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Convolutional neural networks
decode finger movements in
motor sequence learning from
MEG data
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Objective: Non-invasive Brain—-Computer Interfaces provide accurate
classification of hand movement lateralization. However, distinguishing
activation patterns of individual fingers within the same hand remains challenging
due to their overlapping representations in the motor cortex. Here, we validated
a compact convolutional neural network for fast and reliable decoding of finger
movements from non-invasive magnetoencephalographic (MEG) recordings.
Approach: We recorded healthy participants in MEG performing a serial reaction
time task (SRTT), with buttons pressed by left and right index and middle fingers.
We devised classifiers to identify left vs. right hand movements and among four
finger movements using a recently proposed decoding approach, Linear Finite
Impulse Response Convolutional Neural Network (LF-CNN). We also compared
LF-CNN to existing deep learning architectures such as EEGNet, FBCSP-
ShallowNet, and VGG19.

Results: Sequence learning was reflected by a decrease in reaction times during
SRTT performance. Movement laterality was decoded with an accuracy superior
to 95% by all approaches, while for individual finger movement, decoding was
in the 80-85% range. LF-CNN stood out for (1) its low computational time and
(2) its interpretability in both spatial and spectral domains, allowing to examine
neurophysiological patterns reflecting task-related motor cortex activity.
Significance: We demonstrated the feasibility of finger movement decoding with
a tailored Convolutional Neural Network. The performance of our approach was
comparable to complex deep learning architectures, while providing faster and
interpretable outcome. This algorithmic strategy holds high potential for the
investigation of the mechanisms underlying non-invasive neurophysiological
recordings in cognitive neuroscience.
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1 Introduction

Decoding human brain activity is crucial for understanding and
enhancing motor learning outcomes, as it provides insights into the
neural mechanisms underlying movement control, skill acquisition,
and adaptation. Brain signal patterns are associated with motor
planning, execution, and learning, enabling the development of
advanced neurorehabilitation strategies and personalized training
protocols. For instance, studies have demonstrated that neurons in the
primary motor cortex convey more information about movement
direction after learning, indicating improved neuronal coding post-
training (Li et al., 2001). Decoding models are also instrumental in
translating neuronal group activities into understandable stimulus
features, such as stimulus orientation, which is essential for
interpreting complex visual scenes or abstract semantic information
(Mathis et al., 2024). This knowledge is valuable for individuals
recovering from neurological disorders, athletes seeking to optimize
performance, and broader applications like brain-computer
interfaces (BCI).

Achieving optimal performance in BCI systems requires a careful
balance between interdependent factors of speed and accuracy when
employing compact convolutional neural networks (CNNs) like
EEGNet. While EEGNet often reports of improved accuracy over
other CNNs (de Oliveira and Rodrigues, 2023; Rao et al.,, 2024), the
computational demands associated with deep learning models can
impact real-time decoding speed and hamper timely feedback in
motor learning and control applications. Therefore, optimization of
architecture and implementation of efficient computational CNN
strategies are essential to maintain a favorable balance between speed
and accuracy for practical BCI applications. Recently, a promising
method called Linear Finite Impulse Response Convolutional Neural
Network (LF-CNN) (Zubarev et al., 2019) emerged as a promising
approach to substantially reduce CNN model complexity while
preserving high accuracy and interpretability. However, the LF-CNN
has only been tested in motor imagery tasks and must yet be validated
in the context of more complex motor sequence learning task. The
translation and decoding of finger-movements can provide essential
information on the brain’s motor learning processes that can
be applied to understand mechanisms of motor action, skill mastery,
rehabilitation and training.

Understanding how the brain encodes and adapts during motor
learning behavior is one of the main challenges in cognitive
neuroscience. A key objective is to decompose complex,
multidimensional brain data into interpretable representations,
unveiling cognitive processes in motor learning (Bijsterbosch et al.,
2020). One widely used paradigm to study implicit motor learning is
the Serial Reaction Time Task (SRTT), which involves a sequence of
key presses in response to spatially mapped visual stimuli (Nissen and
Bullemer, 1987; Robertson, 2007). The stimuli appear random and
follow a repeating 12-key sequence, making it difficult for participants
to identify clear start or end points. As learning progresses, responses
typically shift from slow, stimulus-driven reactions to faster, more
accurate movements guided by an internalized sequence
representation (Chan et al., 2018; O'Connor et al., 2022). The SRTT is
particularly well-suited for investigating the neural correlates of motor
learning, as it elicits well-characterized changes in cortical activity.
Early learning stages are associated with increased engagement of
frontal and occipital regions (Albouy et al., 2015), while later stages
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show a shift toward motor cortex dominance as the sequence becomes
more ingrained (Immink et al., 2019; Verwey et al., 2019). These
dynamics make the SRTT a valuable tool for validating cortical
decoding approaches and systematically examining the
neurophysiological mechanisms underlying skill acquisition (Keele
et al,, 2003). In this study, we recorded magnetoencephalography
(MEG) data during SRTT performance to evaluate the capacity of
decoding models to capture learning-related changes in
cortical activity.

