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This study investigated the correlation between subjective preferences for different
cosmetic formulations and brain activity measured using electroencephalography
(EEG). EEG data were collected from 29 participants when they applied three
positive and one negative cosmetic formulation to the inside of their left forearms.
According to the questionnaire results, the negative formulation showed significantly
lower preference scores than the positive formulations. Additionally, significant
EEG-preference correlations were consistently found in the delta and alpha bands
within the sensorimotor areas closely related to tactile processing and its emotional
regulation. In particular, stronger correlations were observed when only the two
positive formulations with higher preferences were included in the analysis or when
specific frequency bands showing significant results were combined together.
These findings demonstrate the potential of predicting cosmetic preferences
based on EEG data and highlight the crucial role of texture sensation in shaping
user choice.
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Introduction

The market for cosmetic products has significantly expanded in recent years, giving
consumers a broader range of options. However, this abundance has also made it more
challenging for consumers to identify products that match their skin types and preferences. It
is nearly impossible to try every available product, and given variability in individual skin
conditions, relying solely on others’ reviews has inherent limitations. In response, several
cosmetic companies have begun offering personalized products. For instance, Amorepacific,
a leading cosmetic firm in South Korea, has developed solutions tailored to the skin tones of
Asian women (Color correcting technology, 2025), and introduced 3D printing technology
for customized facial masks (Tailored facial mask pack 3D printing system, 2025). Another
company, Dr. JCOS, has created a big data-based system to analyze global skin characteristics
for personalized recommendations (Dr.JCOS INC., 2025).

In the development of personalized cosmetic products, both external factors (e.g., skin
type) and internal factors (e.g., emotions and preferences) play crucial roles. Conventional
methods such as questionnaires or focus group interviews have been commonly used to assess
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consumer preferences (Frey and Fontana, 1991; Cavill and Bryden,
2003). While these approaches can gather a variety of information,
respondents may withhold or inaccurately report their genuine
feelings due to self-consciousness or uncertainty about their own
preference. Moreover, because these methods rely on retrospective
recall rather than real-time reactions, time-related distortions
can occur.

To address these limitations, researchers have been exploring
neurophysiological approaches, such as electroencephalography
(EEG), functional magnetic resonance imaging (fMRI), and eye
tracking, to measure consumer emotions and preferences in real time
(Phan et al., 2002; Bos, 2006; Ares et al., 2014; Jenke et al., 2014). These
approaches, now widely adopted within the framework of
neuromarketing, enable the capture of subconscious responses that
consumers themselves might not recognize, providing more objective
and quantifiable data in the context of cosmetic product usage. Among
these neurophysiological techniques, EEG is particularly notable for
its high temporal resolution, which allows for the detection of rapid
responses to specific stimuli. It is also more accessible than many other
neurophysiological modalities due to its relatively lower cost and
fewer spatial constraints. Owing to these methodological advantages,
EEG has been extensively utilized across multiple neuromarketing
contexts to investigate consumers’ implicit emotional and cognitive
responses (Yadava et al., 2017; Khurana et al., 2021; Khondakar
etal., 2024).

A recent review examined neurophysiological research on
emotional responses to cosmetic products conducted before May
2024, identifying 33 relevant studies (Diwoux et al., 2024). Of these,
only 12 utilized EEG, highlighting the limited number of EEG-based
investigations in this field. After excluding studies focusing on specific
cosmetic compounds or solely on classification, only four explicitly
investigated emotional responses induced by cosmetics themselves.
Two of them centered on fragrances; for instance, one study showed
that inhaling a lavender-scented cleansing gel induced a positive
mood, as evidenced by changes in frontal alpha asymmetry (Field
et al., 2005). Another study found that inhaling certain fragrances
affected alpha activity, indicating relaxation effects (Churchill and
Behan, 2010).

