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Alzheimer’s Disease (AD), a leading neurodegenerative disorder, presents

significant global health challenges. Advances in graph neural networks (GNNs)

o�er promising tools for analyzingmultimodal neuroimaging data to improve AD

diagnosis. This review provides a comprehensive overview of GNN applications

in AD diagnosis, focusing on data sources, modalities, sample sizes, classification

tasks, and diagnostic performance. Drawing on extensive literature searches

across PubMed, IEEE Xplorer, Scopus, and Springer, we analyze key GNN

frameworks and critically evaluate their limitations, challenges, and opportunities

for improvement. In addition, we present a comparative analysis to evaluate the

generalizability and robustness of GNN methods across di�erent datasets, such

as ADNI, OASIS, TADPOLE, UK Biobank, in-house, etc. Furthermore, we provide

a critical methodological comparison across families of GNN architectures (i.e.,

GCN, ChebNet, GraphSAGE, GAT, GIN, etc.) in the context of AD. Finally, we

outline future research directions to refine GNN-based diagnostic methods and

highlight their potential role in advancing AI-driven neuroimaging solutions. Our

findings aim to foster the integration of AI technologies in neurodegenerative

disease research and clinical practice.
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1 Introduction

Neurodegenerative disorders (NDDs), such as Alzheimer’s disease (AD), represent

a significant global public health challenge. AD is a progressive condition, due

to the presence of a progressive accumulation of misfolded proteins, that disrupts

individuals’ daily functioning, with hallmark symptoms including cognitive decline,

memory impairment, and emotional instability (Zhang et al., 2023e; Liu et al., 2023a;

Association et al., 2020; Zhang et al., 2023d). As the most common form of irreversible

dementia, AD predominantly affects individuals over the age of 65. Its diagnosis remains

challenging due to the multiple causes of dementia beyond AD (Tăuţan et al., 2021).
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From a clinical point of view, AD subjects can present in

the dementia phase (i.e., with significant cognitive deficits that

impact daily activities) or in the mild cognitive impairment (MCI)

phase (i.e., with subtle cognitive deficits that do not impact daily

activities). Subjects with MCI often progress to over dementia,

with studies of subjects in the AD continuum estimating that over

half of MCI cases advance to dementia during clinical observation

(Zhang et al., 2023e; Liu et al., 2023a; Association et al., 2020; Zhang

et al., 2023d). Early and accurate diagnosis of AD, especially at the

MCI stage, is crucial for timely interventions and improved patient

outcomes.

AD diagnosis traditionally involves clinical examinations,

behavioral assessments, fluid biomarkers, and neuroimaging

techniques. Advances in neuroimagingmodalities such as magnetic

resonance imaging (MRI), diffusion tensor imaging (DTI),

functional MRI (fMRI), and positron emission tomography

(PET) have significantly enhanced the potential for accurate

screening, diagnosis, and prognosis (Kipf and Welling, 2016; Zhou

et al., 2022a). More recently, the integration of deep learning

(DL) techniques with neuroimaging data has demonstrated

considerable promise in improving diagnostic precision (Meng

and Zhang, 2023). Computer-aided diagnostic (CAD) systems

leveraging neuroimaging and DL methods have gained attention

for their ability to assist in AD detection (Zhou et al., 2022a).

Traditional DL architectures, such as multilayer perceptron (MLP),

convolutional neural networks (CNNs), and recurrent neural

networks (RNNs), have been applied to analyze disorders linked

to cognitive decline (Zong and Wang, 2023). While CNNs are

frequently employed in CAD systems, they encounter significant

challenges in handling multimodal neuroimaging data. These

limitations include their inability to account for inter-subject

correlations, limited interpretability when integrating multimodal

data, and requirements for uniform input dimensions across

channels (Zhang et al., 2023e). Furthermore, since AD leads

to structural and functional changes in brain connectivity,

conventional DL approaches like CNNs struggle to effectively

capture the network-like properties of brain data. Graph-based

methods have been introduced to address these challenges by

modeling brain connectivity, subnetworks, and local interactions in

a more biologically relevant manner (Pasquini et al., 2015). These

approaches provide a pathway to better understand the intricate

dynamics underlying AD progression and may overcome some

limitations of traditional DL models.

Graph neural networks (GNNs) extend convolutional neural

networks (CNNs) to non-Euclidean domains by incorporating

graph structures and propagating information between connected

nodes (Zhang et al., 2023e; Kipf and Welling, 2016). This

capability makes GNNs particularly suitable for applications such

as AD diagnosis, where data often include complex multimodal

relationships. GNNs support two primary approaches for graph-

based representation in neuroimaging studies: (1) subject-level

graphs, where brain regions of interest (ROIs) are treated as

nodes, and the structural or functional connectivity between brain

ROIs are represented as edges; and (2) population graphs, where

individual subjects serve as nodes, and edges encode relationships

based on demographic data, imaging modalities or other features

such as genetic or behavioral similarities (Tekkesinoglu and

Pudas, 2024; Zhou et al., 2020). Among GNN variants, graph

convolutional networks (GCNs) have been widely employed

for medical applications (Zhang et al., 2023b). GCNs operate

directly on graph data, leveraging the topological and relational

information within the graph structure (Zhang et al., 2023e;

Kipf and Welling, 2016). For instance, in subject-level graphs,

nodes represent brain ROIs, while edges capture anatomical or

functional connectivity. GCNs aggregate and filter features from

neighboring nodes, thereby generating enriched node-level feature

representations that enhance disease prediction and support graph-

level analyses (Parisot et al., 2018). This ability to integrate and

process multimodal information within a flexible graph framework

positions GNNs as a powerful tool for advancing our understanding

of complex conditions like AD.

While several reviews have discussed the role of GNNs

in disease diagnosis, their specific applications in AD remain

underexplored. For instance, Ahmedt-Aristizabal et al. (2021)

reviewed GNNs for general disease diagnosis, while Zhang et al.

(2023c) examined their use in brain imaging for neurodegenerative

disorders. Similarly, Zhang et al. (2023b) provided a systematic

review of GNN-based approaches for image-guided diagnosis.

Despite these efforts, existing reviews often lack in-depth analysis

of GNN applications that integrate multimodal neuroimaging

data, an essential aspect for accurate early diagnosis of AD. In

addition, recent advances in GNN methods and their advantages

over traditional unimodal approaches are underrepresented in

these discussions. This review aims to address these gaps by

offering a comprehensive overview of GNN applications for the

diagnosis of AD, with a particular emphasis on unimodal and

multimodal neuroimaging advances in the domain of AD. The

analysis highlights the potential benefits of multimodal approaches

compared to unimodal techniques, with the aim of demonstrating

how GNN can provide novel insights and improve diagnostic

outcomes in AD research.

The rest of this review article is organized as follows: Section

2 outlines the methodology, detailing the literature search strategy

and publication selection process. Section 3 provides an overview

of GNNs and their framework in the context of AD diagnosis.

Section 4 presents a detailed review of GNN applications for AD

diagnosis, with comparisons between unimodal and multimodal

data approaches. Section 5 discusses the key challenges, limitations,

and potential future directions in GNN research for AD. Finally,

our conclusions are offered in Section 6.

2 Methodology

2.1 Data sources and literature search
queries

We conducted an extensive search across databases, such as

PubMed, Science Direct, Scopus, and IEEE Xplore in August 2024

to identify high-quality, highly cited studies using GNNs and

neuroimaging for AD diagnosis and prediction. Our search focused

on original research publications that employed graph neural

network methodologies for neuroimaging-based AD diagnosis. To

ensure relevant results, we used carefully selected keywords and

search queries (SQs), including:
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• SQ-1: (Alzheimer’s disease) AND (Multimodal data) AND

(Graph Neural Network)).

• SQ-2: (Alzheimer’s disease) AND (Neuroimaging) AND

(Graph Neural Network)).

• SQ-3: (Alzheimer’s disease) AND (Multimodal data) AND

(Brain connectivity) AND (Deep Learning).

• SQ-4: (Alzheimer’s disease) AND (Graph Neural Network)

AND ((MRI) OR (fMRI) OR (DTI) OR (PET)).

We also used “graph convolutional network” as an alternative to

“graph neural network,” and considered common abbreviations

such as “DL” for “deep learning” and the full names for imaging

modalities such as MRI, DTI, fMRI, and PET.

As a result, a total of 1,748 publications have been retrieved

from the aforementioned databases using these SQs. Figure 1

illustrates the year-wise distribution of publications obtained from

these databases by applying SQ-1 to SQ-4.

2.2 Publication selection process

The initial database search yielded numerous duplicate and

irrelevant publications. To refine the selection process for this

study, we established specific inclusion and exclusion criteria aimed

at retaining only relevant studies. Publications that did not meet

these criteria were excluded, leading to the identification of the

most pertinent studies, as outlined in the flowchart in Figure 2.

Exclusion criteria (screening):

i. Duplicate publications retrieved from different databases.

ii. Publications in languages other than English.

iii. Publications published before 2018.

iv. Conference abstracts, surveys, reviews, and theses.

v. Publications unrelated to the application of GNN methods in

AD diagnosis.

vi. Publications lacking sufficient detail on GNN models, such as

training procedures, architecture, or evaluation criteria applied

to AD diagnosis.

Inclusion criteria (methodological assessment):

i. Full-text publications only.

ii. Publications focusing on AD diagnosis using GNNs.

iii. Publications utilizing neuroimaging data.

iv. Publications addressing the interpretability and explainability of

GNNs.

v. Publications identified through snowball searches and cross-

referencing.

Figure 1 depicts the comprehensive search process across

databases and search engines, which identified a total of 1,748

publications. Figure 2 outlines the subsequent steps of screening,

methodological assessments, cross-referencing, and snowball

searches, which resulted in the inclusion of 73 publications for

in-depth review, each reporting on the use of GNN methods

combined with neuroimaging data to diagnose AD and monitor its

progression. All selected publications were thoroughly examined,

with data extracted and analyzed to provide an overall picture

of the reviewed studies (Tables 1, 2). The extracted information

included references, publication years, data sources (i.e., databases),

number of subjects, subject distribution, specific modalities, and

AD classification (binary or multilevel), providing a structured

overview of the collected data.

3 Graph neural networks

This section provides a comprehensive overview of the

fundamental background of GNNs, including their key

components, framework, and taxonomy.

3.1 Overview

GNNs are a sophisticated branch of artificial neural networks

specifically designed to handle data organized in graph structures.

A graph is a mathematical representation of pairwise associations

between entities, comprising a set of nodes V and edges E, denoted

mathematically asG = (V ,E). Nodes represent entities, while edges

signify the relationships between them. The foundational concepts

behind GNNs were inspired by early research that applied neural

networks to directed acyclic graphs (Sperduti and Starita, 1997).

Building on this, Gori et al. (2005) formally introduced GNNs,

emphasizing the natural graphical representation of information.