Decoding brain activity associated with hand and finger
movements is pivotal in advancing BCI technologies, with essential
advances needed for accurate interpretation of neural signals. Recent
advances in neural decoding have increasingly emphasized the
importance of interpretable deep learning models for capturing fine-
grained motor information from non-invasive recordings. For
example, Borra et al. (2023) demonstrated that convolutional neural
networks can effectively decode movement kinematics from EEG
while preserving interpretability, a critical feature for clinical
applications. Similarly, Tian et al. (2025) and Jain and Kumar (2025)
proposed regression-based and source-imaging approaches to
estimate upper limb trajectories and grasp-lift dynamics, respectively,
highlighting the growing interest in decoding continuous motor
parameters and skill development. Borras et al. (2025) further
emphasized the role of repetition in modulating motor cortical
activity, reinforcing the need for models that can adapt to dynamic
neural states. Compact CNNs such as those proposed by Cui et al.
(2022) and Petrosyan et al. (2021) have shown promise in cross-
subject decoding tasks, underscoring the potential of lightweight
architectures for real-world BCI deployment.

MEG-based studies have begun to demonstrate the feasibility of
decoding complex motor behaviors with high temporal resolution.
For instance, Lévy et al. (2025) used MEG to decode sentence-level
typing behavior, revealing hierarchical neural dynamics that span
motor and cognitive processes. Their Brain2Qwerty model achieved
a peak accuracy of ~74% from MEG signals, narrowing the gap
between invasive and non-invasive BCI approaches. In another
instance, Bu et al. (2023) developed MEG-RPSnet, a convolutional
neural network designed to classify hand gestures (rock, paper, and
scissors) using MEG data. Using data from 12 participants, the authors
combined a tailored preprocessing pipeline with a deep learning
architecture trained on single-trial and the model achieved an average
classification accuracy of 85.6%, outperforming most traditional
machine learning methods and EEG-based neural networks. Notably,
the model maintained high performance even when restricted to
central-parietal-occipital or occipitotemporal sensor regions,
highlighting the spatial specificity of gesture-related neural activity.
These recent studies underscore the potential of MEG for decoding
fine motor actions such as finger movements and gestures and support
the development of interpretable models that can bridge decoding
performance with neuroscientific insight.

Despite advances in non-invasive BCIs, decoding individual finger
movements using EEG remains challenging due to overlapping cortical
representations (Alazrai et al., 2019; Gannouni et al., 2020), noise (Nam
et al.,, 2008), artifacts (Guarnieri et al., 2018), and inter-individual
variability (Allison et al., 2010; Volosyak et al., 2011). These factors often
can degrade decoding accuracy and obscure causal relationships in
neural signals (Mitra and Pesaran, 1999). Recent work by Kim et al.

(2023) successfully identified the specific cerebral cortices involved in
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processing acceleration, velocity, and position during directional
reaching movements using MEG data and time-series deep neural
network models. This approach not only facilitated the accurate decoding
of kinematic parameters, but also utilized explainable A to pinpoint the
distinct and shared cortical regions responsible for each kinematic
attribute, providing valuable insights into the neural underpinnings of
motor control. Together, these studies underscore the value of MEG for
decoding complex motor learning and support the development of
interpretable, high-resolution models for gesture-based BCI applications.

Deep learning (DL) has emerged as a powerful solution to many of
these challenges by integrating feature extraction and classification into
a unified framework, reducing the need for manual data engineering
(Mahmud et al.,, 2018). DL models still offer improved performance but
often demand large datasets and high computational resources
(Gutierrez-Martinez et al., 2021; Rashid et al., 2020; Saha et al., 2021;
Zhang et al.,, 2021), limiting their use in time-sensitive applications like
real-time rehabilitation feedback for BCI applications (Yeager et al.,
2016). Effective BCIs must therefore balance accuracy, adaptability, and
efficiency for these systems to translate neural signals into timely
control commands for assistive technologies (King et al., 2018).

Architectures such as FBCSP ShallowNet (Amin et al., 2019;
Schirrmeister et al., 2017) and EEGNet (Al-Saegh et al., 2021; Gemein
et al, 2020; Lawhern et al, 2018) have demonstrated strong
performance in motor imagery classification, with EEGNet in
particular showing high generalizability across paradigms and tasks.
Recent work has shown that EEGNet can decode individual finger
movements with promising accuracy (Rao et al., 2024). Similarly, the
VGG19 architecture, originally developed for image classification, has
been adapted for EEG decoding due to its ability to capture complex
spatiotemporal features (Bagherzadeh et al., 2023; Simonyan and
Zisserman, 2015; Vignesh et al., 2023).

Among these models, the Linear Finite Impulse Response
Convolutional Neural Network (LF-CNN) introduced by Zubarev et al.
(2019) stands out for its interpretability. Unlike conventional CNNs,
LF-CNN employs fully linear spatial and temporal filters, allowing
direct visualization of learned weights and facilitating neuroscientific
insight. It has demonstrated competitive accuracy in motor imagery
tasks while offering enhanced transparency and generalizability. Its
lightweight design and interpretability make it particularly suitable for
clinical applications where explainability is essential.

In the current study, we aimed to investigate the applicability of
the LF-CNN beyond motor imagery by using MEG recordings of
motor learning. We applied a two-layer LE-CNN to classify finger
movements during the SRTT at the single-trial level. We hypothesized
that LF-CNN would be capable of accurately decoding individual
finger movements and that its performance would be comparable to
more complex deep learning architectures. Additionally, we expected
the model to offer faster computational times and interpretable
patterns across spatial, temporal, and spectral domains, making it a
promising tool for both research and clinical applications.