Fragrance is undoubtedly an important factor in cosmetic product
selection. However, texture, which varies according to different
formulations, also plays a critical role. Despite this, relatively few
studies have explored the neurophysiological mechanisms associated
with formulation-specific textures, especially when compared to visual
and olfactory stimuli, which have been more extensively studied in the
field of neuromarketing (Golnar-Nik et al., 2019; Cuesta et al., 20205
Ouzir et al., 2024). For example, one of the studies mentioned in the
review assessed both subjective preferences and EEG responses for
various formulations, but it relied solely on EEG data to interpret
emotional states (Gabriel et al., 2021). Another study explored the
correlation between subjective valence and EEG-based valence, but
because the product included scent and color, the findings did not
isolate the effects of formulation alone (Wang et al., 2024). Therefore,
there is limited quantitative evidence demonstrating whether EEG can
reliably capture formulation-specific emotional responses.
Furthermore, to our best knowledge, no study to date has established
a clear neurophysiological interpretation by correlating subjective
preferences with EEG signals exclusively in the context of
cosmetic formulations.
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In this study, therefore, we measured brain activity induced by
applying different cosmetic formulations—explicitly excluding external
factors such as scent and color-and investigated how these EEG
measures correlate with subjective preferences collected via a standard
questionnaire. To this end, EEG data were measured while thirty-two
participants applied three positive formulations and one negative
formulation, followed by a self-report survey on preference. We then
compared subjective preference levels among the four formulations
and performed correlation analyses between these preference levels
and the corresponding EEG signals. Through this study, we aim to
demonstrate the potential of neurophysiological measures as a
valuable complement to traditional approaches in evaluating
preferences related to cosmetic products.

Methods
Participants

Thirty-two healthy female participants aged between 25 and
45 years (mean age: 34.47 + 6.10 years) participated in this study. Due
to the relatively higher frequency and interest in the use of cosmetics
products among women compared to men, only females were selected
as participants. None of the participants had any acute or chronic
physical diseases, including infectious skin disease, skin allergies, and
neurological or psychiatric disorders. Subjects were recruited through
the website of the P&K Skin Research Center, where the experiments
were carried out. The local Institutional Review Board (IRB) approved
the study protocol (2021-1CR-N38S). All participants were fully
informed about the purpose and details of the study and voluntarily
signed a consent form.

Experimental procedures

Before the experiment, four locations on each participant’s left
inner forearm were marked with a 50 mm diameter stamp, ranging
from the wrist to the elbow. This ensured the proper application of four
different cosmetic formulations: three positive formulations (P1, P2,
P3) and one negative formulation (N). The positive formulations were
characterized by moisture and a smooth texture, with similar hardness
and pH values. In contrast, the negative formulation was oily, had poor
spreadability, a relatively high hardness value, and lacked moisture.
These characteristics were expected to induce positive and negative
preferences, respectively. Among the four cosmetic formulations used
in the experiment, three formulations (P1, P2, N) were based on
commercially available products, while the remaining one (P3) was a
prototype of the cream product. To eliminate possible olfactory and
visual influences and focus on the tactile experience related to the
texture of the cosmetic formulations themselves, all fragrances and
colorants were completely removed. Table 1 provides details on the
four formulations used in this study.

Each formulation was applied five times in a randomized order to
prevent potential order effects. The experimenter used a pipette to
apply a fixed amount (50 pL) of each formulation to the designated
locations on the left forearm. Participants were instructed to rest for
5 s and then apply the formulation to their skin with their right hand
for 30 s. To induce natural emotional responses, they were instructed
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TABLE 1 Information regarding the four formulations used in the study.

Product name

Formulation

10.3389/fnins.2025.1620806

Hardness

Primera Oil-Free Gel Cream* (Alpine berry

watery oil-free gel cream, 2025)

P1 AmorePacific 16 6.80

Hanyul Pure Artemisia Calming Water Cream

baby healing ointment (14 0z.), 2025)

P2 AmorePacific 16 6.00
(Pure artemisia calming water cream, 2025)
P3 Ceramide Beta cream #14 ** AmorePacific R&I Center 16 7.01
Aquaphor Baby Healing Ointment (Aquaphor’
N Beiersdorf 375 Unmeasurable (no moisture)

Hardness was measured using the Compac-100 II (Sun Scientific, Japan), and pH was measured using the $20-K SevenEasy™ (Mettler-Toledo, USA). Based on the hardness and pH values,
P1, P2, P3 formulations were expected to induce positive preferences, while N formulation was expected to induce negative preferences.
*indicates a product that is currently discontinued; ** refers to a prototype formulation that is not commercially available. The pH value of the N formulation was unmeasurable due to its

thick, paste-like texture and lack of moisture content.

to apply the formulations according to their usual habits, without
restrictions on application methods (e.g., tapping, rubbing, or the
speed of application). This design choice was intended to enhance
ecological validity—that is, to ensure that the experimental conditions
closely resembled real-life usage scenarios—by allowing participants
to interact with the products in a natural and familiar manner, rather
than imposing artificial constraints on their behavior (Subramanian
etal., 2023).

