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Introduction: There is a need for biomarkers predicting neurocognitive 
improvement following treatment of obstructive sleep apnea (OSA) with 
continuous positive airway pressure (CPAP). The role of sleep apnea endotypes 
as predictors are promising.
Objective: To assess the relationship between a high loop gain biomarker, 
elevated low frequency narrow band (e-LFCNB), and improvements in 
neurocognitive function in the Apnea Positive Pressure Long-term Efficacy 
Study (APPLES).
Methods: The e-LFCNB % metric was estimated on baseline polysomnography. 
Logistic regression analysis was performed to identify the potential association 
between e-LFCNB% of total sleep time and the observed improvement in 
neurocognitive function following the specified treatment.
Results: A total of 362 subjects received CPAP and had e-LFCNB % measurements. 
For Sustained Working Memory Test-Overall Mid-Day (SWMT-OMD), 
e-LFCNB% > 2.35% correlates positively with the proportion of participants who 
showed an increase in test scores > 0.65 after 2 months CPAP treatment (OR: 
2.617, 95% CI: 1.095–6.252, p: 0.030); e-LFCNB% > 9.45% correlates positively 
with improvement in test scores > 0.8 after 6 months CPAP treatment (OR: 
2.553, 95% CI: 1.017–6.409, p: 0.046). For Buschke Selective Reminding Test 
sum recall (BSRT-SR), e-LFCNB% > 3.65% correlates positively with an increase 
in test scores > 12 after 2 months CPAP treatment (OR: 2.696, 95% CI: 1.041–
6.982, p: 0.041). Results of the Pathfinder Number Test-Total Time (PFN-TOTL) 
were not significant.
Conclusion: e-LFCNB% (probable high loop gain) may be  a clinically useful 
predictor of cognitive improvement following CPAP.
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Background

Obstructive Sleep Apnea (OSA) is a sleep-related respiratory 
disorder characterized by recurrent collapse of the upper airway 
during sleep (McNicholas and Pevernagie, 2022). This condition often 
leads to intermittent hypoxia, cytokine activation, dysmetabolism, 
nocturnal blood pressure surges, and sleep fragmentation (Kapur et al., 
2017), which are commonly considered contributors to neurocognitive 
dysfunction associated with OSA (He et al., 2024; Vanek et al., 2020). 
There is an extensive body of research indicating that OSA is associated 
with a broad range of neurocognitive impairments, with the most 
prevalent reports focusing on memory and new learning, as well as 
attention and executive function (Bucks et al., 2013).

Continuous positive airway pressure (CPAP), which is regarded 
as the first line therapy for OSA, can improve hypoxia in OSA patients, 
reduce sleep fragmentation, and reverse sympathetic nerve excitation 
(Patil et al., 2019), but there is controversy regarding whether CPAP 
can improve cognitive dysfunction caused by OSA (Bucks et al., 2013). 
The existence of complex pathologies especially high loop gain maybe 
a reason for the failure due to impairment in both effectiveness and 
adherence (Ni and Thomas, 2023; Cheng et  al., 2024). It is also 
plausible that pathological respiratory chemoreflex activation and the 
resulting heightened sympathetic activation and other pleotrophic 
effects such as oxidative stress, inflammatory response, and neuronal 
damage (Lv et al., 2023) may influence development of neurocognitive 
dysfunction, and response to treatment.

High loop gain within the respiratory system, a hallmark of 
unstable respiratory control, typically occurs during non-rapid eye 
movement sleep (NREM) (Deacon and Catcheside, 2015). Research 
indicates that in patients with OSA, respiratory control is significantly 
less stable during NREM sleep compared to rapid eye movement sleep 
(REM). This instability may contribute to cognitive decline via 
enhancing sleep fragmentation (Joosten et al., 2021). Additionally, high 
loop gain is a marker of carotid body activation, which is often linked 
to increased sympathetic nerve drive and glucose dysmetabolism 
(Joyner et al., 2018; Sacramento et al., 2020). That nighttime sympathetic 
activation may be an important factor in impairing the neurocognitive 
functions of patients with OSA has been reported (Alomri et al., 2021).

As described in our previous work, narrow band elevated low 
frequency coupling (e-LFCNB) measured by cardiopulmonary 
coupling sleep spectrograms is a biomarker indicating periodic 
breathing and central sleep apnea (Thomas et al., 2007), indicating 
high loop gain. Our previous study showed that e-LFCNB was a strong 
predictor for blood pressure dropping after CPAP in OSA (Ni et al., 
2024). However, whether it influences neurocognitive function 
improvement by CPAP is not known.