2 Methods and materials
2.1 Participants

Eight right-handed subjects (4 females, mean age = 25 years,
SD = 6.8) participated to the study. Eligibility criteria included no
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severe health issues, psychological, neurological, or medical
disorders, with a normal vision. The study was conducted
according to the Institutional and Ethical Review Board (IRB)
guidelines and regulations of the Higher School of Economics. All
informed consent form and

participants signed the

participation agreement.

2.2 Experimental protocol

The Serial Reaction Time Task (SRTT) stimuli consisted of a series
of four empty boxes, which were spatially mapped to four response
keys in that participants used their left middle finger for Key 1 and left
index finger for Key 2, right index finger for Key 3 and right middle
finger for Key 4 (see Figure 1) on a color-coded controller pad.
Participants responded when one of the four boxes turned red. The
monitor was set to 64-bit color and had a screen refresh rate of 120 Hz.
The participants were sitting in the MEG chair at 1.5 m from the
monitor. Each box had a visual angle dimension of 2° x 2°, with a
separation of 2° between each box. Following each response, there was
a 338 ms interval before the next stimulus was presented. The SRTT
consisted of a 12-item sequence (121342314324) repeating for
10 cycles for 12 learning blocks - 120 keypress trials per block, 1,440
keypress trials in total. After each block, participants received
performance feedback, including the average reaction time and the
number of error trials in that block. Following the feedback
presentation, a rest interval of 30 s was given to the participants. The
structure of the SRTT is depicted in Figure 1. The SRTT experiment
was implemented in E-Prime® 2.0 Software (Psychology Software
Tools Inc., Sharpsburg, USA). Participants were presented with
on-screen written instructions for the SRTT and also explicitly told
that the participants should use the designated fingers to press the
corresponding response keys, prioritizing both speed and accuracy.
The instructions emphasized that achieving a balance between
response speed and accuracy was crucial for optimal performance.

2.3 MEG data recording and preprocessing

MEG data was recorded using the Vectorview Neuromag system,
which comprised 306 channels including 204 gradiometers and 102
magnetometers, at a sampling frequency of 1,000 Hz. Data were then
downsampled at 200 Hz. For subsequent analysis, only the
gradiometer data was utilized. To mitigate artifacts, like eye-blinks and
heartbeats, an independent component analysis (ICA) was performed.
Trials affected by muscle artefacts (Muthukumaraswamy, 2013) were
removed by visual inspection resulting in rejection of 5.7 + 2.5% trials
per participant. Following artifact removal, a high-pass finite impulse
response (FIR) filter with a cutoff frequency of 0.5 Hz was applied to
the signals to prevent data drift.

2.4 Data analysis

2.4.1 Data preparation

The MEG continuous data were sorted in epochs of + 500 ms
around the button press (1 trial): movement of left index finger, left
middle finger, right index finger and right middle finger. Only trials
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with correct responses were considered for further analysis. These data
underwent 4 classification tasks:

1. Left hand versus right hand (2 classes: left index and left middle
is class 1; right index and right middle is class 2),

2. Classification within left hand (2 classes: left index is class 1; left
middle is class 2),

3. Classification within right hand (2 classes: right index is class
1; right middle is class 2)

4. 4-fingers classification (4 classes: left index is class 1; left middle
is class 2; right index is class 3; right middle is class 4).

Prior to the decoder training procedure, the data were
z-scored in each epoch with respect to the mean and standard
deviation computed across all channels. We present the analysis
of response-locked trials rather than stimulus-locked to
investigate the anticipation of the motor response. This is
motivated by the fact that initial responses are triggered by visual
input in the first blocks of the task (referred as learning phase),
and anticipated by accumulated knowledge in the last blocks of
the SRTT (referred as learned phase). For completeness,
we included the outcome of four fingers decoding of the stimulus-
locked trials in Supplementary Table S7.

2.4.2 Data decoding
The generative model for MEG data can be formulated as in
Equation 1
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Xt=ASt+g (1)

where X; is the data observed at the sensor level at the timepoint
t, S; are underlying sources projecting their activity to the sensors
through the mixing matrix A, and ¢ is Gaussian white observation
noise. Regression-based decoders are models that relate stimulus to
encoded neural information. The basic principle of regression
decoding (Warren et al., 2016) is presented in the computing of a
matrix of spatial filters (demixing matrix), such that:

ét = WT 'X[ (2)

where W is the demixing matrix, which allows retrieving the
estimated sources ét from the data X;. The demixing matrix W of
Equation 2 can be computed with some optimization technique that
aims to minimize predetermined cost function (for example stochastic
gradient decent) to extract components containing the largest possible
amount of information relating the underlying neural activity with the
recorded data. Importantly, we emphasize that the matrix W is not itself
a representation of such neural activity, but just a transfer function
enhancing source related components and suppressing noise related
components. To reconstruct the activation pattens mimicking the source
of interest, we adopted the methodology described in Haufe et al. (2014):