The overall experimental procedure was conducted following
the sequence illustrated in Figure 1. In each repetition, the four
formulations were applied once in randomized order to the four
marked areas. Because the N formulation had a thick, paste-like
consistency that made it difficult to remove cleanly, it always
applied last. After completing one full repetition (i.e., one
application of each formulation), the skin was gently wiped with
a wet tissue to minimize residual effects before the next repetition
began. To further minimize cross-contamination, participants
were instructed to wipe their fingers with wet tissues after each
application, ensuring that residue from one formulation would
not affect the next.

After each application, participants completed a preference
questionnaire using PsychoPy (2025). The questionnaire used a
7-point Likert scale (1 = “non-preferred,” 7 = ‘highly preferred”). After
the experiment, three participants were excluded from the analysis for
the following reasons. For Sub 1 and Sub 6, the formulation order
information and some experimental data were not recorded due to
technical issues, respectively. Sub 10 was excluded due to inconsistent
preference scores of the formulations. As a result, the questionnaire
and EEG data from twenty-nine participants were included in the
final analysis.

EEG data acquisition and pre-processing

EEG data were acquired using a CGX Quick-20r system (Cognionics
Inc., San Diego, CA, USA) equipped with nineteen dry electrodes (Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, P7, P3, Pz, P4, P8, O1, O2),
attached on the scalp according to the international 10-20 system (Dry
EEG headset, 2025). The Al electrode was placed on the left earlobe
served as both ground and reference (Figure 2). Raw EEG data were
re-referenced using common average reference (CAR) to minimize
potential lateralized artifacts that could arise from unilateral referencing
(e.g, A1). The data were then band-pass filtered between 0.5 and 55 Hz,
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and down-sampled to 200 Hz to reduce data volume. Considering the
sensory adaptation effects, which typically result in a progressive reduction
of sensory-related neural activity during prolonged stimulation (Bradley
etal, 2016; Rideaux et al., 2023) the filtered EEG signals were epoched
from —1 to 20 relative to the onset of the 30-s application period.
Independent component analysis (ICA) was then performed to remove
physiological artifacts, such as electrooculography (EOG) and
electromyography (EMG). The P3 electrode was excluded from further
analysis due to severe physiological artifacts. For individual participants,
any channel with severe noise was also excluded (Sub 27: P8 and O1; Sub
29: Ol). Any remaining epochs with residual artifacts after the
pre-processing steps were additionally removed from visual inspection.

EEG analysis

We performed event-related spectral perturbation (ERSP)
analysis to obtain event-related (de)synchronization (ERD/ERS)
values. ERSP analysis was conducted on EEG data epoched from —1
to 20 s relative to stimulus onset to avoid potential adaptation effects
that may occur during the latter part of the 30-s period. The —1to 0's
interval served as the baseline, and the 0 to 20 s interval as the
analysis window. Spectral power was computed using a short-time
Fourier transform (STFT) with a fixed-length Hanning window,
providing consistent temporal resolution across frequencies. ERD/
ERS values were calculated as log-transformed changes in spectral
power (in decibels) relative to the pre-stimulus baseline. The
calculated ERD/ERS values were averaged across six frequency bands
(delta: 0.5-4 Hz, theta: 4-8 Hz, alpha: 8-12 Hz, beta: 12-30 Hz,
gamma: 30-55 Hz, and all frequency: 0.5-55 Hz). The ERD/ERS
values for the six frequency bands were averaged over time for
quantification analysis. To avoid pseudo-replication, the ERSP values
were averaged across the five repetitions for each formulation,
resulting in one representative value per condition per participant
used for subsequent analysis. For each of the three positive
formulations (P1, P2, P3), ERD/ERS values and preference scores
were corrected by subtracting those of the negative formulation (N).