They argued for the necessity of models capable of processing

graph-structured data directly. Subsequent studies by Scarselli et al.

(2008); Gallicchio and Micheli (2010) demonstrated that GNNs

could achieve significantly better performances than traditional

ML and DL methods by iteratively leveraging graph topological

information. These investigations are classified as recurrent GNNs

(R-GNNs), which propagate neighbor information iteratively until

achieving a stable representation of a target node. However, the

computational cost associated with this process is substantial,

leading to ongoing efforts to mitigate these challenges (Li et al.,

2015; Dai et al., 2018). A defining characteristic of GNNs is their

capability to perform operations on non-Euclidean data, which

is particularly beneficial for tasks involving intricate relational

structures. In contrast, traditional ML and DL methods are

primarily designed for Euclidean data formats, such as images or

sequential text, making them less effective for graph-structured

data. GNNs address this limitation by employing local message

aggregation and propagation across edges, enabling nodes to

systematically gather information from their neighbors and refine

their representations (Zhou et al., 2020). This ability to capture both

local structures and global features allows GNNs to learn effectively

from graph-structured data. Furthermore, GNN methods generate

vector representations that encapsulate network topology and

node features (Li M. et al., 2021), enhancing their effectiveness

in processing graph-organized data. The high-level processes

of message aggregation and propagation used to update node

representations are illustrated in Figure 3.

Inspired by the success of Convolutional Neural Networks

(CNNs) in computer vision, researchers have developed various

approaches that redefine convolution for graph data. These

methods are categorized as convolutional GNNs (ConvGNNs) or

Graph Convolutional Networks (GCNs), which will be referenced

later in this review. Following this trend, several variants of GNN
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FIGURE 1

Article retrieved from di�erent databases and sources.

FIGURE 2

The flowchart of the publication selection process.
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TABLE 1 Summary of key findings of the papers using GNNs and Unimodal biomarkers for AD diagnosis.

Sr. Article Year Database
(size)

Modalities Subjects GNN
Architecture

Classification Accuracy (%)

NC MCI AD FE-Graph
Convolution
(Pooling)

NC/AD sMCI/
pMCI

NC/
MCI

MCI/AD Multilevel

1 (Wee et al.,

2019)

2019 ADNI-1

(1012)

MRI 242 415 355 Spectral-ChebNet

(Global Average

Pooling)

85.8 60.9cc 69.3ca ,

51.8cb
79.2cd ,

65.2ce
–

ADNI-2

(1083)

300 314/218db 261

in-house (347) 176 128 43

2 (Kim et al.,

2021)

2021 ADNI (806) MRI 266 312 228 Spectral-GCN +

Temporal LSTM

(Global Average

Pooling)

– – – 53.5 –

3 (Zhu et al.,

2022b)

2022 ADNI (202) MRI 52 56/43da 51 Spectral-GCN (–) – – – – 96

4 (Fan et al.,

2022)

2022 ADNI (1,253) MRI 330 296/248da 336 Spatial-Other

(Global

Summation

Pooling)

89.0ba 71.90ba – – 53.74

OASIS (193) 93 – 100 67.22ba – – – –

NIFD (327) 114 – 213 83.27ba – – – –

5 (Peng et al.,

2022)

2022 ADNI (911) MRI – 536 375 Spectral-GCN (–) – – – 75.8 –

6 (Zhang et al.,

2023a)

2023 ADNI (1,644) MRI 459 768 417 Spectral-GCN (–) 92.57 – 73.77 – 63.23

7 (Fan et al.,

2023)

2023 ADNI (666) MRI 330 – 336 Spectral-Other

(–)

86.20∗ – – – –

8 (Aafiya and

Jeyachidra,

2024)

2024 Kaggle MRI – – – Spectral-GCN (–) 96.18 – – – –

9 (Liu et al.,

2024)

2024 ADNI (107) MRI 48 – 59 Spectral GCN

(Global Average

Pooling)

89.76 – – – –

10 (Hao et al.,

2024)

2024 ADNI (518) MRI 170 125 223 Spectral GCN (–) 90.18 – 76.1 84.07 –

(Continued)
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TABLE 1 (Continued)

Sr. Article Year Database
(size)

Modalities Subjects GNN
Architecture

Classification Accuracy (%)

NC MCI AD FE-Graph
Convolution
(Pooling)

NC/AD sMCI/
pMCI

NC/
MCI

MCI/AD Multilevel

11 (Ktena et al.,

2018)

2018 UK Biobank

(500)

fMRI – – – Spectral-ChebNet

(global

summation

pooling)

– – 70.4 – –

12 (Zhao et al.,

2019)

2019 ADNI (184) rs-fMRI 67 77/40db – Spectral-Other

(–)

– 85.6cc 78.4ca ,

84.3cb
– –

13 (Liu X. et al.,

2020)

2020 ADNI (133) rs-fMRI – 99 34 Spectral-GCN (–) – – – 77.2 –

14 (Yao et al.,

2021)

2021 ADNI (367) fMRI 179 191 – MultiGraph-GCN

(–)

– – 83.4 – –

15 (Gu et al.,

2021)

2021 ADNI (311) fMRI 106 95 110 Spectral-GCN (–) 89.9 – 88.9 94.7 –

16 (Lee et al.,

2021)

2021 ADNI (101) fMRI 48 53dc – Spectral-GCN

(Global

Maximum

Pooling)

– – 74.42ca – –

17 (Kumar et al.,

2022)

2022 ADNI (189) fMRI 52 59/45db 33 Spectral-ChebNet

(–)

– – – 81.8 –

18 (Wang X.

et al., 2023)

2023 OASIS (1,000) fMRI 484 – 516 ST-Other (Global

Maximum

Pooling)

99.16 – – – –

19 (Tang et al.,

2022)

2022 OASIS (1,326) fMRI – – – Spectral-GCN

(Hierarchical

TopK Pooling)

77.51 – – – –

20 (Mei et al.,

2022)

2022 ADNI (483) fMRI 565 345dc – Spectral-GCN

(Hierarchical Diff

Pooling)

– – 73.37ca – –

21 (Wen et al.,

2022)

2022 ADNI (133) rs-fMRI – 99 34 Spectral-GCN

(Hierarchical

Eigen Pooling)

– – – 69.38 –

(Continued)
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TABLE 1 (Continued)

Sr. Article Year Database
(size)

Modalities Subjects GNN
Architecture

Classification Accuracy (%)

NC MCI AD FE-Graph
Convolution
(Pooling)

NC/AD sMCI/
pMCI

NC/
MCI

MCI/AD Multilevel

22 (Qin et al.,

2022)

2022 ADNI (91) rs-fMRI 47 – 44 Spectral-GCN

(Global Average

Pooling)

83.3 – – – –

23 (Liu et al.,

2023b)

2023 ADNI, OASIS,

ABIDE,

in-house

(4410)

fMRI 2512 – 1,898dm Spectral-GCN (–) 71.3 – – – –

24 (Zuo and

Kamata, 2023)

2023 ADNI (72) fMRI 30 26 16 Spectral-GCN (–) 80 – – – 71.43

25 (Liu et al.,

2023c)

2023 ADNI (635) fMRI 366 269 – Spectral-GCN (–) – – 73.54 – –

26 (Wang Z.

et al., 2023)

2023 ADNI (330) fMRI 185 – 118 Spatial-GIN

(Global Pooling)

90.44 – – – –

27 (Liu et al.,

2023a)

2023 ADNI (531) rs-fMRI 364 117 50 ST-RNN

(Hierarchical

Pooling)

79.1 – – – –

OASIS (250) 207 – 43 88.9 – 78.6 – –

ABIDE (1011) 512 – 499 72.7 – – – –

28 (Cui et al.,

2023)

2023 ADNI (442) rs-fMRI 154 168/120db – ST-Aggregated

Attention

Network (–)

– 90.3cc 90.1ca – 83.3ma

29 (Song et al.,

2019)

2019 ADNI (48) DTI 12 12/12db 12 Spectral-GCN (–) – – – – 89mb

30 (Guo et al.,

2019)

2019 ADNI (327) PETAV45 100 131/96db – Spectral-ChebNet

(hierarchical SAG

pooling)

– – 93.0ce – 77ma

31 (Li et al.,

2023c)

2023 ADNI (230) PETAV45, AV1451 113 117 – Spectral-other (–) – – 93.5 – –

32 (Cai et al.,

2023)

2023 ADNI (839) PETAV45 284 329/226db – Spectral-Other

(–)

– 69.5cc 64.7ca ,

75.1cb
– –

ADNI (1064) PETFDG 335 330/399db – – 67.5cc 63.9ca ,

67.0cb
– –
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architectures have emerged, including GCNs (Kipf and Welling,

2016), GraphSAGE (Hamilton et al., 2017), Graph Attention

Networks (GATs) (Veličković et al., 2017), and Graph Isomorphism

Networks (GINs) (Xu et al., 2018). Due to their ability to

extract features based on data structure and automate feature

extraction from raw inputs, GNN models have demonstrated

exceptional performance across various domains (Liu and Zhou,

2022; Vashishth et al., 2020; Kwak et al., 2020).

3.2 GNN procedure in the context of AD
diagnosis

The GNN framework typically consists of four key

computational modules: (i) graph construction, (ii) graph

convolution, (iii) graph pooling, and (iv) graph prediction. The

sunburst plot in Figure 4 illustrates the distribution of studies

regarding GNN components and techniques within the context

of AD diagnosis. The inner ring in the sunburst plot depicts the

key GNN framework components, the middle ring illustrates the

sub-methods or techniques associated with the key components of

GNN, while the outermost ring represents the specific techniques

used within each of the sub-methods or techniques.

3.2.1 Graph construction
Graph construction is the initial phase of the GNN framework,

involving the organization of data into a graph structure. Graphs

can be categorized into two types: (i) individual (subject-level)

graphs and (ii) population graphs. The following subsections

categorize studies based on graph construction methods for both

individual and population graphs.

Individual graph: Individual, or subject-level, graphs are

typically constructed using predefined atlases or templates applied

to neuroimaging scans. In these graphs, brain regions are

represented as nodes, and the edges denote measures of structural,

functional, or metabolic connectivity. Many studies (Ktena et al.,

2018; Gu et al., 2021; Mei et al., 2022; Cui et al., 2023; Tian et al.,

2023; Liu et al., 2023b; Wang Z. et al., 2023; Li et al., 2023c;

Qin et al., 2022) have employed Pearson correlation to define

connectivity, predominantly using fMRI data. Correlation distance

has also been widely adopted as an alternative metric for edge

construction, particularly in fMRI-based studies (Lee et al., 2021;

Li X. et al., 2021). In contrast, another significant research focus

involves building DTI-based connectivity networks utilizing fiber-

tracking techniques (Choi et al., 2022; Subaramya et al., 2022;

Chhabra et al., 2023), sometimes augmented with PET-derived

information (Li W. et al., 2022). Several studies have also explored

integrating multiple graph construction approaches (Yao et al.,

2021; Zhou et al., 2022b; Liu et al., 2023c; Zhou et al., 2022a;

Klepl et al., 2022; Fan et al., 2023). For example, Yao et al. (2021)

employed templates of varying resolution and combined Pearson

correlation with K-nearest neighbors (KNN), while Zhou et al.