This study conducted a secondary analysis of the Apnea Positive 
Pressure Long-term Efficacy Study (APPLES). Our hypothesis was that 
e-LFCNB%, as a marker of unstable respiratory control and a sign of 
carotid body activation, could predict neurocognitive change with CPAP.

Method

Study design

This study utilized data from the Apnea Long-Term Efficacy Study 
(APPLES), a multicenter, randomized, double-blind trial with a 

two-arm, sham-controlled design aimed at assessing the impact of 
CPAP compared to sham CPAP on cognitive function. A secondary 
analysis was performed following approval from the Institutional 
Review Board, leveraging data available through the National Sleep 
Research Resource (NSRR) at: www.sleepdata.org. The study’s 
methodology and primary findings have been thoroughly documented 
in a prior publication (Kushida et al., 2012).

CPAP treatment

Participants assigned to the CPAP group underwent an overnight 
sleep laboratory study to determine the optimal therapeutic pressure. 
They were equipped with a REMstar Pro CPAP system featuring 
heated humidification, along with the necessary mask and tubing. 
Meanwhile, those in the control group received sham CPAP. To 
monitor adherence, a Respironics® Encore® Pro SmartCard® was 
used, and adherence data from the two months leading up to 
follow-up visits were collected and analyzed.

Participants

The criteria for participant inclusion and exclusion have been 
previously outlined (Kushida et al., 2012). Inclusion criteria included: 
(1) an apnea hypopnea index (AHI) ≥ 10 as determined by 
polysomnography (PSG); (2) age ≥ 18 years. The main exclusion 
criteria were: (1) prior use of CPAP, oxygen desaturation on PSG 
below 75% for more than 10% of the recording time; (2) history of a 
motor vehicle accident attributed to sleepiness, presence of several 
chronic medical conditions, and use of medications potentially 
impacting sleep or neurocognitive function.

Scoring of respiratory events

Apneas and hypopneas were scored based on the American 
Academy of Sleep Medicine (1999) criteria. An apnea was 
characterized by a reduction of more than 90% in nasal pressure signal 
amplitude from baseline, lasting at least 10 s. Hypopneas were defined 
as either a reduction in nasal pressure signal amplitude between 50 
and 90% of baseline or a less pronounced reduction that did not meet 
this threshold but was accompanied by an oxygen desaturation greater 
than 3% or an arousal, with a minimum duration of 10 s. The AHI was 
determined by calculating the total number of apneic and hypopneic 
events per hour of sleep.

Cardiopulmonary coupling analysis

The approach for analyzing APPLES data using cardiopulmonary 
coupling (CPC) has been described in previous publications (Thomas 
et al., 2007; Thomas et al., 2005; Al Ashry et al., 2021). Briefly, heart rate 
variability (HRV) and electrocardiogram (ECG)—derived respiration 
were extracted from a single-channel ECG recorded during the 
overnight polysomnogram. ECG-derived respiration reflects amplitude 
variations in the QRS complex caused by shifts in the cardiac electrical 
axis during breathing and thoracic impedance changes due to lung 
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expansion and contraction. CPC analysis identifies three distinct 
patterns: high-frequency coupling (HFC; 0.1–0.4 Hz), indicative of 
stable breathing during NREM sleep; low-frequency coupling (LFC; 
0.01 to < 0.1 Hz), associated with apneas and hypopneas; and very 
low-frequency coupling (v-LFC; 0 to < 0.01 Hz), observed during 
wakefulness and REM sleep. Within the LFC domain, two subtypes are 
recognized. The first, e-LFCNB, is characterized by a narrow-spectral-
band dispersion of CPC spectral peaks between 0.006 and 0.1 Hz, 
suggesting the presence of central sleep apnea, periodic breathing, or 
complex sleep apnea. The second, e-LFCBB, exhibits a broad-spectral-
band pattern and is linked to OSA. These CPC metrics are quantified 
as the percentage of analysis windows relative to the total sleep period.