Correlation analysis

Pearson correlation analysis was used when there was only one
independent variable and one dependent variable to assess the
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FIGURE 1
Schema of the experimental paradigm. After a 5-s baseline period, participants applied a cosmetic formulation for 30 s. Following a 10-s rest period,
they evaluated their preference for each formulation using a questionnaire. Within each repetition, four formulations were applied in randomized order
to pre-marked skin areas. After each application, participants wiped their fingers with a wet tissue to remove any residue before applying the next
formulation. To minimize carry-over effects, the N formulation—because of its sticky, paste-like consistency that was more difficult to clean—was
always applied last, ensuring that incomplete removal would not affect subsequent applications. After completing one repetition, all applied skin areas
were also gently wiped with a wet tissue. Each formulation was tested five times.

relationship and statistical significance between two measures.
When two or more independent variables were involved, multiple
correlation analysis was conducted. For multiple correlation analysis,
the weights that best linearize the relationship between multiple
independent variables and the dependent variable were calculated
thorough multiple regression analysis. The predicted values of the
dependent variable were then obtained by multiplying the
independent variables by their corresponding weights. Subsequently,
Pearson correlation analysis between the predicted and actual
dependent variable was then used to assess statistical significance.
To reduce the risk of false positives due to multiple correlation tests,
permutation-based statistical testing (1,000 permutations) was
performed across each frequency bands and electrodes to obtain
adjusted p-values.

In this study, Pearson correlation analysis was first used to
examine the relationship between ERD/ERS values (i.e., power values
for each frequency band and electrode) and the questionnaire-based
preference scores. Frequency bands that exhibited significant results
were then combined in a multiple correlation analysis to further
investigate the relationship with preference scores. The overall process
from data collection to analysis is summarized in Figure 3.

Statistical analysis

Statistical analysis was performed to compare the questionnaire-
based preference scores for the four different formulations (P1, P2, P3,
N). A Friedman test was used for group comparisons, followed by
Wilcoxon signed-rank tests to evaluate pairwise differences. Post-hoc
p-values were corrected using the Bonferroni method. All statistical
analyses were conducted in MATLAB R2017b (MathWorks, Natick,
MA, USA).
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FIGURE 2
Electrode positions.

Results

Figure 4 shows the preference scores for the four different
formulations on the 7-point scale. The negative (N) formulation had
significantly lower preference scores than the positive (P1, P2)
formulations, and no significant difference was observed between the P1
formulation and P2 formulation (Friedman test: ¥*(3, n = 116) = 52.32,
Bonferroni corrected p < 0.05). In contrast, P3 formulation, which was
originally expected to be a positive formulation based on its characteristics,
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FIGURE 3

Overall workflow of signal processing and data analysis. EEG and questionnaire data were acquired during the experiment. EEG data were
preprocessed and used for feature extraction, followed by ERSP quantification and correlation analysis to examine the relationship between brain

activity and subjective evaluation.
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showed a significant preference difference compared to P1 and P2, yet no
significant difference from the negative formulation (N). This finding
indicates that P3 was more closely aligned with the negative formulation
in terms of subjective preference. Therefore, in subsequent analyses,
positive formulations were divided both by their intended characteristics
(P1 + P2 + P3) and by their actual questionnaire results (P1 + P2).

Figure 5 shows the grand-average ERSP maps alongside the
averaged quantitative ERSP values across all channels by frequency for
both positive and negative formulations. The positive formulations
were separated into two groups: those categorized by formulation
characteristics (P1+ P2+ P3) and those categorized based on
questionnaire results (P1 + P2). ERD/ERS values were consistently
negative across all frequency bands and experimental conditions,
indicating a predominant ERD pattern related to tactile sensation
(Chen et al., 2019; Yakovlev et al., 2023; Morozova et al., 2024). No
significant differences were observed among the conditions in terms
of brain activity itself.

Figure 6 represents the results of Pearson correlation analysis
between preference scores and ERD values. As previously mentioned,
the ERD values and preference scores for each positive formulation
(P1, P2, P3) were corrected by subtracting those of the negative
formulation (N). Correlations were evaluated for each frequency band
and channel, and significant findings are illustrated in topographic
maps. Red asterisks indicate significant positive correlations, while
green asterisks indicate significant negative correlations. In both
analyses—using P1 + P2 + P3 and P1 + P2—significant correlations
emerged in the delta and alpha bands at the C4 electrode located in
the right sensorimotor region. Moreover, when the analysis was
restricted to only P1 and P2, additional significant correlations were
found at F3 in the delta band and at Fp1 in the alpha band.

