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Alzheimer's Disease (AD), a leading neurodegenerative disorder, presents
significant global health challenges. Advances in graph neural networks (GNNs)
offer promising tools for analyzing multimodal neuroimaging data to improve AD
diagnosis. This review provides a comprehensive overview of GNN applications
in AD diagnosis, focusing on data sources, modalities, sample sizes, classification
tasks, and diagnostic performance. Drawing on extensive literature searches
across PubMed, IEEE Xplorer, Scopus, and Springer, we analyze key GNN
frameworks and critically evaluate their limitations, challenges, and opportunities
for improvement. In addition, we present a comparative analysis to evaluate the
generalizability and robustness of GNN methods across different datasets, such
as ADNI, OASIS, TADPOLE, UK Biobank, in-house, etc. Furthermore, we provide
a critical methodological comparison across families of GNN architectures (i.e.,
GCN, ChebNet, GraphSAGE, GAT, GIN, etc.) in the context of AD. Finally, we
outline future research directions to refine GNN-based diagnostic methods and
highlight their potential role in advancing Al-driven neuroimaging solutions. Our
findings aim to foster the integration of Al technologies in neurodegenerative
disease research and clinical practice.

KEYWORDS
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1 Introduction

Neurodegenerative disorders (NDDs), such as Alzheimer’s disease (AD), represent
a significant global public health challenge. AD is a progressive condition, due
to the presence of a progressive accumulation of misfolded proteins, that disrupts
individuals’ daily functioning, with hallmark symptoms including cognitive decline,
memory impairment, and emotional instability (Zhang et al., 2023¢; Liu et al., 2023a;
Association et al., 2020; Zhang et al., 2023d). As the most common form of irreversible
dementia, AD predominantly affects individuals over the age of 65. Its diagnosis remains
challenging due to the multiple causes of dementia beyond AD (Tautan et al., 2021).
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From a clinical point of view, AD subjects can present in
the dementia phase (i.e., with significant cognitive deficits that
impact daily activities) or in the mild cognitive impairment (MCI)
phase (i.e., with subtle cognitive deficits that do not impact daily
activities). Subjects with MCI often progress to over dementia,
with studies of subjects in the AD continuum estimating that over
half of MCI cases advance to dementia during clinical observation
(Zhang et al., 2023e; Liu et al., 2023a; Association et al., 2020; Zhang
et al., 2023d). Early and accurate diagnosis of AD, especially at the
MCI stage, is crucial for timely interventions and improved patient
outcomes.

AD diagnosis traditionally involves clinical examinations,
behavioral assessments, fluid biomarkers, and neuroimaging
techniques. Advances in neuroimaging modalities such as magnetic
resonance imaging (MRI), diffusion tensor imaging (DTI),
functional MRI (fMRI), and positron emission tomography
(PET) have significantly enhanced the potential for accurate
screening, diagnosis, and prognosis (Kipf and Welling, 2016; Zhou
et al,, 2022a). More recently, the integration of deep learning
(DL) techniques with neuroimaging data has demonstrated
considerable promise in improving diagnostic precision (Meng
and Zhang, 2023). Computer-aided diagnostic (CAD) systems
leveraging neuroimaging and DL methods have gained attention
for their ability to assist in AD detection (Zhou et al., 2022a).
Traditional DL architectures, such as multilayer perceptron (MLP),
convolutional neural networks (CNNs), and recurrent neural
networks (RNNs), have been applied to analyze disorders linked
to cognitive decline (Zong and Wang, 2023). While CNNs are
frequently employed in CAD systems, they encounter significant
challenges in handling multimodal neuroimaging data. These
limitations include their inability to account for inter-subject
correlations, limited interpretability when integrating multimodal
data, and requirements for uniform input dimensions across
channels (Zhang et al, 2023¢). Furthermore, since AD leads
to structural and functional changes in brain connectivity,
conventional DL approaches like CNNs struggle to effectively
capture the network-like properties of brain data. Graph-based
methods have been introduced to address these challenges by
modeling brain connectivity, subnetworks, and local interactions in
a more biologically relevant manner (Pasquini et al., 2015). These
approaches provide a pathway to better understand the intricate
dynamics underlying AD progression and may overcome some
limitations of traditional DL models.

Graph neural networks (GNNs) extend convolutional neural
networks (CNNs) to non-Euclidean domains by incorporating
graph structures and propagating information between connected
nodes (Zhang et al, 2023e; Kipf and Welling, 2016). This
capability makes GNNs particularly suitable for applications such
as AD diagnosis, where data often include complex multimodal
relationships. GNNs support two primary approaches for graph-
based representation in neuroimaging studies: (1) subject-level
graphs, where brain regions of interest (ROIs) are treated as
nodes, and the structural or functional connectivity between brain
ROIs are represented as edges; and (2) population graphs, where
individual subjects serve as nodes, and edges encode relationships
based on demographic data, imaging modalities or other features
such as genetic or behavioral similarities (Tekkesinoglu and
Pudas, 2024; Zhou et al, 2020). Among GNN variants, graph
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convolutional networks (GCNs) have been widely employed
for medical applications (Zhang et al., 2023b). GCNs operate
directly on graph data, leveraging the topological and relational
information within the graph structure (Zhang et al., 2023e;
Kipf and Welling, 2016). For instance, in subject-level graphs,
nodes represent brain ROIs, while edges capture anatomical or
functional connectivity. GCNs aggregate and filter features from
neighboring nodes, thereby generating enriched node-level feature
representations that enhance disease prediction and support graph-
level analyses (Parisot et al., 2018). This ability to integrate and
process multimodal information within a flexible graph framework
positions GNNs as a powerful tool for advancing our understanding
of complex conditions like AD.

While several reviews have discussed the role of GNNs
in disease diagnosis, their specific applications in AD remain
underexplored. For instance, Ahmedt-Aristizabal et al. (2021)
reviewed GNNGs for general disease diagnosis, while Zhang et al.
(2023¢) examined their use in brain imaging for neurodegenerative
disorders. Similarly, Zhang et al. (2023b) provided a systematic
review of GNN-based approaches for image-guided diagnosis.
Despite these efforts, existing reviews often lack in-depth analysis
of GNN applications that integrate multimodal neuroimaging
data, an essential aspect for accurate early diagnosis of AD. In
addition, recent advances in GNN methods and their advantages
over traditional unimodal approaches are underrepresented in
these discussions. This review aims to address these gaps by
offering a comprehensive overview of GNN applications for the
diagnosis of AD, with a particular emphasis on unimodal and
multimodal neuroimaging advances in the domain of AD. The
analysis highlights the potential benefits of multimodal approaches
compared to unimodal techniques, with the aim of demonstrating
how GNN can provide novel insights and improve diagnostic
outcomes in AD research.

The rest of this review article is organized as follows: Section
2 outlines the methodology, detailing the literature search strategy
and publication selection process. Section 3 provides an overview
of GNNs and their framework in the context of AD diagnosis.
Section 4 presents a detailed review of GNN applications for AD
diagnosis, with comparisons between unimodal and multimodal
data approaches. Section 5 discusses the key challenges, limitations,
and potential future directions in GNN research for AD. Finally,
our conclusions are offered in Section 6.

2 Methodology

2.1 Data sources and literature search
queries

We conducted an extensive search across databases, such as
PubMed, Science Direct, Scopus, and IEEE Xplore in August 2024
to identify high-quality, highly cited studies using GNNs and
neuroimaging for AD diagnosis and prediction. Our search focused
on original research publications that employed graph neural
network methodologies for neuroimaging-based AD diagnosis. To
ensure relevant results, we used carefully selected keywords and
search queries (SQs), including:
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e SQ-1: (Alzheimer’s disease) AND (Multimodal data) AND
(Graph Neural Network)).

e SQ-2: (Alzheimers disease) AND (Neuroimaging) AND
(Graph Neural Network)).

o SQ-3: (Alzheimer’s disease) AND (Multimodal data) AND
(Brain connectivity) AND (Deep Learning).

e SQ-4: (Alzheimer’s disease) AND (Graph Neural Network)
AND ((MRI) OR (fMRI) OR (DTI) OR (PET)).

We also used “graph convolutional network” as an alternative to
“graph neural network,” and considered common abbreviations
such as “DL” for “deep learning” and the full names for imaging
modalities such as MRI, DTI, fMRI, and PET.

As a result, a total of 1,748 publications have been retrieved
from the aforementioned databases using these SQs. Figure 1
illustrates the year-wise distribution of publications obtained from
these databases by applying SQ-1 to SQ-4.

2.2 Publication selection process

The initial database search yielded numerous duplicate and
irrelevant publications. To refine the selection process for this
study, we established specific inclusion and exclusion criteria aimed
at retaining only relevant studies. Publications that did not meet
these criteria were excluded, leading to the identification of the
most pertinent studies, as outlined in the flowchart in Figure 2.
Exclusion criteria (screening):

i. Duplicate publications retrieved from different databases.
ii. Publications in languages other than English.
iii. Publications published before 2018.
iv. Conference abstracts, surveys, reviews, and theses.
v. Publications unrelated to the application of GNN methods in
AD diagnosis.
vi. Publications lacking sufficient detail on GNN models, such as
training procedures, architecture, or evaluation criteria applied
to AD diagnosis.

Inclusion criteria (methodological assessment):

i. Full-text publications only.
ii. Publications focusing on AD diagnosis using GNNs.
iii. Publications utilizing neuroimaging data.
iv. Publications addressing the interpretability and explainability of
GNNs.
v. Publications identified through snowball searches and cross-
referencing.

Figure 1 depicts the comprehensive search process across
databases and search engines, which identified a total of 1,748
publications. Figure 2 outlines the subsequent steps of screening,
methodological assessments, cross-referencing, and snowball
searches, which resulted in the inclusion of 73 publications for
in-depth review, each reporting on the use of GNN methods
combined with neuroimaging data to diagnose AD and monitor its
progression. All selected publications were thoroughly examined,
with data extracted and analyzed to provide an overall picture
of the reviewed studies (Tables 1, 2). The extracted information
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included references, publication years, data sources (i.e., databases),
number of subjects, subject distribution, specific modalities, and
AD classification (binary or multilevel), providing a structured
overview of the collected data.