Neurocognitive function

This study primarily utilizes three key neurocognitive variables, 
each representing a distinct neurocognitive domain: (1) Pathfinder 
Number Test-Total Time (PFN-TOTL): participants connect numbers 
in sequence on a computer, with a shorter total time indicating better 
attention and psychomotor function; (2) Buschke Selective Reminding 
Test-Sum Recall (BSRT-SR): participants recall words across 6 trials, 
with a higher total number of recalled words indicating better verbal 
learning and memory function, and (3) Sustained Working Memory 
Test-Overall Mid-Day Index (SWMT-OMD): participants compare 
the spatial position of stimuli and press corresponding buttons, with 
the overall index combining behavioral performance and EEG data to 
assess executive and frontal-lobe function, where a higher index 
indicates better performance. The detailed measurement procedures 
for each variable have been outlined in prior studies (Kushida et al., 
2012). All three variables were evaluated during the baseline and at 
the 2-month and 6-month follow-up visits.

Statistical analysis

Data summaries are presented as mean±standard deviation [SD] 
for normally distributed data, or as median [IQR] for non-normally 
distributed data. ROC curves were constructed for the improvements 
in SWMT-OMD, BSRT-SR, and PFN-TOTL at the 2 month and 
6 month post-treatment follow-ups. These optimal cutoffs were 
determined using Youden’s J index. The selection of either a two-sample 
t-test or Wilcoxon rank-sum test for comparing measurements 
between the two groups was based on the data’s distribution normality. 
Categorical comparisons were conducted using Chi-Square and Fisher 
exact tests. To identify predictors of neurocognitive function changes, 
a backward elimination logistic regression analysis was applied, 
adjusted for study site, CPAP adherence, age, gender, body mass index 
(BMI), and OSA severity. Statistical analyses were performed using 
SPSS 19 and Origin Pro 8. All tests were two-tailed, and a p-value of 
less than 0.05 was considered statistically significant.

Result

Study population

A total of 1,516 participants were enrolled in the APPLES, starting 
in November 2003 and studied for up to 6-months over 11 visits, of 

which 1,104 were randomized to active vs. sham CPAP (REMstar Pro, 
Philips Respironics, Inc.) devices; 555 subjects were allocated to CPAP 
group, and 362 had successful CPC analysis, for the 549 subjects with 
sham CPAP, 337 had CPC results. Studies were excluded from the 
CPC analysis as a result of having ECG signal issues (e.g., arrhythmias, 
excessive noise, poor signal quality, data dropouts), discrepancies 
between the data-file recording time and that reported on the PSG, 
and/or unsuccessful processing. In the study, we successfully collected 
baseline and 2-month follow-up SWMT-OMD data from 230 
participants, while 306 participants provided complete data spanning 
from baseline to 6-months (see Supplementary Table S1). Similarly, 
for the BSRT-SR, we obtained baseline and 2-month data from 239 
participants (see Supplementary Table S2), and baseline to 6-month 
data from 314 participants. By applying the Youden index analysis, 
we identified several critical cutoff values for e-LFCNB%: For predicting 
an increase in SWMT-OMD, an e-LFCNB% threshold of > 2.35% 
optimally corresponds to a > 0.6 increase after 2 months, while a 
threshold of > 9.45% is optimal for a > 0.8 increase after 6 months. 
Similarly, for BSRT-SR, an e-LFCNB% of > 3.65% serves as the optimal 
cutoff for a 12-point increase after 2 months, whereas a threshold of > 
2.15% corresponds to a 4-point increase after 6 months.

Baseline characteristics

In the cohort of subjects analyzed, the median age was 
52.46 ± 12.43 years, and their BMI was 32.69 ± 7.75 kg/m2. Regarding the 
SWMT-OMD assessments, out of 230 subjects who provided data at 
2-months, 86 individuals exhibited an e-LFCNB% > 2.35%; whereas 
among the 306 subjects with data available at 6-months, 50 individuals 
showed an e-LFCNB% > 9.45%. For the BSRT-SR evaluations, of the 239 
subjects with 2-month data, 64 had an e-LFCNB% > 3.65%; and among the 
314 subjects with 6-month data, 133 demonstrated an e-LFCNB% > 2.15%.