(2022b) calculated intra-subject connectivity using KNN. Liu et al.

(2023c) proposed a two-phase strategy, constructing low- and high-

order graphs with attention mechanisms, and Zhou et al. (2022a)

integrated multimodal features into graph construction, with each
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TABLE 2 Summary of key findings of the papers using GNNs and multimodal biomarkers for AD diagnosis.

Sr. Article Year Database
(size)

Modalities Subjects GNN
architecture

Classification accuracy (%)

NC MCI AD FE-graph
convolution
(pooling)

NC/AD sMCI/
pMCI

NC/
MCI

MCI/AD Multilevel

1 (Parisot et al.,

2018)

2018 ADNI (540) MRI+phenotypic – 251 289 Spectral-ChebNet

(–)

– – – 80 –

2 (Yang et al.,

2023)

2023 TADPOLE

(603)

MRI+(sex) 211 320 72 Spatial-other

(global adaptive

pooling)

97.1 – 97.2 92.4 –

3 (Song et al.,

2021)

2021 TADPOLE

(551)

MRI+(apoe4,age,sex) – 315/236da – Spatial-

GraphSAGE

(–)

– 86.27 – – –

TADPOLE

(1,615)

413 865 337 – – – – 94.06

4 (Kim, 2023) 2023 ADNI (506) MRI+(apoe4, age,

sex, edu)

214 292 – Spectral-GCN (–) – – – – –

5 (Li et al.,

2023b)

2023 ADNI (502) MRI+MO 161 133/75da 133 Spatial-Other (–) 88 71.1 87.21 – –

6 (Yu et al.,

2019)

2019 ADNI (126) rs-fMRI+(age,sex) 44 44/38db – Spectral-GCN

(Global

Summation

Pooling)

– 79.27cc 87.50ca ,

89.02cb
– –

7 (Jiang et al.,

2020)

2020 ADNI (133) rs-fMRI+(age, sex,

site)

– 99 34 Spectral-GCN

(Hierarchical

Eigen Pooling)

– – – 78.5 –

8 (Zhu et al.,

2021)

2021 ADNI (291) fMRI+(age, sex) 94 86/67/44df – Spectral-ChebNet

(Global Adaptive

Pooling)

– 83.79cc 80.0ca ,

80.77cb ,

86.15cf ,

88.18cg

– –

9 (Li L. et al.,

2022)

2022 ADNI (133) fMRI+(sex, etc.) – 99 34 ST-RNN

(Hierarchical

pooling)

– – – 86.7 –

10 (Bi et al., 2023) 2023 ADNI (870) fMRI+(genetic) 237 197/203db 233 Spectral-other (–) 93.61 90.0cc – 91.95ce –

11 (Salim and

Hamza, 2024)

2024 ADNI (573) rs-fMRI+(age, sex,

acquisition site)

402 171 – Spectral-other (–) – – 98.25 – –
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TABLE 2 (Continued)

Sr. Article Year Database
(size)

Modalities Subjects GNN
architecture

Classification accuracy (%)

NC MCI AD FE-graph
convolution
(pooling)

NC/AD sMCI/
pMCI

NC/
MCI

MCI/AD Multilevel

12 (Kazi et al.,

2019b)

2019 TADPOLE

(564)

PET+(CSF, etc.) 160 320 84 Spectral-ChebNet

(global

summation

pooling)

– – – 83.33 –

13 (Kazi et al.,

2019a)

2019 TADPOLE

(557)

PET+(CSF, etc.) – – – Spectral-ChebNet

(global maximum

pooling)

– – 84.35 – –

14 (Subaramya

et al., 2022)

2022 ADNI (162) MRI+DTI 100 – 62 Spectral-GCN

(Global

maximum

pooling)

97 – – – –

15 (Lin et al.,

2023)

2023 ADNI (288) MRI+PET – – – Spectral-GCN (–) 95.86 – 89.47 87.92 –

16 (Yang et al.,

2022)

2022 ADNI (114) fMRI+DTI 51 63 – ST-RNN (global

pooling)

– – 90.4 – –

17 (Meng and

Zhang, 2023)

2023 ADNI (118) fMRI+DTI 37 81 – Spectral-other

(global adaptive

pooling)

– – 90.7 – –

18 (Lei et al.,

2023)

2023 ADNI (184) rs-fMRI+DTI 67 77/40db – MultiGraph-GCN

(–)

– 92.31cc 85.42ca ,

93.46cb
– 83.11ma

19 (Choi et al.,

2022)

2022 ADNI (401) DTI+PETFDG+AV45 89 132/55/53df 72 Spatial GAT

(Global Adaptive

Pooling)

– – – – 96md

20 (Huang and

Chung, 2020)

2020 TADPOLE

(557)

MRI+PETFDG +

(apoe4, Phenotypic)

– – – Spectral-ChebNet

(–)

– – – – 87.8

21 (Zhang et al.,

2023e)

2023 ADNI (792) MRI+PETFDG + sex 246 120/211a 215 Spectral-ChebNet

(–)

96.68 78 – – –
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TABLE 2 (Continued)

Sr. Article Year Database
(size)

Modalities Subjects GNN
architecture

Classification accuracy (%)

NC MCI AD FE-graph
convolution
(pooling)

NC/AD sMCI/
pMCI

NC/
MCI

MCI/AD Multilevel

22 (Li W. et al.,

2022)

2022 ADNI (502) MRI+DTI+PETAV45 168 165 169 Spectral-Other

(–)

96.06 – 92.73 95.15 90

23 (Zheng et al.,

2022)

2022 TADPOLE

(603)

MRI, PET, cognitive

scores, CSF, risk

factors,

demographic

211 211/275da 72 Spatial-

GraphSAGE

(–)

– 92.3 – – 92.31

24 (Li et al.,

2023a)

2023 TADPOLE

(564)

MRI+PET+(cognitive

scores, CSF, risk

factors,

demographic)

– – – Spectral-GCN (–) 99.3 88.3 98 94.6 –

25 (McCombe

et al., 2022)

2022 ADNI (559) MRI+PETAV1451 +

cognitive scores

363 137 59 Spectral-GCN (–) – – – – 93.6ba

26 (Song et al.,

2022)

2022 ADNI-2 (90) fMRI+DTI+ 29 34/27db – Spectral-GCN

(Hierarchical

TopK Pooling)

– 92.46cc 91.16ca ,

94.22cb ,

91.53cf ,

95.71cg ,

92.23ch

– –

ADNI-3, 200) (sex, device, site) 64 52/40/44df

in-house (169) 70 99de

27 (Xing et al.,

2019)

2019 ADNI (368) MRI+fMRI+(age,

sex)

177 191dc – ST-RNN (–) – – 79.73ca – –

28 (Liu J. et al.,

2020)

2020 ADNI (210) MRI+rs-

fMRI+(age, sex,

MMSE)

105 105dc – Spectral-GCN (–) – – 84.1ca – –

29 (Chhabra

et al., 2023)

2023 In-house MRI+fMRI+DTI 600 – 600 ST-Other (–) 93.5 – – – –

30 (Tian et al.,

2023)

2023 ADNI (172) MRI+fMRI+ 65 65 42 Spatial-

GraphSAGE

(Hierarchical

TopK Pooling)

88.71 – 79.68 82.71 –

In-house (346) DTI+(age, sex) 102 95 49

31 (Qu et al.,

2023)

2023 ADNI (318) UNB, age, sex,

cognitive scores

132 102 84 Spectral-GCN (–) 94.84 – – 84.61 –
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TABLE 2 (Continued)

Sr. Article Year Database
(size)

Modalities Subjects GNN
architecture

Classification accuracy (%)

NC MCI AD FE-graph
convolution
(pooling)

NC/AD sMCI/
pMCI

NC/
MCI

MCI/AD Multilevel

32 (Guo et al.,

2023)

2023 ADNI (204) Neuroimaging+(clinical,

biological, genetic)

113 91 – MultiGraph-GCN

(–)

– – 84.8 – –

33 (Tekkesinoglu

and Pudas,

2024)

2024 ADNI (2212) Multimodal tabular

data

754 1095 363 Spectral-GCN (–) – – – – 80.18

34 (Chen et al.,

2024)

2024 ADNI (332) MRI+PETFDG(Synthesized) – – – Spatial-

GraphSAGE

(–)

98.72 – 95.83 89.96 90.18nc ,

83.08gc

82.77mc/nc

35 (Zhang et al.,

2022)

2022 ADNI (134) MRI+fMRI+PET +

(genetic,

phenotypic)

100 – 34 Spectral-other

(Global pooling)

– – – 82.09 –

ADNI (121) 100 121 – – – 76.48 – –

– – 80/41da – – 79.23 – – –

36 (Zhou et al.,

2022a)

2022 ADNI (755) MRIVBM 182 476 97 Spectral-GCN

(Global

Summation

Pooling)

– – – – 77.3

MRIVBM+PETFDG – – – – 80.6

MRIVBM+PETFDG+AV45 – – – – 81.8

37 (Zhou et al.,

2022b)

2022 ADNI (755) MRIVBM 182 476 97 Spectral-GCN (–) 77.2aa – – – –

MRIVBM+PETFDG 79.7aa – – – –

MRIVBM+PETFDG+AV45 82.6aa – – – –

38 (Zhang et al.,

2023d)

2023 ADNI (618) MRI 172 186/103da 157 Spectral-ChebNet

(–)

90.21 73.18 – – –

PET 91.51 75.47 – – –

MRI+PET 93.88 77.39 – – –

MRI+PET+sex 94.8 79.24 – – –

MRI+PET+apoe4 94.9 80.03 – – –

MRI+PET+MMSE 96.94 79.24 – – –
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node representing an ROI. Further, Klepl et al. (2022) applied

multiple methods to derive functional connectivity networks from

EEG data, and Fan et al. (2023) utilized an adaptive graph

transformer to dynamically adjust the adjacency matrix based on

extracted MRI features.

