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Background: Multiple sclerosis (MS) is an autoimmune disease of the central 
nervous system, leading to varying degrees of functional impairment. 
Conventional tools, such as the Expanded Disability Status Scale (EDSS), lack 
sensitivity to subtle disease worsening. Radiomics provides a quantitative imaging 
approach to address this limitation. This study applied machine learning (ML) 
and radiomics features from T2-weighted Fluid-Attenuated Inversion Recovery 
(FLAIR) magnetic resonance imaging (MRI) to predict disability worsening in MS.
Methods: A retrospective analysis was performed on real-world data from 247 
PwMS across two centers. Disability worsening was defined as a change in EDSS 
over two years. FLAIR MRIs underwent preprocessing and super-resolution 
reconstruction to enhance low-resolution images. White matter lesions (WML) 
were segmented using the Lesion Segmentation Toolbox (LST), and tissue 
segmentation was performed using sequence Adaptive Multimodal Segmentation. 
Radiomics features from WML and normal-appearing white matter (NAWM) were 
extracted using Pyradiomics, harmonized with Longitudinal ComBat, followed by 
recursive feature elimination for feature selection. Elastic Net, Balanced Random 
Forest (BRFC), and Light Gradient-Boosting Machine (LGBM) models were trained 
and evaluated.
Results: The LGBM model with harmonized radiomics and clinical features 
outperformed the clinical-only model, achieving a test area under the precision-
recall curve (PR AUC) of 0.20 and a receiver operating characteristic area under 
the curve (ROC AUC) of 0.64. Key predictive features, among others, included 
Gray-Level Co-Occurrence Matrix (GLCM) maximum probability (WML) and 
Gray-Level Dependence Matrix (GLDM) dependence non-uniformity (NAWM). 
However, short-term longitudinal changes showed limited predictive power (PR 
AUC = 0.11, ROC AUC = 0.69).
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Conclusion: These findings highlight the potential of ML-driven radiomics in 
predicting disability worsening, warranting validation in larger, balanced datasets 
and exploration of advanced deep learning approaches.
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Highlights

	•	 Machine learning improves the prediction of disability worsening 
in multiple sclerosis.

	•	 Radiomics can capture subtle, diffuse changes in MS worsening 
from FLAIR MRI.

	•	 Super-resolution reconstruction enhances radiomics analysis of 
low-resolution MRIs.

Introduction

Multiple Sclerosis (MS) is a chronic neuroinflammatory 
autoimmune disease of the central nervous system (CNS) 
characterized by demyelination and axonal damage, resulting in 
varying degrees of disability worsening (Calabresi, 2004). Despite 
advances in disease-modifying therapies, predicting disability remains 
difficult due to the heterogeneity of disease courses and incomplete 
understanding of their pathophysiology (Thompson et  al., 2018; 
Tilling et  al., 2016). Accurate prediction has critical clinical 
implications, as it can optimize monitoring schedules, inform 
therapeutic decisions, and enable more effective patient stratification 
for clinical trials, thereby improving outcomes, reducing healthcare 
burden, and accelerating therapy development (Dennison et al., 2018; 
Inojosa et al., 2021). Figure 1 illustrates magnetic resonance imaging 
(MRI) scans of PwMS with and without disability worsening.

The primary objective of this study was to predict disability 
worsening in PwMS over a two-year period. Disability worsening, 
derived from changes in the Expanded Disability Status Scale (EDSS) 
(Kurtzke, 1983), corresponds to the worsening of physical capabilities. 
In clinical practice, EDSS and MRI scans are commonly used to 

diagnose and assess the course of MS disease (Wattjes et al., 2021). 
However, both have their respective limitations. EDSS is prone to inter-
rater variability and lacks sensitivity to short-term changes, while MRI 
features, such as the number and volume of white matter lesions (WML) 
or their gadolinium enhancement, explain only part of clinical outcomes 
(Uitdehaag, 2018). Moreover, these measures fail to track the diffuse 
pathological changes in the gray matter (GM) and normal-appearing 
white matter (NAWM) (Wattjes et al., 2021; Davda et al., 2019; Treaba 
et al., 2019). Therefore, there is an unmet clinical need for more sensitive 
and specific biomarkers to predict disability worsening in PwMS.