A=K WK 3)

where A represents the activation patterns, while K,, represent
covariance matrices of data in sensor space and Ky is a covariance
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matrix of feature space, respectively. In our approach, the demixing
matrix is obtained in two steps, decomposing and reconstructing the
observed data in the spatial and temporal dimension. To this aim,
we validated the performance Linear-Finite-Impulse-Response
Filtering Convolutional Neural Network (LF-CNN) (Zubarev et al.,
2019) on our SRTT dataset. The neural network consists only of 4
layers (Figure 2): (1) a spatial demixing layer applying k filters of size
[n x 1] (red) to the input data of shape [n x t], producing latent sources
[t x k]; (2) a temporal-filtering layer convolving k filters of size [p x 1]
(green) to k latent sources extracted from the spatial demixing layer,
producing a temporal filtering output of size [k x t]; (3) a temporal
pooling layer (yellow) decreasing the temporal resolution by a factor
of 10; (4) a fully connected layer with softmax activation to make
prediction. Details on the hyperparameters of the LF-CNN are in
Supplementary Table S3.

The spatial demixing layer allows deriving spatially interpretable
patterns. Weights estimated by the temporal-filtering layer can
be considered as finite-impulse-response filters applied to spatial
features, providing insights into the spectral and temporal properties
of the extracted components as described in Petrosyan et al. (2021).

2.4.3 Results visualization

In the results section, we propose representative patterns for each
set of decoders obtained, showing:

1. Spatial patterns, obtained in accordance to Equation 3 (Haufe
et al,, 2014), with W being the weights obtained in the first layer of
the LF-CNN. These two elements are depicted in the upper panels
of Figures in sections 3.2-3.3.

Spatial de-mixing
layer
Temporal filtering
layer
\ p
n /k >- }ﬁ
t / /
k A=
7
/
t / Maximum
pooling
Flatten
Dense
Output classes
FIGURE 2
Linear-Finite-Impulse-Response Convolution Neural Network (LF-
CNN). n, number of observation (MEG channels), k, number of
extracted components, t, time (epochs length), p, length of temporal
convolutional filters in the second layer.
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2. Temporal patterns. Obtained by convolving the output of
the spatial filtering layer with the temporal filter weights (LF-CNN
second layer). After applying the convolution separately to each
trial, we averaged the time-resolved signal and also computed the
average of the single-trial time-frequency representation. These
two elements are superimposed in the middle panels of Figures in
sections 3.2-3.3.

3. Spectral representation of input, transfer function and output
of the second layer. The frequency spectra of the input to the temporal
filter in the second layer (blue), the frequency spectra of the temporal
filter convolution kernel, or filter response (filter green), and the
frequency spectra of the output of the second layer (orange) are
displayed in the bottom panels of Figures in sections 3.2-3.3.

2.4.4 Cross validation schema

To rigorously assess model performance, we adopted a 6-fold
split strategy. In each iteration, five folds (83.3%) were used for
training, while the remaining fold (16.6%) served as the held-out test
set. Within the training phase, we further applied a 5-fold cross-
validation on the training portion to create dynamic validation sets.
This nested validation approach allowed for continuous monitoring
and fine-tuning of the model’s generalization capability across
training runs.

This strategy was used to train a decoder for each individual
subject. The number of trials used in each subject for training and test
are listed in Supplementary Table S2.

We benchmarked this approach with less interpretable deep-
learning architectures: Shallow Filter-Bank Common Spatial Patterns
CNN (FBCSP-CNN) (Schirrmeister et al., 2017), EEG-Net (Lawhern
etal,, 2018), VGG-19 (Simonyan and Zisserman, 2015).

2.4.5 Classification performance

To evaluate the performance of each classifier, we computed the
accuracy, defined as the percentage of correctly classified items over
the total amount of items in the test set. Successful decoding must
provide a performance at least above chance level, which is the
probability of a correct prediction when randomly choosing one of the
options. Thus, for two-classes problem a chance level is 50% and for
four-classes problem a chance level is 25%. For the multiclass problem
(four classes problem) we also provided a confusion matrix
(Markoulidakis et al., 2021) to understand how classes are related to
each other or which class is easier to classify.

2.4.6 Effect of learning

To investigate the effect of motor learning, we divided the data
into two groups: learning — while the subjects are acquiring the
sequence — and learned — at the end of the learning phase when the
subjects already learnt the sequence. To define the learning phase,
we compared the last block (when subjects was trained to perform the
experimental task) versus all previous blocks, and to define the learned
phase we compared the first block (when subjects are not yet trained)
versus all following blocks (paired t-test, a=p <0.05). Next,
we applied the decoding strategy to a subset of trials to evaluate the
sensitivity of the decoding on the change in underlying neural pattern.
Specifically, we generated two classifiers, one trained on learning
phase, and one trained on the learned phase. Both classifiers were
tested against learning and learned test trials. Performances are
compared (paired t-test, @ = p < 0.05).
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Differences between the temporal latent sources of the learning
and learned phases of the paradigm were quantified by non-parametric
cluster statistics in terms of F-values. The similarity across spectral
patterns was quantified in terms of scalar product among spatial
patterns coefficients.

