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Background: Multiple sclerosis (MS) is an autoimmune disease of the central
nervous system, leading to varying degrees of functional impairment.
Conventional tools, such as the Expanded Disability Status Scale (EDSS), lack
sensitivity to subtle disease worsening. Radiomics provides a quantitative imaging
approach to address this limitation. This study applied machine learning (ML)
and radiomics features from T2-weighted Fluid-Attenuated Inversion Recovery
(FLAIR) magnetic resonance imaging (MRI) to predict disability worsening in MS.
Methods: A retrospective analysis was performed on real-world data from 247
PwMS across two centers. Disability worsening was defined as a change in EDSS
over two years. FLAIR MRIs underwent preprocessing and super-resolution
reconstruction to enhance low-resolution images. White matter lesions (WML)
were segmented using the Lesion Segmentation Toolbox (LST), and tissue
segmentation was performed using sequence Adaptive Multimodal Segmentation.
Radiomics features from WML and normal-appearing white matter (NAWM) were
extracted using Pyradiomics, harmonized with Longitudinal ComBat, followed by
recursive feature elimination for feature selection. Elastic Net, Balanced Random
Forest (BRFC), and Light Gradient-Boosting Machine (LGBM) models were trained
and evaluated.

Results: The LGBM model with harmonized radiomics and clinical features
outperformed the clinical-only model, achieving a test area under the precision-
recall curve (PR AUC) of 0.20 and a receiver operating characteristic area under
the curve (ROC AUC) of 0.64. Key predictive features, among others, included
Gray-Level Co-Occurrence Matrix (GLCM) maximum probability (WML) and
Gray-Level Dependence Matrix (GLDM) dependence non-uniformity (NAWM).
However, short-term longitudinal changes showed limited predictive power (PR
AUC = 0.11, ROC AUC = 0.69).
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Conclusion: These findings highlight the potential of ML-driven radiomics in
predicting disability worsening, warranting validation in larger, balanced datasets
and exploration of advanced deep learning approaches.

KEYWORDS

multiple sclerosis, radiomics, magnetic resonance imaging, FLAIR MRI, white matter
lesions, disability worsening, machine learning

Highlights

« Machine learning improves the prediction of disability worsening
in multiple sclerosis.

« Radiomics can capture subtle, diffuse changes in MS worsening
from FLAIR MRI.

o Super-resolution reconstruction enhances radiomics analysis of
low-resolution MRIs.

Introduction

Multiple Sclerosis (MS) is a chronic neuroinflammatory
autoimmune disease of the central nervous system (CNS)
characterized by demyelination and axonal damage, resulting in
varying degrees of disability worsening (Calabresi, 2004). Despite
advances in disease-modifying therapies, predicting disability remains
difficult due to the heterogeneity of disease courses and incomplete
understanding of their pathophysiology (Thompson et al., 2018;
Tilling et al., 2016). Accurate prediction has critical clinical
implications, as it can optimize monitoring schedules, inform
therapeutic decisions, and enable more effective patient stratification
for clinical trials, thereby improving outcomes, reducing healthcare
burden, and accelerating therapy development (Dennison et al., 2018;
Inojosa et al., 2021). Figure 1 illustrates magnetic resonance imaging
(MRI) scans of PwMS with and without disability worsening.

The primary objective of this study was to predict disability
worsening in PwMS over a two-year period. Disability worsening,
derived from changes in the Expanded Disability Status Scale (EDSS)
(Kurtzke, 1983), corresponds to the worsening of physical capabilities.
In clinical practice, EDSS and MRI scans are commonly used to

diagnose and assess the course of MS disease (Wattjes et al., 2021).
However, both have their respective limitations. EDSS is prone to inter-
rater variability and lacks sensitivity to short-term changes, while MRI
features, such as the number and volume of white matter lesions (WML)
or their gadolinium enhancement, explain only part of clinical outcomes
(Uitdehaag, 2018). Moreover, these measures fail to track the diffuse
pathological changes in the gray matter (GM) and normal-appearing
white matter NAWM) (Wattjes et al., 2021; Davda et al., 2019; Treaba
et al., 2019). Therefore, there is an unmet clinical need for more sensitive
and specific biomarkers to predict disability worsening in PWMS.

An image quantification approach, such as radiomics, can potentially
overcome this gap (Pontillo et al., 2021). By extracting high-dimensional
quantitative features related to shape, intensity, and texture from regions
of interest (ROIs), radiomics can characterize subtle changes and
correlate them with clinical endpoints (Gillies et al., 2016; Lambin et al.,
2012; Lambin et al., 2017; Rogers et al., 2020). Radiomics has shown
promising results in different disease domains, including oncology
(Lambin et al., 2017; van Timmeren et al., 2017), Alzheimer’s disease
(Fengetal., 2018; Lietal,, 2019), and epilepsy (Liu et al., 2018). Similarly,
in MS, radiomics features can potentially become clinically relevant
noninvasive disease biomarkers for MS disease worsening (Lavrova
et al., 2021). Some of these features include cortical lesion volume
(Calabrese et al., 2010), spinal and brain volume atrophy (Kearney et al.,
2015; Storelli et al., 2018), microstructural damage of NAWM (Moll
etal., 2011), and the structural changes in the GM (Pontillo et al., 2019).

Given the limitations in EDSS and MRI, training advanced
machine learning (ML) techniques with radiomics features holds
promise for developing predictive models. By analyzing high-
dimensional imaging data, ML models can potentially capture and
quantify imaging biomarkers associated with MS worsening, offering
a more robust, objective, and sensitive prediction of disability.

Without Disability Worsening

FIGURE 1

With Disability Worsening

Representative T2-weighted Fluid-attenuated Inversion Recovery (FLAIR) magnetic resonance imaging (MRI) scans of people with multiple sclerosis
(PwMS) without disability worsening (left) and with disability worsening (right).
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In this study, we used ML to predict two-year EDSS-based disability
worsening in PWMS using real-world data (RWD). Catering to the
unmet clinical need to identify a noninvasive quantitative biomarker that
is sensitive to disability worsening in MS, we hypothesize the following:

» Radiomics-based ML models can outperform models relying
solely on clinical variables to predict disability worsening
in PWMS.

 Radiomics features from MRI can predict disability worsening
(2 years) in PwMS.

o Short-term changes (6 months) in radiomics features can predict
disability worsening in PwMS.