3 Graph neural networks

This section provides a comprehensive overview of the
background of GNN,
components, framework, and taxonomy.

fundamental including their key

3.1 Overview

GNNss are a sophisticated branch of artificial neural networks
specifically designed to handle data organized in graph structures.
A graph is a mathematical representation of pairwise associations
between entities, comprising a set of nodes V and edges E, denoted
mathematically as G = (V, E). Nodes represent entities, while edges
signify the relationships between them. The foundational concepts
behind GNNs were inspired by early research that applied neural
networks to directed acyclic graphs (Sperduti and Starita, 1997).
Building on this, Gori et al. (2005) formally introduced GNNs,
emphasizing the natural graphical representation of information.
They argued for the necessity of models capable of processing
graph-structured data directly. Subsequent studies by Scarselli et al.
(2008); Gallicchio and Micheli (2010) demonstrated that GNNs
could achieve significantly better performances than traditional
ML and DL methods by iteratively leveraging graph topological
information. These investigations are classified as recurrent GNNs
(R-GNNs), which propagate neighbor information iteratively until
achieving a stable representation of a target node. However, the
computational cost associated with this process is substantial,
leading to ongoing efforts to mitigate these challenges (Li et al.,
2015; Dai et al., 2018). A defining characteristic of GNNs is their
capability to perform operations on non-Euclidean data, which
is particularly beneficial for tasks involving intricate relational
structures. In contrast, traditional ML and DL methods are
primarily designed for Euclidean data formats, such as images or
sequential text, making them less effective for graph-structured
data. GNNs address this limitation by employing local message
aggregation and propagation across edges, enabling nodes to
systematically gather information from their neighbors and refine
their representations (Zhou et al., 2020). This ability to capture both
local structures and global features allows GNNs to learn effectively
from graph-structured data. Furthermore, GNN methods generate
vector representations that encapsulate network topology and
node features (Li M. et al, 2021), enhancing their effectiveness
in processing graph-organized data. The high-level processes
of message aggregation and propagation used to update node
representations are illustrated in Figure 3.

Inspired by the success of Convolutional Neural Networks
(CNNs) in computer vision, researchers have developed various
approaches that redefine convolution for graph data. These
methods are categorized as convolutional GNNs (ConvGNNs) or
Graph Convolutional Networks (GCNs), which will be referenced
later in this review. Following this trend, several variants of GNN
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TABLE 1 Summary of key findings of the papers using GNNs and Unimodal biomarkers for AD diagnosis.

Article Database Modalities Subjects GNN Classification Accuracy (%)
(size) Architecture
MCI FE-Graph NC/AD  sMCl/ NC/ MCI/AD Multilevel
Convolution pMCI MCI
(Pooling)
1 (Wee et al,, 2019 ADNI-1 MRI 242 415 355 Spectral-ChebNet 85.8 60.9 69.3%, 79.2¢, -
2019) (1012) (Global Average 51.8% 65.2¢
Pooling)
ADNI-2 300 314/218% 261
(1083)
in-house (347) 176 128 43
2 (Kim et al., 2021 ADNI (806) MRI 266 312 228 Spectral-GCN + - - - 53.5 -
2021) Temporal LSTM
(Global Average
Pooling)
3 (Zhu et al,, 2022 ADNI (202) MRI 52 56/43% 51 Spectral-GCN (-) - - - - 96
2022b)
4 (Fan et al,, 2022 ADNI (1,253) MRI 330 296/248% 336 Spatial-Other 89.0% 71.900 - - 53.74
2022) (Global
Summation
Pooling)
OASIS (193) 93 - 100 67.22% - - - -
NIED (327) 114 - 213 83.274% - - - -
5 (Peng et al,, 2022 ADNI (911) MRI - 536 375 Spectral-GCN (-) - - - 75.8 -
2022)
6 (Zhang et al., 2023 ADNI (1,644) MRI 459 768 417 Spectral-GCN (-) 92.57 - 73.77 - 63.23
2023a)
7 (Fan et al., 2023 ADNI (666) MRI 330 - 336 Spectral-Other 86.20* - - - -
2023) (=)
8 (Aafiya and 2024 Kaggle MRI - - - Spectral-GCN (-) 96.18 - - - -
Jeyachidra,
2024)
9 (Liuetal,, 2024 ADNI (107) MRI 48 - 59 Spectral GCN 89.76 - - - -
2024) (Global Average
Pooling)
10 (Hao et al., 2024 ADNI (518) MRI 170 125 223 Spectral GCN (-) 90.18 - 76.1 84.07 -
2024)

(Continued)
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TABLE 1 (Continued)

Article Database Modalities Subjects GNN Classification Accuracy (%)
(size) Architecture
MCI FE-Graph NC/AD sMCl/ NC/ MCI/AD Multilevel
Convolution pMCI MCI
(Pooling)
11 (Ktena et al., 2018 UK Biobank fMRI - - - Spectral-ChebNet - - 70.4 - -
2018) (500) (global
summation
pooling)
12 (Zhao et al., 2019 ADNI (184) rs-fMRI 67 77/40% - Spectral-Other - 85.6 78.4%, - -
2019) =) 84.3%
13 (Liu X. et al., 2020 ADNI (133) rs-fMRI - 99 34 Spectral-GCN (-) - - - 77.2 -
2020)
14 (Yao et al., 2021 ADNI (367) fMRI 179 191 - MultiGraph-GCN - - 83.4 - -
2021) (=)
15 (Guetal., 2021 ADNI (311) fMRI 106 95 110 Spectral-GCN (-) 89.9 - 88.9 94.7 -
2021)
16 (Lee et al., 2021 ADNI (101) fMRI 48 53de - Spectral-GCN - - 74.42¢ - -
2021) (Global
Maximum
Pooling)
17 (Kumar et al,, 2022 ADNI (189) fMRI 52 59/45% 33 Spectral-ChebNet - - - 81.8 -
2022) )
18 (Wang X. 2023 OASIS (1,000) fMRI 484 - 516 ST-Other (Global 99.16 - - - -
etal., 2023) Maximum
Pooling)
19 (Tang et al., 2022 OASIS (1,326) fMRI - - - Spectral-GCN 77.51 - - - -
2022) (Hierarchical
TopK Pooling)
20 (Mei et al., 2022 ADNI (483) fMRI 565 3454 - Spectral-GCN - - 73.37% - -
2022) (Hierarchical Diff
Pooling)
21 (Wen et al., 2022 ADNI (133) rs-fMRI - 99 34 Spectral-GCN - - - 69.38 -
2022) (Hierarchical
Eigen Pooling)

(Continued)
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TABLE 1 (Continued)

Article Database Modalities Subjects GNN Classification Accuracy (%)
(size) Architecture
NC MCI FE-Graph sMClI/ NC/ MCI/AD Multilevel
Convolution pMCI MCI
(Pooling)
22 (Qinetal, 2022 ADNI (91) rs-IMRI 47 - 44 Spectral-GCN 83.3 - - - -
2022) (Global Average
Pooling)
23 (Liuetal,, 2023 ADNI, OASIS, | fMRI 2512 - 1,8984m Spectral-GCN (-) 713 - - - -
2023b) ABIDE,
in-house
(4410)
24 (Zuo and 2023 ADNI (72) fMRI 30 26 16 Spectral-GCN (-) 80 - - - 71.43
Kamata, 2023)
25 (Liuetal,, 2023 ADNI (635) fMRI 366 269 - Spectral-GCN (-) - - 73.54 - -
2023¢)
26 (Wang Z. 2023 ADNI (330) fMRI 185 - 118 Spatial-GIN 90.44 - - - -
etal., 2023) (Global Pooling)
27 (Liuetal,, 2023 ADNI (531) rs-IMRI 364 117 50 ST-RNN 79.1 - - - -
2023a) (Hierarchical
Pooling)
OASIS (250) 207 - 43 88.9 - 78.6 - -
ABIDE (1011) 512 - 499 72.7 - - - -
28 (Cui etal, 2023 ADNI (442) rs-IMRI 154 168/120% - ST-Aggregated - 90.3 90.1 - 83.3m4
2023) Attention
Network (=)
29 (Song et al,, 2019 ADNI (48) DTI 12 12/12% 12 Spectral-GCN (-) - - - - 89"t
2019)
30 (Guo etal., 2019 ADNI (327) PET av4s 100 131/96% - Spectral-ChebNet - - 93.0% - 77Mme
2019) (hierarchical SAG
pooling)
31 (Lietal, 2023 ADNI (230) PET avas, aviast 113 117 - Spectral-other (-) - - 93.5 - -
2023c)
32 (Caietal, 2023 ADNI (839) PET avas 284 329/226% - Spectral-Other - 69.5¢ 64.7°, - -
2023) (=) 75.1¢
ADNI (1064) PETpG 335 330/399% - - 67.5% 63.9%, - -
67.0%
(Continued)
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(aq ) £ g g é E ;: E g Li X. et al., 2021). In contrast, another significant research focus
-2 28E s . o . e
L;) % é %5 involves building DTI-based connectivity networks utilizing fiber-
C & . . .
. =z 53 § £ tracking techniques (Choi et al., 2022; Subaramya et al., 2022;
N N = 0@
§ S S 2 £ gng aQ ; Chhabra et al., 2023), sometimes augmented with PET-derived
< E g g . . . .
g g £ % = & information (Li W. et al., 2022). Several studies have also explored
no— - . . . H
5 ey ??i g integrating multiple graph construction approaches (Yao et al,
g g& 25§ 2021; Zhou et al., 2022b; Liu et al., 2023¢; Zhou et al., 2022a;
- N o 2 O
= = ; % g,, § g 5 Klepl et al., 2022; Fan et al., 2023). For example, Yao et al. (2021)
§ i’“ﬁ é g g g Li % = Eb employed templates of varying resolution and combined Pearson
-..E IS 8] g E E 5 E = correlation with K-nearest neighbors (KNN), while Zhou et al.
S & E g 2% % (2022b) calculated intra-subject connectivity using KNN. Liu et al.
- LE: g iﬂ g £ Eﬂ (2023c¢) proposed a two-phase strategy, constructing low- and high-
'g o . c;) = 'é“ § é 3 order graphs with attention mechanisms, and Zhou et al. (2022a)
=
& §22E22 integrated multimodal features into graph construction, with each
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TABLE 2 Summary of key findings of the papers using GNNs and multimodal biomarkers for AD diagnosis.