The code is available at: https://github.com/1101AlexZab1011/
FingerMovementDecoder

3 Results
3.1 Behavioral performance

We first quantified behavioral responses across the 12 blocks of
our experimental design. No significant differences in accuracy (1st
vs. 12th block, paired t-test, p = 0.80) were found, which was on
average 97.48 + 2.51% (Figure 3A). The profile of the response times

10.3389/fnins.2025.1623380

mirrored the learning effect, with slowest responses in the first blocks
and fastest responses in the last blocks of the experimental paradigm.
We observed faster reaction times for blocks 8-12 compared to block
1 (Figure 3B) and in block 12 compared with block 1-5 (Figure 3B;
Supplementary Table SI).

From the results, we concluded that subjects were still in the
learning phase until the end of block 5, and that they might have
already learned the sequence by the start of block 8. To maximize the
separation between these two phases, we subsequently considered
Blocks 1-3 as the learning phase and Blocks 10-12 as the learned phase.

3.2 Left vs. right-hand movement decoding

We validated the performance of LF-CNN on the laterality of the
button press, between left- and right-hand side. Across participants,
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FIGURE 3
Behavioral performance in the SRTT. (A) Mean accuracy and (B) mean reaction times across subjects for each of the 12 blocks. Upper line: paired t-test
results between 1st block and all the others. Bottom line: paired t-test results between 12th block and all the previous. *p < 0.05 and **p < 0.01.
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the average performance of LF-CNN was above 95% (98.5 £ 1.2%).
Typical patterns for the spatial, spectral and temporal filters optimized
by the LF-CNN are depicted in Figure 4. The first layer of LF-CNN
returns spatial patterns with focal maxima in central areas (Figure 4A),
therefore mirroring the relevance of motor activity. The second layer
of LE-CNN returns time-frequency power patterns (Figure 4B), with
modulations in alpha (8-15Hz), beta (15-30 Hz) and gamma
(>30 Hz) bands around the button press (t = 0) (Mohseni et al., 2020).
Interestingly, the spectral properties of the temporal filter extracted
from the second layer (Figure 4C, green trace) shows the prominent
contribution of low frequency power. Therefore, the LF-CNN not only
provides high classification performance, but also returns
physiologically interpretable patterns in spatial, temporal and
spectral domains.

3.3 Four finger movement decoding

Next, we validated the LF-CNN on the classification of four finger
movements. We obtained a test classification accuracy of 82.0 + 0.3%,
which was in range with the performance of more complex
architecture as FBCSP ShallowNet, EEGNet and Vggl19 (Table 1).

Importantly, given the simpler architecture and the lower number
of parameters to train, LF-CNN reached this level of accuracy in a
runtime which was one order magnitude faster than FBSCP and
around two orders of magnitude faster than Vggl9. Interestingly, the
runtime was also superior to EEGNet, despite the comparable number
of parameters to be trained. Runtimes reported here were evaluated

10.3389/fnins.2025.1623380

on a Workstation, operative system Ubuntu 22.04.1 LTS, Processor
Intel@ Xeon(R) CPU 2.10 GHz, RAM 128 GB.

We controlled for the distribution of misclassified trials reporting
the performance in a confusion matrix (Table 2), which shows that the
tendency to misclassify one finger with the ipsilateral finger is higher
than with a contralateral finger. Beside the highly overlapping
anatomical representation of ipsilateral fingers (Beisteiner et al., 2001;
Liao et al., 2014), the correct performance holds stable at or above
80%, with chance level at 25% for the four fingers and at 50% for the
ipsilateral hand.

The LE-CNN decoder provides physiologically interpretable spatial,
temporal and spectral patterns. LF-CNN first layer returns spatial
patterns with highest values over central areas (Figure 5A), while the
second layer shows marked power modulation in the alpha and beta
range (Figure 5B) and a temporal filter response with a low-pass spectral
profile (Figure 5C). We performed an ablation study by systematically
suppressing the contribution of spatial, temporal and fully connected
layers. This revealed a prominent role of the spatial and fully connected
layer (Supplementary Table S9). We tested the relevance of low
frequencies for decoding high-pass filtering the data at 5Hz, and
observed a decrease in the LF-CNN accuracy to 0.64 (+ 0.03). We tested
the temporal sensitivity of the decoding and observed maximal
performance for a 300 ms window centered at 50 ms after the button
press (accuracy 78.67 +5.53%, Supplementary Figure S1). As an
additional control, we also trained LF-CNN for classification of finger
movements within the left hand and within the right hand. These models
provided an accuracy 77.95 + 5.06% for within left-hand movements
82.88 + 5.19% for within right-hand movements (Figure 6).