Materials and methods
Inclusion criteria

To ensure the longitudinal tracking of disability worsening,
inclusion criteria were designed to capture both clinical and imaging
data at consistent intervals. This approach was necessary to align MRI
scans with corresponding EDSS measurements over time, providing
a comprehensive assessment of disease worsening. Subjects with a
confirmed diagnosis of MS, at least a two-year longitudinal EDSS
score trajectory, and at least one baseline and one follow-up MRI scan
were included in the study. To achieve this, anchor dates were defined
as fixed reference points based on visits (e.g., MRI acquisition dates)
and fixed time points (e.g., 6 months and 2 years after the initial visit).
Temporal windows were specified around the anchor dates to select
the follow-up MRI. The three temporal windows were defined as:

« TO (initial visit): The anchor date for TO is the MRI acquisition
date. The closest EDSS measurement within a 6-month window
before or a 3-month window after the TO anchor date was
selected as the baseline score EDSS_TO.

T1 (short-term follow-up): The anchor date for T1 was set exactly

6 months after the TO anchor date. The T1 window spanned
3 months before and 3 months after the T1 anchor date. Thus, the
MRI session at T1 was selected to calculate short-term changes.
T2 (long-term follow-up): The anchor date for T2 was set 2 years
after the TO anchor date. The T2 window spanned from 3 months

10.3389/fnins.2025.1610401

before to 1 year after the T2 anchor date. The closest EDSS
measurement to the T2 anchor date was selected as EDSS_T2. No
MRI was included in this window, as T2 was based solely on
EDSS to assess two-year disability worsening.

This structure enabled the consistent alignment of MRI data and
EDSS scores at the initial visit (T0) and short-term follow-up (T1),
while two-year worsening (T2) was assessed using EDSS alone.
Multiple MRI sessions and their corresponding EDSS scores were
included for some subjects, with a range of 2 to 8 MRIs per subject.
Each MRI session contributed to the analysis and was treated as a
separate observation. Furthermore, MRI sessions from the same
subject were grouped during partitioning into training, validation, and
test sets to avoid potential data leakage. An overview of the temporal
windows is illustrated in Figure 2.

Endpoint definition

The primary endpoint of this study was two-year disability
worsening, and its definition was adapted from previous work
(Kalincik et al., 2017). Disability worsening was determined by
comparing EDSS scores between T0 and T2. A subject was considered
worsened if the change in EDSS met the following criteria:

o EDSS_T2 - EDSS_TO > 1.5 for patients with EDSS_TO = 0.
o EDSS_T2 - EDSS_TO > 1.0 for patients with EDSS_TO0 < 5.5.
o EDSS_T2 - EDSS_TO > 0.5 for patients with EDSS_T0 > 5.5.

Modeling pipeline

The pipeline consists of three main stages: image processing, feature
processing, and modeling. The image processing stage preprocessed
MRI data through reorientation, denoising, bias field correction, super-
resolution reconstruction, and segmentation of WML and NAWM. The
feature processing stage focused on extracting radiomics features,
harmonizing them to reduce inter-scanner variability, and removing
redundant features. Finally, the modeling stage explored four predictive
approaches—clinical, baseline imaging, longitudinal imaging, and
combined—by employing feature selection, ML models, and validation
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FIGURE 2

Temporal alignment of EDSS and MRI data for inclusion criteria. This figure illustrates the temporal windows used to align MRI and EDSS data for
assessing disability worsening. TO represents the baseline MRI session, with the closest EDSS measurement selected within a window of 3 months after
or 6 months before the MRI. T1 corresponds to the short-term follow-up 6 months after TO, with a 3-month window before and after the T1 anchor
date for EDSS and MRI selection. T2 represents the two-year follow-up 2 years after TO, with the EDSS measurement selected within a window of

3 months before 1 year and after the T2 anchor date.
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TABLE 1 Datasets summary details.

10.3389/fnins.2025.1610401

Dataset DS1 DS2 p-value
Participants (1) 149 98 -
Sessions 630 184 -

Age in years at baseline (+ SD) 429+11.7 37.4+10.2 0.015*
Female to Male ratio 3.2:1 3.3:1 0.983
EDSS at baseline (IQR, 25th-75th percentile) 2.0 (1.5-3.0) 2.5 (1.5-4.0) 0.242
Acquisition date range 2010-2017 2008-2019 -
Worsening (%) 5.5% 13% 0.087

This table summarizes the cohort characteristics of DS1 and DS2. The p-values for continuous variables (Age in years at baseline and EDSS at baseline) were calculated using two-sample

t-tests, while p-values for categorical variables (Female-to-Male ratio and Worsening %) were calculated using chi-square tests. A p-value <0.05 is marked with an asterisk (*) and indicates a

statistically significant difference. Continuous variables are summarized as mean + standard deviation (SD) (Age) or median Interquartile range (IQR) (EDSS) as appropriate.

techniques to evaluate predictive performance. As described later in the
section “Data Partitioning,” the datasets were shuffled and split into
training, validation, and testing datasets. Feature harmonization,
reduction, selection, model hyperparameter optimization, and model
selection were performed exclusively on the training and validation
datasets to avoid data leakage.

Image processing

MRI data

Our study used pseudonymized longitudinal MRI data collected
retrospectively from two medical centers: the Rehabilitation and MS
Center of Noorderhart in Pelt, Belgium (DS1) and Zuyderland
Medical Center in Sittard, Netherlands (DS2). The study has been
approved by the ethical commission of the University of Hasselt
(CME2019/046) and the Medical Ethics Review Committee of
Zuyderland and Zuyd University of Applied Sciences
(METCZ20200167). No consent to participate was required, given the
pseudonymized and retrospective nature of the study. Both DS1 and
DS2 have been used for the first time in this study. They are private
datasets consisting of T2-weighted Fluid-attenuated Inversion
Recovery (FLAIR) MRI scans and clinical data, including age, gender,
and EDSS scores, collected during routine clinical follow-ups. After
applying the inclusion criteria, a total of 149 subjects from DS1 and
98 subjects from DS2 were included in the analysis. The details of the
dataset are mentioned in Table 1.