Article Database Modalities Subjects GNN Classification accuracy (%)
(size) architecture
MCI FE-graph sMCl/ NC/  MCI/AD Multilevel
convolution pMCI MCI
(pooling)
1 (Parisot et al., 2018 ADNI (540) MRI+phenotypic - 251 289 Spectral-ChebNet - - - 80 -
2018) )
2 (Yang et al., 2023 TADPOLE MRI+(sex) 211 320 72 Spatial-other 97.1 - 97.2 924 -
2023) (603) (global adaptive
pooling)
3 (Song et al., 2021 TADPOLE MRI+(apoed,age,sex) - 315/236% - Spatial- - 86.27 - - -
2021) (551) GraphSAGE
)
TADPOLE 413 865 337 - - - - 94.06
(1,615)
4 (Kim, 2023) 2023 ADNI (506) MRI+(apoe4, age, 214 292 - Spectral-GCN (-) - - - - -
sex, edu)
5 (Lietal, 2023 ADNI (502) MRI+MO 161 133/754% 133 Spatial-Other (-) 88 71.1 87.21 - -
2023b)
6 (Yuetal, 2019 ADNI (126) rs-fMRI+(age,sex) 44 44/38% - Spectral-GCN - 79.27% 87.50, - -
2019) (Global 89.02¢
Summation
Pooling)
7 (Jiang et al., 2020 ADNI (133) rs-fMRI+(age, sex, - 99 34 Spectral-GCN - - - 78.5 -
2020) site) (Hierarchical
Eigen Pooling)
8 (Zhuetal,, 2021 ADNI (291) fMRI+(age, sex) 94 86/67/44% - Spectral-ChebNet - 83.79% 80.0, - -
2021) (Global Adaptive 80.77,
Pooling) 86.157,
88.18¢
9 (LiL.etal, 2022 ADNI (133) fMRI+(sex, etc.) - 99 34 ST-RNN - - - 86.7 -
2022) (Hierarchical
pooling)
10 (Bi et al., 2023) 2023 ADNI (870) fMRI+(genetic) 237 197/203% 233 Spectral-other (-) 93.61 90.0« - 91.95% -
11 (Salim and 2024 ADNI (573) rs-fMRI+(age, sex, 402 171 - Spectral-other (-) - - 98.25 - -
Hamza, 2024) acquisition site)
(Continued)
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TABLE 2 (Continued)

Article Database Modalities Subjects GNN Classification accuracy (%)
(size) architecture
MCI FE-graph NC/AD  sMCI/ NC/  MCI/AD Multilevel
convolution pMCI MCI
(pooling)
12 (Kazi et al., 2019 TADPOLE PET+(CSE etc.) 160 320 84 Spectral-ChebNet - - - 83.33 -
2019b) (564) (global
summation
pooling)
13 (Kazi et al,, 2019 TADPOLE PET+(CSE, etc.) - - - Spectral-ChebNet - - 84.35 - -
2019a) (557) (global maximum
pooling)
14 (Subaramya 2022 ADNI (162) MRI+DTI 100 - 62 Spectral-GCN 97 - - - -
etal., 2022) (Global
maximum
pooling)
15 (Lin et al,, 2023 ADNI (288) MRI+PET - - - Spectral-GCN (-) 95.86 - 89.47 87.92 -
2023)
16 (Yang et al., 2022 ADNI (114) fMRI+DTI 51 63 - ST-RNN (global - - 90.4 - -
2022) pooling)
17 (Meng and 2023 ADNI (118) fMRI+DTI 37 81 - Spectral-other - - 90.7 - -
Zhang, 2023) (global adaptive
pooling)
18 (Lei et al,, 2023 ADNI (184) rs-fMRI+DTI 67 77/40% - MultiGraph-GCN - 92.31¢ 85.42¢4, - 83.11™
2023) () 93.46%
19 (Choi et al., 2022 ADNI (401) DTI+PETEpG: avas 89 132/55/53% 72 Spatial GAT - - - - 96"
2022) (Global Adaptive
Pooling)
20 (Huang and 2020 TADPOLE MRI+PETgpg + - - - Spectral-ChebNet - - - - 87.8
Chung, 2020) (557) (apoe4, Phenotypic) (=)
21 (Zhang et al., 2023 ADNI (792) MRI+PETgpg + sex 246 120/211¢ 215 Spectral-ChebNet 96.68 78 - - -
2023¢) (=)
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TABLE 2 (Continued)

Article Database Modalities Subjects GNN Classification accuracy (%)
(size) architecture
MCI FE-graph sMCl/ NC/ MCI/AD Multilevel
convolution pMCI MCI
(pooling)
22 (Li W. etal, 2022 ADNI (502) MRI+DTI+PET avss 168 165 169 Spectral-Other 96.06 - 92.73 95.15 90
2022) =)
23 (Zheng et al., 2022 TADPOLE MRI, PET, cognitive 211 211/275% 72 Spatial- - 92.3 - - 92.31
2022) (603) scores, CSE, risk GraphSAGE
factors, )
demographic
24 (Lietal, 2023 TADPOLE MRI+PET+(cognitive - - - Spectral-GCN (-) 99.3 88.3 98 94.6 -
2023a) (564) scores, CSE risk
factors,
demographic)
25 (McCombe 2022 ADNI (559) MRI+PET ay 1451 + 363 137 59 Spectral-GCN (-) - - - - 93,6t
etal., 2022) cognitive scores
26 (Song etal,, 2022 ADNI-2 (90) fMRI+DTI+ 29 34/274 - Spectral-GCN - 92.46% 91.16%, - -
2022) (Hierarchical 94,22,
TopK Pooling) 91.537,
95.71%,
92.23¢"
ADNI-3, 200) (sex, device, site) 64 52/40/44%
in-house (169) 70 99%
27 (Xing et al., 2019 ADNI (368) MRI+MRI+(age, 177 1914 - ST-RNN (-) - - 79.73% - -
2019) sex)
28 (LiuJ. etal., 2020 ADNI (210) MRI+rs- 105 1054 - Spectral-GCN (-) - - 84.1¢ - -
2020) fMRI+(age, sex,
MMSE)
29 (Chhabra 2023 In-house MRI+fMRI+DTI 600 - 600 ST-Other (-) 93.5 - - - -
etal., 2023)
30 (Tian et al., 2023 ADNI (172) MRI+fMRI+ 65 65 42 Spatial- 88.71 - 79.68 82.71 -
2023) GraphSAGE
(Hierarchical
TopK Pooling)
In-house (346) DTI+(age, sex) 102 95 49
31 (Quetal., 2023 ADNI (318) UNB, age, sex, 132 102 84 Spectral-GCN (-) 94.84 - - 84.61 -
2023) cognitive scores
(Continued)
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Article Database Modalities Subjects GNN Classification accuracy (%)
(size) architecture
MCI FE-graph NC/AD  sMCI/ NC/  MCI/AD Multilevel
convolution pMCI MCI
(pooling)
32 (Guo et al., 2023 ADNI (204) Neuroimaging+(clinical, 113 91 - MultiGraph-GCN - - 84.8 - -
2023) biological, genetic) (=)
33 (Tekkesinoglu 2024 ADNI (2212) Multimodal tabular 754 1095 363 Spectral-GCN (-) - - - - 80.18
and Pudas, data
2024)
34 (Chen et al,, 2024 ADNI (332) MRI+PETEpG(synthesized) - - - Spatial- 98.72 - 95.83 89.96 90.18™,
2024) GraphSAGE 83.08¢¢
)
82.77me/nc
35 (Zhang et al., 2022 ADNI (134) MRI+MRI+PET + 100 - 34 Spectral-other - - - 82.09 -
2022) (genetic, (Global pooling)
phenotypic)
ADNI (121) 100 121 - - - 76.48 - -
- - 80/414 - - 79.23 - - -
36 (Zhou et al., 2022 ADNI (755) MRIyem 182 476 97 Spectral-GCN - - - - 77.3
2022a) (Global
Summation
Pooling)
MRIypy+PETspg - - - - 80.6
MRIypm+PETEpG+Aval - - - - 81.8
37 (Zhou et al., 2022 ADNI (755) MRIygy 182 476 97 Spectral-GCN (-) 77.2% - - - -
2022b)
MRIVBM+PETFDG 79,7494 _ _ _ _
MRIypym+PETEDG: Av4 82.6" - - - -
38 (Zhang et al., 2023 ADNI (618) MRI 172 186/103% 157 Spectral-ChebNet 90.21 73.18 - - -
2023d) )
PET 91.51 75.47 - - -
MRI+PET 93.88 77.39 - - -
MRI+PET+sex 94.8 79.24 - - -
MRI+PET+apoe4 94.9 80.03 - - -
MRI+PET+MMSE 96.94 79.24 - - -
(Continued)
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“aNC/EMCI; ®NC/LMCL “EMCI/LMCL ““EMCI/AD; “LMCI/AD; ¢ SMC/EMCI; % SMC/LMCL “*NC/SMC; " Node Classification; & Graph Classification; bapalanced Accuracy; “*: average classification performance on three groups, including NC/AD, NC/MCI,

and MCI/AD.

Multilevel classification accuracy column reporting NC/MCI/AD classification or indicated separately, where "*NC/EMCI/LMCI; "™ NC/sMCI/pMCI; md N C/EMCI/LMCI/SMC/AD.

AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; CSE, cerebrospinal fluid; DTI, Diffusion Tensor Imaging; EEG, Electroencephalography; GM, Gray Matter; MCI, Mild Cognitive Impairment; EMCI, early MCI;

LMCI, late MCI; sMCI, stable MCI; pMCI, progressive MCI; MRI, Magnetic Resonance Imaging; MO, Morphological features (e.g., GM volume, Cortical thickness); MRI, structural MRI; fMRI, functional MRI; rs-fMRI, resting state fMRI; n, participant count; NC,

Normal Control; PET, Positron Emission Tomography; PET(FDG), Fluorodeoxyglucose PET; PET(AV45), Amyloid PET; PET(AV1451), Tau PET; SMC, Significant Memory Concern; UNB, univariate neurodegeneration biomarker; VBM, Voxel-based morphometry;

VCI, Vascular Cognitive Impairments.
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node representing an ROI Further, Klepl et al. (2022) applied
multiple methods to derive functional connectivity networks from
EEG data, and Fan et al. (2023) utilized an adaptive graph
transformer to dynamically adjust the adjacency matrix based on
extracted MRI features.