Population graph: Population graphs represent pairwise

associations between subjects, where nodes correspond to

individual subjects and edges reflect relationships based on

demographic or feature similarities (Tekkesinoglu and Pudas,

2024; Salim and Hamza, 2024; Zhang et al., 2024). These graphs

are constructed using both neuroimaging data (e.g., MRI, PET,

fMRI) and non-imaging data (e.g., age, sex, genetic information),

while connection-based statistics are commonly employed to

quantify similarity between subjects (Salim and Hamza, 2024; Liu

et al., 2023a; Ktena et al., 2018; Fan et al., 2022; Xing et al., 2019;

Li L. et al., 2022; Zhang et al., 2024; Yu et al., 2019; Wen et al.,

2022; Kim, 2023; Song et al., 2019; Zhao et al., 2019; Zhu et al.,

2021; Parisot et al., 2018; Zhang et al., 2023f,d,e; Tekkesinoglu and

Pudas, 2024; Li et al., 2023a,b; Wee et al., 2019; Yang et al., 2023;

Meng and Zhang, 2023; Huang and Chung, 2020; Zheng et al.,

2022; McCombe et al., 2022; Guo et al., 2023; Jiang et al., 2020;

Song et al., 2022; Cai et al., 2023; Lei et al., 2023). Many studies

leverage Pearson correlation to construct edges, particularly when

using fMRI data and demographic variables (Salim and Hamza,

2024; Liu et al., 2023a; Ktena et al., 2018; Fan et al., 2022; Xing

et al., 2019; Li L. et al., 2022; Zhang et al., 2024; Yu et al., 2019).

For example, Li L. et al. (2022) applied thresholds to generate

sparse brain networks, while Wen et al. (2022) integrated attention

mechanisms to enhance graph construction. In fewer cases,

structural connectivity graphs derived from DTI fiber bundles

were aggregated into population graphs, with Pearson correlation

used to determine inter-subject similarities (Song et al., 2019).

Correlation distance is another common metric used to establish

pairwise relationships (Zhao et al., 2019; Zhu et al., 2021; Parisot

et al., 2018; Zhang et al., 2023f,d,e). For instance, Zhao et al. (2019);

Zhu et al. (2021) developed functional connectivity networks for

individual subjects using rs-fMRI, subsequently computing edge

weights based on correlation distance and demographic features.

Parisot et al. (2018) further integrated imaging and non-imaging

data, using a Gaussian kernel to calculate adjacency matrices and

combining them via the Hadamard product. Similarly, Zhang et al.

(2023f,d) analyzed volumetric and metabolic features alongside

phenotypic similarities, while (Zhang et al., 2023e) dynamically

adjusted edge weights to reflect multimodal feature similarities.

A smaller subset of studies utilized Euclidean distance to define

edges within population graphs (Tekkesinoglu and Pudas, 2024;

Li et al., 2023a,b; Wee et al., 2019; Yang et al., 2023). For example,

Tekkesinoglu and Pudas (2024) computed it between cognitive

scores to determine edge weights, and Li et al. (2023a) combined

it with KNN for adjacency matrix construction. Cosine similarity

has also been employed in some cases to quantify inter-subject

associations (Meng and Zhang, 2023; Huang and Chung, 2020;

Zheng et al., 2022; McCombe et al., 2022; Guo et al., 2023).

Several studies combined multiple methods to optimize graph

construction (Jiang et al., 2020; Song et al., 2022; Cai et al., 2023;

Lei et al., 2023). For instance, Jiang et al. (2020) used functional

connectivity derived from fMRI to inform edge weights, calculated

via a Gaussian kernel. Song et al. (2022) developed a multi-center
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FIGURE 3

A high-level graphical illustration of how GNNs aggregate information from neighboring nodes to update node representations. For instance, it

illustrates how a single node (i.e., A) in GNN aggregates messages from its local neighborhood. The GNN model aggregates messages from the local

neighbors of node A (i.e., B, D, E). Subsequently, the messages from these nodes are derived from information aggregated from their respective

neighborhoods, and so on. This illustrates a two-layer version of message-passing in a GNN model.

attention graph with attention mechanisms, while Cai et al. (2023)

constructed a group-mean adjacency matrix incorporating second-

order random walks. Additionally, Lei et al. (2023) created brain

connectivity networks by combining local weighted clustering

coefficients with structural and functional connectivity data from

DTI and rs-fMRI, improving the representation of population

graphs.

3.2.2 Graph convolution
Following graph construction, graph convolution leverages

the graph structure to enable message passing between nodes,

facilitating the extraction of high-level features. We identified four

fundamental techniques for feature extraction from neuroimaging

data in GNN methods for AD diagnosis: (i) spectral feature

extraction, (ii) spatial feature extraction, (iii) spatial-temporal

feature extraction, and (iv) multigraph feature extraction.

Spectral feature extraction (Spectral-FE): Spectral feature

extraction (Spectral-FE) operates in the spectral domain, treating

the graph as a signal. It decomposes graph signals using the

graph Laplacian eigenvalues, allowing convolution operations in

the frequency domain via filtering. This approach provides a global

perspective of the graph (Zhang et al., 2019). Notable Spectral-FE

methods include ChebNet (Defferrard et al., 2016; Zhang et al.,

2023e; Kazi et al., 2019a; Parisot et al., 2018; Liu et al., 2024; Ktena

et al., 2018; Song et al., 2019), which utilizes Chebyshev polynomial

approximations for graph convolution, and GCN, which, in

constrast, simplifies Chebyshev convolution using a first-order

approximation and is widely used in AD-related GNN methods

(Kipf and Welling, 2016; Liu et al., 2023a; Wen et al., 2022; Jiang

et al., 2020; Lee et al., 2021; Gu et al., 2021; Qin et al., 2022; Klepl

et al., 2022). Recent studies have combined GCN and ChebNet

(Zhao et al., 2019), while others (Li L. et al., 2022) employed

GCN alongside spatial-temporal graph convolution, considering

both structural and temporal features. Hybrid approaches include

(Li et al., 2023c), which used GCNwith a self-attentionmechanism,

and Fan et al. (2023), which combined GCN with ARMA layers for

feature extraction. Studies like Meng and Zhang (2023) introduced

multi-layer GCNs incorporating spectral-GCN and cluster-GCN to

optimize efficiency. Other methods involved various convolution

types, such as inter- and intra-community convolution (Bi et al.,

2023) and feature concatenation from multiple filters (Yu et al.,

2019).

Spatial Feature Extraction (Spatial-FE): In contrast to

Spectral-FE, spatial feature extraction (Spatial-FE) directly applies

convolution to nodes and their neighbors in the graph, similar

to traditional image convolution, allowing for the extraction of

spatial information between brain regions (Zheng et al., 2022).

Spatial-FE methods are typically more scalable as they focus on

local links rather than the entire graph structure. Key Spatial-FE

techniques include GraphSAGE (Hamilton et al., 2017; Zheng et al.,

2022; Chen et al., 2024), GAT (Veličković et al., 2017; Choi et al.,

2022), and GIN (Xu et al., 2018; Wang Z. et al., 2023). GraphSAGE

samples a fixed-size neighborhood and aggregates features using

functions like mean or pooling, making it suitable for large graphs

(Hamilton et al., 2017). In dynamic contexts, such as incorporating

new subjects for diagnosis, traditional GNNs struggle with graph

evolution. GraphSAGE addresses this by employing inductive

learning through adjacent node sampling and aggregation, which

is particularly useful in NDD diagnosis. For instance, Zheng

et al. (2022) used GraphSAGE to partition population graphs

into mini-batches, enabling inductive learning without requiring

the entire graph. Spatial GraphSAGE was also employed for

inductive representation learning in Chen et al. (2024). GAT

enhances flexibility in capturing relationships through an attention

mechanism that adapts edge weights during training, making it

effective for brain connectivity analysis. Choi et al. (2022) combined

GAT with heat kernel diffusion to control node neighborhood sizes

adaptively. GINs, inspired by the Weisfeiler-Lehman test, utilize

injective aggregation functions to match their power, with Wang

Z. et al. (2023) applying GIN for spatial convolution to capture
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FIGURE 4

Sunburst plot depicting research trends for each GNN method in AD Studies. The plot is drawn from the works mentioned in Tables 1, 2. We note

that most studies favored population graph construction methods using correlation distance and Pearson correlation, with the latter and WM fiber

bundles common in individual graph construction. Spectral-FE methods predominated in feature extraction and graph convolution, while

MultiGraph-FE was less frequent. ChebNet and GCN were the most used graph convolution methods. Hierarchical pooling was less common than

global pooling, although TopK pooling was frequently reported within hierarchical approaches. Most studies focused on graph classification tasks

with a supervised learning framework, and supervised node classification was more prevalent than semi-supervised or unsupervised methods. FE,

Feature Extraction; MG, MultiGraph; ST, Spatial-Temporal; GAT, Graph Attention Network; GCN, Graph Convolutional Network; GIN, Graph

Isomorphism Network; GNN, Graph Neural Network; RNN, Recurrent Neural Networks.

brain network structures and features, incorporating attention in

the readout layer for node selection. Additionally, other approaches

for spatial feature extraction include the spectral graph attention

network (SpGat) (Xu et al., 2019) and bilinear aggregator (Zhu

et al., 2020; Yang et al., 2023), as well as a model integrating CNN

andGCN to extract local features and global connections (Fan et al.,

2022).

Spatial-temporal feature extraction (ST-FE): Spatial-

Temporal Feature Extraction (ST-FE) captures both spatial

(node/edge interactions) and temporal (time-dependent) patterns,
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which are critical for dynamic graphs where nodes and edges

evolve over time. This approach is especially relevant in brain

networks derived from EEG and fMRI, where brain regions exhibit

spatial correlations and generate temporal signals. To address

these complexities, researchers have developed spatial-temporal

graph convolution methods within GNN frameworks, integrating

temporal dynamics into graph analysis (Yang et al., 2022; Kim et al.,

2021; Chhabra et al., 2023). Prominent ST-FE techniques include

GNNs combined with Recurrent Neural Networks (GNN-RNN)

and Spatial-Temporal Graph Convolutional Networks (ST-GCNs).

GNN-RNNs integrate GNNs with recurrent architectures such as

Long Short-Term Memory (LSTM) networks or Gated Recurrent

Units (GRUs) to capture spatial node dependencies alongside

temporal dynamics. For instance, Yang et al. (2022) utilized a

GNN-RNN model with GRU to aggregate multimodal brain

network representations via spatial graph convolutions. Similarly,

Xing et al. (2019) applied a sliding window approach to create

dynamic functional networks, representing each network as a

graph where MRI-derived node features were fed into an LSTM

at each time step. Other studies leveraged GCN methods for

spatial feature extraction across multiple time points, combining

these results with LSTMs for temporal analysis (Li X. et al., 2021;

Kim et al., 2021). In contrast, ST-GCNs jointly perform spatial

and temporal convolutions to capture both static relationships

among nodes and their dynamic progression over time (Zhang

et al., 2019). Spatial convolutions are used to identify node

associations, followed by temporal convolutions to model

sequential patterns in node attributes. For example, Zhang

et al. (2024) applied spectral-domain spatial graph convolutions

alongside temporal convolutions to capture dynamic changes

in functional connectivity and spatial correlations among brain

regions. Shan et al. (2022) proposed an ST-GNNmodel comprising

temporal convolution layers interleaved with spatial convolution

layers, effectively modeling both dimensions. Hybrid approaches

have also emerged, combining multiple techniques to enhance

spatial-temporal modeling. For instance, Wang X. et al. (2023)

employed spectral GCNs for feature aggregation, combined

with GraphSAGE for neighborhood information, followed by

spatial-temporal methods to analyze functional activity changes.

