 
MEG setting.

Our decoding results also showed higher accuracy when using 
broadband MEG data compared to focusing solely on the alpha/
beta range, which are considered the prominent motor-related 
frequency bands. Notably, restricting analysis to alpha and beta 
bands did not improve performance. This aligns with prior findings 
showing that broadband features outperform narrowband (alpha/
beta) approaches in non-invasive settings (Lee et al., 2022; Liao 
et al., 2014; Quandt et al., 2012). While some studies using alpha/
beta power achieved moderate accuracy (Alazrai et  al., 2019; 
Gannouni et  al., 2020), broadband analysis consistently yielded 
better results, including in the present work. These findings suggest 

FIGURE 7

Performance of models across learning and learned phases of the SRTT paradigm. Model performances were averaged across participants. In the 
legend, the first term refers to the phase (learning vs. learned) of the training data, and the second term refers to the phase of the test data. x, not 
significant difference; *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.
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that low-frequency broadband activity captures richer, spatially 
localized information relevant to finger motor planning 
and execution.

Previous approaches (Alazrai et al., 2019; Gannouni et al., 2020; 
Lee et al., 2022; Quandt et al., 2012) typically employ a two-step 
pipeline: feature preselection followed by classification using 
standard machine learning algorithms. However, these methods 
often lack physiological interpretability of the selected features, 
potentially limiting their insight into neural processes. In contrast, 
our model learns spatial and temporal (spectral) features directly 
from the data, producing interpretable patterns that reflect 
underlying neural activity. More broadly, this approach could 
extend to decoding more complex motor tasks, such as wrist 
extension/flexion (Vuckovic and Sepulveda, 2008), differentiation 
of thumb, fist, and individual finger movements (Javed et al., 2017), 
or distinguishing grasp types like palmar, lateral, and pinch 
(Jochumsen et al., 2016). Enhancing finger decoding could also 
benefit BCI applications focused on movement trajectories like 2D 
finger pointing (Toda et al., 2011) to 3D hand movements (Korik 
et al., 2018). This could lay the groundwork for precise kinematic 
decoding of speed, velocity, and complex tasks like center-out 
reaching or drawing (Bradberry et al., 2009; Kobler et al., 2019; Lv 
et al., 2010) could be extended to neuroprosthetics.

4.2 Sensitivity to the cognitive state 
changes and implications for future work

Although deep learning methods typically require large datasets, 
our study demonstrates that LF-CNN can achieve high classification 
accuracy even with a limited number of trials. Notably, the model 
was sensitive to learning-related changes within the SRTT paradigm. 
By comparing decoder patterns between the early learning and later 
learned phases, we  investigated intra-subject variability, with 
minimal differences in latent sources and spatial distribution. On 
the other hand, the high performance for each individual and the 
low level of generalization across subjects highlights the model’s 
ability to capture subject-specific neural dynamics associated with 
motor learning. This underscores the model’s capacity to detect 
subtle, individualized changes in brain activity, which is an essential 
feature for probing the neurophysiological mechanisms of learning 
and behavior. Moreover, its sensitivity suggests strong potential for 
broader applications in identifying context-specific variations in 
neural activity. This study represents a stride towards the 
development of adaptive algorithmic approaches for tackling 
intricate decoding challenges and elucidating the neurophysiological 
mechanisms of associated cognitive processes in complex motor 
tasks. The combination of spatial and spectral patterns supports a 

FIGURE 8

Difference in decoding models built from the learning and learned phases of the SRTT paradigm. (A) A representative example of the differences 
(F-values) between the temporal latent sources obtained by feeding a decoder trained on blocks 1–3 with data from blocks 1–3, and temporal sources 
obtained by feeding the same decoder trained on blocks 1–3 with data from blocks 10–12. Significant differences surviving non-parametric cluster 
permutation test are highlighted and spatial patterns topographies are shown (the scalar product between the spatial patterns measures their 
similarity). (B) Scalar product of spatial patterns of significant clusters obtained from the difference between the latent temporal sources of the learning 
(block 1–3) and learned (block 10–12) phases of the SRTT paradigm, obtained using both the decoders trained on learning (block 1–3) and learned 
(block 10–12) phases (x-axis: scalar product value: y-axis: count of scalar products for each bin). (C) Percentage of statistically significant differences in 
the temporal pattern of the 32 latent sources for models trained during the learning (black) and learned (gray) phase.
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data-driven decoding model that captures how different brain 
rhythms and regions contribute to motor performance.