An image quantification approach, such as radiomics, can potentially 
overcome this gap (Pontillo et al., 2021). By extracting high-dimensional 
quantitative features related to shape, intensity, and texture from regions 
of interest (ROIs), radiomics can characterize subtle changes and 
correlate them with clinical endpoints (Gillies et al., 2016; Lambin et al., 
2012; Lambin et al., 2017; Rogers et al., 2020). Radiomics has shown 
promising results in different disease domains, including oncology 
(Lambin et al., 2017; van Timmeren et al., 2017), Alzheimer’s disease 
(Feng et al., 2018; Li et al., 2019), and epilepsy (Liu et al., 2018). Similarly, 
in MS, radiomics features can potentially become clinically relevant 
noninvasive disease biomarkers for MS disease worsening (Lavrova 
et  al., 2021). Some of these features include cortical lesion volume 
(Calabrese et al., 2010), spinal and brain volume atrophy (Kearney et al., 
2015; Storelli et al., 2018), microstructural damage of NAWM (Moll 
et al., 2011), and the structural changes in the GM (Pontillo et al., 2019).

Given the limitations in EDSS and MRI, training advanced 
machine learning (ML) techniques with radiomics features holds 
promise for developing predictive models. By analyzing high-
dimensional imaging data, ML models can potentially capture and 
quantify imaging biomarkers associated with MS worsening, offering 
a more robust, objective, and sensitive prediction of disability.

FIGURE 1

Representative T2-weighted Fluid-attenuated Inversion Recovery (FLAIR) magnetic resonance imaging (MRI) scans of people with multiple sclerosis 
(PwMS) without disability worsening (left) and with disability worsening (right).
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In this study, we used ML to predict two-year EDSS-based disability 
worsening in PwMS using real-world data (RWD). Catering to the 
unmet clinical need to identify a noninvasive quantitative biomarker that 
is sensitive to disability worsening in MS, we hypothesize the following:

	•	 Radiomics-based ML models can outperform models relying 
solely on clinical variables to predict disability worsening 
in PwMS.

	•	 Radiomics features from MRI can predict disability worsening 
(2 years) in PwMS.

	•	 Short-term changes (6 months) in radiomics features can predict 
disability worsening in PwMS.

Materials and methods

Inclusion criteria

To ensure the longitudinal tracking of disability worsening, 
inclusion criteria were designed to capture both clinical and imaging 
data at consistent intervals. This approach was necessary to align MRI 
scans with corresponding EDSS measurements over time, providing 
a comprehensive assessment of disease worsening. Subjects with a 
confirmed diagnosis of MS, at least a two-year longitudinal EDSS 
score trajectory, and at least one baseline and one follow-up MRI scan 
were included in the study. To achieve this, anchor dates were defined 
as fixed reference points based on visits (e.g., MRI acquisition dates) 
and fixed time points (e.g., 6 months and 2 years after the initial visit). 
Temporal windows were specified around the anchor dates to select 
the follow-up MRI. The three temporal windows were defined as:

	•	 T0 (initial visit): The anchor date for T0 is the MRI acquisition 
date. The closest EDSS measurement within a 6-month window 
before or a 3-month window after the T0 anchor date was 
selected as the baseline score EDSS_T0.

	•	 T1 (short-term follow-up): The anchor date for T1 was set exactly 
6 months after the T0 anchor date. The T1 window spanned 
3 months before and 3 months after the T1 anchor date. Thus, the 
MRI session at T1 was selected to calculate short-term changes.

	•	 T2 (long-term follow-up): The anchor date for T2 was set 2 years 
after the T0 anchor date. The T2 window spanned from 3 months 

before to 1 year after the T2 anchor date. The closest EDSS 
measurement to the T2 anchor date was selected as EDSS_T2. No 
MRI was included in this window, as T2 was based solely on 
EDSS to assess two-year disability worsening.