The acquisition protocol for T2-weighted FLAIR varied within and
across the two datasets. Images in DS1 were acquired using the same
scanner (Philips Achieva 1.5T) with three different protocols
depending on the date. Between 2010 and 2015, the MRI session
included two orthogonal multi-slice T2-W FLAIRs acquired with axial
and sagittal slice orientations and a slice spacing of 6 mm (Protocol A).
Between 2015 and 2017, three orthogonal images were acquired with
a slice spacing of 3 mm (Protocol B). In 2017, acquisition sessions
included a fast high-resolution 3D T2-W FLAIR with a voxel size of
0.98 mm x 0.98 mm x 0.6 mm (Protocol C), and most of them also
included a structural T1-W MRI (Protocol CsT1). Images in DS2 were
acquired using nine different scanners with varying protocols,
including low-resolution multi-slice and high-resolution 3D
acquisitions, with spacing between slices ranging from 0.8 mm to
7 mm. Sessions in DS2 were categorized similarly to sessions in DS1,
based on the number and resolution of acquired T2-W FLAIR images.
Sessions with a 3D high-resolution image were classified as Protocol C,
while those with two orthogonal multi-slice low-resolution images

Frontiers in Neuroscience

were classified as Protocol A. No sessions contained three orthogonal
images, and 29 sessions with only one low-resolution image were
classified as Protocol D. Detailed information about T2-W FLAIR MRI
acquisition protocols for both datasets is provided in Appendix A.

MRI pre-processing

The preprocessing of MRI data aimed at harmonizing and
enhancing the image quality before radiomics feature extraction. First,
all MRI images were denoised using adaptive non-local means
(Manjon et al., 2010), and N4 bias-field correction (Tustison et al.,
2010) was applied to mitigate low-frequency intensity inhomogeneities
in MRI images caused by magnetic field distortions. This correction
aims to improve the accuracy of segmentation and feature extraction,
as it reduces the impact of scanner heterogeneity (Tustison et al., 2010).

For protocols with low-resolution images (A, B, and D),
we applied “perceptual super-resolution in multiple sclerosis”
(PRETTIER) (Giraldo et al., 2024), a super-resolution approach
designed to enhance the through-plane resolution of multi-slice
structural MRIs containing MS lesions. Since protocols A and B have
multiple low-resolution FLAIR images per session, we applied
PRETTIER to each image and aligned and combined the outputs
following an iterative approach. This technique improves spatial
resolution, which is important for downstream radiomics analysis and
segmentation tasks. Reconstruction was not performed on protocol C
since it had high-resolution FLAIR.

Next,
Segmentation (SAMSEG) method for whole-brain segmentation on
all FLAIR protocols across DS1 and DS2 (Cerri et al., 2021). SAMSEG
is a previously validated segmentation tool designed to segment 41

we applied the Sequence Adaptive Multimodal

anatomical brain structures (see Appendix B) from MRI and is fully
adaptive to different MRI contrasts and scanners, making it
particularly suitable for multi-center datasets like ours. SAMSEG was
used to segment, among others, the normal-appearing white matter
(NAWM), gray matter (GM), thalamus, and cerebrospinal fluid (CSF).

Lesions were segmented using the lesion prediction algorithm
(Schmidt, 2017) as implemented in LST toolbox version 1.2.3" for SPM8.2
This algorithm uses a pre-trained logistic regression model to generate
lesion probability estimates at each voxel. These lesion probability
estimates were thresholded at 0.1 to create white matter lesion (WML)
masks. The flowchart of the entire pipeline is shown in Figure 3.

1 www.statistical-modelling.de/Ist.ntml

2 http://www filion.ucl.ac.uk/spm
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the best model on the test set.

*=Training Set only

Overview of the methodology for MRI-based disability worsening prediction in multiple sclerosis. The pipeline consists of three main stages: image
processing, feature processing, and modeling. Image processing involves image pre-processing steps such as reorientation and denoising, bias field
correction, intensity normalization, and lesion/tissue segmentation using LST and SAMSEG. Super-resolution reconstruction was applied to low-
resolution images. Feature processing includes the extraction of radiomics features from regions of interest (ROI) and harmonization using longitudinal
ComBat to address inter-scanner variability. Features were then divided into harmonized and non-harmonized datasets. The feature sets extracted
from DS1 and DS2 were then shuffled and divided into training, validation, and test sets. Modeling stage includes the division of dataset according to
four prognostic approaches clinical, baseline imaging, longitudinal imaging and combined. This was followed by further subdividing each approach
into feature subsets and subsequent removal of feature reduction, feature selection, and training of a machine learning model, and finally evaluating

Feature processing

Besides having masks as the outcome of segmentation, anatomical
and lesion volumes were also obtained using SAMSEG and LST. These
volumes were subsequently normalized by intracranial volume to
ensure comparability across subjects. Per-image adaptive histogram
matching (Pizer et al., 1987) was then performed to normalize the
intensity distributions of all the skull-stripped FLAIR images, ensuring
consistency in intensity values across images.

For this study, high-dimensional radiomics features were
extracted from two regions of interest (ROI): the NAWM and the
WML. The WML mask was subtracted from the segmented WM mask
to generate the NAWM mask. These binary masks, along with the
intensity-normalized FLAIR images, were used to compute the
corresponding radiomics features for further analysis.

Feature extraction

Radiomics features from the ROIs were extracted using Pyradiomics
2.20 (van Griethuysen et al., 2017) with Python 3.7.1. The extracted
radiomics features comprised six classes, including shape (Lorensen and
Cline, 1987), first-order statistics (FO), gray-level co-occurrence matrix
(GLCM) (Haralick et al., 1973), gray-level run length matrix (GLRLM)
(Galloway, 1975), gray-level size zone matrix (GLSZM) (Thibault et al,,
2013), and gray-level dependence matrix (GLDM) (Sun and Wee, 1983).
Gray-level features were calculated by discretizing the images into 50

Frontiers in Neuroscience

bins, which aligns with the recommendations by the Image Biomarker
Standardization Initiative (IBSI) (Zwanenburg et al., 2018) and in the
documentation of Pyradiomics (van Griethuysen et al., 2017). The details
of the number of features extracted per class are available in Appendix K.