Cui et al. (2023) introduced a dynamic graph attention mechanism

to extract spatial-temporal features from fMRI time series data.

Additionally, Chhabra et al. (2023) implemented a multimodal

approach by applying CNNs for MRI, RNNs for fMRI, and GCNs

for DTI, analyzing each modality independently before integrating

them within a multimodal neural network for classification.

MultiGraph feature extraction (MG-FE): MultiGraph

Feature Extraction (MG-FE) involves handling multigraphs,

where multiple edges exist between the same nodes, each edge

representing a unique relationship or interaction. Extracting

features from multigraphs is challenging due to the need for

multiple graph convolutions to capture diverse connections.

MG-FE techniques are often classified by scale and construction

method, with common scales and brain templates such as AAL116

(116 ROIs) (Liu et al., 2014) and CC200 (200 ROIs) (Wood et al.,

2019). Construction methods like correlation distance and Pearson

correlation (as discussed in Section 3.2.1) further differentiate

these graphs. Several studies have applied MG-FE in multi-scale

graph contexts. For example, Yao et al. (2021) utilized four brain

templates, each generating a distinct graph and enabling high-order

associations across subjects, while Yao et al. (2019) constructed

multi-scale functional connections from three brain templates,

aligning each template with a separate graph convolution branch.

Similarly, Lei et al. (2023); Guo et al. (2023) used a multigraph

approach to enhance feature extraction.

3.2.3 Graph pooling
Following feature extraction through graph convolution, graph

pooling is the next phase in GNNs, aiming to distill node

embeddings into informative graph embeddings that highlight the

most robust and distinctive features. Pooling is often synonymous

with “graph readout” in the literature. Two main techniques are

commonly used: global pooling and hierarchical pooling.

Global pooling: Global pooling methods convert node

embeddings into graph-level embeddings, enabling a holistic

representation of graph structures. Common approaches include

adaptive, average, maximum, and summation pooling, each with

distinct mechanisms and applications. Average Pooling computes

the mean of node embeddings, capturing shared information

across adjacent nodes. This technique has been widely used

for dimensionality reduction and to represent both local and

global brain structures. For instance, Qin et al. (2022); Kim

et al. (2021) applied average pooling after graph convolutions to

achieve compact graph-level representations, while studies like

Jiang et al. (2020); Zhang et al. (2024) leveraged it to enhance

cross-region classification tasks. Summation Pooling aggregates

node embeddings by summing feature vectors, effectively creating

a global representation of the graph. While this method efficiently

combines features (Ktena et al., 2018; Fan et al., 2022; Zhou et al.,

2022a), it may overlook relative feature importance. To address

this, studies like Kazi et al. (2019b) employed weighted summation

based on attention scores, allowing for a more nuanced integration

of node features. Maximum Pooling emphasizes distinct features

by selecting the maximum values from node embeddings. This

approach is particularly useful for highlighting salient patterns in

the data, as demonstrated in studies such as Klepl et al. (2022); Lee

et al. (2021); Subaramya et al. (2022). Adaptive Pooling dynamically

reduces the graph size while retaining structural information.

Methods like those described in Choi et al. (2022); Meng and

Zhang (2023); Zhu et al. (2021) employ custom layers to prioritize

nodes based on their importance and connectivity, preserving key

features during downsampling. For example, Zhu et al. (2021)

implemented layers tailored to prioritize critical nodes, ensuring

structural fidelity. Several studies have combined multiple pooling

techniques to leverage their complementary strengths. For instance,

Lin et al. (2023) integrated various pooling strategies, sometimes

enhanced by additional mechanisms like attention modules (Wang

Z. et al., 2023; Zhang et al., 2022), readout functions (Liu et al.,

2023c), or GRU-based reasoning layers (Zhang et al., 2023a) to

aggregate brain region-level features effectively.

Hierarchical pooling: While global pooling techniques can

introduce noise from less relevant brain regions and may

overlook community-level features, hierarchical pooling addresses

these limitations by progressively reducing graph size layer

by layer. This approach preserves community structures and
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characteristics, ultimately transforming node embeddings into

graph-level representations. Key hierarchical pooling methods

include TopK pooling, SAG pooling, Eigen pooling, and Diff

pooling. TopK Pooling selects the top K nodes based on their

importance, effectively coarsening the graph (Sebenius et al., 2021;

Song et al., 2022; Tang et al., 2022; Tian et al., 2023). For example,

Li X. et al. (2021) implemented a two-layer approach that reduced

nodes by 50% at each layer, generating graph-level representations

through mean andmaximum pooling of the remaining nodes. SAG

Pooling clusters nodes to maintain hierarchical graph structures

during pooling (Guo et al., 2019), ensuring the preservation

of important community-level features. Eigen Pooling utilizes

eigenvectors of the graph Laplacian to summarize hierarchical node

information. For instance, Jiang et al. (2020) incorporated Eigen

pooling into a hierarchical population graph, while Wen et al.

(2022) employed it to extract subgraph features prior to applying

global average pooling for final graph-level representations. Diff

Pooling reduces graph complexity by clustering nodes while

retaining subnetwork properties. This method has been effectively

used to preserve network integrity, as demonstrated in Mei

et al. (2022). We note that several studies did not explicitly

specify the pooling techniques used in their methodologies,

highlighting a potential gap in the reporting of pooling strategies in

the literature.

3.2.4 Graph prediction
Graph prediction represents the final phase of the GNN

framework, leveraging graph structures and node features to

generate predictions at node, edge, or graph levels. Each prediction

type aligns with distinct objectives (e.g., binary or multilevel

classification; or MCI-to-AD conversion) and requires appropriate

pooling, readout, or aggregation strategies.

Node classification: Node-level predictions involve classifying

or regressing node labels, often within population graphs where

nodes represent individual subjects. Supervised learning is the

most popular framework for this task, with GNNs generating

embeddings for AD prediction and disease progression analysis.

For example, Liu et al. (2023a); Zhang et al. (2023e); Kim (2023)

applied supervised GNNs to predict AD by embedding multimodal

features, while Zhao et al. (2019) utilized a fully connected

network with softmax layers for classifying early-MCI vs. late-

MCI and NC vs. EMCI nodes. Multimodal approaches such as

Peng et al. (2022) focused on integrating imaging and non-imaging

features for disease classification. Semi-supervised learning has also

been employed. For instance, Parisot et al. (2018) utilized semi-

supervised GCNs to classify NC, MCI, and AD using imaging and

demographic features. Similarly, Tekkesinoglu and Pudas (2024)

integrated multimodal patient data for multiclass classification

(NC, MCI, AD), achieving improved disease stratification. Other

studies, including Salim and Hamza (2024); Tian et al. (2023); Qu

et al. (2023), have extended semi-supervised learning techniques

for node classification in the context of neurodegenerative diseases.

A specialized node-level prediction task is disease progression

analysis, focusing on the conversion of MCI to AD. Peng et al.

(2022) introduced the FedNi framework, combining federated

and graph learning to enhance model performance for this task.

Additionally, Song et al. (2021) applied a metric-based meta-

learning approach for early AD diagnosis using the TADPOLE

dataset. Other significant contributions include attention-based

models, such as Kazi et al. (2019b), which integrated LSTM

mechanisms for multimodal feature learning, and interpretable

GNN frameworks, such as Kim et al. (2021), which used

longitudinal neuroimaging data to predict AD progression.

Edge-level prediction: Edge-level predictions, also referred to

as link prediction, estimate the likelihood of edges forming between

pairs of nodes. These tasks are particularly useful for inferring

relationships or reconstructing incomplete graphs. For example,

Peng et al. (2022) employed an unsupervised framework based on

generative adversarial networks (GANs) to predict missing edges,

helping to reconstruct brain connectivity patterns in graph-based

models.

Graph classification: Graph-level prediction involves

classifying entire graphs, where each graph typically represents an

individual subject, often based on imaging or multimodal data.

Pooling and readout operations are essential for transforming

node-level embeddings into a compact graph-level representation.

In supervised learning, Bi et al. (2023) classified subjects as NC

or AD using spectral-based graph representations, while Huang

and Chung (2020) employed MLPs with fusion layers to classify

healthy vs. diseased subjects. Similarly, Shan et al. (2022) flattened

node features after convolution and pooling, employing a fully

connected layer for classification. A variety of graph classification

techniques have been utilized to predict different AD stages.

Multimodal frameworks integrating functional and structural

data were developed by Zhang et al. (2023d); Zhou et al. (2022a);

Meng and Zhang (2023), while Song et al. (2022) employed

dynamic graph structures with attention mechanisms. Kazi et al.

(2019b) enhanced interpretability by integrating graph attention

networks (GATs) with LSTM-based reasoning. Furthermore,

Wen et al. (2022); Tang et al. (2022); Zhu et al. (2021) utilized a

combination of spectral and spatial graph convolutions to capture

higher-order graph properties. Pooling and readout mechanisms

have been a focus of several studies for improving graph-level

predictions. Mei et al. (2022) employed Diff Pooling to preserve

subnetwork features, while Jiang et al. (2020) utilized Eigen

Pooling to retain hierarchical graph information. Numerous

other works have contributed to advancing graph classification

for AD stage prediction, including Gu et al. (2021); Cui et al.

(2023); Liu et al. (2023b); Li et al. (2023c); Choi et al. (2022);

Zhang et al. (2022); Lee et al. (2021); Yao et al. (2021); Lin et al.

(2023); Aafiya and Jeyachidra (2024); Yang et al. (2023); Fan et al.

(2022); Li L. et al. (2022); Song et al. (2019); Chhabra et al. (2023);

Zhang et al. (2023f); Wang Z. et al. (2023); Li et al. (2023b); Cai

et al. (2023); McCombe et al. (2022); Klepl et al. (2022); Zuo and

Kamata (2023); Kazi et al. (2019a); Liu et al. (2023c); Yang et al.

(2022); Wang X. et al. (2023); Fan et al. (2023); Guo et al. (2023);

Zhang et al. (2024); Guo et al. (2019); Qin et al. (2022); Li et al.

(2023a); Lei et al. (2023); Kim et al. (2021); Liu et al. (2024); Zhang

et al. (2023a); Hao et al. (2024); Zhu et al. (2022a); Kumar et al.