Neurocognitive function responses

After two months of treatment, a greater proportion of participants 
in the higher e-LFCNB% groups showed significant cognitive 
improvement. Specifically, among the 86 subjects with 
e-LFCNB% > 2.35%, 21 participants (24.4% vs. 13.2%) exhibited an 
increase of more than 0.65 in SWMT-OMD test scores (see Table 1). 
Similarly, among the 64 subjects with e-LFCNB% > 3.65%, 21 participants 
(32.8% vs. 17.1%) demonstrated an improvement of more than 12 points 
in BSRT-SR test scores (see Table 2). After six months of treatment, the 
trend remained: among the 50 subjects with e-LFCNB% > 9.45% group, 
12 participants (24% vs. 10.9%) experienced an increase of more than 
0.8 in SWMT-OMD test scores (see Table 1). Figures 1, 2 show the 
extent of improvement in SWMT-OMD and BSRT-SR after 2 and 
6 months of CPAP treatment. In contrast, among participants receiving 
sham CPAP, no significant differences in neurocognitive function 
improvements were observed across different e-LFCNB% groups at either 
the 2-month or 6-month assessments (see Supplementary Tables S3, S4).

Logistic regression

In the in-depth exploration of logistic regression analysis, 
we unveiled a significant positive correlation between e-LFCNB% levels 
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and the improvement in neurocognitive function following CPAP 
treatment. Specifically, when e-LFCNB% > 2.35%, there is a significant 
increase in the probability of SWMT-OMD test score improvement > 
0.65 after 2-months CPAP treatment (OR: 2.617, 95% CI: 1.095–6.252, 
p: 0.030) (see Table 3); similarly, e-LFCNB% > 3.65% is associated with 
an improvement > 12 in BSRT-SR test score (OR: 2.696, 95% CI: 1.041–
6.982, p: 0.041) (see Table  4). Furthermore, after 6 months CPAP 
treatment, individuals with e-LFCNB% > than 9.45% is related with 
higher rate of SWMT-OMD score improvement > 0.8 (OR: 2.553, 95% 
CI: 1.017–6.409, p: 0.046) (see Table 3). However, for the improvement 
in BSRT-SR after 6 months CPAP treatment (p: 0.541) and the overall 
improvement in PFN-TOTL (2-month p, 0.655 6-month p, 0.548), 
we  found no evidence of association with e-LFCNB% (see 
Supplementary Tables S4, S5). Additionally, in predicting the response 

of sham CPAP on neurocognitive function, e-LFCNB% did not 
demonstrate any effect (see Supplementary Tables S6–S8).

Discussion

This study uncovered the following findings: (1) a positive 
correlation between e-LFCNB% and short-term improvements in 
BSRT-SR among OSA patients after CPAP treatment; (2) a positive 
correlation between e-LFCNB% and both short-term and long-term 
improvements in SWMT-OMD among OSA patients following CPAP 
treatment. These findings may help predict which individuals are 
likely to experience enhancements in neurocognitive function from 
OSA therapy, as indicated by the sequence: apnea with e-LFCNB%/

TABLE 1  Characteristics of subjects divided by different e-LFCNB % on CPAP (SWMT-OMD groups).

Overall 
(n = 362)

e-LFCNB 
% ≤ 2.35% 
(n = 144)

e-LFCNB 
% > 2.35% 
(n = 86)

p e-LFCNB 
% ≤ 9.45% 
(n = 256)

e-LFCNB 
% > 9.45% 
(n = 50)

p

Age (years) 52.46 ± 12.43 51.18 ± 13.05 55.02 ± 12.38 0.029 51.83 ± 12.27 54.84 ± 11.96 0.112

Male (%) 247 (68.2%) 89 (61.8%) 67 (77.9%) 0.011 161 (62.9%) 47 (94%) < 0.001

Race 0.518 0.085

Native American (%) 2 (0.6%) - - 1 (0.4%) 1 (2%)

Asian (%) 24 (6.6%) 9 (6.3%) 8 (9.3%) 12 (4.7%) 7 (14%)

Black (%) 23 (6.4%) 6 (4.2%) 7 (8.1%) 15 (5.9%) 4 (8%)

Hispanic (%) 24 (6.6%) 10 (6.9%) 4 (4.7%) 19 (7.4%) 2 (4%)

White (%) 288 (79.6%) 118 (81.9%) 67 (77.9%) 208 (81.3%) 36 (72%)

Other (%) 1 (0.3%) 1 (0.7%) - 1(0.4%) -

BMI Kg/m2 32.69 ± 7.75 31.77 ± 7.00 33.85 ± 8.31 0.085 32.61 ± 7.87 33.65 ± 7.85 0.398

AHI /hour 33.25 [18.38–

55.03]

24.30 [16.20–

39.18]