Population graph: Population graphs represent pairwise
associations between subjects, where nodes correspond to
individual subjects and edges reflect relationships based on
demographic or feature similarities (Tekkesinoglu and Pudas,
2024; Salim and Hamza, 2024; Zhang et al., 2024). These graphs
are constructed using both neuroimaging data (e.g., MRI, PET,
fMRI) and non-imaging data (e.g., age, sex, genetic information),
while connection-based statistics are commonly employed to
quantify similarity between subjects (Salim and Hamza, 2024; Liu
et al., 2023a; Ktena et al., 2018; Fan et al.,, 2022; Xing et al., 2019;
Li L. et al., 2022; Zhang et al., 2024; Yu et al., 2019; Wen et al,,
2022; Kim, 2023; Song et al., 2019; Zhao et al., 2019; Zhu et al,,
2021; Parisot et al., 2018; Zhang et al., 2023f,d,e; Tekkesinoglu and
Pudas, 2024; Li et al., 2023a,b; Wee et al., 2019; Yang et al., 2023;
Meng and Zhang, 2023; Huang and Chung, 2020; Zheng et al.,
2022; McCombe et al., 2022; Guo et al., 2023; Jiang et al., 2020;
Song et al,, 2022; Cai et al,, 2023; Lei et al., 2023). Many studies
leverage Pearson correlation to construct edges, particularly when
using fMRI data and demographic variables (Salim and Hamza,
2024; Liu et al.,, 2023a; Ktena et al., 2018; Fan et al., 2022; Xing
et al,, 2019; Li L. et al,, 2022; Zhang et al., 2024; Yu et al,, 2019).
For example, Li L. et al. (2022) applied thresholds to generate
sparse brain networks, while Wen et al. (2022) integrated attention
mechanisms to enhance graph construction. In fewer cases,
structural connectivity graphs derived from DTI fiber bundles
were aggregated into population graphs, with Pearson correlation
used to determine inter-subject similarities (Song et al., 2019).
Correlation distance is another common metric used to establish
pairwise relationships (Zhao et al., 2019; Zhu et al., 2021; Parisot
etal., 2018; Zhang et al., 2023f,d,e). For instance, Zhao et al. (2019);
Zhu et al. (2021) developed functional connectivity networks for
individual subjects using rs-fMRI, subsequently computing edge
weights based on correlation distance and demographic features.
Parisot et al. (2018) further integrated imaging and non-imaging
data, using a Gaussian kernel to calculate adjacency matrices and
combining them via the Hadamard product. Similarly, Zhang et al.
(2023f,d) analyzed volumetric and metabolic features alongside
phenotypic similarities, while (Zhang et al., 2023¢) dynamically
adjusted edge weights to reflect multimodal feature similarities.
A smaller subset of studies utilized Euclidean distance to define
edges within population graphs (Tekkesinoglu and Pudas, 2024;
Li et al., 2023a,b; Wee et al., 2019; Yang et al., 2023). For example,
Tekkesinoglu and Pudas (2024) computed it between cognitive
scores to determine edge weights, and Li et al. (2023a) combined
it with KNN for adjacency matrix construction. Cosine similarity
has also been employed in some cases to quantify inter-subject
associations (Meng and Zhang, 2023; Huang and Chung, 2020;
Zheng et al., 2022; McCombe et al,, 2022; Guo et al, 2023).
Several studies combined multiple methods to optimize graph
construction (Jiang et al., 2020; Song et al., 2022; Cai et al., 2023;
Lei et al., 2023). For instance, Jiang et al. (2020) used functional
connectivity derived from fMRI to inform edge weights, calculated
via a Gaussian kernel. Song et al. (2022) developed a multi-center
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A high-level graphical illustration of how GNNs aggregate information from neighboring nodes to update node representations. For instance, it
illustrates how a single node (i.e., A) in GNN aggregates messages from its local neighborhood. The GNN model aggregates messages from the local
neighbors of node A (i.e., B, D, E). Subsequently, the messages from these nodes are derived from information aggregated from their respective
neighborhoods, and so on. This illustrates a two-layer version of message-passing in a GNN model.

Final Representation

attention graph with attention mechanisms, while Cai et al. (2023)
constructed a group-mean adjacency matrix incorporating second-
order random walks. Additionally, Lei et al. (2023) created brain
connectivity networks by combining local weighted clustering
coefficients with structural and functional connectivity data from
DTI and rs-fMRI, improving the representation of population
graphs.

3.2.2 Graph convolution

Following graph construction, graph convolution leverages
the graph structure to enable message passing between nodes,
facilitating the extraction of high-level features. We identified four
fundamental techniques for feature extraction from neuroimaging
data in GNN methods for AD diagnosis: (i) spectral feature
extraction, (ii) spatial feature extraction, (iii) spatial-temporal
feature extraction, and (iv) multigraph feature extraction.

Spectral feature extraction (Spectral-FE): Spectral feature
extraction (Spectral-FE) operates in the spectral domain, treating
the graph as a signal. It decomposes graph signals using the
graph Laplacian eigenvalues, allowing convolution operations in
the frequency domain via filtering. This approach provides a global
perspective of the graph (Zhang et al., 2019). Notable Spectral-FE
methods include ChebNet (Defferrard et al., 2016; Zhang et al.,
2023e; Kazi et al., 2019a; Parisot et al., 2018; Liu et al., 2024; Ktena
etal., 2018; Song et al., 2019), which utilizes Chebyshev polynomial
approximations for graph convolution, and GCN, which, in
constrast, simplifies Chebyshev convolution using a first-order
approximation and is widely used in AD-related GNN methods
(Kipf and Welling, 2016; Liu et al., 2023a; Wen et al., 2022; Jiang
et al.,, 2020; Lee et al., 2021; Gu et al., 2021; Qin et al., 2022; Klepl
et al., 2022). Recent studies have combined GCN and ChebNet
(Zhao et al.,, 2019), while others (Li L. et al, 2022) employed
GCN alongside spatial-temporal graph convolution, considering
both structural and temporal features. Hybrid approaches include
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(Liet al., 2023c), which used GCN with a self-attention mechanism,
and Fan et al. (2023), which combined GCN with ARMA layers for
feature extraction. Studies like Meng and Zhang (2023) introduced
multi-layer GCNs incorporating spectral-GCN and cluster-GCN to
optimize efficiency. Other methods involved various convolution
types, such as inter- and intra-community convolution (Bi et al.,
2023) and feature concatenation from multiple filters (Yu et al.,
2019).

Spatial Feature Extraction (Spatial-FE): In contrast to
Spectral-FE, spatial feature extraction (Spatial-FE) directly applies
convolution to nodes and their neighbors in the graph, similar
to traditional image convolution, allowing for the extraction of
spatial information between brain regions (Zheng et al., 2022).
Spatial-FE methods are typically more scalable as they focus on
local links rather than the entire graph structure. Key Spatial-FE
techniques include GraphSAGE (Hamilton et al., 2017; Zheng et al.,
2022; Chen et al., 2024), GAT (Velickovi¢ et al., 2017; Choi et al.,
2022), and GIN (Xu et al., 2018; Wang Z. et al., 2023). GraphSAGE
samples a fixed-size neighborhood and aggregates features using
functions like mean or pooling, making it suitable for large graphs
(Hamilton et al., 2017). In dynamic contexts, such as incorporating
new subjects for diagnosis, traditional GNNs struggle with graph
evolution. GraphSAGE addresses this by employing inductive
learning through adjacent node sampling and aggregation, which
is particularly useful in NDD diagnosis. For instance, Zheng
et al. (2022) used GraphSAGE to partition population graphs
into mini-batches, enabling inductive learning without requiring
the entire graph. Spatial GraphSAGE was also employed for
inductive representation learning in Chen et al. (2024). GAT
enhances flexibility in capturing relationships through an attention
mechanism that adapts edge weights during training, making it
effective for brain connectivity analysis. Choi et al. (2022) combined
GAT with heat kernel diffusion to control node neighborhood sizes
adaptively. GINs, inspired by the Weisfeiler-Lehman test, utilize
injective aggregation functions to match their power, with Wang
7. et al. (2023) applying GIN for spatial convolution to capture
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that most studies favored population graph construction methods using correlation distance and Pearson correlation, with the latter and WM fiber
bundles common in individual graph construction. Spectral-FE methods predominated in feature extraction and graph convolution, while
MultiGraph-FE was less frequent. ChebNet and GCN were the most used graph convolution methods. Hierarchical pooling was less common than
global pooling, although TopK pooling was frequently reported within hierarchical approaches. Most studies focused on graph classification tasks
with a supervised learning framework, and supervised node classification was more prevalent than semi-supervised or unsupervised methods. FE,
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brain network structures and features, incorporating attention in
the readout layer for node selection. Additionally, other approaches
for spatial feature extraction include the spectral graph attention
network (SpGat) (Xu et al., 2019) and bilinear aggregator (Zhu
et al., 2020; Yang et al., 2023), as well as a model integrating CNN
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and GCN to extract local features and global connections (Fan et al.,
2022).

Spatial-temporal feature extraction (ST-FE): Spatial-
Temporal Feature Extraction (ST-FE) captures both spatial

(node/edge interactions) and temporal (time-dependent) patterns,
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which are critical for dynamic graphs where nodes and edges
evolve over time. This approach is especially relevant in brain
networks derived from EEG and fMRI, where brain regions exhibit
spatial correlations and generate temporal signals. To address
these complexities, researchers have developed spatial-temporal
graph convolution methods within GNN frameworks, integrating
temporal dynamics into graph analysis (Yang et al., 2022; Kim et al.,
2021; Chhabra et al., 2023). Prominent ST-FE techniques include
GNNs combined with Recurrent Neural Networks (GNN-RNN)
and Spatial-Temporal Graph Convolutional Networks (ST-GCNs).
GNN-RNNs integrate GNNs with recurrent architectures such as
Long Short-Term Memory (LSTM) networks or Gated Recurrent
Units (GRUs) to capture spatial node dependencies alongside
temporal dynamics. For instance, Yang et al. (2022) utilized a
GNN-RNN model with GRU to aggregate multimodal brain
network representations via spatial graph convolutions. Similarly,
Xing et al. (2019) applied a sliding window approach to create
dynamic functional networks, representing each network as a
graph where MRI-derived node features were fed into an LSTM
at each time step. Other studies leveraged GCN methods for
spatial feature extraction across multiple time points, combining
these results with LSTMs for temporal analysis (Li X. et al., 2021;
Kim et al, 2021). In contrast, ST-GCNs jointly perform spatial
and temporal convolutions to capture both static relationships
among nodes and their dynamic progression over time (Zhang
et al,, 2019). Spatial convolutions are used to identify node
associations, followed by temporal convolutions to model
sequential patterns in node attributes. For example, Zhang
et al. (2024) applied spectral-domain spatial graph convolutions
alongside temporal convolutions to capture dynamic changes
in functional connectivity and spatial correlations among brain
regions. Shan et al. (2022) proposed an ST-GNN model comprising
temporal convolution layers interleaved with spatial convolution
layers, effectively modeling both dimensions. Hybrid approaches
have also emerged, combining multiple techniques to enhance
spatial-temporal modeling. For instance, Wang X. et al. (2023)
employed spectral GCNs for feature aggregation, combined
with GraphSAGE for neighborhood information, followed by
spatial-temporal methods to analyze functional activity changes.
Cui et al. (2023) introduced a dynamic graph attention mechanism
to extract spatial-temporal features from fMRI time series data.
Additionally, Chhabra et al. (2023) implemented a multimodal
approach by applying CNNs for MRI, RNNs for fMRI, and GCNs
for DT, analyzing each modality independently before integrating
them within a multimodal neural network for classification.