Figure 7 provides the detailed correlation results focusing on the
delta and alpha bands at C4, where consistent significance was
observed. For the case using characteristic-based positive formulations
(P1 + P2 + P3), the Pearson’s correlation coefficients (r) for the delta
and alpha bands at C4 were 0.241 and 0.260, respectively (delta:
r=0.241, p = 0.024; alpha: r = 0.260, p = 0.015). On the other hand,
when questionnaire-based positive formulation (P1 + P2) were
analyzed, the correlation coefficients for delta and alpha bands
increased to 0.314 and 0.300, respectively (delta: r = 0.314, p = 0.016;
alpha: r = 0.300, p = 0.022), indicating stronger correlations compared
to the analysis with characteristic-based positive formulations.
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FIGURE 4

Mean and standard deviations of preference scores for each
formulation based on a 7-point scale (*p < 0.05, **p < 0.01,

***p < 0.001). The negative (N) formulation showed significantly
lower scores than all positive (P1, P2, P3) formulations. Among the
positive formulations, P1 and P2 formulations showed significantly
higher scores than P3 formulation. n.s indicates not significant

(p >0.05).

Figure 8 shows the results of multiple correlation analysis for the C4
electrode, combining both delta and alpha power values (which were
individually significant in the frequency-specific analyses). Similar to
previous comparisons, two scenarios were considered: (1) P1 + P2 + P3
and (2) P1+ P2. The analysis revealed that using only P1 and P2
formulations again produced stronger correlations than using all three
positive formulations (P1+P2+P3: r=0.334, p=0.002; P1+P2:
r=0.381, p=0.003). Notably, these multiple correlation coeflicients
exceeded those obtained from the frequency-specific analyses.

Discussion

In this study, we investigated how different textures induced by
different cosmetic formulations influence brain activity as measured
by EEG and how these neural responses correlate with subjective
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FIGURE 5
(a) Grand-average ERSP maps of the four formulations and (b) mean ERSP values across all channels for six frequency bands. The negative values
observed across all frequency bands indicate prominent ERD activity. Across all conditions, no statistically meaningful differences were found.
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FIGURE 6
Correlation analysis results for (a) P1 + P2 + P3 and (b) P1 + P2 across different channels and frequency bands. Red asterisks indicate positive

correlations, and the green asterisk indicates a negative correlation. Both cases showed significantly positive correlations in the delta and alpha bands
at C4.
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FIGURE 7

Correlation analysis results for delta and alpha bands at C4, comparing two cases: (a) characteristic-based positive formulations (P1 + P2 + P3) and

(b) questionnaire-based positive formulations (P1 + P2). The questionnaire-based formulation (P1 + P2) showed stronger correlations compared to the
characteristic-based formulation (P1 + P2 + P3).
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FIGURE 8
Multiple correlation analysis results at C4, incorporating both delta and alpha ERD values: (a) P1 + P2 + P3, (b) P1 + P2. Stronger correlations were
observed for P1 + P2 and overall, the multiple correlation analysis outperformed the frequency-specific approaches.

preferences. Consistent with our initial expectations, participants
rated the negative formulation significantly lower than the positive
ones (except for P3 formulation), and the normalized EEG data
consistently showed statistically significant correlations with
preference in the delta and alpha bands at the C4 electrode.

The C4 electrode is located over the somatosensory cortex, which
plays a key role in processing tactile information such as touch and
pressure, and has also been associated with affective modulation
(Pihko et al., 2004; Kropf et al., 2018; Yao et al., 2019; Eldeeb et al.,
2020). In this study, participants applied the products on their left
arm, thereby activating the contralateral (right) somatosensory area
(Mashrur et al., 2022; Zhang et al., 2025). Notably, brain activity in this
contralateral somatosensory area showed a significant correlation with
subjective preferences. Given that the texture sensation induced by
cosmetic application influences subjective product evaluations, the
correlations detected at the C4 electrode are likely attributable to
sensory-processing mechanisms in this region, potentially influenced
by emotional components. In addition, some previous studies have
suggested that activity in the C4 region may be involved in
distinguishing emotional states such as positive and negative valence
(Jiang et al., 2022; Tao et al., 2023), indicating a possible link between
this region and emotional processing in tactile experience.