Feature harmonization

Given the diversity of MRI acquisition protocols and the
longitudinal heterogeneity of DS1 and DS2, harmonization of the
radiomics features between different protocols was performed using
longitudinal ComBat (Beer et al., 2020). This technique was applied
to improve the comparability of features across the datasets by
minimizing inter- and intra-site variability, as well as temporal
variations in MRI, which can stem from the acquisition protocol. The
principal component analysis (PCA) visualization of the features from
DS1 and DS2 before and after harmonization is illustrated in
Appendix H. Harmonization coefficients were calculated in the
training dataset only and later applied to the testing and
validation datasets.

To ensure a comprehensive evaluation, all subsequent steps were
conducted separately on both harmonized and non-harmonized
datasets.

Dataset partitioning

The DS1 and DS2 were shuftled and were then split into training
(60%), validation (20%), and test (20%) sets. The splitting was
plitting
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performed using a stratified shuffled split using scikit-learn (Pedregosa
etal., 2011). This ensured two things: (1) the distribution of subjects
with worsening disability was stratified across the sets as evenly as
possible and (2) sessions of the same subject were kept within the
same dataset, preventing data leakage.

Prognostic approaches

For this study, four distinct prognostic approaches were defined.
First, we adopted a “clinical” approach, focusing solely on routinely
available clinical variables such as gender, clinical age (in years), and
EDSS at T0. The reason for analyzing this approach separately was to
evaluate the predictive value of clinical features alone, independent of
radiomics features, and it served as a baseline for comparison with
radiomics-based approaches.

Since our study also aimed to capture the predictive capability of
both baseline features and short-term feature changes in MRI data for
disability worsening, we further defined three distinct radiomics-
based prognostic approaches. For extracting radiomics features,
we used all sessions for each subject with the disability worsening label
corresponding to that session, labeling this as the “baseline imaging”
approach. The second approach, “longitudinal imaging,” focused on
short-term changes in all radiomics features relative to the baseline
features. This is calculated by dividing the difference between T1 and
T0 and dividing it by TO (Heidt et al., 2024). In this case, the disability
worsening label corresponded to the one assigned at TO. Finally, to
assess whether combining baseline imaging and longitudinal imaging
could improve predictive power, we integrated features used in
longitudinal imaging and baseline imaging approaches, referring to
this as the “combined” approach, with the disability worsening label
taken at TO.

Modeling

Feature subsets

To evaluate further whether radiomics features alone or with
clinical data can predict to disability worsening, we divided the
features in baseline imaging, longitudinal imaging, and combined
prognostic approaches into the following subsets:

« Radiomics volume features: Regional and lesion volumes derived
from SAMSEG and LST (normalized by intracranial volume).

o Radiomics features without volumes: Features extracted
exclusively using Pyradiomics (e.g., shape, FO, GLCM, GLRLM,
GLSZM, and GLDM).

« Radiomics features: A combination of both the selected radiomics
volume features and radiomics features without volumes.

» Radiomics and clinical features: A combination of the selected
radiomics features with clinical data, including gender (female),
clinical age (in years), and EDSS at TO. This was done to test
whether radiomics features combined with clinical features
enhance the predictive power of the model.

Feature selection

Feature reduction and selection were not applied to the clinical-
only dataset; however, for the radiomics-based prognostic approaches,
feature reduction was performed separately on the training set for
both the harmonized and non-harmonized data analysis pipelines.
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This includes the four feature subsets, and the aim was to eliminate
redundant and non-informative features. Initially, all features were
normalized using StandardScaler from scikit-learn (Pedregosa et al.,
2011), and then pairwise Spearman correlation was computed for the
entire feature set. Features that exhibited a Spearman correlation
coeflicient greater than 0.9 were considered highly correlated. From
each pair of intercorrelated features, the one with the higher average
Spearman correlation across all other features was flagged for removal.
To ensure stability in the selection process, a bootstrapping approach
was used: in each iteration, stratified subsamples were generated based
on the outcome, and the intercorrelated features were recalculated.
Features that appeared as candidates for removal in 50% or more of
the bootstrap iterations were discarded from the final dataset,
resulting in a robust set of non-intercorrelated features for
further analysis.

Recursive Feature Elimination with 20-fold cross-validation
(RFECV) was applied on the non-intercorrelated features across each
approach and feature subset. Given the imbalance in the training
dataset, with only 6.9% of subjects showing worsening disability,
we used a Balanced Random Forest Classifier (BRFC) as an estimator
within RFECV to account for this imbalance. Stratified Shuffle Split
cross-validation was applied to maintain class proportion across folds,
and the precision score was chosen as the evaluation metric to
prioritize features that improve the precision of disability
worsening prediction.

Selection of classification model

We used three ML models, Elastic Net (logistic regression),
BRFC, and Light Gradient-Boosting Machine (LGBM), to evaluate
each prognostic approach and the feature subsets it entails. In an
attempt to make the models robust, we employed Optuna to
optimize the hyperparameters of each model. Optuna is a framework
for efficient hyperparameter tuning using Bayesian optimization
(Akiba et al., 2019). Moreover, a 20-fold cross-validation alongside
a stratified shuffle split was implemented during model
hyperparameter tuning as well. This approach ensured stability by
iteratively training and testing models across different subsets of the
training data, helping to enhance the generalizability of the
predictions. The model that had the best area under the precision-
recall curve (PR AUC) on the validation set, per feature subset, was
subsequently tested on the test set to evaluate the generalizability of
the feature subset per approach. The PR AUC curve was used to
select the best-performing models on the validation set, as it
emphasizes the trade-off between precision (positive predictive
value) and recall (sensitivity), making it especially suited for
imbalanced datasets, like ours, where worsening cases are sparse. In
addition to the PR AUC curve, the area under the receiver operating
characteristic curve (ROC AUC) was also used to give an insight
into the discriminative capabilities of the models. For PR AUC, a
value significantly above the prevalence of the positive class indicates
meaningful performance. For ROC AUC, a value of 0.5 indicates
random performance, and higher values reflect better discrimination
(Corbacioglu and Aksel, 2023).

To get an actual picture of the sensitivity and specificity of the
models, we used Youden’s index (J) to calculate the optimal threshold
for binary classification (Youden, 1950). Furthermore, to validate
whether the results generated by our models are not a result of random
chance, we also conducted permutation analysis by shuffling the
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TABLE 2 Characteristics of the training, validation, and test datasets.