(MG-FE): MultiGraph
Feature Extraction (MG-FE) involves handling multigraphs,

MultiGraph feature extraction

where multiple edges exist between the same nodes, each edge
representing a unique relationship or interaction. Extracting
features from multigraphs is challenging due to the need for
multiple graph convolutions to capture diverse connections.
MG-FE techniques are often classified by scale and construction
method, with common scales and brain templates such as AAL116
(116 ROIs) (Liu et al., 2014) and CC200 (200 ROIs) (Wood et al.,
2019). Construction methods like correlation distance and Pearson
correlation (as discussed in Section 3.2.1) further differentiate
these graphs. Several studies have applied MG-FE in multi-scale
graph contexts. For example, Yao et al. (2021) utilized four brain
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templates, each generating a distinct graph and enabling high-order
associations across subjects, while Yao et al. (2019) constructed
multi-scale functional connections from three brain templates,
aligning each template with a separate graph convolution branch.
Similarly, Lei et al. (2023); Guo et al. (2023) used a multigraph
approach to enhance feature extraction.

3.2.3 Graph pooling

Following feature extraction through graph convolution, graph
pooling is the next phase in GNNs, aiming to distill node
embeddings into informative graph embeddings that highlight the
most robust and distinctive features. Pooling is often synonymous
with “graph readout” in the literature. Two main techniques are
commonly used: global pooling and hierarchical pooling.

Global pooling: Global pooling methods convert node
embeddings into graph-level embeddings, enabling a holistic
representation of graph structures. Common approaches include
adaptive, average, maximum, and summation pooling, each with
distinct mechanisms and applications. Average Pooling computes
the mean of node embeddings, capturing shared information
across adjacent nodes. This technique has been widely used
for dimensionality reduction and to represent both local and
global brain structures. For instance, Qin et al. (2022); Kim
et al. (2021) applied average pooling after graph convolutions to
achieve compact graph-level representations, while studies like
Jiang et al. (2020); Zhang et al. (2024) leveraged it to enhance
cross-region classification tasks. Summation Pooling aggregates
node embeddings by summing feature vectors, effectively creating
a global representation of the graph. While this method efficiently
combines features (Ktena et al., 2018; Fan et al., 2022; Zhou et al.,
2022a), it may overlook relative feature importance. To address
this, studies like Kazi et al. (2019b) employed weighted summation
based on attention scores, allowing for a more nuanced integration
of node features. Maximum Pooling emphasizes distinct features
by selecting the maximum values from node embeddings. This
approach is particularly useful for highlighting salient patterns in
the data, as demonstrated in studies such as Klepl et al. (2022); Lee
etal. (2021); Subaramya et al. (2022). Adaptive Pooling dynamically
reduces the graph size while retaining structural information.
Methods like those described in Choi et al. (2022); Meng and
Zhang (2023); Zhu et al. (2021) employ custom layers to prioritize
nodes based on their importance and connectivity, preserving key
features during downsampling. For example, Zhu et al. (2021)
implemented layers tailored to prioritize critical nodes, ensuring
structural fidelity. Several studies have combined multiple pooling
techniques to leverage their complementary strengths. For instance,
Lin et al. (2023) integrated various pooling strategies, sometimes
enhanced by additional mechanisms like attention modules (Wang
7. et al.,, 2023; Zhang et al., 2022), readout functions (Liu et al.,
2023c), or GRU-based reasoning layers (Zhang et al., 2023a) to
aggregate brain region-level features effectively.

Hierarchical pooling: While global pooling techniques can
introduce noise from less relevant brain regions and may
overlook community-level features, hierarchical pooling addresses
these limitations by progressively reducing graph size layer
by layer. This approach preserves community structures and
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characteristics, ultimately transforming node embeddings into
graph-level representations. Key hierarchical pooling methods
include TopK pooling, SAG pooling, Eigen pooling, and Diff
pooling. TopK Pooling selects the top K nodes based on their
importance, effectively coarsening the graph (Sebenius et al., 2021;
Song et al., 2022; Tang et al., 2022; Tian et al., 2023). For example,
Li X. et al. (2021) implemented a two-layer approach that reduced
nodes by 50% at each layer, generating graph-level representations
through mean and maximum pooling of the remaining nodes. SAG
Pooling clusters nodes to maintain hierarchical graph structures
during pooling (Guo et al, 2019), ensuring the preservation
of important community-level features. Eigen Pooling utilizes
eigenvectors of the graph Laplacian to summarize hierarchical node
information. For instance, Jiang et al. (2020) incorporated Eigen
pooling into a hierarchical population graph, while Wen et al.
(2022) employed it to extract subgraph features prior to applying
global average pooling for final graph-level representations. Diff
Pooling reduces graph complexity by clustering nodes while
retaining subnetwork properties. This method has been effectively
used to preserve network integrity, as demonstrated in Mei
et al. (2022). We note that several studies did not explicitly
specify the pooling techniques used in their methodologies,
highlighting a potential gap in the reporting of pooling strategies in
the literature.

3.2.4 Graph prediction

Graph prediction represents the final phase of the GNN
framework, leveraging graph structures and node features to
generate predictions at node, edge, or graph levels. Each prediction
type aligns with distinct objectives (e.g., binary or multilevel
classification; or MCI-to-AD conversion) and requires appropriate
pooling, readout, or aggregation strategies.

Node classification: Node-level predictions involve classifying
or regressing node labels, often within population graphs where
nodes represent individual subjects. Supervised learning is the
most popular framework for this task, with GNNs generating
embeddings for AD prediction and disease progression analysis.
For example, Liu et al. (2023a); Zhang et al. (2023e); Kim (2023)
applied supervised GNNs to predict AD by embedding multimodal
features, while Zhao et al. (2019) utilized a fully connected
network with softmax layers for classifying early-MCI vs. late-
MCI and NC vs. EMCI nodes. Multimodal approaches such as
Peng et al. (2022) focused on integrating imaging and non-imaging
features for disease classification. Semi-supervised learning has also
been employed. For instance, Parisot et al. (2018) utilized semi-
supervised GCNs to classify NC, MCI, and AD using imaging and
demographic features. Similarly, Tekkesinoglu and Pudas (2024)
integrated multimodal patient data for multiclass classification
(NC, MCI, AD), achieving improved disease stratification. Other
studies, including Salim and Hamza (2024); Tian et al. (2023); Qu
et al. (2023), have extended semi-supervised learning techniques
for node classification in the context of neurodegenerative diseases.
A specialized node-level prediction task is disease progression
analysis, focusing on the conversion of MCI to AD. Peng et al.
(2022) introduced the FedNi framework, combining federated
and graph learning to enhance model performance for this task.
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Additionally, Song et al. (2021) applied a metric-based meta-
learning approach for early AD diagnosis using the TADPOLE
dataset. Other significant contributions include attention-based
models, such as Kazi et al. (2019b), which integrated LSTM
mechanisms for multimodal feature learning, and interpretable
GNN frameworks, such as Kim et al. (2021), which used
longitudinal neuroimaging data to predict AD progression.
Edge-level prediction: Edge-level predictions, also referred to
as link prediction, estimate the likelihood of edges forming between
pairs of nodes. These tasks are particularly useful for inferring
relationships or reconstructing incomplete graphs. For example,
Peng et al. (2022) employed an unsupervised framework based on
generative adversarial networks (GANS) to predict missing edges,
helping to reconstruct brain connectivity patterns in graph-based
models.
Graph
classifying entire graphs, where each graph typically represents an

classification: ~ Graph-level prediction involves
individual subject, often based on imaging or multimodal data.
Pooling and readout operations are essential for transforming
node-level embeddings into a compact graph-level representation.
In supervised learning, Bi et al. (2023) classified subjects as NC
or AD using spectral-based graph representations, while Huang
and Chung (2020) employed MLPs with fusion layers to classify
healthy vs. diseased subjects. Similarly, Shan et al. (2022) flattened
node features after convolution and pooling, employing a fully
connected layer for classification. A variety of graph classification
techniques have been utilized to predict different AD stages.
Multimodal frameworks integrating functional and structural
data were developed by Zhang et al. (2023d); Zhou et al. (2022a);
Meng and Zhang (2023), while Song et al. (2022) employed
dynamic graph structures with attention mechanisms. Kazi et al.
(2019b) enhanced interpretability by integrating graph attention
networks (GATs) with LSTM-based reasoning. Furthermore,
Wen et al. (2022); Tang et al. (2022); Zhu et al. (2021) utilized a
combination of spectral and spatial graph convolutions to capture
higher-order graph properties. Pooling and readout mechanisms
have been a focus of several studies for improving graph-level
predictions. Mei et al. (2022) employed Diff Pooling to preserve
subnetwork features, while Jiang et al. (2020) utilized Eigen
Pooling to retain hierarchical graph information. Numerous
other works have contributed to advancing graph classification
for AD stage prediction, including Gu et al. (2021); Cui et al.
(2023); Liu et al. (2023b); Li et al. (2023c); Choi et al. (2022);
Zhang et al. (2022); Lee et al. (2021); Yao et al. (2021); Lin et al.
(2023); Aafiya and Jeyachidra (2024); Yang et al. (2023); Fan et al.
(2022); Li L. et al. (2022); Song et al. (2019); Chhabra et al. (2023);
Zhang et al. (2023f); Wang Z. et al. (2023); Li et al. (2023b); Cai
et al. (2023); McCombe et al. (2022); Klepl et al. (2022); Zuo and
Kamata (2023); Kazi et al. (2019a); Liu et al. (2023c); Yang et al.
(2022); Wang X. et al. (2023); Fan et al. (2023); Guo et al. (2023);
Zhang et al. (2024); Guo et al. (2019); Qin et al. (2022); Li et al.
(2023a); Lei et al. (2023); Kim et al. (2021); Liu et al. (2024); Zhang
et al. (2023a); Hao et al. (2024); Zhu et al. (2022a); Kumar et al.
(2022); Liu X. et al. (2020), employing diverse techniques and
frameworks to enhance prediction accuracy and robustness across
AD stages. Additionally, fewer studies, such as Li L. et al. (2022);
Zhu et al. (2021), reported the disease progression prediction at the
graph level. Li L. et al. (2022) proposed an ensemble framework
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incorporating hierarchical GCN and transfer learning to improve
the predictive performance for MCI to AD progression. Likewise,
graph-based models like the structure and feature-based graph
U-Net (SFG U-Net) (Zhu et al, 2021) demonstrated the utility
of integrating high-order structural and node features for this
purpose.