This structure enabled the consistent alignment of MRI data and 
EDSS scores at the initial visit (T0) and short-term follow-up (T1), 
while two-year worsening (T2) was assessed using EDSS alone. 
Multiple MRI sessions and their corresponding EDSS scores were 
included for some subjects, with a range of 2 to 8 MRIs per subject. 
Each MRI session contributed to the analysis and was treated as a 
separate observation. Furthermore, MRI sessions from the same 
subject were grouped during partitioning into training, validation, and 
test sets to avoid potential data leakage. An overview of the temporal 
windows is illustrated in Figure 2.

Endpoint definition

The primary endpoint of this study was two-year disability 
worsening, and its definition was adapted from previous work 
(Kalincik et  al., 2017). Disability worsening was determined by 
comparing EDSS scores between T0 and T2. A subject was considered 
worsened if the change in EDSS met the following criteria:

	•	 EDSS_T2 – EDSS_T0 ≥ 1.5 for patients with EDSS_T0 = 0.
	•	 EDSS_T2 – EDSS_T0 ≥ 1.0 for patients with EDSS_T0 ≤ 5.5.
	•	 EDSS_T2 – EDSS_T0 ≥ 0.5 for patients with EDSS_T0 > 5.5.

Modeling pipeline

The pipeline consists of three main stages: image processing, feature 
processing, and modeling. The image processing stage preprocessed 
MRI data through reorientation, denoising, bias field correction, super-
resolution reconstruction, and segmentation of WML and NAWM. The 
feature processing stage focused on extracting radiomics features, 
harmonizing them to reduce inter-scanner variability, and removing 
redundant features. Finally, the modeling stage explored four predictive 
approaches—clinical, baseline imaging, longitudinal imaging, and 
combined—by employing feature selection, ML models, and validation 

FIGURE 2

Temporal alignment of EDSS and MRI data for inclusion criteria. This figure illustrates the temporal windows used to align MRI and EDSS data for 
assessing disability worsening. T0 represents the baseline MRI session, with the closest EDSS measurement selected within a window of 3 months after 
or 6 months before the MRI. T1 corresponds to the short-term follow-up 6 months after T0, with a 3-month window before and after the T1 anchor 
date for EDSS and MRI selection. T2 represents the two-year follow-up 2 years after T0, with the EDSS measurement selected within a window of 
3 months before 1 year and after the T2 anchor date.
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techniques to evaluate predictive performance. As described later in the 
section “Data Partitioning,” the datasets were shuffled and split into 
training, validation, and testing datasets. Feature harmonization, 
reduction, selection, model hyperparameter optimization, and model 
selection were performed exclusively on the training and validation 
datasets to avoid data leakage.

Image processing

MRI data
Our study used pseudonymized longitudinal MRI data collected 

retrospectively from two medical centers: the Rehabilitation and MS 
Center of Noorderhart in Pelt, Belgium (DS1) and Zuyderland 
Medical Center in Sittard, Netherlands (DS2). The study has been 
approved by the ethical commission of the University of Hasselt 
(CME2019/046) and the Medical Ethics Review Committee of 
Zuyderland and Zuyd University of Applied Sciences 
(METCZ20200167). No consent to participate was required, given the 
pseudonymized and retrospective nature of the study. Both DS1 and 
DS2 have been used for the first time in this study. They are private 
datasets consisting of T2-weighted Fluid-attenuated Inversion 
Recovery (FLAIR) MRI scans and clinical data, including age, gender, 
and EDSS scores, collected during routine clinical follow-ups. After 
applying the inclusion criteria, a total of 149 subjects from DS1 and 
98 subjects from DS2 were included in the analysis. The details of the 
dataset are mentioned in Table 1.