A subject 1, component 2 subject 2, component 1 subject 3, component 2
1.0
B ~ 60 60 60
z 0.8y,
z 03
g 40 40 40 B
3 0.4g
g 2 - - 20 . 20 g
r 0.2
| —
o — — . o o 0.0
-0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
Time (s) Time (s) Time (s)
E—— [ - [ e
06 08 1.0 12 14 16 06 08 1.0 12 14 16 06 08 10 12 14 16
10 —— Filter input 10 —— Filter input 10 —— Filter input
8 —— Filter output 8 —— Filter output 8 —— Filter output
C % —— Filter response % —— Filter response % —— Filter response
3 6 3 6 3 6
£ £ £
B, H £,
< 2 < < 2
0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Frequency (Hz) Frequency (Hz) Frequency (Hz)
FIGURE 4
Example of spatial temporal and spectral patterns for left- vs. right-hand movement decoding. Each column is a representative component of the
LF-CNN featuring: (A) spatial patterns; (B) latent sources: time resolved average (gray line) and average of the single trial time frequency representation
obtained with Morlet complex wavelet (background). Time = O indicates response time; (C) FIR filter input (blue), filter response (green), and filter
output (orange).
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3.4 MEG—cognitive status

The SRTT is designed to induce sequence learning, with the
motor planning strategy changing between the early and later blocks
of the experiment. To evaluate the effect of learning on the decoding
performance, we generated two sets of models, one trained on the
learning phase (blocks 1-3) and one on learned phase (blocks 10-12,
see 3.1). We then tested these two sets of models on test data from
both phases.

In the finger movement decoding, both models performed better
on test trials extracted from within the same phase (learning or
learned) used for model training (Figure 7). The effect of phase on
decoding was less visible in the hand decoding. For decoding within
the same hand, we observed a significant phase effect for the right but
not left-hand.

To explain the difference in decoding performance, we investigated
the difference in latent sources obtained by feeding trials from the
learning phase and the learned phase of the SRTT to the four-finger
decoder trained on learning phase. Figure 8A shows the comparison
between the obtained latent sources over time. Across subjects, only a
minor number of temporal latent sources showed significant
difference (range 1 to 4 out of 32 estimated components in each
subject). In those components showing difference in the temporal
trend, the spatial pattern was highly similar as shown by the scalar
product in the inset of Figure 8A, and in the distribution of the scalar
product computed for all significant clusters in Figure 8B. The

TABLE 1 Performance (test accuracy), runtime (training, validation and
testing for all subjects, in seconds) and number of parameters for
comparative deep-learning approaches for the decoding of finger
movement in a motor sequence learning task.

Subjects LFCNN FBCSP EEGNet VGG19
1 0.79 0.79 0.80 0.78

2 0.85 0.82 0.83 0.84

3 0.81 0.79 0.84 0.83

4 0.88 0.87 0.90 0.91

5 0.85 0.79 0.83 0.81

6 0.81 0.79 0.84 0.79

7 0.86 0.84 0.85 0.90

8 0.81 0.76 0.83 0.86
Accuracy 0.83 +£0.03 0.81+0.03 0.84 +0.03 0.84 +0.05
Runtime 20+ 1.35 126.69 + 5.48 57.22 +6.04 1,307 +19.4
n_params 17,092 216,452 14,268 1,072,356

Additional performance metric and comparative statistics are provided in
Supplementary Tables S4-S6.

TABLE 2 Confusion matrix for four finger movement decoding by LF-CNN.

10.3389/fnins.2025.1623380

difference in the temporal latent sources obtained injecting data from
the learning vs. learned phases was distributed mostly in the - 200 to
+ 200 ms interval around button press (Figure 8C: two curves for two
decoders trained on the learning and learned phases). Therefore, the
difference in the properties of the decoders were minimal, distributed
on different components, and variable across individuals.

4 Discussion

In this study, we showed that it was possible to reliably decode
finger movements from non-invasive neurophysiological data in
healthy participants performing the SRTT, operationalized as a motor
learning task. Through our compact deep learning model, the
LF-CNN, we
physiologically interpretable results.

showcased high classification accuracy and

The LE-CNN accuracy performance was comparable to that of
more complex deep learning architectures, with significantly reduced
training time. This was due to a lower number of parameters to
be optimized (Schirrmeister et al., 2017; Simonyan and Zisserman,
2015) and without the need of a dense layer, thus reducing time-
consuming convolutions (Lawhern et al., 2018). Specifically, the
LF-CNN was able to decode dynamically changing spatio-temporal
parameters in approximately 20 s compared to almost 60 s of EEGNet
(Table 1). This decoding efficiency and performance gain can improve
the timing of essential information in applied rehabilitation situations,
whereby feedback on cortical contributions to motor learning is
essential. In the next sections, we go into the details of the decoding
structure from our model and their role in understanding of motor
and cognitive processing.

4.1 Finger movement decoding and motor
learning

In the current study, the LE-CNN approach appears to utilize both
spatial and temporal filters, represented by the weights of the trained
network layers, to support the decoding of finger movements. While
these weights may not directly reflect neural activity (Haufe et al.,
2014; Petrosyan et al., 2021), they can offer insights into the underlying
signal structure. The resulting patterns may inform a generative model
that characterizes the potential relationship between sensor-level
recordings and neural sources (Cui et al., 2022; Petrosyan et al., 2021).