However, since emotional states are inherently abstract—and
especially because studies directly linking tactile sensations induced by
cosmetic formulations to emotion-related EEG responses remain
limited—we acknowledge that this interpretation is still indirect and
should be approached with caution. Specially, it cannot be entirely ruled
out that motor-related signals from right-hand movement during self-
application contributed to the EEG responses, as such movements can
elicit bilateral cortical activation (Yuan et al., 2010; Hasegawa et al., 2017;
Bundy and Leuthardt, 2019). Nonetheless, since motor activity of the
dominant right hand is generally associated with stronger activation in
the contralateral (left) hemisphere (van den Berg et al., 2011; Li et al.,
2015; Ramos-Murguialday and Birbaumer, 2015), the right-hemisphere
responses observed in this study are more likely driven by somatosensory
rather than motor processes. Nevertheless, some overlap between
motor- and somatosensory-related activity is inevitable in our design,
although its potential influence on the present findings is likely minimal.

Significant correlations were found in the delta and alpha
frequency bands. Alpha oscillations in sensorimotor regions generally
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exhibit ERD in the hemisphere contralateral to the point of stimulation
(McFarland and Wolpaw, 2011; Chen et al., 2019; Hakim et al., 2021;
Raiesdana and Mousakhani, 2022; Fabio et al., 2024), including in the
somatosensory cortex corresponding to a specific skin area (Cheyne
et al,, 2003; Neuper et al., 2006; Haegens et al., 2014; Schubert et al.,
2015). Therefore, in this study, the cosmetic formulation applied to the
left arm can be seen as inducing sensory responses in the alpha power
in the contralateral hemisphere, the right hemisphere. Furthermore,
recent research has shown that delta activity can be relevant during
tactile discrimination tasks (Abderrahmane et al., 2020; Taleei et al.,
2023). In line with these findings, we observed significant delta-band
correlations with textures that were relatively smooth, suggesting that
delta-band features may be sensitive to subtle tactile variations.
When we restricted our analysis to only the two most preferred
formulations (P1 and P2) versus the negative formulation, which were the
positive formulation selected through the questionnaire, we found
stronger correlations between EEG data and preference scores. The results
highlight the discrepancy between the positive formulation criterion
based on formulation characteristics and subjective questionnaires.
Despite the similarity in texture and external characteristic of the cosmetic
formulations, the preferences were not necessarily similar, suggesting that
evaluating preferences based solely on the external texture of cosmetic
formulations is challenging. To further clarify why P3 showed lower
preference scores despite its physical similarity to P1 and P2, we analyzed
the sensory questionnaire data collected alongside the preference ratings.
The questionnaire assessed five attributes: spreadability, moisture,
smoothness, oiliness, and stickiness. While P1 and P2 exhibited
comparable scores across all five sensory items, P3 significantly differed
from at least one of them on each attribute. Notably, when compared with
the negative formulation (N), P3 did not differ significantly in three of five
items—spreadability, moisture, and oiliness—suggesting that participants
may have perceived P3 as more similar to N in terms of sensory
experience. Since sensory impressions can significantly influence
subjective preferences, these findings help explain why P3 received lower
preference scores than P1 and P2, despite similar physical characteristics.
The detailed statistical analyses related to the sensory questionnaire are
provided in the Supplementary materials (Supplementary Figure S1).
Moreover, multiple correlation analysis using both delta and alpha
power increased the predictive strength for subjective preferences
relative to frequency-specific analyses alone. These results underscore
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the potential of combining multiple EEG features to enhance the
prediction of consumer choices related to cosmetic formulations.
Additionally, significant correlations were observed in the left frontal
region for both delta and alpha frequency bands. The left frontal
region is known to be associated with emotional processing, where an
increase in alpha power and a decrease in delta power are observed
during positive emotional states, whereas the opposite pattern occurs
during negative emotional states (Burgdorf and Moskal, 2023; Chen
et al,, 2023). The findings of this study are consistent with previous
research, and the fact that significant correlations were observed only
in the P1 + P2 condition suggests that this trend becomes more
evident as positive preference increases.