10.3389/fnins.2025.1610401

Dataset Training set Validation set Test set p-value

Participants 148 49 50 -

Sessions 470 166 178 -

Age in years at baseline 41.32 +12.13 44.79 £10.92 38.52 £10.25 Training vs. Validation - 0.04*
Validation vs. Test - 0.01*
Training vs. Test - 0.37

Female to Male ratio 3.2:1 3.3:1 3.3:1 Training vs. Validation - 0.98
Validation vs. Test - 0.99
Training vs. Test - 0.99

EDSS at baseline (IQR, 25th— 2.0 (1.5-3.0) 2.5 (1.5-4.0) 2.0 (1.5-3.0) 0.008*

75th percentile)

Percentage Split (of total) 60% 20% 20% -

Acquisition date range 2008-2019 2010-2019 2010-2019 -

Worsening (%) 6.9% 9.8% 6.0% Training vs. Validation - 0.67
Validation vs. Test — 0.58
Training vs. Test - 0.84

This table summarizes the cohort characteristics for the training, validation, and test datasets. The p-values indicate comparisons between datasets (Training vs. Validation, Validation vs. Test,
and Training vs. Test). For EDSS at baseline, comparisons were performed using the Kruskal-Wallis test with Dunn’s post-hoc tests and Benjamini-Hochberg correction for multiple
comparisons. For Age in years at baseline, two-sample t-tests were applied. Female-to-Male ratio and Worsening percentage were compared using chi-square tests. A p-value <0.05 is marked

with an asterisk (*) and indicates a statistically significant difference.

outcome variable, i.e., the disability worsening, and re-running model
training. The permutation was performed 50 times, and the models
were then subsequently evaluated.

To interpret the predictions of the ML models, SHapely Additive
exPlanations (SHAP) (Lundberg et al., 2019) were employed. SHAP
values were computed for the features of selected models, followed by
the generation of summary plots to visualize feature importance and
their impact on predictions. The plots ranked the features by their
mean absolute SHAP values and their respective effect on the
likelihood of disability worsening.

Moreover, the Radiomics Quality Score (RQS) framework was
followed to ensure methodological rigor and adherence to radiomics
standards (Lambin et al., 2017). The CLEAR (Checklist for Evaluating
the Reporting of Al in Radiology) checklist was also used to evaluate
the transparency and reproducibility of the ML pipeline, ensuring
clarity and alignment with best practices for Al reporting (Kocak
etal., 2023).

Results
Cohort characteristics

By combining and shuffling DS1 and DS2, a total of 247 PwWMS
were included in this study. The 247 participants were divided, using
stratified shuffled split, into training (n = 148), validation (n = 49), and
test (n = 50) sets. Subjects in the training set had an average age of
41.32 years (+12.13), while those in the validation and test sets had
averages of 44.79 years (£10.92) and 38.52 years (£10.25), respectively.
The female-to-male ratio remained almost consistent across sets at
approximately 3.3:1. Worsening disability was observed in 6.9% of the
training set, 9.8% of the validation set, and 6.0% of the test set. The
summary of cohort characteristics for shuffled datasets is outlined in
Table 2.
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TABLE 3 Characteristics of longitudinal imaging approach training,
validation, and test datasets.

Dataset Training set  Validation set = Test set
Participants 97 36 33
Sessions 161 63 70
Worsening (%) 5.5% 6.3% 7.1%

The longitudinal imaging approach resulted in a dataset reduction
of unique participants and sessions because it was constructed by
calculating feature differences between TO and T1 sessions. The
characteristics of the delta datasets are summarized in Table 3.

Feature selection

Tissue segmentation using SAMSEG produced 41 anatomical
features (volumes only) from different brain regions. Out of 41, two
features, “unknown volumes” and “fifth ventricle volume, were
dropped due to their negligible size in the MRI. The remaining 39
features, along with two lesion-specific features from LST—namely,
the number of lesions and lesion volume—constituted the radiomics
volume feature subset. In instances where LST failed to provide the
lesion volume feature, the SAMSEG-derived WML volume was used
as a substitute. Additionally, high-dimensional radiomics features
extracted using Pyradiomics yielded a total of 200 features for the
radiomics features without the volumes subset.

Subsequently, per the prognostic approach, intercorrelated
features were dropped, the details of which are summarized in
Appendix C. All the unique retained non-intercorrelated features
underwent RFECV to get the optimum number of features for
downstream ML analysis. The feature subsets selected by RFECV for
the best-performing models per approach are shown in Table 4.
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TABLE 4 Selected features from the best-performing models for disability worsening prediction.

Approach Harmonization Feature subset Number of features @ Selected features
Clinical Not applicable Clinical only 3 EDSS_TO, clinical age in years, gender (female)
GLRLM run variance (WML), GLCM maximum probability
(WML), first order kurtosis (NAWM), left lateral ventricle
Harmonized Radiomics and clinical
10 volume, GLDM dependence non uniformity (NAWM), right
(LongCombat) features

amygdala volume, GLSZM large area low gray level emphasis
(WML), EDSS_TO, clinical age in years, gender (female)

Baseline imaging

Radiomics and clinical

GLRLM run variance (WML), left thalamus volume, left
lateral ventricle volume, first order minimum (WML), right

amygdala volume, right accumbent area volume, right

features

Non harmonized 13
features thalamus volume, left pallidum volume, GLSZM size zone
non uniformity (WML), shape minor axis length (NAWM),
EDSS_TO, clinical age in years, gender (female)
Harmonized Radiomics volume . delta right cerebellum cortex volume
(LongCombat) features
Longitudinal
. . delta GLCM difference entropy (WML), delta GLDM gray
imaging
Non harmonized Radiomics features 3 level non uniformity (WML), and delta left choroid plexus
volume
left thalamus volume, delta left cerebellum cortex volume,
Harmonized delta right hippocampus volume, delta right thalamus volume,
Radiomics features 6
(LongCombat) right thalamus volume, delta GLSZM large area high gray
level emphasis (NAWM)
Combined delta GLSZM gray level non uniformity (NAWM), left
thalamus volume, delta GLDM large dependence high gray
Radiomics and clinical level emphasis (NAWM), right thalamus volume, brain stem
Non harmonized 11

volume, delta right thalamus volume, delta right caudate
volume, EDSS_TO, clinical age in years, delta clinical age in

years, gender (female)

Machine learning models performance

The results of the best ML model per prognostic approach are
summarized in Table 5. As shown in Figures 4, 5, for the clinical
approach, LGBM performed the best by achieving a validation PR
AUC of 0.12 and a validation ROC AUC of 0.57. On the test set, it
attained a PR AUC of 0.08 and a ROC AUC of 0.6.