The first convolutional layer applies spatial filters across the
MEG sensor array, performing a one-dimensional convolution to
project the high-dimensional MEG signals into a lower-dimensional
latent space. This projection captures dominant spatial features
related to neural sources, significantly reducing the complexity of

Predicted RM Predicted RI Predicted LM Predicted LI
Actual RM 83 (7) 19 (4) 1(1) 1(1)
Actual RT 14 (8) 83 (5) 1(1) 2(1)
Actual LM 1(1) 1(1) 86 (7) 12 (4)
Actual LT 4(1) 4(1) 13 (6) 82 (4)

Predictions (%) as average (standard deviation) across all eight participants. RM, right middle, RI, right index, LM, left middle, LI, left index.
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significant difference; *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001.

the data while preserving key information. Notably, the spatial
patterns revealed prominent activity in sensorimotor cortices, areas
known to be critical for motor planning and execution (Cheyne,
2013; Pfurtscheller and Lopes da Silva, 1999). These regions
exhibited (ERS)
desynchronization (ERD) in the alpha and beta frequency bands

event-related  synchronization and
that are well-established markers of motor preparation and
execution (Kilavik et al., 2013; Pfurtscheller and Neuper, 2003).

The second convolutional layer uses temporal filters that behave
like univariate autoregressive (AR) models, allowing for direct
interpretation in the frequency domain. These temporal filters
decompose the signal into oscillatory components, forming spectral
patterns that reflect the dynamics of brain rhythms associated with
motor control. The learned filters predominantly exhibited low-pass
characteristics, emphasizing slow oscillations (<30 Hz) that have been
repeatedly implicated in motor behavior and skill acquisition (Engel
and Fries, 2010; Tan et al., 2016).

Our key contribution of this study is the ability to distinguish
movements of the ipsilateral index and middle fingers with a mean
classification accuracy of 82%, that is performing as well as current
popular CNNs with a significant reduction of computation time. Early
work demonstrated somatotopic segregation of individual fingers in
the somatosensory cortex (Kleinschmidt et al., 1997), a finding later
refined through modelling approaches using Gaussian receptive fields
(Schellekens et al., 2018). Invasive recordings using ECoG revealed

Frontiers in Neuroscience 10

distinct broadband spectral patterns for individual finger movements
and movement trajectories (Miller et al., 2009), leading to highly
accurate finger decoding for prosthetic control (up to 92%; see Hotson
et al. (2016)). However, translating these results to non-invasive
modalities like EEG and MEG typically reduces classification
performance (Liao et al., 2014). Still, notable progress has been made:
Quandt et al. (2012) initiated non-invasive finger decoding efforts,
while more recent approaches, such as wavelet-based feature
extraction with SVM-RBF classifiers (Alazrai et al, 2019) and
optimized channel selection strategies (Gannouni et al., 2020) have
achieved accuracies around 81-86% for finger classification. Our
findings build on this momentum, demonstrating robust decoding of
fine motor learning that dynamically progresses in a non-invasive
MEG setting.

Our decoding results also showed higher accuracy when using
broadband MEG data compared to focusing solely on the alpha/
beta range, which are considered the prominent motor-related
frequency bands. Notably, restricting analysis to alpha and beta
bands did not improve performance. This aligns with prior findings
showing that broadband features outperform narrowband (alpha/
beta) approaches in non-invasive settings (Lee et al., 2022; Liao
et al., 2014; Quandt et al., 2012). While some studies using alpha/
beta power achieved moderate accuracy (Alazrai et al., 2019;
Gannouni et al., 2020), broadband analysis consistently yielded
better results, including in the present work. These findings suggest

frontiersin.org


https://doi.org/10.3389/fnins.2025.1623380
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Zabolotniy et al.

10.3389/fnins.2025.1623380

w
o

Component
N
o

—
o

0.6
0.4
0.2
0.0
-0.2
-0.4

Learned

Learning

30

20

Counts #

0;4 0.6 0.7

Scalar product value

0.8 0.9

1.0

FIGURE 8

0.0
Time (s)

C 0.100

Difference in decoding models built from the learning and learned phases of the SRTT paradigm. (A) A representative example of the differences
(F-values) between the temporal latent sources obtained by feeding a decoder trained on blocks 1-3 with data from blocks 1-3, and temporal sources
obtained by feeding the same decoder trained on blocks 1-3 with data from blocks 10—-12. Significant differences surviving non-parametric cluster
permutation test are highlighted and spatial patterns topographies are shown (the scalar product between the spatial patterns measures their
similarity). (B) Scalar product of spatial patterns of significant clusters obtained from the difference between the latent temporal sources of the learning
(block 1-3) and learned (block 10-12) phases of the SRTT paradigm, obtained using both the decoders trained on learning (block 1-3) and learned
(block 10-12) phases (x-axis: scalar product value: y-axis: count of scalar products for each bin). (C) Percentage of statistically significant differences in
the temporal pattern of the 32 latent sources for models trained during the learning (black) and learned (gray) phase.

0.4

Learned

Learning

0.2

0.943

—— Learning
M -
A
—0.4 0.2

0?0 012 0i4
Time (s)

0.0

ity

0.075

0.050

Probabil

0.025

0.000

that low-frequency broadband activity captures richer, spatially
localized information relevant to finger motor planning
and execution.