51.35 [32.38–75.60] < 0.001 29.05 [17.18–49.08] 66.75 [52.58–82.91] < 0.001

AHI<15 (%) 57 (15.7%) 31 (21.5%) 5 (5.8%) 0.002 48 (18.8%) - 0.001

AHI ≥ 15 (%) 305 (84.3%) 113 (78.5%) 81 (94.2%) 208 (81.3%) 50 (100%)

Alcohol (%) 245 (67.7%) 103 (71.5%) 56 (65.1%) 0.308 175 (68.4%) 34 (68%) 0.960

Current smoker (%) 44 (12.2%) 18 (12.5%) 10 (11.6%) 0.830 33 (12.9%) 4 (8%) 0.332

SWMT-OMD score −0.44 ± 2.82 −0.54 ± 3.01 −0.35 ± 2.60 0.466 −0.17 ± 1.80 −0.64 ± 3.39 0.603

Change after 2 months 0.03 [−0.42–0.45] 0 [−0.38–0.44] 0.08 [−0.63–0.63] 0.815 - - -

Change after 2 months > 0.65 (%) 40 (17.4%) 19 (13.2%) 21 (24.4%) 0.030 - - -

Change after 6 months 0.08 [−0.35–0.53] - - - 0.08 [−0.35–0.51] 0.08 [−0.34–0.81] 0.398

Change after 6 months > 0.8 (%) 40 (13.1%) - - - 28 (10.9%) 12 (24%) 0.012

BSRT-SR score 49.97 ± 8.95 - - - - - -

Change after 2 months 3 [−6–11] - - - - - -

Change after 2 months > 12 (%) 51 (21.3%) - - - - - -

Change after 6 months 3.5 [−1–8] - - - - - -

Change after 6 months > 4 (%) 139 (44.3%) - - - - - -

PFN-TOTL, score 24.28 ± 6.56 - - - - - -

Change after 2 months 0.52 [−4.9–6.47] - - - - - -

Change after 6 months −0.15 [−2.19–

2.11]

- - - - - -

AHI: apnea hypopnea index; BMI: body mass index; BSRT-SR: Buschke Selective Reminding Test-Sum Recall; e-LFCNB: elevated low frequency coupling, narrow-band; PFN-TOTL: Pathfinder 
Number Test-Total Time; SWMT-OMD: Sustained Working Memory Test-Overall Mid-Day Index.
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High Loop Gain → NREM instability/fragmentation + Sympathetic 
Activation + Hypoxia → Prefrontal/Hippocampal Dysfunction → 
Specific Cognitive Deficits → Reversal by CPAP.

The pathogenic mechanisms through which OSA impairs 
neurocognitive functions include: intermittent hypoxemia, cytokine 
activation, metabolic dysfunction, sleep deprivation, hypercapnia and 
sympathetic nervous system activation (Pollicina et al., 2021). As high 
loop gain sleep apnea is NREM-dominant, the predominance of 
respiratory events in NREM sleep may cause disproportionate sleep 
fragmentation, which is crucial in the development of neurocognitive 
function (Devita et al., 2019). NREM sleep enhances information 
encoding capacity and learning in neural networks through a complex 

interplay of slow oscillations, spindles, and sharp-wave ripples 
(Mizuseki and Miyawaki, 2017; Peyrache and Seibt, 2020; Salfi et al., 
2020), and is at risk from sleep fragmentation. Even brief periods of 
NREM sleep can significantly boost and restore cognitive functions 
(Kharas et al., 2024) but substantial fragmentation is likely to adversely 
impact memoy and learning functions. Sleep fragmentation itself can 
impair metabolic function (Stamatakis and Punjabi, 2010). Chronic 
sleep fragmentation exposures in a murine model mimicking the 
fragmentation of sleep that characterizes patients with apnea elicits 
evidence of inflammation in brain regions and explicit memory 
impairments in mice (Puech et  al., 2023). In this model, sleep 
fragmentation was also associated with increased BBB permeability, 

TABLE 2  Characteristics of subjects divided by different e-LFCNB % on CPAP (BSRT-SR groups).