The acquisition protocol for T2-weighted FLAIR varied within and 
across the two datasets. Images in DS1 were acquired using the same 
scanner (Philips Achieva 1.5 T) with three different protocols 
depending on the date. Between 2010 and 2015, the MRI session 
included two orthogonal multi-slice T2-W FLAIRs acquired with axial 
and sagittal slice orientations and a slice spacing of 6 mm (Protocol A). 
Between 2015 and 2017, three orthogonal images were acquired with 
a slice spacing of 3 mm (Protocol B). In 2017, acquisition sessions 
included a fast high-resolution 3D T2-W FLAIR with a voxel size of 
0.98 mm x 0.98 mm x 0.6 mm (Protocol C), and most of them also 
included a structural T1-W MRI (Protocol CsT1). Images in DS2 were 
acquired using nine different scanners with varying protocols, 
including low-resolution multi-slice and high-resolution 3D 
acquisitions, with spacing between slices ranging from 0.8 mm to 
7 mm. Sessions in DS2 were categorized similarly to sessions in DS1, 
based on the number and resolution of acquired T2-W FLAIR images. 
Sessions with a 3D high-resolution image were classified as Protocol C, 
while those with two orthogonal multi-slice low-resolution images 

were classified as Protocol A. No sessions contained three orthogonal 
images, and 29 sessions with only one low-resolution image were 
classified as Protocol D. Detailed information about T2-W FLAIR MRI 
acquisition protocols for both datasets is provided in Appendix A.

MRI pre-processing
The preprocessing of MRI data aimed at harmonizing and 

enhancing the image quality before radiomics feature extraction. First, 
all MRI images were denoised using adaptive non-local means 
(Manjón et al., 2010), and N4 bias-field correction (Tustison et al., 
2010) was applied to mitigate low-frequency intensity inhomogeneities 
in MRI images caused by magnetic field distortions. This correction 
aims to improve the accuracy of segmentation and feature extraction, 
as it reduces the impact of scanner heterogeneity (Tustison et al., 2010).

For protocols with low-resolution images (A, B, and D), 
we  applied “perceptual super-resolution in multiple sclerosis” 
(PRETTIER) (Giraldo et  al., 2024), a super-resolution approach 
designed to enhance the through-plane resolution of multi-slice 
structural MRIs containing MS lesions. Since protocols A and B have 
multiple low-resolution FLAIR images per session, we  applied 
PRETTIER to each image and aligned and combined the outputs 
following an iterative approach. This technique improves spatial 
resolution, which is important for downstream radiomics analysis and 
segmentation tasks. Reconstruction was not performed on protocol C 
since it had high-resolution FLAIR.

Next, we  applied the Sequence Adaptive Multimodal 
Segmentation (SAMSEG) method for whole-brain segmentation on 
all FLAIR protocols across DS1 and DS2 (Cerri et al., 2021). SAMSEG 
is a previously validated segmentation tool designed to segment 41 
anatomical brain structures (see Appendix B) from MRI and is fully 
adaptive to different MRI contrasts and scanners, making it 
particularly suitable for multi-center datasets like ours. SAMSEG was 
used to segment, among others, the normal-appearing white matter 
(NAWM), gray matter (GM), thalamus, and cerebrospinal fluid (CSF).

Lesions were segmented using the lesion prediction algorithm 
(Schmidt, 2017) as implemented in LST toolbox version 1.2.31 for SPM8.2 
This algorithm uses a pre-trained logistic regression model to generate 
lesion probability estimates at each voxel. These lesion probability 
estimates were thresholded at 0.1 to create white matter lesion (WML) 
masks. The flowchart of the entire pipeline is shown in Figure 3.

1  www.statistical-modelling.de/lst.html

2  http://www.fil.ion.ucl.ac.uk/spm

TABLE 1  Datasets summary details.

Dataset DS1 DS2 p-value

Participants (n) 149 98 –

Sessions 630 184 –

Age in years at baseline (± SD) 42.9 ± 11.7 37.4 ± 10.2 0.015*

Female to Male ratio 3.2:1 3.3:1 0.983

EDSS at baseline (IQR, 25th–75th percentile) 2.0 (1.5–3.0) 2.5 (1.5–4.0) 0.242

Acquisition date range 2010–2017 2008–2019 –

Worsening (%) 5.5% 13% 0.087

This table summarizes the cohort characteristics of DS1 and DS2. The p-values for continuous variables (Age in years at baseline and EDSS at baseline) were calculated using two-sample 
t-tests, while p-values for categorical variables (Female-to-Male ratio and Worsening %) were calculated using chi-square tests. A p-value <0.05 is marked with an asterisk (*) and indicates a 
statistically significant difference. Continuous variables are summarized as mean ± standard deviation (SD) (Age) or median Interquartile range (IQR) (EDSS) as appropriate.
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Feature processing

Besides having masks as the outcome of segmentation, anatomical 
and lesion volumes were also obtained using SAMSEG and LST. These 
volumes were subsequently normalized by intracranial volume to 
ensure comparability across subjects. Per-image adaptive histogram 
matching (Pizer et al., 1987) was then performed to normalize the 
intensity distributions of all the skull-stripped FLAIR images, ensuring 
consistency in intensity values across images.