Previous approaches (Alazrai et al., 2019; Gannouni et al., 2020;
Lee et al., 2022; Quandt et al., 2012) typically employ a two-step
pipeline: feature preselection followed by classification using
standard machine learning algorithms. However, these methods
often lack physiological interpretability of the selected features,
potentially limiting their insight into neural processes. In contrast,
our model learns spatial and temporal (spectral) features directly
from the data, producing interpretable patterns that reflect
underlying neural activity. More broadly, this approach could
extend to decoding more complex motor tasks, such as wrist
extension/flexion (Vuckovic and Sepulveda, 2008), differentiation
of thumb, fist, and individual finger movements (Javed et al., 2017),
or distinguishing grasp types like palmar, lateral, and pinch
(Jochumsen et al., 2016). Enhancing finger decoding could also
benefit BCI applications focused on movement trajectories like 2D
finger pointing (Toda et al., 2011) to 3D hand movements (Korik
et al., 2018). This could lay the groundwork for precise kinematic
decoding of speed, velocity, and complex tasks like center-out
reaching or drawing (Bradberry et al., 2009; Kobler et al., 2019; Lv
et al,, 2010) could be extended to neuroprosthetics.
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4.2 Sensitivity to the cognitive state
changes and implications for future work

Although deep learning methods typically require large datasets,
our study demonstrates that LF-CNN can achieve high classification
accuracy even with a limited number of trials. Notably, the model
was sensitive to learning-related changes within the SRTT paradigm.
By comparing decoder patterns between the early learning and later
learned phases, we investigated intra-subject variability, with
minimal differences in latent sources and spatial distribution. On
the other hand, the high performance for each individual and the

>

low level of generalization across subjects highlights the model’s
ability to capture subject-specific neural dynamics associated with
motor learning. This underscores the model’s capacity to detect
subtle, individualized changes in brain activity, which is an essential
feature for probing the neurophysiological mechanisms of learning
and behavior. Moreover, its sensitivity suggests strong potential for
broader applications in identifying context-specific variations in
neural activity. This study represents a stride towards the
development of adaptive algorithmic approaches for tackling
intricate decoding challenges and elucidating the neurophysiological
mechanisms of associated cognitive processes in complex motor
tasks. The combination of spatial and spectral patterns supports a
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data-driven decoding model that captures how different brain
rhythms and regions contribute to motor performance.

In the context of motor learning, this decoding approach may
offer several valuable perspectives. For instance, as individuals acquire
or refine motor skills, changes in the spatial distribution and strength
of ERD/ERS patterns have been observed, potentially reflecting
cortical reorganization (Brunner et al., 2024; Dayan and Cohen, 2011).
The LF-CNN may be sensitive to such shifts in spatial representations,
as suggested by the low level of generalization across subjects
(Supplementary Table S8). While this accounts for subject specific
distribution of the motor signaling detectable through MEG, it also
provides insight into learning-related changes in the cortex (Borras
et al., 2025). Secondly, by identifying task-relevant and isolating
specific frequency bands frequencies that improve movement
decoding, the model reveals the rhythmic components most involved
in motor learning (e.g., increased beta-band desynchronization during
skilled performance). Thirdly, the decoding accuracy of motor-related
states can serve as a proxy for monitoring learning progress and
changes in cognitive states. As a subject becomes more proficient, the
model’s ability to distinguish motor intentions or executions may
improve, reflecting more robust and consistent neural representations.
Lastly, the extracted spatial and spectral patterns can inform
neurofeedback or brain-computer interface (BCI) applications aimed
at enhancing motor learning by setting neurofeedback targets
alongside timely feedback (Soekadar et al., 2015; Vidaurre et al., 2011).

Ultimately, the model’s sensitivity to neurophysiological variations
holds promising implications for neurorehabilitation, which could
be tested in stroke recovery. Fine motor impairments are common after
stroke, with tools like the 9-Hole Peg Test routinely used to assess motor
coordination (Oxford Grice et al., 2003). The ability to decode specific
finger movements enables objective, real-time monitoring of recovery
progress (Guger et al., 2017; Khan et al., 2020). Previous studies have
shown the effectiveness of BCI-driven interventions in improving motor
control in stroke patients (Ramos-Murguialday et al., 2013; Romero-
Laiseca et al., 2020). For example, detecting neural activation associated
with index and middle finger movements may indicate cortical-level
recovery, even in the absence of overt motion. Repeated engagement of
these neural patterns over time could signal positive trends in fine motor
function and the prediction of motor kinematics with CNNs (Borra
etal., 2023). Furthermore, accurate decoding of finger movements can
support the precise control of prosthetic devices like enabling pinch or
grasp functions (Jain and Kumar, 2025) and thereby providing a valuable
tool for restoring functional independence in stroke patients. These
findings align with our approach, which provides a promising avenue
for enhancing neurorehabilitation through precise neural decoding and
motor control (Tian et al., 2025).

5 Summary

We used a physiologically interpretable convolutional neural
network (LF-CNN) to decode motor finger movements during the
learning of the Sequential Reaction Time Task (SRTT), where
participants pressed specific buttons in response to visual cues
showing a repeating sequence. The LF-CNN effectively identified
distinct activation patterns across spatial, temporal, and spectral
domains. Compared to more complex models, it offered a notable
advantage in computational efficiency, with significantly reduced
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runtime, while maintaining interpretability of learned weights.
Importantly, the LF-CNN was sensitive to different stages of motor
learning, enabling individualized monitoring of learning dynamics for
diagnostic purposes. In conclusion, the LF-CNN enables a principled
decomposition of MEG signals into spatial and temporal components
that are both interpretable and behaviorally relevant. This approach
not only enhances decoding performance but also offers a powerful
framework for investigating the neural basis of motor learning.
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