(2022); Liu X. et al. (2020), employing diverse techniques and

frameworks to enhance prediction accuracy and robustness across

AD stages. Additionally, fewer studies, such as Li L. et al. (2022);

Zhu et al. (2021), reported the disease progression prediction at the

graph level. Li L. et al. (2022) proposed an ensemble framework
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incorporating hierarchical GCN and transfer learning to improve

the predictive performance for MCI to AD progression. Likewise,

graph-based models like the structure and feature-based graph

U-Net (SFG U-Net) (Zhu et al., 2021) demonstrated the utility

of integrating high-order structural and node features for this

purpose.

4 Results: GNN for AD diagnosis

This section surveys the application of GNNs in classifying

subjects with normal cognition, mild cognitive impairment, and

AD, focusing on both unimodal and multimodal approaches.

We analyze the literature based on dataset size and modality,

classification accuracy, and levels, including binary (e.g., NC/AD),

multilevel classifications (e.g., NC/MCI/AD), and disease

progression (e.g., MCI-to-AD conversion). Detailed findings

on GNN-based AD diagnosis are presented in Tables 1, 2.

Furthermore, we have listed the verified GitHub repositories for

studies having open-source code in Supplementary Table S1 to

facilitate replication and serve as a useful resource for researchers

in the academic community. This table lists the study reference

and related URL, providing a direct pathway for readers to dive

into the source code.

4.1 Unimodal data

We first present GNN-based studies for AD diagnosis using

unimodal neuroimaging data. Table 1 presents key insights from

studies utilizing GNNmethods alongside unimodal biomarkers for

AD diagnosis.

Magnetic resonance imaging (MRI): GNNs have been widely

applied to MRI data for AD diagnosis (Fan et al., 2023, 2022; Wee

et al., 2019; Liu et al., 2024; Zhang et al., 2023a; Kim et al., 2021;

Peng et al., 2022; Aafiya and Jeyachidra, 2024; Hao et al., 2024; Zhu

et al., 2022b). For example, Zhang et al. (2023a) proposed a multi-

relation reasoning network leveraging structural MRI to capture

spatial and topological features, while Peng et al. (2022) introduced

a federated learning framework combined with a graph GAN to

handle missing data and train a global GCN node classifier for MCI

and AD classification. Fan et al. (2023) developed a graph reasoning

module using an adaptive graph transformer to generate graph

representations from CNN feature maps, enhancing AD diagnostic

accuracy. Similarly, Fan et al. (2022) presented BGL-Net, a global-

local information fusion network integrating CNNs and GCNs for

robust classification. Spectral graph CNNs incorporating cortical

thickness and geometric parameters were applied by Wee et al.

(2019) to detect MCI and AD. For longitudinal MRI, Hao et al.

(2024) employed weighted hypergraph convolutional networks,

while Liu et al. (2024) proposed a dual-structure hierarchical graph

learning framework combining individual and population models.

Functional MRI (fMRI): fMRI has also been extensively

analyzed with GNNs for AD diagnosis (Zhang et al., 2023e; Ktena

et al., 2018; Zhao et al., 2019; Liu X. et al., 2020; Yao et al., 2021;

Gu et al., 2021; Lee et al., 2021; Kumar et al., 2022; Wang X. et al.,

2023; Tang et al., 2022; Mei et al., 2022; Wen et al., 2022; Qin et al.,

2022; Liu et al., 2023b; Zuo and Kamata, 2023; Liu et al., 2023c;

Wang Z. et al., 2023; Cui et al., 2023). Ktena et al. (2018) used

multilayer GCNs to predict AD by assessing graph similarity, while

Gu et al. (2021) developed a fully supervised GCN that performs

automatic feature selection from brain connectivity networks for

disease stage classification. A personalized dual-branch GNN with

spatio-temporal attention was proposed by Cui et al. (2023) for

MCI detection, andWang Z. et al. (2023) combined dynamicmulti-

task GINs with attention mechanisms to improve AD classification

while simultaneously predicting age and sex. Adaptive multi-

view graph classifiers were applied by Liu et al. (2023b) to

reduce overfitting, and Liu X. et al. (2020) employed a Siamese

GCN for effective graph representation in MCI/AD classification.

Approaches like Lee et al. (2021); Qin et al. (2022) introduced

unified frameworks and U-shaped hierarchical GCNs for disease

detection. Most research in brain dynamics has relied on static

functional brain networks, which fail to capture temporal variations

in brain activity. Studies such as Wang X. et al. (2023); Tang et al.

(2022); Mei et al. (2022) advocate for dynamic functional networks

for a more accurate understanding of brain signal variations. Yao

et al. (2021) developed a mutual multiscale triplet GCN that

constructs a coarse-to-fine brain structural network using multiple

parcellation templates. Similarly, Liu et al. (2023a) proposed a

multiscale-atlases-based hierarchical GCN for analyzing functional

connectivity networks. Wen et al. (2022) introduced a multi-

view GCN (MVS-GCN) that combines graph structure learning

with multi-task graph embedding to improve classification

in AD diagnosis. Lastly, Zuo and Kamata (2023) utilized a

hypergraph convolutional network with attention mechanisms

focused on the default mode network (DMN) to enhance

classification performance.

Positron emission tomography: Some studies have applied

PET data in conjunction with GNN methods for AD diagnosis

(Cai et al., 2023; Li et al., 2023c; Guo et al., 2019). For example,

Cai et al. (2023) introduced a brain network-specific hypergraph

neural network to analyze the propagation of neuropathological

events in AD. Li et al. (2023c) developed the multiple protein

features network (MPN) and higher-order MPN to enhance MCI

detection using PET scans. Additionally, Guo et al. (2019) proposed

PETNet, a generalized graph-based CNN architecture for 3D PET

image classification.

Electroencephalography: Fewer studies employed EEG data

for diagnosing AD. Klepl et al. (2022) utilized a GNN-based

framework to classify AD patients using sensor-level EEG

signals, incorporating eight functional connectivity measures to

estimate EEG brain graphs. Shan et al. (2022) developed a

dynamic spatio-temporal GCN for early AD diagnosis using

EEG data.

Diffusion tensor imaging:Graph-based methods for DTI have

been less explored. Song et al. (2019) developed a multiclass GCN

classifier based on structural connectivity, outperforming SVMs for

AD stage classification.

4.2 Multimodal data

The key findings of the studies utilizing multimodal

data for AD diagnosis combining imaging (e.g., MRI,
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PET, DTI, fMRI) and non-imaging data (e.g., age, sex,

education, CSF, APOE4, genetic factors) are summarized

in Table 2.

Several studies focused on integrating single-modality imaging

and phenotypic data types for AD diagnosis, primarily through

GCNs (Parisot et al., 2018; Yang et al., 2023; Kim, 2023; Li

et al., 2023b; Song et al., 2021; Yu et al., 2019; Salim and

Hamza, 2024; Jiang et al., 2020). For instance, Parisot et al.

(2018); Yang et al. (2023); Kim (2023); Li et al. (2023b);

Song et al. (2021) developed GCN frameworks that combined

MRI and phenotypic data, representing subjects as a sparse

graph to enhance AD diagnosis. (Yu et al., 2019) proposed a

multiscale GCN for the diagnosis of MCI from rs-fMRI and

phenotypic data. The aggregator normalization GCN introduced

by Salim and Hamza (2024) improved predictive capabilities

through the integration of diverse features, while Jiang et al.

(2020) developed a hierarchical GCN designed to enhance graph

embedding learning by merging global population networks with

individual brain networks. Several other studies incorporated

multimodal neuroimaging data into GNN frameworks for AD

diagnosis (Subaramya et al., 2022; Lin et al., 2023; Yang et al.,

2022). For example, Subaramya et al. (2022) combined MRI and

DTI scans to construct structural brain graphs for classification

tasks. Similarly, Lin et al. (2023) merged MRI and PET features

using GCNs to boost classification performance. The multimodal

dynamic GCN proposed by Yang et al. (2022) focused on learning

structural and functional network features from fMRI and DTI

data. Additionally, studies such as Zhang et al. (2023e); Huang

and Chung (2020); Zhang et al. (2023d) successfully combined

multimodal neuroimaging and non-imaging data within GNN

methods. Huang and Chung (2020) proposed an uncertainty-aware

disease prediction framework combining multimodal imaging and

non-imaging data. Furthermore, Zhang et al. (2023d) developed

a joint CNN-GNN framework that extracts imaging features

via CNN and integrates these with non-imaging data through

GNNs.

This subsection provides a comparative overview of recent

approaches to Alzheimer’s Disease (AD) diagnosis. Specifically,

it contrasts unimodal and multimodal strategies, examines

accuracy trends across datasets and populations, and evaluates

methodological differences in GNN-based architectures.

This subsection presents a comparative analysis of recent

methodologies for diagnosing Alzheimer’s Disease (AD).

This study contrasts unimodal and multimodal strategies,

examines accuracy trends across datasets and populations,

and evaluates methodological differences in GNN-based

architectures.

4.3 Comparative perspectives on AD
diagnosis with GNNs

This subsection presents a comparative analysis

of recent approaches for diagnosing AD, based on

the studies reviewed in Sections 4.1, 4.2. This study

contrasts unimodal and multimodal strategies, examines

accuracy trends across datasets and populations, and

evaluates methodological differences in GNN-based

architectures.

4.3.1 Unimodal vs. multimodal approaches
In AD diagnosis studies, the difference between unimodal and

multimodal techniques is crucial. We conducted a comparative

analysis to evaluate the effectiveness of unimodal versus

multimodal approaches for AD diagnosis. The results shown

in Figure 5 demonstrate that integrating multimodal neuroimaging

data consistently yields superior classification performance

compared to single-modality methods. We note that in total,

among the 73 reviewed studies, 39 utilized multimodal data, while

34 employed unimodal data.

Unimodal methods predominantly employed fMRI, achieving

high accuracy across binary classification tasks (e.g., NC/AD),

with accuracies ranging from 71.3% to 99.16%. Structural MRI

studies also demonstrated good performance, though they were

generally less effective than fMRI, particularly for differentiating

NC/MCI/AD. PET studies showed mixed performance, with better

results observed in NC/AD tasks, though their overall use was

limited. Additionally, EEG was applied in only two studies, and

DTI was used in just one. Multimodal strategies demonstrated

substantial improvements in classification accuracy compared

to unimodal methods. For instance, leveraging TADPOLE data,

which integrated imaging (MRI, PET) and non-imaging variables

(cognitive tests, CSF, risk factors), achieved a maximum accuracy

of 99.3% for the NC/AD classification task. Other tasks, such as

NC/MCI and MCI/AD, also exhibited strong results, with top

accuracies of 98.25% and 95.15%, respectively. Figure 6 highlights

the distribution of classification tasks across the studies. Binary

classification tasks, particularly NC/AD, were most common,

followed by NC/MCI. Multilevel classification (e.g., NC/MCI/AD)

and progression analysis (MCI-to-AD conversion) were less

frequently addressed, with the latter representing only 11% of tasks.