For the baseline imaging approach, LGBM performed best in the
radiomics and clinical features subset. As shown in Figures 6, 7,
LGBM achieved a validation PR AUC of 0.28 and a validation ROC
AUC of 0.73. On the test set, it attained a PR AUC of 0.20 and an
ROC AUC of 0.64. While the non-harmonized baseline models also
generalized well on the test set, they, however, did not achieve better
results compared to the baseline harmonized model (see
Appendix D).

For the longitudinal imaging prognostic approach, the BRFC
model trained on non-harmonized radiomics features achieved the
best results compared to the harmonized approach, with a validation
PR AUC of 0.32 and ROC AUC of 0.78, while on the test set, it
achieved a PR AUC of 0.11 and an ROC AUC of 0.69 (see Figures 8,
9). The longitudinal imaging harmonized models and the combined
models, both harmonized and non-harmonized, did not generalize
well on the test set (see Table 5).

Using Youden’s index (J) to determine the optimal threshold, the
clinical model achieved a sensitivity of 0.8 and specificity of 0.48 on

Frontiers in Neuroscience

the test set. For the baseline imaging prognostic approach, the LGBM
trained on the harmonized radiomics and clinical features attained a
sensitivity of 0.4 and specificity of 0.85 on the test set. Detailed metrics
for each approach are shown in Table 6.

SHAP-based feature analysis

The SHAP analysis identified the most influential features
contributing to the prediction of disability worsening across the best-
performing models in the baseline imaging and longitudinal imaging
prognostic approaches. For the baseline imaging prognostic approach
with harmonized radiomics and clinical features, as shown in
Figure 10, the SHAP analysis revealed GLCM maximum probability
(WML), left lateral ventricle volume, and GLDM dependence
non-uniformity (NAWM) as the top three features influencing
predictions. Features like gender (female) had a lower impact on the
model outcome.

In the SHAP summary plot (Figures 10, 11), features are ranked
by their mean absolute SHAP value, which quantifies their overall
importance in the model. The higher the mean absolute SHAP value,
the greater the feature’s contribution to predictions across all subjects.
The color coding in the plot represents the value of the feature for each
subject: red points correspond to higher feature values, while blue
points indicate lower feature values. For example, a higher GLCM
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TABLE 5 Performance metrics of the best-performing models across approaches, harmonization strategies, and feature subsets.

Approach Harmonization Feature Validation PR Validation Test PR Test
subset AUC ROC AUC AUC ROC
AUC
Clinical Not applicable Clinical only LGBM 0.16 0.65 0.08 0.6
Radiomics and LGBM 0.25 0.65 0.2 0.64
Harmonized (LongCombat)
clinical features
Baseline imaging
Radiomics and BREC 0.22 0.69 0.13 0.74
Non harmonized
clinical features
Radiomics BREC 0.41 0.66 0.25 0.48
Harmonized (LongCombat)
Longitudinal volume features
imaging Radiomics BRFC 0.32 0.78 0.11 0.69
Non harmonized
features
Radiomics LOGIT 0.54 0.9 0.06 0.41
Harmonized (LongCombat)
features
Combined
Radiomics and LGBM 0.53 0.91 0.06 0.44
Non harmonized
clinical features
Validation Set Test Set
1.0 4 104
0.8 1 0.8
s 0.6 P 06
2 Ei
& 04 £ 544
0.2 02
0.0{ — PR curve (AUC = 0.12) 0.0 { — PR curve (AUC = 0.08)
0.0 02 0.4 056 08 10 00 02 04 06 08 10
Recall Recall
FIGURE 4
Area under the precision-recall curve (PR AUC) or model performance on clinical validation and test sets. The PR curves illustrate the performance of
the best-performing model, the LGBM model trained on clinical features for predicting disability worsening. Validation PR AUC was 0.12, while the test
set PR AUC was 0.08.

maximum probability (red points) was associated with a lower
likelihood of disability worsening, reflecting its inverse relationship
with the outcome.

For the longitudinal imaging approach with a non-harmonized
radiomics feature subset, the delta GLDM gray level non-uniformity
(WML) and delta GLCM difference entropy (WML) had a higher
predictive capability for disability worsening, whereas the delta left
choroid plexus volume had a relatively lower contribution to the
model’s outcome (Figure 11).

For details on the specific model parameters and Optuna settings,
we refer to Appendix I, whereas the details of the CLEAR checklist
and RQS are provided in Appendices E, F, respectively.

The results of the permutation testing conducted by shuffling the
outcome variable and re-evaluating the models are presented in
Appendix J. The findings showed that the performance of the
permuted models in all the prognostic approaches was worse
compared to the original models.
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Discussion

In this study, we explored the potential of FLAIR MRI-based
radiomics and ML techniques on multicentric data to predict disability
worsening in people with multiple sclerosis. We deployed three ML
models, namely LOGIT, BRFC, and LGBM, across four different
prognostic approaches, i.e., clinical, baseline imaging, longitudinal
imaging, and combined. Except for the clinical approach, the imaging
and combined prognostic approaches further consist of harmonized
and non-harmonized feature subsets comprising radiomics volume
features, radiomics features without volumes, and radiomics features,
as well as radiomics and clinical feature subsets.

Addressing our first research question, whether radiomics-based
models can outperform models relying solely on clinical variables,
we found that the LGBM model trained on harmonized radiomics and
clinical features generalized the best on the test set, achieving a PR
AUC of 0.2 and ROC AUC of 0.64 on the test set. As shown in
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FIGURE 5

Receiver operating characteristic curve with area under the curve (ROC AUC) for model performance on clinical validation and test set. The ROC
curves display the discriminative ability of the best-performing LGBM model trained on clinical features for predicting disability worsening. The ROC
AUC for the validation set was 0.57, with a test set ROC AUC of 0.60. The red dots indicate the optimal thresholds determined using Youden's index,

balancing sensitivity and specificity.
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FIGURE 6

Area under the precision-recall curve (PR AUC) for model performance on baseline imaging validation and test sets with harmonized radiomics and
clinical feature subset. The PR curves illustrate the performance of the best-performing model LGBM trained on baseline imaging harmonized
radiomics and clinical feature subset for predicting disability worsening. Validation PR AUC was 0.25, while the test set PR AUC was 0.20.