Overall 
(n = 362)

e-LFCNB 
% ≤ 3.65% 
(n = 175)

e-LFCNB 
% > 3.65% 
(n = 64)

p e-LFCNB 
% ≤ 2.15% 
(n = 181)

e-LFCNB 
% > 2.15% 
(n = 133)

p

Age (years) 52.46 ± 12.43 51.62 ± 12.59 55.45 ± 13 0.040 50.77 ± 12.4 54.93 ± 11.67 0.003

Male (%) 247 (68.2%) 109 (62.3%) 51 (79.7%) 0.011 116 (64.1%) 100 (75.2%) 0.036

Race 0.958 0.060

Native American (%) 2 (0.6%) - - 1 (0.6%) 1 (0.8%)

Asian (%) 24 (6.6%) 12 (6.9%) 5 (7.8%) 9 (5%) 11 (8.3%)

Black (%) 23 (6.4%) 10 (5.7%) 4 (6.3%) 7 (3.9%) 12 (9%)

Hispanic (%) 24 (6.6%) 12 (6.9%) 3 (4.7%) 16 (8.8%) 5 (3.8%)

White (%) 288 (79.6%) 140 (80%) 52 (81.3%) 148 (81.8%) 103 (77.4%)

Other (%) 1 (0.3%) 1 (0.6%) - - 1 (0.8%)

BMI, Kg/m2 32.69 ± 7.75 31.79 ± 6.94 34.58 ± 8.46 0.027 32.19 ± 8.04 33.59 ± 7.49 0.061

AHI /hour 33.25 [18.38–55.03] 25.5 [16.5–42.8] 54.75 [39.82–78.05] < 0.001 23.2 [15.35–41.8] 52.7 [32.9–73.35] < 0.001

AHI<15 (%) 57 (15.7%) 36 (20.6%) 139 (79.4%) < 0.001 44 (24.3%) 5 (3.8%) < 0.001

AHI ≥ 15 (%) 305 (84.3%) - 64 (100%) 137 (75.7%) 128 (96.2%)

Alcohol (%) 245 (67.7%) 125 (71.4%) 39 (60.9%) 0.122 131 (72.4%) 84 (63.2%) 0.082

Current smoker (%) 44 (12.2%) 23 (13.1%) 7 (10.9%) 0.649 21 (11.6%) 17 (12.8%) 0.751

SWMT-OMD score −0.44 ± 2.82 - - - - - -

Change after 2 months 0.03 [−0.42–0.45] - - - - - -

Change after 2 months 

> 0.65(%)

40 (17.4%) - - - - - -

Change after 6 months 0.08 [−0.35–0.53] - - - - - -

Change after 6 months 

> 0.8(%)

40 (13.1%) - - - - - -

BSRT-SR score 49.97 ± 8.95 50.56 ± 8.56 48.56 ± 9.61 0.142 51.01 ± 8.56 48.86 ± 8.53 0.028

Change after 2 months 3 [−6–11] 3 [−7–10] 5 [−3.75–14] 0.128 - - -

Change after 2 months 

> 12(%)

51 (21.3%) 30 (17.1%) 21 (32.8%) 0.009 - - -

Change after 6 months 3.5 [−1–8] - - - 3 [−1–8] 4 [−1–8] 0.491

Change after 6 months 

> 4(%)

139 (44.3%) - - - 73 (40.3%) 66 (49.6%)

PFN-TOTL, score 24.28 ± 6.56 - - - - - -

Change after 2 months 0.52 [−4.9–6.47] - - - - - -

Change after 6 months −0.15 [−2.19–2.11] - - - - - -

AHI: apnea hypopnea index; BMI: body mass index; BSRT-SR: Buschke Selective Reminding Test-Sum Recall; e-LFCNB: elevated low frequency coupling, narrow-band; PFN-TOTL: Pathfinder 
Number Test-Total Time; SWMT-OMD: Sustained Working Memory Test-Overall Mid-Day Index.
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the magnitude of which was closely associated with cognitive 
functional loss (Puech et al., 2023). Apneas and intermittent hypoxia 
events experienced during NREM sleep can trigger the activation of 
the sympathetic nervous system, leading to endothelial dysfunction 
(Lambert et  al., 2013; Swenson, 2020) and blood pressure surges 
(Narkiewicz et al., 1998; Peled et al., 1998). Moreover, hypoxic events 
themselves can cause direct damage to neurocognitive functions (He 
et al., 2024; Chokesuwattanaskul et al., 2021).