4.3.2 Accuracy trends across datasets and
populations

Diagnostic accuracy varies among datasets and populations,

underscoring the impact of sample composition, demographic

diversity, and data quality. This subsection presents the

performance of GNNs across different datasets and population

sizes. We conducted a comparative analysis to evaluate the

generalizability and robustness of GNN methods across different

datasets, such as ADNI, OASIS, TADPOLE, UK Biobank, and

in-house etc. The findings highlighted that ADNI is the most

widely used dataset (unimodal: 24/34; multimodal: 29/39) among

all other datasets used in reviewed studies, followed by multi-site

(unimodal: 4/34) and TADPOLE (multimodal: 7/39). The results

are summarized in Figure 7. The results indicated that overall

multimodal studies consistently reported higher median accuracies

compared to unimodal approaches. This effect was particularly

evident in larger and harmonized datasets like ADNI and

TADPOLE, where multimodal models showed superior median

performance and lower variability, indicating greater robustness

and generalizability. In contrast, unimodal studies exhibited greater

variability in results, especially for complicated tasks such as NC

Frontiers inNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnins.2025.1623141
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Ali et al. 10.3389/fnins.2025.1623141

FIGURE 5

The boxplots display the accuracy of AD diagnosis across unimodal and multimodal data approaches. Multimodal methods were the most

commonly reported in the reviewed studies. Among unimodal approaches, fMRI was the most frequently utilized. Mean accuracy values are marked

with plus symbols, and individual data points are represented by circles. The boxplots are based on classification accuracies reported in the studies

listed in Tables 1, 2.

FIGURE 6

Frequency and percentage of classification task for each group of analysis in the reviewed studies. The plot is drawn from the studies mentioned

in Tables 1, 2.
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FIGURE 7

The boxplots represent the distribution of reported GNN classification accuracies for AD diagnosis across di�erent datasets and population size,

stratified by (a) unimodal and (b)multimodal approaches. The results are shown for NC vs. AD, NC vs. MCI (where NC could be NC or SMC; MCI could

be EMCI, LMCI), and MCI vs. AD (where MCI could be EMCI, LMCI) classification tasks. The plot is drawn from the studies mentioned in Tables 1, 2.

vs. MCI and MCI vs. AD. NC/MCI classification, highlighting the

limitations of single-modality inputs for early disease detection.

Furthermore, NC vs. AD classification demonstrated the highest

consistency and performance across all datasets, often surpassing

85%–90% accuracy. Conversely, NC vs. MCI and MCI vs. AD

tasks exhibited reduced and more variable accuracies, especially

in unimodal studies. Multimodal approaches have been shown to

reduce this variability, indicating that the integration of structural,

functional, and demographic features improves sensitivity to subtle

disease-related patterns.

Furthermore, it is found that the population size varied

significantly across studies conducting using ADNI dataset

[unimodal: 48 (Song et al., 2019) – 1,644 (Zhang et al., 2023a);

multimodal: 114 (Yang et al., 2022) – 870 (Bi et al., 2023)], therefore

we further stratified the studies based on population size conducted

using ADNI data (such as studies with sample size less than 300

subjects and more than 300 subjects). The findings highlighted the

size of the population as a significant factor in the performance of

GNN. It is evident that the studies conducted using ADNI ≥ 300

samples reported superior performance and less variable accuracies

as compared to studies using sample sizes of less than 300, which

underscores the impact of population size on the consistency and

stability of GNNs.

Several studies (unimodal: Wee et al., 2019; Fan et al., 2022;

Liu et al., 2023b,a; multimodal: studies Song et al., 2022; Tian

et al., 2023) reported datasets from multi-site/multi-center (such

as ANDI, OASIS, ABIDE, in-house, etc.). The findings revealed

that studies conducted using multi-site datasets introduced

increased variability, especially in unimodal studies, indicating

heterogeneity across acquisition protocols. In contrast, large or

harmonized datasets like ADNI ≥ 300 or TADPOLE yielded

greater stability and accuracy, especially when combined with

multimodal integration. In Summary, these findings emphasize that

the dataset, population size, and modality integration are critical

to enhance the generalizability and robustness of GNN-based

approaches for AD diagnosis. Specifically, large and multimodal

datasets enhance the reliability and generalizability of GNN

models compared to small or unimodal datasets. Thus, by

addressing the implications of data heterogeneity and domain

shift, multimodal and large-scale datasets tend to offer the

most reliable foundation for developing GNN-based methods for

neurodegenerative diseases.

Methodological choices in graph neural network-based

approaches, including graph construction strategies, aggregation

functions, and learning objectives, directly influence diagnostic

performance. This subsection presents a comparative analysis of

various GNN architectures utilized in AD diagnosis, highlighting

their respective advantages and trade-offs.

Methodological choice within GNN-based methods about

graph construction methodologies, aggregation functions, and

learning objectives have a direct impact on diagnostic performance

in graph neural network-based approaches. This subsection

presents a comparative analysis of various GNN architectures

utilized in AD diagnosis, highlighting their respective advantages

and trade-offs.

4.3.3 Methodological comparison of GNN
architectures for AD diagnosis

Diagnostic performance in GNN-based approaches is directly

impacted by methodological decisions, such as graph construction

methods, graph convolution, etc. This subsection presents a critical

analysis across families of GNN architectures for AD diagnosis

and classification tasks, highlighting their respective advantages

and trade-offs. Figure 8 highlights a comparative synthesis of

GNN architectures using radar plots for both unimodal and

multimodal studies, revealing the variations in stability and task

sensitivity among families of GNNs. The distribution of studies
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FIGURE 8

Radar plots highlight the median classification accuracies reported across families of GNN for AD diagnostic tasks (NC vs. AD, NC vs. MCI, and MCI

vs. AD) in unimodal (left) and multimodal (right) studies. The rings in the radar plots represent accuracy thresholds ranging from 65% to 100%,

whereas each polygon represents a distinct GNN family. The results are shown for NC vs. AD, NC vs. MCI (where NC could be NC or SMC; MCI could

be EMCI, LMCI), and MCI vs. AD (where MCI could be EMCI, LMCI) classification tasks. The plot is drawn from the studies mentioned in Tables 1, 2,

and analysis results in Supplementary Table S2.

and accuracies by GNN architecture and classification task is

given Supplementary Table S2, where data derived from Tables 1, 2.

The findings of the analysis indicated that spectral methods-such

as GCN, ChebNet-are most prevalent both in the number of

studies as well as their reliability across all AD diagnostic tasks.

The spectral-GCN is the most widely used GNN architecture

(unimodal: 18/34; multimodal: 14/39) (source: Tables 1, 2). The

findings revealed that spectral GCN-based studies consistently

reported accuracies over 90% in NC vs. AD classification task;

however, exhibited reduced and more variable accuracies for MCI

vs. AD [unimodal: 53.5% (Kim et al., 2021)–94.7% (Gu et al., 2021);

multimodal: 78.5% (Jiang et al., 2020)–94.6% (Li et al., 2023a)]. This

indicates that although spectral convolutions effectively identify

significant global differences between NC and AD, they are

less adept at recognizing more nuanced progression patterns. In

contrast, ChebNet, despite its limited applications (unimodal: 5/34;

multimodal: 7/39), consistently demonstrated high performance

(unimodal: 85.8%–91.51%; multimodal: up to 96%–97%) for the

NC vs. AD classification task as well as exhibits greater stability

across classification tasks, indicating the effectiveness of polynomial

filters for handling noise and sparse graphs.

In contrast to the spectral methods, spatial GNNmethods-such

as GraphSAGE, GAT, GIN-were not frequently reported in either

unimodal or multimodal studies. Despite being less studied, spatial

GNN architectures have several advantages. Spatial-GraphSAGE

methods (unimodal: nan; multimodal: 4/39) indicated competitive

and consistent performance across AD diagnostic classification

tasks [NC vs AD: 98.72%; NC vs. MCI: 95.83%;MCI vs. AD: 89.96%

(Chen et al., 2024)], which underscores the inferential significance

of sampling-based aggregation in the context of multimodal inputs.

However, GIN architecture was observed only once in an unimodal

study, achieving 91.1% in NC vs. AD classification (Wang Z.

et al., 2023). Likewise, GAT was observed in a single study (Choi

et al., 2022). Their limited use in literature constrains conclusions;

nonetheless, their expressiveness suggests opportunities for future

research.

Similar to spectral GNN architectures, Spatio-temporal

(ST) GNN architecture-RNN and CNN-based GNN have been

investigated in both unimodal and multimodal settings; however,

they are still underrepresented (unimodal: 3; multimodal: 4).

In unimodal studies, ST-Other (which is a hybrid architecture

integrating spectral GCNs for feature aggregation with GraphSAGE

for neighborhood information, followed by ST methods to analyze

functional activity changes) reported the highest accuracy

(99.16%) in NC vs. AD classification task (Wang X. et al., 2023).

On the other hand, ST GNN methods reported competitive

performances across AD diagnostic tasks; however, these are

not yet fully exploited by current implementations. In addition,

MultiGraph GNN methods (unimodal: 2; multimodal: 2) reported

accuracies ranging from 83.4% to 93.46%, indicating potential

for subject-level heterogeneity. However, the limited number of

studies in the literature impacts definitive conclusions. Overall,

the methodological comparison of GNN architectures for AD

diagnosis suggested that spectral methods (GCN, ChebNet) offered

robust and stable baseline performance. Spatial methods, such

as GraphSAGE and GAT, demonstrated potential in multimodal
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integration (e.g., MRI + PET + clinical features); however, the

supporting evidence remains limited. Spatio-temporal methods are

still in their early phase, exhibiting only limited advancements.

4.4 Explainability in GNNs

Explainability and interpretability of GNNs are critical for their

clinical adoption. Interpretable models can pinpoint specific brain

regions and neural connections driving predictions, providing

insights into underlying pathologies and informing treatment

strategies. Conversely, a lack of explainability reduces GNNs

to black-box models, hindering their integration into medical

decision-making, where transparency and accountability are

essential (Li X. et al., 2021; Ying et al., 2019).

Various methods for interpreting GNN predictions have

been reported in the literature (Zhou et al., 2022a,a; Selvaraju

et al., 2017; Wang X. et al., 2023; Liu et al., 2023a; Kim

et al., 2021; Ying et al., 2019; Kim, 2023; Zhang et al., 2022;

Wee et al., 2019; Fan et al., 2022; Li X. et al., 2021; Cui

et al., 2021; Lee et al., 2021; Gu et al., 2021). Zhou et al.