Test Set
1.0{ =—
0.8 4
5 0.6
&
0.4
Bl /‘/'/L’—L,__,_‘_“
—— PR curve (AUC = 0.20)

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Appendix D, the combination of radiomics and clinical features
outperformed both the clinical-only and radiomics-only prognostic
approaches, demonstrating the added value of integrating advanced
imaging biomarkers with routinely available clinical data. Although a
PR AUC of 0.2 may appear low in absolute terms, its interpretation
differs from that of the ROC AUC. The baseline for PR AUC is not
0.50 but the prevalence of the positive class. In our cohort, disability
worsening occurred in x10% of visits, meaning that a random
classifier would yield a PR AUC of 0.10 (Maier-Hein et al., 2024).
Against this baseline, our model’s PR AUC of 0.20 reflects a doubling
of performance relative to chance. This indicates that, across
thresholds, the model enriches true disability worsening cases among
the high-risk predictions more effectively than random selection
would achieve. While modest in absolute terms, such an improvement
is meaningful in a severely imbalanced setting, where incremental
gains above baseline can translate into clinical utility by prioritizing
patients for closer monitoring.
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For our second research question, whether radiomics features can
predict disability worsening in PwMS, the most generalizable model
was the LGBM trained on harmonized data with the radiomics and
clinical features subset. As seen in Figure 9, the most influential
features constitute textural features from the WML and NAWM. The
role of textural features in MS disease worsening has been studied
previously (Harrison et al., 2010; Herlidou-Méme et al., 2003; Kassner
and Thornhill, 2010; Loizou et al., 2010; Loizou et al., 2011; Loizou
et al,, 2015; Loizou et al., 2020; Meier and Guttmann, 2003; Zhang
etal, 2008) and our study further strengthens the notion that textural
features can capture the diffuse pathological changes in these areas.
The textural features extracted from WML tend to capture the
heterogeneity and structural characteristics of the lesions, which can
provide a noninvasive means of assessing lesion activity and overall
burden, which is critical for MS disease worsening (Zhang et al.,
2013). As previously studied, the heterogeneity in voxel intensities
corresponds to demyelination, axonal loss, and inflammation in the
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FIGURE 7

Receiver operating characteristic curve with area under the curve (ROC AUC) for model performance on baseline imaging validation and test sets with
harmonized radiomics and clinical feature subset. The ROC curves display the discriminative ability of the best-performing LGBM model trained on
baseline imaging, harmonized radiomics, and a clinical feature subset. The ROC AUC for the validation set was 0.65, with a test set ROC AUC of 0.64.
The red dots indicate the optimal thresholds determined using Youden's index, balancing sensitivity and specificity.
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Test Set

Area under the precision-recall curve (PR AUC) for model performance on longitudinal imaging validation and test sets with a non-harmonized
radiomics feature subset. The PR curves depict the performance of the best-performing model, BRFC, for longitudinal imaging non-harmonized
radiomics feature subsets. The validation PR AUC is 0.32, and the test PR AUC is 0.11.

WML (Zhang et al., 2013; Barkovich, 2000). Furthermore, previous
studies have shown that textural heterogeneity can act as relevant
biomarkers to predict worsening (Loizou et al., 2011; Tozer et al,,
2009). This could be due to the origin of the MRI signal from the
endogenous protons, which are affected by the structural changes at
the microscopic level in pathology (NAWM and WML), causing
magnetic resonance signal variation at the macroscopic scale (Zhang
etal., 2013).

The top predictor among the WML textural features in our study
was GLCM Maximum Probability (WML), which shows an inverse
relationship with disability worsening. This feature essentially
measures the most probable co-occurrence of intensity values within
an ROI (Haralick et al., 1973). In the case of WML, this would mean
that a higher value of GLCM Maximum Probability would indicate a
higher degree of homogeneity of intensity values, whereas lower
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values would indicate lower homogeneity or increased heterogeneity
in the WML. Therefore, the more textural heterogeneity a lesion
exhibits, the more demyelination and other microstructural changes
occur within that lesion (Zhang et al., 2013; Barkovich, 2000). The
textural features extracted from the NAWM were also deemed as
predictive features. They represent possible diffuse pathological
changes such as gliosis or early demyelination, which are not visible
to the naked eye on MRI. This is in line with the literature (Zhang,
2012; Zhang et al., 2009).

In addition to textural features, anatomical volumes such as left
lateral ventricle volume and right amygdala volume were also deemed
useful in our study. Although ventricular enlargement corresponds to
brain atrophy, which corresponds further to disability worsening, in
our study, the ventricular enlargement exhibited a negative correlation
with disability worsening, unlike previous studies (Genovese et al.,
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FIGURE 9
Receiver operating characteristic curve with area under the curve (ROC AUC) for model performance on longitudinal imaging validation and test sets
with non-harmonized radiomics feature subset. The ROC curves display the discriminative ability of the best-performing BRFC model for longitudinal
imaging non-harmonized radiomics feature subsets. The validation ROC AUC reached 0.78, while the test set ROC AUC was 0.69. The red dots
indicate the optimal thresholds determined using Youden'’s index, balancing sensitivity and specificity.

TABLE 6 Sensitivity, specificity, precision, and recall metrics for the best-performing models were determined by Youden'’s index.