To further explore the temporal dynamics of EEG responses,
we segmented the stimulation period into early (0-10 s) and late
(10-20 s) phases. Although some preference-related correlations
appeared in both phases, their spatial distributions differed. These
differences may reflect the temporal evolution of tactile and
affective processing. The early phase likely involves rapid encoding
of primary somatosensory impressions—such as smoothness, and
stickiness—processed in frontal and parietal regions associated
with attention (Pleger et al., 2006; Adams et al., 2019). In contrast,
the late phase may reflect higher-order integration processes
involving prior experience and subjective evaluation (Ku et al.,
2007; Wei et al., 2024), thereby engaging more sensorimotor-
related regions such as C4. In fact, the late phase revealed
consistent and robust correlations at the C4 channel, aligning well
with the results from the full 20-s window. In contrast, theta-band
correlations emerged in non-overlapping channels between early
and late phases, suggesting that theta oscillations may be involved
in distinct cognitive mechanisms at each time point. The time-
segmented analysis results are presented in the Supplementary
materials (Supplementary Figure S2, Supplementary Figure T1).
Collectively, these findings underscore the potential of time-
resolved EEG analysis in advancing affective neuroscience and
preference prediction research.

This study also highlighted the feasibility of using dry EEG
systems in a texture research context. Although dry electrodes
eliminate the need for conductive gels, reducing setup time and
improving long-term stability, they are still less common in applied
research, especially for experiments involving touch (Lin et al.,
2008; Liao et al., 2012; Lopez-Gordo et al., 2014; Faadhilah Afif
et al., 2020). Our findings suggest that dry EEG equipment can
provide reliable data, thereby supporting the broader application of
EEG in everyday scenarios.

There are several limitations to our study. First, the experiment was
conducted on female participants, who generally report higher
engagement with cosmetic products and higher sensitivity to tactile
texture than men. While this sampling approach helped reduce variability
in subjective responses, it may limit the generalizability of the findings to
male populations. Future studies should include male participants to
determine whether the observed EEG-preference relationships are
consistent across genders. Second, participants were free to use varying
application methods (e.g., rubbing or tapping), which might have
introduced variability in tactile stimulation (Greco et al.,, 2019; Eldeeb
etal,, 2020). This decision was made to enhance the ecological validity of
the study by reflecting real-life usage scenarios in which cosmetic
products are typically applied without standardized force or speed. Tactile
sensations during application arise not only from the formulation itself,
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but also from its interaction with user-specific application styles. Allowing
participants to apply the formulations naturally enabled a more authentic
evaluation of the sensorial characteristics which in turn influence
participants’ subjective preferences and neural responses. While such
behavioral variation could serve as a potential confound, we minimized
its impact by averaging EEG responses across repeated trials and observed
consistent application patterns within individuals. Future studies may
benefit from directly comparing standardized and naturalistic application
conditions to better distinguish the effects of behavioral factors and
formulation-driven responses.

Overall, these findings demonstrate that EEG, particularly
measurements taken from the somatosensory cortex in the delta and
alpha bands, can capture meaningful individual preferences for
different cosmetic formulations. This suggests that neurophysiological
signals may serve as an objective and real-time supplement to
traditional consumer evaluations in cosmetics research.

Conclusion

In this study, we investigated the correlation between EEG data and
subjective preference ratings for cosmetic formulations with different
textures. Our research findings identified significant relationships in the
somatosensory cortex associated with tactile stimuli and in the delta and
alpha bands, underscoring the importance of texture sensation in
consumer choice.To the best of our knowledge, this is the first study to
provide a clear neurophysiological interpretation by correlating
EEG-based brain responses specifically to cosmetic textures with
subjective preferences. Furthermore, by focusing exclusively on texture
sensation and excluding other sensory elements such as scent and color,
our approach helps identify brain activity patterns related to texture-
driven product preference. These findings can enhance our understanding
of different consumer groups and aid in the design of cosmetic products
with textures that evoke stronger emotional satisfaction. In addition, these
findings can help bridge the gap between neuroscience and marketing by
providing a valuable tool to capture texture-specific consumer preferences
that traditional surveys or interviews may overlook. In future studies,
we plan to develop a more comprehensive system that classifies and
evaluates preferences for cosmetic formulations using a broader range of
EEG-driven features. By integrating these neurophysiological measures
with traditional consumer research, we may pave the way for highly
individualized cosmetic product recommendations and improved design
processes in the cosmetics industry.
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