4 Results: GNN for AD diagnosis

This section surveys the application of GNNs in classifying
subjects with normal cognition, mild cognitive impairment, and
AD, focusing on both unimodal and multimodal approaches.
We analyze the literature based on dataset size and modality,
classification accuracy, and levels, including binary (e.g., NC/AD),
(eg, NC/MCI/AD),
progression (e.g., MCI-to-AD conversion). Detailed findings
on GNN-based AD diagnosis are presented in Tables 1, 2.

multilevel classifications and disease

Furthermore, we have listed the verified GitHub repositories for
studies having open-source code in Supplementary Table SI to
facilitate replication and serve as a useful resource for researchers
in the academic community. This table lists the study reference
and related URL, providing a direct pathway for readers to dive
into the source code.

4.1 Unimodal data

We first present GNN-based studies for AD diagnosis using
unimodal neuroimaging data. Table 1 presents key insights from
studies utilizing GNN methods alongside unimodal biomarkers for
AD diagnosis.

Magnetic resonance imaging (MRI): GNNs have been widely
applied to MRI data for AD diagnosis (Fan et al.,, 2023, 2022; Wee
et al., 2019; Liu et al., 2024; Zhang et al., 2023a; Kim et al., 2021;
Peng et al., 2022; Aafiya and Jeyachidra, 2024; Hao et al., 2024; Zhu
et al., 2022b). For example, Zhang et al. (2023a) proposed a multi-
relation reasoning network leveraging structural MRI to capture
spatial and topological features, while Peng et al. (2022) introduced
a federated learning framework combined with a graph GAN to
handle missing data and train a global GCN node classifier for MCI
and AD classification. Fan et al. (2023) developed a graph reasoning
module using an adaptive graph transformer to generate graph
representations from CNN feature maps, enhancing AD diagnostic
accuracy. Similarly, Fan et al. (2022) presented BGL-Net, a global-
local information fusion network integrating CNNs and GCNs for
robust classification. Spectral graph CNNs incorporating cortical
thickness and geometric parameters were applied by Wee et al.
(2019) to detect MCI and AD. For longitudinal MRI, Hao et al.
(2024) employed weighted hypergraph convolutional networks,
while Liu et al. (2024) proposed a dual-structure hierarchical graph
learning framework combining individual and population models.

Functional MRI (fMRI): fMRI has also been extensively
analyzed with GNNs for AD diagnosis (Zhang et al., 2023¢; Ktena
et al., 2018; Zhao et al., 2019; Liu X. et al., 2020; Yao et al., 2021;
Gu et al,, 2021; Lee et al., 2021; Kumar et al., 2022; Wang X. et al,,
2023; Tang et al., 2022; Mei et al.,, 2022; Wen et al., 2022; Qin et al,,
2022; Liu et al., 2023b; Zuo and Kamata, 2023; Liu et al., 2023c;
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Wang Z. et al,, 2023; Cui et al.,, 2023). Ktena et al. (2018) used
multilayer GCNs to predict AD by assessing graph similarity, while
Gu et al. (2021) developed a fully supervised GCN that performs
automatic feature selection from brain connectivity networks for
disease stage classification. A personalized dual-branch GNN with
spatio-temporal attention was proposed by Cui et al. (2023) for
MCI detection, and Wang Z. et al. (2023) combined dynamic multi-
task GINs with attention mechanisms to improve AD classification
while simultaneously predicting age and sex. Adaptive multi-
view graph classifiers were applied by Liu et al. (2023b) to
reduce overfitting, and Liu X. et al. (2020) employed a Siamese
GCN for effective graph representation in MCI/AD classification.
Approaches like Lee et al. (2021); Qin et al. (2022) introduced
unified frameworks and U-shaped hierarchical GCNs for disease
detection. Most research in brain dynamics has relied on static
functional brain networks, which fail to capture temporal variations
in brain activity. Studies such as Wang X. et al. (2023); Tang et al.
(2022); Mei et al. (2022) advocate for dynamic functional networks
for a more accurate understanding of brain signal variations. Yao
et al. (2021) developed a mutual multiscale triplet GCN that
constructs a coarse-to-fine brain structural network using multiple
parcellation templates. Similarly, Liu et al. (2023a) proposed a
multiscale-atlases-based hierarchical GCN for analyzing functional
connectivity networks. Wen et al. (2022) introduced a multi-
view GCN (MVS-GCN) that combines graph structure learning
with multi-task graph embedding to improve classification
in AD diagnosis. Lastly, Zuo and Kamata (2023) utilized a
hypergraph convolutional network with attention mechanisms
focused on the default mode network (DMN) to enhance
classification performance.

Positron emission tomography: Some studies have applied
PET data in conjunction with GNN methods for AD diagnosis
(Cai et al,, 2023; Li et al,, 2023¢; Guo et al., 2019). For example,
Cai et al. (2023) introduced a brain network-specific hypergraph
neural network to analyze the propagation of neuropathological
events in AD. Li et al. (2023c) developed the multiple protein
features network (MPN) and higher-order MPN to enhance MCI
detection using PET scans. Additionally, Guo et al. (2019) proposed
PETNet, a generalized graph-based CNN architecture for 3D PET
image classification.

Electroencephalography: Fewer studies employed EEG data
for diagnosing AD. Klepl et al. (2022) utilized a GNN-based
framework to classify AD patients using sensor-level EEG
signals, incorporating eight functional connectivity measures to
estimate EEG brain graphs. Shan et al. (2022) developed a
dynamic spatio-temporal GCN for early AD diagnosis using
EEG data.

Diffusion tensor imaging: Graph-based methods for DTT have
been less explored. Song et al. (2019) developed a multiclass GCN
classifier based on structural connectivity, outperforming SVMs for
AD stage classification.

4.2 Multimodal data

The key findings of the studies utilizing multimodal

data for AD diagnosis combining imaging (e.g, MRI,
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PET, DTI, fMRI) and non-imaging data (e.g., age, sex,
education, CSE, APOE4, genetic factors) are summarized
in Table 2.

Several studies focused on integrating single-modality imaging
and phenotypic data types for AD diagnosis, primarily through
GCNs (Parisot et al, 2018; Yang et al, 2023; Kim, 2023; Li
et al., 2023b; Song et al, 2021; Yu et al, 2019; Salim and
Hamza, 2024; Jiang et al, 2020). For instance, Parisot et al.
(2018); Yang et al. (2023); Kim (2023); Li et al. (2023b);
Song et al. (2021) developed GCN frameworks that combined
MRI and phenotypic data, representing subjects as a sparse
graph to enhance AD diagnosis. (Yu et al., 2019) proposed a
multiscale GCN for the diagnosis of MCI from rs-fMRI and
phenotypic data. The aggregator normalization GCN introduced
by Salim and Hamza (2024) improved predictive capabilities
through the integration of diverse features, while Jiang et al.
(2020) developed a hierarchical GCN designed to enhance graph
embedding learning by merging global population networks with
individual brain networks. Several other studies incorporated
multimodal neuroimaging data into GNN frameworks for AD
diagnosis (Subaramya et al., 2022; Lin et al., 2023; Yang et al,
2022). For example, Subaramya et al. (2022) combined MRI and
DTT scans to construct structural brain graphs for classification
tasks. Similarly, Lin et al. (2023) merged MRI and PET features
using GCNs to boost classification performance. The multimodal
dynamic GCN proposed by Yang et al. (2022) focused on learning
structural and functional network features from fMRI and DTI
data. Additionally, studies such as Zhang et al. (2023e); Huang
and Chung (2020); Zhang et al. (2023d) successfully combined
multimodal neuroimaging and non-imaging data within GNN
methods. Huang and Chung (2020) proposed an uncertainty-aware
disease prediction framework combining multimodal imaging and
non-imaging data. Furthermore, Zhang et al. (2023d) developed
a joint CNN-GNN framework that extracts imaging features
via CNN and integrates these with non-imaging data through
GNNGs.

This subsection provides a comparative overview of recent
approaches to Alzheimer’s Disease (AD) diagnosis. Specifically,
it contrasts unimodal and multimodal strategies, examines
accuracy trends across datasets and populations, and evaluates

methodological ~ differences in  GNN-based architectures.
This subsection presents a comparative analysis of recent
methodologies for diagnosing Alzheimer’s Disease (AD).

This study contrasts unimodal and multimodal strategies,
examines accuracy trends across datasets and populations,
differences in GNN-based

and evaluates methodological

architectures.

4.3 Comparative perspectives on AD
diagnosis with GNNs

This
of recent
the studies
unimodal

subsection  presents a  comparative  analysis
based on
This

strategies,

approaches for diagnosing AD,
in Sections 4.1, 4.2.
and multimodal

reviewed study

contrasts examines

accuracy trends across datasets and populations, and
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evaluates  methodological  differences in ~ GNN-based

architectures.

4.3.1 Unimodal vs. multimodal approaches

In AD diagnosis studies, the difference between unimodal and
multimodal techniques is crucial. We conducted a comparative
analysis to evaluate the effectiveness of unimodal versus
multimodal approaches for AD diagnosis. The results shown
in Figure 5 demonstrate that integrating multimodal neuroimaging
data consistently yields superior classification performance
compared to single-modality methods. We note that in total,
among the 73 reviewed studies, 39 utilized multimodal data, while
34 employed unimodal data.

Unimodal methods predominantly employed fMRI, achieving
high accuracy across binary classification tasks (e.g., NC/AD),
with accuracies ranging from 71.3% to 99.16%. Structural MRI
studies also demonstrated good performance, though they were
generally less effective than fMRI, particularly for differentiating
NC/MCI/AD. PET studies showed mixed performance, with better
results observed in NC/AD tasks, though their overall use was
limited. Additionally, EEG was applied in only two studies, and
DTI was used in just one. Multimodal strategies demonstrated
substantial improvements in classification accuracy compared
to unimodal methods. For instance, leveraging TADPOLE data,
which integrated imaging (MRI, PET) and non-imaging variables
(cognitive tests, CSF, risk factors), achieved a maximum accuracy
of 99.3% for the NC/AD classification task. Other tasks, such as
NC/MCI and MCI/AD, also exhibited strong results, with top
accuracies of 98.25% and 95.15%, respectively. Figure 6 highlights
the distribution of classification tasks across the studies. Binary
classification tasks, particularly NC/AD, were most common,
followed by NC/MCI. Multilevel classification (e.g., NC/MCI/AD)
and progression analysis (MCI-to-AD conversion) were less
frequently addressed, with the latter representing only 11% of tasks.