In the context of motor learning, this decoding approach may 
offer several valuable perspectives. For instance, as individuals acquire 
or refine motor skills, changes in the spatial distribution and strength 
of ERD/ERS patterns have been observed, potentially reflecting 
cortical reorganization (Brunner et al., 2024; Dayan and Cohen, 2011). 
The LF-CNN may be sensitive to such shifts in spatial representations, 
as suggested by the low level of generalization across subjects 
(Supplementary Table S8). While this accounts for subject specific 
distribution of the motor signaling detectable through MEG, it also 
provides insight into learning-related changes in the cortex (Borràs 
et  al., 2025). Secondly, by identifying task-relevant and isolating 
specific frequency bands frequencies that improve movement 
decoding, the model reveals the rhythmic components most involved 
in motor learning (e.g., increased beta-band desynchronization during 
skilled performance). Thirdly, the decoding accuracy of motor-related 
states can serve as a proxy for monitoring learning progress and 
changes in cognitive states. As a subject becomes more proficient, the 
model’s ability to distinguish motor intentions or executions may 
improve, reflecting more robust and consistent neural representations. 
Lastly, the extracted spatial and spectral patterns can inform 
neurofeedback or brain-computer interface (BCI) applications aimed 
at enhancing motor learning by setting neurofeedback targets 
alongside timely feedback (Soekadar et al., 2015; Vidaurre et al., 2011).

Ultimately, the model’s sensitivity to neurophysiological variations 
holds promising implications for neurorehabilitation, which could 
be tested in stroke recovery. Fine motor impairments are common after 
stroke, with tools like the 9-Hole Peg Test routinely used to assess motor 
coordination (Oxford Grice et al., 2003). The ability to decode specific 
finger movements enables objective, real-time monitoring of recovery 
progress (Guger et al., 2017; Khan et al., 2020). Previous studies have 
shown the effectiveness of BCI-driven interventions in improving motor 
control in stroke patients (Ramos-Murguialday et al., 2013; Romero-
Laiseca et al., 2020). For example, detecting neural activation associated 
with index and middle finger movements may indicate cortical-level 
recovery, even in the absence of overt motion. Repeated engagement of 
these neural patterns over time could signal positive trends in fine motor 
function and the prediction of motor kinematics with CNNs (Borra 
et al., 2023). Furthermore, accurate decoding of finger movements can 
support the precise control of prosthetic devices like enabling pinch or 
grasp functions (Jain and Kumar, 2025) and thereby providing a valuable 
tool for restoring functional independence in stroke patients. These 
findings align with our approach, which provides a promising avenue 
for enhancing neurorehabilitation through precise neural decoding and 
motor control (Tian et al., 2025).

5 Summary

We used a physiologically interpretable convolutional neural 
network (LF-CNN) to decode motor finger movements during the 
learning of the Sequential Reaction Time Task (SRTT), where 
participants pressed specific buttons in response to visual cues 
showing a repeating sequence. The LF-CNN effectively identified 
distinct activation patterns across spatial, temporal, and spectral 
domains. Compared to more complex models, it offered a notable 
advantage in computational efficiency, with significantly reduced 

runtime, while maintaining interpretability of learned weights. 
Importantly, the LF-CNN was sensitive to different stages of motor 
learning, enabling individualized monitoring of learning dynamics for 
diagnostic purposes. In conclusion, the LF-CNN enables a principled 
decomposition of MEG signals into spatial and temporal components 
that are both interpretable and behaviorally relevant. This approach 
not only enhances decoding performance but also offers a powerful 
framework for investigating the neural basis of motor learning.
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