(2022a) introduced an interpretable Gradient Class Activation

Mapping (Grad-CAM) approach (Selvaraju et al., 2017; Zhang

et al., 2024) to analyze key regions of interest. This framework

highlighted the putamen and pallidum as critical biomarkers for

distinguishing normal cognition, MCI, and AD groups, while also

identifying discriminative features based on brain connectivity

patterns. Similarly, Wang X. et al. (2023) employed Grad-CAM

to identify important brain regions, revealing the hippocampus

and temporal pole’s significance in AD classification tasks. In

addition, Liu et al. (2023a) used Grad-CAM to interpret GNN

predictions by pinpointing significant brain regions derived from

fully connected networks, aiding in the differentiation between

disease stages. Zhang et al. (2024) combined Grad-CAM with

spatio-temporal GCNs to assess the individual impact of each

brain region on classification, producing heatmaps that emphasized

key areas associated with disease progression. Furthermore, Kim

et al. (2021) applied the GNNExplainer (Ying et al., 2019) to

elucidate model predictions by identifying essential nodes and

features in the graph, thus highlighting subgraph structures that

contribute significantly to the model’s outcomes. Similarly, Kim

(2023) utilized GNNExplainer to rank personalized risk factors

for AD prediction, revealing unique biomarker patterns across

different groups and underscoring variability in AD progression.

Beyond Grad-CAM and GNNExplainer, other techniques for

enhancing GNN explainability have emerged, including attention

mechanisms, pooling scores, leave-one-region-out methods, and

connectograms. For example, Zhang et al. (2022) developed a

local-to-global GNN that integrates individual-level functional

connections with population-level non-imaging data, successfully

capturing both local and global features based on self-attention

scores.Wee et al. (2019) introduced a leave-one-region-out method

to determine the most discriminative brain regions through a trial-

and-error approach that assessed accuracy changes upon variable

removal. Additionally, Fan et al. (2022) visualized connectograms

that illustrated connectivity variations between diagnosis groups,

while pooling scores were utilized as indicators of node importance

in various studies. The BrainGNN model by Li X. et al. (2021)

incorporated ROI-aware graph convolutional layers, enhancing

the identification of significant brain regions through modified

pooling techniques. Similarly, Cui et al. (2021) presented the

BrainNNExplainer, which utilized shared masks to highlight

critical connections in disease-specific brain networks, while

Lee et al. (2021) combined GNNs with reinforcement learning to

identify individually significant nodes. Finally, Gu et al. (2021)

employed a GCN approach to evaluate node elimination impacts

on experimental performance, facilitating the identification of node

importance.

5 Limitations and potential
breakthroughs

The literature reviewed in this survey demonstrates that GNN-

based approaches are increasingly utilized for the diagnosis and

early prediction of AD. Despite their promise, several technical

challenges remain. These include limited sample size, graph

construction methods, data scarcity, multimodal data integration,

and generalization across domains. This section examines these

challenges in detail and explores potential strategies to overcome

them.

Sample size: Deep learning and GNN methods are typically

data hungry-requiring large datasets-for effective model training.

However, obtaining sufficient neuroimaging data poses significant

challenges due to the resource-intensive nature of medical data

collection, which often results in smaller datasets compared to

fields like natural language processing or computer vision. This

limitation has been a significant obstacle to the application

of GNN methods in neuroimaging analysis (Xing et al., 2019;

Wee et al., 2019). Traditional data augmentation techniques are

commonly used to address this issue by increasing the size of

training datasets (Shorten and Khoshgoftaar, 2019; Hao et al.,

2024). However, these methods alone are often insufficient to

mitigate overfitting in GNN models (Li X. et al., 2021). A

promising alternative is transfer learning, which involves fine-

tuning well-trained models from larger related datasets on smaller,

disease-specific datasets. Integrating data augmentation with self-

supervised learning presents another potential solution (Peng et al.,

2022; Tang et al., 2022; Huang and Chung, 2020; Liu J. et al., 2020).

Self-supervised learning can leverage the intrinsic structure of the

data to improve model accuracy. For example, GNNmodels can be

pre-trained using self-supervised loss functions and then fine-tuned

for specific tasks, enhancing their performance on limited.

Graph construction: GNN methods leverage graph structures

to learn feature representations from training data and make

predictions for AD diagnosis. The choice of graph construction

and representation methods, such as node definitions (e.g., ROIs,

subjects, etc.), and edge construction (e.g., correlation, k-NN

similarity, threshold, atlas/parcellation, etc.), is critical, as it directly

impacts feature extraction and has a significant impact on GNN

performance. Even minor modifications to parcellation or edge

criteria can have a significant impact on results, causing reduced

stability across study cohorts (Parisot et al., 2017, 2018; Ktena

et al., 2018; Wee et al., 2019). Predefined graph methods, based

on prior knowledge, have been widely employed; however, their

effectiveness varies across datasets. This variability can compromise
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classification performance and introduce biases from irrelevant

variables, such as sex, reducing diagnostic accuracy. Adaptive graph

representation methods and multi-relation/hypergraph methods

present a promising alternative by dynamically optimizing graph

structures during training (Cui et al., 2023; Liu et al., 2023c;

Kim, 2023; Huang and Chung, 2020). This approach aligns better

with dataset-specific characteristics, reduces reliance on extensive

hyperparameter tuning, and enhances overall performance.

Data scarcity: Missing data is a pervasive challenge in

multimodal neuroimaging research. Subjects may lack certain

modalities during data acquisition due to dropouts, or the low

quality of specific modalities may necessitate their exclusion,

leading to incomplete datasets (Pan et al., 2019). Conventional

approaches often remove subjects without complete modality

data, significantly reducing the training sample size and affecting

diagnostic performance. Various data-imputation techniques exist;

however, many focus on imputing hand-crafted feature values

defined by domain experts to represent neuroimages. These

features, however, often lack the discriminatory power required

for accurate diagnosis and prognosis of AD. Recent studies

(Pan et al., 2019, 2018) have explored approximating missing

neuroimages, such as PET, using images from other modalities,

like MRI. However, the interplay between imaging and non-

imaging data has yet to be thoroughly examined. Future research

could focus on developing sophisticated deep learning architectures

capable of leveraging correlations across diverse data modalities,

thereby enhancing the imputation of missing data and improving

diagnostic performance.

Multimodal data integration: The advancement of

neuroimaging technology allows for simultaneous analyses,

yielding diverse disease-related features from various modalities.

This multimodal approach offers a holistic view of brain

morphology, structure, and function, thereby enhancing our

understanding of individual conditions. While GNNs are

inherently well-suited for handling multimodal data, their

integration still poses several challenges. Data preprocessing

and harmonization are critical, as varying scales and noise

levels in imaging and genomic data can complicate integration.

Additionally, the computational demands for processing extensive

multimodal datasets may necessitate specialized hardware and

software solutions (Xing et al., 2019; Zhou et al., 2022a; Choi

et al., 2022). Current multimodal data fusion approaches fall into

three categories. Data-level (early) fusion combines raw data from

different modalities, while decision-level (late) fusion aggregates

predictions from modality-specific classifiers. Intermediate

fusion, an emerging strategy, employs advanced deep learning

and GNN architectures to merge learned representations from

multiple modalities at various abstraction levels (Hao et al.,

2020). However, determining the optimal stage for integration

within GNN architectures remains an open research question. A

promising avenue is the use of MultiGraph approaches, which

can effectively filter redundant information and synergize data

across modalities. Moreover, different neuroimaging modalities

capture information at distinct spatial and temporal scales. For

example, fMRI provides second-scale temporal resolution, whereas

structural MRI offers minute-scale spatial insights. Diagnosing

AD requires a holistic understanding that encompasses both the

spatial representation of affected brain regions and the temporal

dynamics of disease progression (Zhang et al., 2018; Young et al.,

2024). Although recent studies have investigated the spatial and

temporal dimensions of AD pathology, they often focus exclusively

on one aspect (Wang et al., 2019a,b). Future research should

prioritize developing GNN frameworks capable of simultaneously

integrating spatial and temporal data, paving the way for more

robust and automated AD diagnosis.

Generalization across domains: Domain generalization

presents a critical challenge in employing multimodal, multi-site

data within GNN methods for AD diagnosis. When switching

from single-site ADNI subsets to multi-site or external cohorts

can significantly impact domain generalization, resulting drop in

model performance due to domain shift (Wee et al., 2019). The

recent interest in using multi-site data for AD diagnosis stems

from the benefits of incorporating a large number of subjects from

diverse imaging sites to study pathological changes in AD (Song

et al., 2022). However, data collected across different sites often

exhibit distribution bias, leading to inter-site heterogeneity arising

from variations in acquisition protocols, scanning parameters, and

subject demographics. Most existing methods assume that multi-

site data come from the same distribution, which poses challenges

for the generalization of GNN models. Consequently, building

accurate and robust learningmodels that can handle heterogeneous

multi-site data remains a significant challenge. To tackle inter-site

heterogeneity, a promising research direction could involve

utilizing adaptive learning and transferable features across multiple

sites. Exploring domain generalization and domain adaptation as

transfer learning strategies may help optimize GNN models for

this purpose (Kumar et al., 2022; Wee et al., 2019; Li L. et al., 2022).

For instance, harmonization and domain adaptation techniques

can enable the training of GNN models using cross-site and

cross-disease datasets.

Explainability and interpretability: Clinical adoption requires

interpretability and explainability of the model outcomes. Despite

improvements in interpretability, many GNN pipelines remain

challenging and less interpretable and transparent than simpler

models. In recent years, several studies (Kim et al., 2021;

Zhou et al., 2022a; Tekkesinoglu and Pudas, 2024) incorporated

GNN methods with post-hoc eXplainable Artificial Intelligence

(XAI) modules (i.e., GNNExplainer, GRAD-CAM, attention

maps, etc.), emphasizing the significance of linking model

evidence to known neuroanatomy (such as salient ROIs)

and to identify node/edge attribution in addition to the

model performance.

6 Conclusion

This review provides a systematic and comprehensive analysis

of the current state of research on the application of GNNs in

neuroimaging for AD diagnosis and staging.We began by outlining

the foundational principles of graphs and GNNs, including key

components such as graph construction, convolution, pooling, and

prediction. Subsequently, we evaluated diverse GNN applications

across various data modalities, sample sizes, and diagnostic

accuracy, emphasizing that multimodal GNN-based approaches
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have consistently demonstrated state-of-the-art performance in AD

diagnosis. Key challenges were identified, including optimizing

graph representations, addressing small sample size limitations,

improving domain generalization, and enhancing multimodal data

integration. To overcome these obstacles, we proposed several

promising research directions, such as adaptive graph methods,

transfer learning, advanced data fusion techniques, and frameworks

that incorporate spatial and temporal data dimensions. The

increasing understanding of AD pathophysiology, coupled with

rapid advancements in GNN methodologies and the availability

of extensive open-source datasets, provides a robust foundation

for future exploration. Our findings underscore the significant

potential of GNN-based models in improving the prediction, early

diagnosis, and monitoring of AD progression. This review offers

valuable insights to guide the integration of GNN methodologies

with multimodal neuroimaging, ultimately aiming to refine

diagnostic tools and enhance clinical decision-making.
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