4.3.2 Accuracy trends across datasets and
populations

Diagnostic accuracy varies among datasets and populations,
underscoring the impact of sample composition, demographic
diversity, and data quality. This subsection presents the
performance of GNNs across different datasets and population
sizes. We conducted a comparative analysis to evaluate the
generalizability and robustness of GNN methods across different
datasets, such as ADNI, OASIS, TADPOLE, UK Biobank, and
in-house etc. The findings highlighted that ADNI is the most
widely used dataset (unimodal: 24/34; multimodal: 29/39) among
all other datasets used in reviewed studies, followed by multi-site
(unimodal: 4/34) and TADPOLE (multimodal: 7/39). The results
are summarized in Figure 7. The results indicated that overall
multimodal studies consistently reported higher median accuracies
compared to unimodal approaches. This effect was particularly
evident in larger and harmonized datasets like ADNI and
TADPOLE, where multimodal models showed superior median
performance and lower variability, indicating greater robustness
and generalizability. In contrast, unimodal studies exhibited greater
variability in results, especially for complicated tasks such as NC
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FIGURE 5

The boxplots display the accuracy of AD diagnosis across unimodal and multimodal data approaches. Multimodal methods were the most
commonly reported in the reviewed studies. Among unimodal approaches, fMRI was the most frequently utilized. Mean accuracy values are marked
with plus symbols, and individual data points are represented by circles. The boxplots are based on classification accuracies reported in the studies
listed in Tables 1, 2.
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Frequency and percentage of classification task for each group of analysis in the reviewed studies. The plot is drawn from the studies mentioned
in Tables 1, 2.
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FIGURE 7
The boxplots represent the distribution of reported GNN classification accuracies for AD diagnosis across different datasets and population size,
stratified by (a) unimodal and (b) multimodal approaches. The results are shown for NC vs. AD, NC vs. MCI (where NC could be NC or SMC; MCI could
be EMCI, LMCI), and MCl vs. AD (where MCI could be EMCI, LMCI) classification tasks. The plot is drawn from the studies mentioned in Tables 1, 2.

vs. MCI and MCI vs. AD. NC/MCI classification, highlighting the
limitations of single-modality inputs for early disease detection.
Furthermore, NC vs. AD classification demonstrated the highest
consistency and performance across all datasets, often surpassing
85%-90% accuracy. Conversely, NC vs. MCI and MCI vs. AD
tasks exhibited reduced and more variable accuracies, especially
in unimodal studies. Multimodal approaches have been shown to
reduce this variability, indicating that the integration of structural,
functional, and demographic features improves sensitivity to subtle
disease-related patterns.

Furthermore, it is found that the population size varied
significantly across studies conducting using ADNI dataset
[unimodal: 48 (Song et al., 2019) - 1,644 (Zhang et al., 2023a);
multimodal: 114 (Yang et al., 2022) — 870 (Bi et al., 2023)], therefore
we further stratified the studies based on population size conducted
using ADNI data (such as studies with sample size less than 300
subjects and more than 300 subjects). The findings highlighted the
size of the population as a significant factor in the performance of
GNN. It is evident that the studies conducted using ADNI > 300
samples reported superior performance and less variable accuracies
as compared to studies using sample sizes of less than 300, which
underscores the impact of population size on the consistency and
stability of GNN.

Several studies (unimodal: Wee et al., 2019; Fan et al., 2022;
Liu et al, 2023b,a; multimodal: studies Song et al., 2022; Tian
et al., 2023) reported datasets from multi-site/multi-center (such
as ANDI, OASIS, ABIDE, in-house, etc.). The findings revealed
that studies conducted using multi-site datasets introduced
increased variability, especially in unimodal studies, indicating
heterogeneity across acquisition protocols. In contrast, large or
harmonized datasets like ADNI > 300 or TADPOLE yielded
greater stability and accuracy, especially when combined with
multimodal integration. In Summary, these findings emphasize that
the dataset, population size, and modality integration are critical
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to enhance the generalizability and robustness of GNN-based
approaches for AD diagnosis. Specifically, large and multimodal
datasets enhance the reliability and generalizability of GNN
models compared to small or unimodal datasets. Thus, by
addressing the implications of data heterogeneity and domain
shift, multimodal and large-scale datasets tend to offer the
most reliable foundation for developing GNN-based methods for
neurodegenerative diseases.

Methodological choices in graph neural network-based
approaches, including graph construction strategies, aggregation
functions, and learning objectives, directly influence diagnostic
performance. This subsection presents a comparative analysis of
various GNN architectures utilized in AD diagnosis, highlighting
their respective advantages and trade-offs.

Methodological choice within GNN-based methods about
graph construction methodologies, aggregation functions, and
learning objectives have a direct impact on diagnostic performance
in graph neural network-based approaches. This subsection
presents a comparative analysis of various GNN architectures
utilized in AD diagnosis, highlighting their respective advantages
and trade-offs.

4.3.3 Methodological comparison of GNN
architectures for AD diagnosis

Diagnostic performance in GNN-based approaches is directly
impacted by methodological decisions, such as graph construction
methods, graph convolution, etc. This subsection presents a critical
analysis across families of GNN architectures for AD diagnosis
and classification tasks, highlighting their respective advantages
and trade-offs. Figure 8 highlights a comparative synthesis of
GNN architectures using radar plots for both unimodal and
multimodal studies, revealing the variations in stability and task
sensitivity among families of GNNs. The distribution of studies
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FIGURE 8
Radar plots highlight the median classification accuracies reported across families of GNN for AD diagnostic tasks (NC vs. AD, NC vs. MCI, and MCI
vs. AD) in unimodal (left) and multimodal (right) studies. The rings in the radar plots represent accuracy thresholds ranging from 65% to 100%,
whereas each polygon represents a distinct GNN family. The results are shown for NC vs. AD, NC vs. MCI (where NC could be NC or SMC; MCI could
be EMCI, LMCI), and MClI vs. AD (where MCI could be EMCI, LMCI) classification tasks. The plot is drawn from the studies mentioned in Tables 1, 2,
and analysis results in Supplementary Table S2.

and accuracies by GNN architecture and classification task is
given Supplementary Table S2, where data derived from Tables 1, 2.
The findings of the analysis indicated that spectral methods-such
as GCN, ChebNet-are most prevalent both in the number of
studies as well as their reliability across all AD diagnostic tasks.
The spectral-GCN is the most widely used GNN architecture
(unimodal: 18/34; multimodal: 14/39) (source: Tables 1, 2). The
findings revealed that spectral GCN-based studies consistently
reported accuracies over 90% in NC vs. AD classification task;
however, exhibited reduced and more variable accuracies for MCI
vs. AD [unimodal: 53.5% (Kim et al., 2021)-94.7% (Gu et al., 2021);
multimodal: 78.5% (Jiang et al., 2020)-94.6% (Li et al., 2023a)]. This
indicates that although spectral convolutions effectively identify
significant global differences between NC and AD, they are
less adept at recognizing more nuanced progression patterns. In
contrast, ChebNet, despite its limited applications (unimodal: 5/34;
multimodal: 7/39), consistently demonstrated high performance
(unimodal: 85.8%-91.51%; multimodal: up to 96%-97%) for the
NC vs. AD classification task as well as exhibits greater stability
across classification tasks, indicating the effectiveness of polynomial
filters for handling noise and sparse graphs.

In contrast to the spectral methods, spatial GNN methods-such
as GraphSAGE, GAT, GIN-were not frequently reported in either
unimodal or multimodal studies. Despite being less studied, spatial
GNN architectures have several advantages. Spatial-GraphSAGE
methods (unimodal: nan; multimodal: 4/39) indicated competitive
and consistent performance across AD diagnostic classification
tasks [NC vs AD: 98.72%; NC vs. MCI: 95.83%; MCI vs. AD: 89.96%
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(Chen et al., 2024)], which underscores the inferential significance
of sampling-based aggregation in the context of multimodal inputs.
However, GIN architecture was observed only once in an unimodal
study, achieving 91.1% in NC vs. AD classification (Wang Z.
et al.,, 2023). Likewise, GAT was observed in a single study (Choi
et al., 2022). Their limited use in literature constrains conclusions;
nonetheless, their expressiveness suggests opportunities for future
research.

Similar to spectral GNN architectures, Spatio-temporal
(ST) GNN architecture-RNN and CNN-based GNN have been
investigated in both unimodal and multimodal settings; however,
they are still underrepresented (unimodal: 3; multimodal: 4).
In unimodal studies, ST-Other (which is a hybrid architecture
integrating spectral GCNs for feature aggregation with GraphSAGE
for neighborhood information, followed by ST methods to analyze
functional activity changes) reported the highest accuracy
(99.16%) in NC vs. AD classification task (Wang X. et al., 2023).
On the other hand, ST GNN methods reported competitive
performances across AD diagnostic tasks; however, these are
not yet fully exploited by current implementations. In addition,
MultiGraph GNN methods (unimodal: 2; multimodal: 2) reported
accuracies ranging from 83.4% to 93.46%, indicating potential
for subject-level heterogeneity. However, the limited number of
studies in the literature impacts definitive conclusions. Overall,
the methodological comparison of GNN architectures for AD
diagnosis suggested that spectral methods (GCN, ChebNet) offered
robust and stable baseline performance. Spatial methods, such
as GraphSAGE and GAT, demonstrated potential in multimodal
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integration (e.g., MRI + PET + clinical features); however, the
supporting evidence remains limited. Spatio-temporal methods are
still in their early phase, exhibiting only limited advancements.

4.4 Explainability in GNNs

Explainability and interpretability of GNNs are critical for their
clinical adoption. Interpretable models can pinpoint specific brain
regions and neural connections driving predictions, providing
insights into underlying pathologies and informing treatment
strategies. Conversely, a lack of explainability reduces GNNs
to black-box models, hindering their integration into medical
decision-making, where transparency and accountability are
essential (Li X. et al., 2021; Ying et al., 2019).