Approach Harmonization Feature Best Youden's Sensitivity Specificity Precision Recall
subset model index
Clinical Not applicable Clinical only = LGBM 0.03 0.8 0.48 0.09 0.8
Baseline imaging = Harmonized Radiomics LGBM 0.0086 0.5 0.81 0.15 0.5
(LongCombat) and clinical
features
Longitudinal Non harmonized Radiomics BRFC 0.23 1.0 0.45 0.12 1.0
imaging features
High
GLCM maximum probability (WML)
Left lateral ventricle volume
GLDM dependence non uniformity (NAWM)
Right amygdala volume °
=}
First order kurtosis (NAWM) e
[0}
—
GLRLM run variance (WML) . 2
[}
[
GLSZM large area low gray level emphasis (WML)
Age in years
Expanded disability status scale at TO
Gender (female)
T T T Low
=2 0 2
SHAP value (impact on model output)
FIGURE 10
SHAP summary plot for model trained using baseline imaging prognostic approach with harmonized radiomics and clinical feature subset. The SHAP
analysis highlights the top contributing features influencing the prediction of disability worsening. Key features include GLCM maximum probability
(WML), left lateral ventricle volume, and GLDM dependence non-uniformity (NAWM), reflecting the importance of textural and anatomical
characteristics in predicting worsening. Features like gender (female) and age at baseline had relatively lower contributions to the model's predictions.
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FIGURE 11
SHAP summary plot for model trained using longitudinal imaging prognostic approach with non-harmonized radiomics feature subset. The SHAP
analysis for the delta non-harmonized model identifies delta GLDM gray level non-uniformity (WML) and delta GLCM difference entropy (WML) as the
most predictive features for disability worsening. The delta left choroid plexus volume exhibited a lower contribution, underscoring the relative
importance of dynamic changes in lesion structure over time.

2019; Jakimovski et al., 2020; Zivadinov et al., 2019). As shown in
Appendix M, this negative correlation can be attributed to cases with
advanced atrophy (high left lateral ventricle volume) being labeled as
non-progressive, as their baseline disability score (EDSS_TO0) is
already high, leaving little room for measurable worsening within the
two-year follow-up period.

Conversely, a larger right amygdala volume was associated
negatively with disability worsening, pointing to the possible role of
the limbic system in preserving cognitive and neurological function
in MS. Lastly, the clinical features did not have as much of a higher
influence as the others, but they remained important predictors
nevertheless. The highest being the age at baseline exhibiting a positive
correlation with disability worsening (Kalnina et al., 2024).

For our last research question, i.e., whether short-term changes in
MRI features can predict disability worsening, we used the
longitudinal imaging prognostic approach in an attempt to capture
temporal changes and exploit its use to make our models robust.
We found that the BRFC trained on the non-harmonized radiomics
feature subset achieved a PR AUC of 0.11 and ROC AUC of 0.69 on
the test set. However, looking at the features and their corresponding
SHAP values, we observed that the selected features, corresponding to
the dynamic changes in lesion structure over time, exhibited a lower
predictive power compared to the harmonized features selected in the
baseline imaging approach. This could be due to the short temporal
window between the baseline and follow-up and a reduction in the
dataset, which inhibits their capability to fully capture short-term
changes to explain disability worsening in PWMS.

To further validate our findings and eliminate the risk of
overfitting, the permutation results, presented in Appendix J, indicate
that the permuted models’ performance was notably worse than the
original models. This indicates that the predictive power of our models
is driven by meaningful patterns in the data rather than random noise
or spurious correlations. Furthermore, the poor performance of the
permuted models validates the robustness of our approach, as any
enhancement in prediction performance observed in the original
models cannot be attributed to chance.

Interestingly, the combined prognostic approach did not yield a
generalizable predictive performance, suggesting that the baseline
imaging prognostic approach is sufficient to capture the majority of
relevant information for predicting disability worsening. The integration
of longitudinal imaging features may have introduced noise, diluting the
predictive signal of the more robust baseline features. These results
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underscore the need for careful feature selection and refined temporal
analysis to optimize combined approaches.

This study brings important advancements compared to the
existing literature. By leveraging multicentric data from two centers
with diverse MRI acquisition protocols, it enhances the
generalizability of findings. The robust preprocessing pipeline,
including super-resolution reconstruction and longitudinal
ComBat harmonization, attempted to ensure consistency in
imaging data across sites and protocols. Additionally, the use of
SHAP analysis provided interpretable insights into feature
importance, offering a deeper understanding of the role of
radiomics in predicting MS worsening. While MRI, unlike
computed tomography, is inherently non-quantitative, our study,
similar to previous work (Lavrova et al., 2021), demonstrates the
potential of radiomics features in capturing subtle pathological
changes. The selection of radiomics features from the WML and
NAWM, coupled with radiomics and clinical features, further
enhances the promise radiomics holds to bridge the gap between
radiological findings and clinical outcomes, also known as the
clinic-radiological paradox (Uitdehaag, 2018).

However, certain limitations must be acknowledged. The small
number of worsening disability worsening cases translated into a high-
class imbalance, which posed challenges despite the use of weighted
adjustments. The reliance on reconstructed images without ground truth
and the absence of TIl-weighted sequences may have affected
segmentation and feature quality. While initially, we performed ML
analysis where DS2 was kept as a completely held-out external set, the
models tended to generalize poorly on it (see Appendix G). Although
longitudinal ComBat harmonization attempts to mitigate scanner and
site variability, its ability to preserve subtle predictive patterns and
address batch effects warrants further validation. Finally, the
retrospective design may introduce selection bias and asymmetry,
limiting the generalizability of these findings to broader populations.

Future studies should address these limitations by incorporating
larger, multicentric, balanced datasets with higher-resolution MRI and
ground-truth labels. Expanding the temporal window for delta
radiomics and integrating advanced imaging modalities, such as
diffusion-weighted imaging, may enhance the predictive power of
radiomics. Moreover, exploring the role of other clinical variables,
such as disease-modifying therapy, disease duration, and lesion
topography (for example through periventricular, juxtacortical, and
infratentorial labels or atlas-based lesion load), alongside imaging
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biomarkers could provide a more comprehensive understanding of
worsening mechanisms in MS. Finally, deep radiomics with
pre-trained foundation models can be deployed to see whether a deep
learning algorithm might be able to uncover patterns that the
traditional ML algorithm with hand-crafted radiomics might have
failed to capture.

Conclusion

This study highlights the potential of FLAIR MRI-based radiomics
combined with ML to predict two-year disability worsening in
PwMS. We demonstrated that models combining radiomics and
clinical features outperform clinical-only models. Furthermore,
we found that radiomics features from WML and NAWM and routine
clinical features from the baseline imaging prognostic approach
emerged as predictors, reinforcing their diagnostic value. However,
the longitudinal imaging approach demonstrated limited predictive
power, emphasizing the need for refined temporal analysis. Future
work should address class imbalance, enhance feature quality, and
explore advanced imaging modalities to further advance MS
worsening prediction.
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