For this study, high-dimensional radiomics features were 
extracted from two regions of interest (ROI): the NAWM and the 
WML. The WML mask was subtracted from the segmented WM mask 
to generate the NAWM mask. These binary masks, along with the 
intensity-normalized FLAIR images, were used to compute the 
corresponding radiomics features for further analysis.

Feature extraction
Radiomics features from the ROIs were extracted using Pyradiomics 

2.20 (van Griethuysen et al., 2017) with Python 3.7.1. The extracted 
radiomics features comprised six classes, including shape (Lorensen and 
Cline, 1987), first-order statistics (FO), gray-level co-occurrence matrix 
(GLCM) (Haralick et al., 1973), gray-level run length matrix (GLRLM) 
(Galloway, 1975), gray-level size zone matrix (GLSZM) (Thibault et al., 
2013), and gray-level dependence matrix (GLDM) (Sun and Wee, 1983). 
Gray-level features were calculated by discretizing the images into 50 

bins, which aligns with the recommendations by the Image Biomarker 
Standardization Initiative (IBSI) (Zwanenburg et al., 2018) and in the 
documentation of Pyradiomics (van Griethuysen et al., 2017). The details 
of the number of features extracted per class are available in Appendix K.

Feature harmonization
Given the diversity of MRI acquisition protocols and the 

longitudinal heterogeneity of DS1 and DS2, harmonization of the 
radiomics features between different protocols was performed using 
longitudinal ComBat (Beer et al., 2020). This technique was applied 
to improve the comparability of features across the datasets by 
minimizing inter- and intra-site variability, as well as temporal 
variations in MRI, which can stem from the acquisition protocol. The 
principal component analysis (PCA) visualization of the features from 
DS1 and DS2 before and after harmonization is illustrated in 
Appendix H. Harmonization coefficients were calculated in the 
training dataset only and later applied to the testing and 
validation datasets.

To ensure a comprehensive evaluation, all subsequent steps were 
conducted separately on both harmonized and non-harmonized  
datasets.

Dataset partitioning
The DS1 and DS2 were shuffled and were then split into training 

(60%), validation (20%), and test (20%) sets. The splitting was 

FIGURE 3

Overview of the methodology for MRI-based disability worsening prediction in multiple sclerosis. The pipeline consists of three main stages: image 
processing, feature processing, and modeling. Image processing involves image pre-processing steps such as reorientation and denoising, bias field 
correction, intensity normalization, and lesion/tissue segmentation using LST and SAMSEG. Super-resolution reconstruction was applied to low-
resolution images. Feature processing includes the extraction of radiomics features from regions of interest (ROI) and harmonization using longitudinal 
ComBat to address inter-scanner variability. Features were then divided into harmonized and non-harmonized datasets. The feature sets extracted 
from DS1 and DS2 were then shuffled and divided into training, validation, and test sets. Modeling stage includes the division of dataset according to 
four prognostic approaches clinical, baseline imaging, longitudinal imaging and combined. This was followed by further subdividing each approach 
into feature subsets and subsequent removal of feature reduction, feature selection, and training of a machine learning model, and finally evaluating 
the best model on the test set.
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performed using a stratified shuffled split using scikit-learn (Pedregosa 
et al., 2011). This ensured two things: (1) the distribution of subjects 
with worsening disability was stratified across the sets as evenly as 
possible and (2) sessions of the same subject were kept within the 
same dataset, preventing data leakage.

Prognostic approaches
For this study, four distinct prognostic approaches were defined. 