Various methods for interpreting GNN predictions have
been reported in the literature (Zhou et al., 2022a,a; Selvaraju
et al, 2017; Wang X. et al, 2023; Liu et al, 2023a; Kim
et al., 2021; Ying et al, 2019; Kim, 2023; Zhang et al., 2022;
Wee et al., 2019; Fan et al, 2022; Li X. et al, 2021; Cui
et al., 2021; Lee et al, 2021; Gu et al, 2021). Zhou et al.
(2022a) introduced an interpretable Gradient Class Activation
Mapping (Grad-CAM) approach (Selvaraju et al., 2017; Zhang
et al., 2024) to analyze key regions of interest. This framework
highlighted the putamen and pallidum as critical biomarkers for
distinguishing normal cognition, MCI, and AD groups, while also
identifying discriminative features based on brain connectivity
patterns. Similarly, Wang X. et al. (2023) employed Grad-CAM
to identify important brain regions, revealing the hippocampus
and temporal pole’s significance in AD classification tasks. In
addition, Liu et al. (2023a) used Grad-CAM to interpret GNN
predictions by pinpointing significant brain regions derived from
fully connected networks, aiding in the differentiation between
disease stages. Zhang et al. (2024) combined Grad-CAM with
spatio-temporal GCNs to assess the individual impact of each
brain region on classification, producing heatmaps that emphasized
key areas associated with disease progression. Furthermore, Kim
et al. (2021) applied the GNNExplainer (Ying et al, 2019) to
elucidate model predictions by identifying essential nodes and
features in the graph, thus highlighting subgraph structures that
contribute significantly to the model’s outcomes. Similarly, Kim
(2023) utilized GNNExplainer to rank personalized risk factors
for AD prediction, revealing unique biomarker patterns across
different groups and underscoring variability in AD progression.
Beyond Grad-CAM and GNNExplainer, other techniques for
enhancing GNN explainability have emerged, including attention
mechanisms, pooling scores, leave-one-region-out methods, and
connectograms. For example, Zhang et al. (2022) developed a
local-to-global GNN that integrates individual-level functional
connections with population-level non-imaging data, successfully
capturing both local and global features based on self-attention
scores. Wee et al. (2019) introduced a leave-one-region-out method
to determine the most discriminative brain regions through a trial-
and-error approach that assessed accuracy changes upon variable
removal. Additionally, Fan et al. (2022) visualized connectograms
that illustrated connectivity variations between diagnosis groups,
while pooling scores were utilized as indicators of node importance
in various studies. The BrainGNN model by Li X. et al. (2021)
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incorporated ROI-aware graph convolutional layers, enhancing
the identification of significant brain regions through modified
pooling techniques. Similarly, Cui et al. (2021) presented the
BrainNNExplainer, which utilized shared masks to highlight
critical connections in disease-specific brain networks, while
Lee etal. (2021) combined GNNs with reinforcement learning to
identify individually significant nodes. Finally, Gu et al. (2021)
employed a GCN approach to evaluate node elimination impacts
on experimental performance, facilitating the identification of node
importance.

5 Limitations and potential
breakthroughs

The literature reviewed in this survey demonstrates that GNN-
based approaches are increasingly utilized for the diagnosis and
early prediction of AD. Despite their promise, several technical
challenges remain. These include limited sample size, graph
construction methods, data scarcity, multimodal data integration,
and generalization across domains. This section examines these
challenges in detail and explores potential strategies to overcome
them.

Sample size: Deep learning and GNN methods are typically
data hungry-requiring large datasets-for effective model training.
However, obtaining sufficient neuroimaging data poses significant
challenges due to the resource-intensive nature of medical data
collection, which often results in smaller datasets compared to
fields like natural language processing or computer vision. This
limitation has been a significant obstacle to the application
of GNN methods in neuroimaging analysis (Xing et al., 2019;
Wee et al,, 2019). Traditional data augmentation techniques are
commonly used to address this issue by increasing the size of
training datasets (Shorten and Khoshgoftaar, 2019; Hao et al,
2024). However, these methods alone are often insufficient to
mitigate overfitting in GNN models (Li X. et al, 2021). A
promising alternative is transfer learning, which involves fine-
tuning well-trained models from larger related datasets on smaller,
disease-specific datasets. Integrating data augmentation with self-
supervised learning presents another potential solution (Peng et al.,
2022; Tang et al., 2022; Huang and Chung, 2020; Liu J. et al., 2020).
Self-supervised learning can leverage the intrinsic structure of the
data to improve model accuracy. For example, GNN models can be
pre-trained using self-supervised loss functions and then fine-tuned
for specific tasks, enhancing their performance on limited.

Graph construction: GNN methods leverage graph structures
to learn feature representations from training data and make
predictions for AD diagnosis. The choice of graph construction
and representation methods, such as node definitions (e.g., ROIs,
subjects, etc.), and edge construction (e.g., correlation, k-NN
similarity, threshold, atlas/parcellation, etc.), is critical, as it directly
impacts feature extraction and has a significant impact on GNN
performance. Even minor modifications to parcellation or edge
criteria can have a significant impact on results, causing reduced
stability across study cohorts (Parisot et al., 2017, 2018; Ktena
et al,, 2018; Wee et al,, 2019). Predefined graph methods, based
on prior knowledge, have been widely employed; however, their
effectiveness varies across datasets. This variability can compromise
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classification performance and introduce biases from irrelevant
variables, such as sex, reducing diagnostic accuracy. Adaptive graph
representation methods and multi-relation/hypergraph methods
present a promising alternative by dynamically optimizing graph
structures during training (Cui et al, 2023; Liu et al, 2023¢
Kim, 2023; Huang and Chung, 2020). This approach aligns better
with dataset-specific characteristics, reduces reliance on extensive
hyperparameter tuning, and enhances overall performance.

Data scarcity: Missing data is a pervasive challenge in
multimodal neuroimaging research. Subjects may lack certain
modalities during data acquisition due to dropouts, or the low
quality of specific modalities may necessitate their exclusion,
leading to incomplete datasets (Pan et al, 2019). Conventional
approaches often remove subjects without complete modality
data, significantly reducing the training sample size and affecting
diagnostic performance. Various data-imputation techniques exist;
however, many focus on imputing hand-crafted feature values
defined by domain experts to represent neuroimages. These
features, however, often lack the discriminatory power required
for accurate diagnosis and prognosis of AD. Recent studies
(Pan et al, 2019, 2018) have explored approximating missing
neuroimages, such as PET, using images from other modalities,
like MRI. However, the interplay between imaging and non-
imaging data has yet to be thoroughly examined. Future research
could focus on developing sophisticated deep learning architectures
capable of leveraging correlations across diverse data modalities,
thereby enhancing the imputation of missing data and improving
diagnostic performance.

Multimodal data The
neuroimaging technology allows for simultaneous analyses,

integration: advancement of
yielding diverse disease-related features from various modalities.
This multimodal approach offers a holistic view of brain
morphology, structure, and function, thereby enhancing our
understanding of individual conditions. While GNNs are
inherently well-suited for handling multimodal data, their
integration still poses several challenges. Data preprocessing
and harmonization are critical, as varying scales and noise
levels in imaging and genomic data can complicate integration.
Additionally, the computational demands for processing extensive
multimodal datasets may necessitate specialized hardware and
software solutions (Xing et al,, 2019; Zhou et al.,, 2022a; Choi
et al., 2022). Current multimodal data fusion approaches fall into
three categories. Data-level (early) fusion combines raw data from
different modalities, while decision-level (late) fusion aggregates
predictions from modality-specific classifiers. Intermediate
fusion, an emerging strategy, employs advanced deep learning
and GNN architectures to merge learned representations from
multiple modalities at various abstraction levels (Hao et al,
2020). However, determining the optimal stage for integration
within GNN architectures remains an open research question. A
promising avenue is the use of MultiGraph approaches, which
can effectively filter redundant information and synergize data
across modalities. Moreover, different neuroimaging modalities
capture information at distinct spatial and temporal scales. For
example, fMRI provides second-scale temporal resolution, whereas
structural MRI offers minute-scale spatial insights. Diagnosing
AD requires a holistic understanding that encompasses both the
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spatial representation of affected brain regions and the temporal
dynamics of disease progression (Zhang et al., 2018; Young et al.,
2024). Although recent studies have investigated the spatial and
temporal dimensions of AD pathology, they often focus exclusively
on one aspect (Wang et al., 2019a,b). Future research should
prioritize developing GNN frameworks capable of simultaneously
integrating spatial and temporal data, paving the way for more
robust and automated AD diagnosis.

Generalization across domains: Domain generalization
presents a critical challenge in employing multimodal, multi-site
data within GNN methods for AD diagnosis. When switching
from single-site ADNI subsets to multi-site or external cohorts
can significantly impact domain generalization, resulting drop in
model performance due to domain shift (Wee et al., 2019). The
recent interest in using multi-site data for AD diagnosis stems
from the benefits of incorporating a large number of subjects from
diverse imaging sites to study pathological changes in AD (Song
et al., 2022). However, data collected across different sites often
exhibit distribution bias, leading to inter-site heterogeneity arising
from variations in acquisition protocols, scanning parameters, and
subject demographics. Most existing methods assume that multi-
site data come from the same distribution, which poses challenges
for the generalization of GNN models. Consequently, building
accurate and robust learning models that can handle heterogeneous
multi-site data remains a significant challenge. To tackle inter-site
heterogeneity, a promising research direction could involve
utilizing adaptive learning and transferable features across multiple
sites. Exploring domain generalization and domain adaptation as
transfer learning strategies may help optimize GNN models for
this purpose (Kumar et al., 2022; Wee et al., 2019; Li L. et al., 2022).
For instance, harmonization and domain adaptation techniques
can enable the training of GNN models using cross-site and
cross-disease datasets.

Explainability and interpretability: Clinical adoption requires
interpretability and explainability of the model outcomes. Despite
improvements in interpretability, many GNN pipelines remain
challenging and less interpretable and transparent than simpler
models. In recent years, several studies (Kim et al, 2021;
Zhou et al., 2022a; Tekkesinoglu and Pudas, 2024) incorporated
GNN methods with post-hoc eXplainable Artificial Intelligence
(XAI) modules (i.e, GNNExplainer, GRAD-CAM, attention
maps, etc.), emphasizing the significance of linking model
evidence to known neuroanatomy (such as salient ROIs)
and to identify node/edge attribution in addition to the
model performance.

6 Conclusion

This review provides a systematic and comprehensive analysis
of the current state of research on the application of GNNs in
neuroimaging for AD diagnosis and staging. We began by outlining
the foundational principles of graphs and GNNG, including key
components such as graph construction, convolution, pooling, and
prediction. Subsequently, we evaluated diverse GNN applications
across various data modalities, sample sizes, and diagnostic
accuracy, emphasizing that multimodal GNN-based approaches

frontiersin.org


https://doi.org/10.3389/fnins.2025.1623141
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Ali et al.

have consistently demonstrated state-of-the-art performance in AD
diagnosis. Key challenges were identified, including optimizing
graph representations, addressing small sample size limitations,
improving domain generalization, and enhancing multimodal data
integration. To overcome these obstacles, we proposed several
promising research directions, such as adaptive graph methods,
transfer learning, advanced data fusion techniques, and frameworks
that incorporate spatial and temporal data dimensions. The
increasing understanding of AD pathophysiology, coupled with
rapid advancements in GNN methodologies and the availability
of extensive open-source datasets, provides a robust foundation
for future exploration. Our findings underscore the significant
potential of GNN-based models in improving the prediction, early
diagnosis, and monitoring of AD progression. This review offers
valuable insights to guide the integration of GNN methodologies
with multimodal neuroimaging, ultimately aiming to refine
diagnostic tools and enhance clinical decision-making.
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