Previous studies have confirmed that e-LFCNB% is associated with 
the severity of OSA, sleep stability, respiratory chemoreflex regulation, 
and intermittent hypoxia (Deacon and Catcheside, 2015; Ibrahim 
et  al., 2010; Thomas et  al., 2018). Hypoxic events stimulate the 

sympathetic nervous system, thus e-LFCNB% is also a marker of 
carotid body activation (Joyner et al., 2018). However, we adjusted for 
apnea severity in our analysis. CPAP treatment can improve 

FIGURE 1

Improvement in SWMT-OMD after 2 and 6 months of CPAP 
treatment. CPAP: continuous positive airway pressure; SWMT-OMD: 
Sustained Working Memory Test-Overall Mid-Day Index. 
Improvement in SWMT-OMD as indicated by the test score after 
CPAP treatment minus the baseline test score. The circle represents 
the mean value. Data are presented as mean ± 95% confidence 
interval. *Statistically significant greater improvement in the high 
e-LFCNB groups.

FIGURE 2

Improvement in BSRT-SR after 2 and 6 months of CPAP treatment. 
CPAP: continuous positive airway pressure; BSRT-SR: Buschke 
Selective Reminding Test-Sum Recall. Improvement in SWMT-OMD 
as indicated by the test score after CPAP treatment minus the 
baseline test score. The circle represents the mean value. Data are 
presented as mean ± 95% confidence interval. *Statistically 
significant greater improvement in the high e-LFCNB groups after 
2 months of treatment.

TABLE 3  Logistic regression model for SWMT-OMD increase after 
2 months and 6 months treatment.

2 months after 
CPAP

SWMT-OMD change > 0.65

OR 95% CI p

Model 1: e-LFCNB > 2.35% 2.216 1.067–4.234 0.032

Model 1 + study site + 

baseline SWMT-OMD

2.865 1.295–6.340 0.009

Model 2 + adherence 2.617 1.095–6.252 0.030

Model 3 + age, sex, BMI 2.617 1.095–6.252 0.030

Model 4 + AHI 2.617 1.095–6.252 0.030

6 months after 
CPAP

SWMT-OMD change > 0.8

OR 95% CI p

Model 1: e-LFCNB > 9.45% 2.571 1.204–5.490 0.015

Model 1 + study site + 

baseline SWMT-OMD

2.456 1.019–5.919 0.045

Model 2 + adherence 2.553 1.017–6.409 0.046

Model 3 + age, sex, BMI 2.553 1.017–6.409 0.046

Model 4 + AHI 2.553 1.017–6.409 0.046

AHI: apnea hypopnea index; BMI: body mass index; e-LFCNB: elevated low frequency 
coupling, narrow-band; SWMT-OMD: Sustained Working Memory Test-Overall Mid-Day 
Index.

TABLE 4  Logistic regression model for BSRT-SR increase after 2 months 
and 6 months treatment.

2 months after 
CPAP

BSRT-SR change > 12

OR 95% CI p

Model 1: e-LFCNB > 3.65% 2.360 1.228–4.537 0.010

Model 1 + study site + 

baseline BSRT-SR

2.206 0.901–5.402 0.083

Model 2 + adherence 2.696 1.041–6.982 0.041

Model 3 + age, sex, BMI 2.696 1.041–6.982 0.041

Model 4 + AHI 2.696 1.041–6.982 0.041

6 months after 
CPAP

BSRT-SR change > 4

OR 95% CI p

Model 1: e-LFCNB > 2.15% - - 0.101

Model 1 + study site + 

baseline BSRT-SR

- - 0.359

Model 2 + adherence - - 0.970

Model 3 + age, sex, BMI - - 0.541

Model 4 + AHI - - 0.541

AHI: apnea hypopnea index; BMI: body mass index; BSRT-SR: Buschke Selective Reminding 
Test-Sum Recall; e-LFCNB: elevated low frequency coupling, narrow-band.
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neurocognitive function by reversing the processes of chronic 
intermittent hypoxia and sympathetic nerve activation, as well as 
reducing sleep fragmentation and can even slightly increase the 
duration of sleep, improving neural structural adaptability, and 
facilitating neuronal repair (Ziegler et al., 2001; Sánchez et al., 2009). 
It was recently reported using the APPLES that a higher arousal 
threshold is associated with greater improvements in executive 
function following CPAP therapy (Zinchuk et al., 2025). That is a 
lower propensity for fragmentation was protective.

In this study, two primary outcome indicators reflecting 
neurocognitive functions were assessed. First, SWMT-OMD 
primarily evaluates individuals’ executive functions and frontal lobe 
functions, particularly abilities related to working memory, and is 
significantly associated with the prefrontal cortex. Second, BSRT-SR 
mainly assesses individuals’ learning and memory capabilities, 
specifically verbal learning and memory, and is related to the brain’s 
hippocampus and temporal cortex (Kushida et al., 2012; Pollicina 
et al., 2021). Studies have demonstrated that the SWMT is sensitive 
to subtle changes in executive function (Gevins et al., 2011), and 
improvements in SWMT-OMD reflect enhanced frontal lobe 
performance. Similarly, research has indicated that improvements 
in BSRT-SR scores (even by 4–6 points) are clinically significant in 
OSA populations (Beebe et al., 2003). In our study, the observed 
improvements (e.g., BSRT-SR > 12) substantially exceed these 
benchmarks, underscoring their functional relevance. While the 
hippocampus is more sensitive to hypoxia (Churilova et al., 2022), 
its ability to adapt to prolonged hypoxic exposure is greater than 
that of the prefrontal cortex, potentially providing compensatory 
mechanisms (Shaw et  al., 2021). During NREM hypoxia, 
sympathetic activation leads to increased levels of norepinephrine, 
which impairs the prefrontal cortex’s ability to support higher-order 
cognitive functions, such as decision-making and working memory 
(Arnsten, 2009). This makes the prefrontal cortex particularly 
susceptible to impairment from sympathetic activation during 
sleep. As a biomarker of sympathetic nerve excitation and NREM-
period hypoxia, e-LFCNB% could plausibly predict improvements in 
neurocognitive function after treatment. For BSRT-SR, the relatively 
slow subsequent improvement of the hippocampus and its weaker 
correlation with sympathetic excitation and hypoxia compared to 
the prefrontal cortex may explain why it can only predict short-
term effects. In addition, the inconsistency in the quality of the 
BSRT-SR assessment scales before and after treatment, as mentioned 
in previous studies (Kushida et al., 2012), may also account for the 
results of this study. Regarding the third neurocognitive function 
assessment indicator mentioned in this study: PFN-TOTL, which 
is primarily used to evaluate a patient’s attention and psychomotor 
functions, is associated with the function of the prefrontal cortex 
(Braver et  al., 2009). However, the study results indicate that 
e-LFCNB% does not effectively predict the degree of improvement 
in this indicator. This may be due to the sensitivity of the indicator 
to CPAP treatment being insufficient, rendering it a less effective 
marker for assessing neurocognitive function in patients with OSA 
(Kushida et al., 2012).

This analysis has several limitations that should be  taken into 
account. Data loss occurred due to issues with signal quality and 
analysis. We  were unable to assess the night-to-night stability of 
e-LFCNB%. Maintaining consistent quality in the assessment scales for 
neurocognitive function indicators could provide clearer indications 

of treatment responses. We did not directly estimate the loop gain in 
the analyzed data. Additionally, the subjective nature of cognitive 
function assessments may have influenced the results, as factors such 
as age, education, and social function status can affect individuals’ 
self-reports of cognitive function. The complex relationship between 
cognitive function and brain structure/function, including the brain’s 
compensatory and repair mechanisms, adds to the uncertainty in 
accurately evaluating cognitive impairment. Future research should 
address these limitations by employing larger, more diverse samples, 
and longitudinal study designs to better understand the impact of 
LFCNB% and other biomarkers on the improvement of neurocognitive 
function in OSA patients after CPAP treatment.

Conclusion

Assessing pathological activation of the respiratory chemoreflex 
may help identify a biomarker for predicting improvement in 
neurocognitive function following CPAP treatment.
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Glossary

AHI - Apnea Hypopnea Index

APPLES - Apnea Positive Pressure Long-term Efficacy Study

BMI - Body Mass Index

BSRT-SR - Buschke Selective Reminding Test-Sum Recall

CI - Confidence Interval

CPAP - Continuous Positive Airway Pressure

CPC - Cardiopulmonary Coupling

e-LFCNB - Percentage of Narrow Band During Low Frequency Coupling

ECG - electrocardiogram

HFC - High frequency coupling

HRV - heart rate variability

IQR - interquartile range

LFC - Low Frequency Coupling

NREM - Non Rapid Eye Movement Sleep

OSA - Obstructive Sleep Apnea

PFN-TOTL - Pathfinder Number Test-Total Time

PSG - Polysomnogram

REM - Rapid Eye Movement Sleep

SD - Standard Deviation

SWMT-OMD - Sustained Working Memory Test-Overall 
Mid-Day Index
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