First, we adopted a “clinical” approach, focusing solely on routinely 
available clinical variables such as gender, clinical age (in years), and 
EDSS at T0. The reason for analyzing this approach separately was to 
evaluate the predictive value of clinical features alone, independent of 
radiomics features, and it served as a baseline for comparison with 
radiomics-based approaches.

Since our study also aimed to capture the predictive capability of 
both baseline features and short-term feature changes in MRI data for 
disability worsening, we  further defined three distinct radiomics-
based prognostic approaches. For extracting radiomics features, 
we used all sessions for each subject with the disability worsening label 
corresponding to that session, labeling this as the “baseline imaging” 
approach. The second approach, “longitudinal imaging,” focused on 
short-term changes in all radiomics features relative to the baseline 
features. This is calculated by dividing the difference between T1 and 
T0 and dividing it by T0 (Heidt et al., 2024). In this case, the disability 
worsening label corresponded to the one assigned at T0. Finally, to 
assess whether combining baseline imaging and longitudinal imaging 
could improve predictive power, we  integrated features used in 
longitudinal imaging and baseline imaging approaches, referring to 
this as the “combined” approach, with the disability worsening label 
taken at T0.

Modeling

Feature subsets
To evaluate further whether radiomics features alone or with 

clinical data can predict to disability worsening, we  divided the 
features in baseline imaging, longitudinal imaging, and combined 
prognostic approaches into the following subsets:

	•	 Radiomics volume features: Regional and lesion volumes derived 
from SAMSEG and LST (normalized by intracranial volume).

	•	 Radiomics features without volumes: Features extracted 
exclusively using Pyradiomics (e.g., shape, FO, GLCM, GLRLM, 
GLSZM, and GLDM).

	•	 Radiomics features: A combination of both the selected radiomics 
volume features and radiomics features without volumes.

	•	 Radiomics and clinical features: A combination of the selected 
radiomics features with clinical data, including gender (female), 
clinical age (in years), and EDSS at T0. This was done to test 
whether radiomics features combined with clinical features 
enhance the predictive power of the model.

Feature selection
Feature reduction and selection were not applied to the clinical-

only dataset; however, for the radiomics-based prognostic approaches, 
feature reduction was performed separately on the training set for 
both the harmonized and non-harmonized data analysis pipelines. 

This includes the four feature subsets, and the aim was to eliminate 
redundant and non-informative features. Initially, all features were 
normalized using StandardScaler from scikit-learn (Pedregosa et al., 
2011), and then pairwise Spearman correlation was computed for the 
entire feature set. Features that exhibited a Spearman correlation 
coefficient greater than 0.9 were considered highly correlated. From 
each pair of intercorrelated features, the one with the higher average 
Spearman correlation across all other features was flagged for removal. 
To ensure stability in the selection process, a bootstrapping approach 
was used: in each iteration, stratified subsamples were generated based 
on the outcome, and the intercorrelated features were recalculated. 
Features that appeared as candidates for removal in 50% or more of 
the bootstrap iterations were discarded from the final dataset, 
resulting in a robust set of non-intercorrelated features for 
further analysis.

Recursive Feature Elimination with 20-fold cross-validation 
(RFECV) was applied on the non-intercorrelated features across each 
approach and feature subset. Given the imbalance in the training 
dataset, with only 6.9% of subjects showing worsening disability, 
we used a Balanced Random Forest Classifier (BRFC) as an estimator 
within RFECV to account for this imbalance. Stratified Shuffle Split 
cross-validation was applied to maintain class proportion across folds, 
and the precision score was chosen as the evaluation metric to 
prioritize features that improve the precision of disability 
worsening prediction.

Selection of classification model
We used three ML models, Elastic Net (logistic regression), 

BRFC, and Light Gradient-Boosting Machine (LGBM), to evaluate 
each prognostic approach and the feature subsets it entails. In an 
attempt to make the models robust, we  employed Optuna to 
optimize the hyperparameters of each model. Optuna is a framework 
for efficient hyperparameter tuning using Bayesian optimization 
(Akiba et al., 2019). Moreover, a 20-fold cross-validation alongside 
a stratified shuffle split was implemented during model 
hyperparameter tuning as well. This approach ensured stability by 
iteratively training and testing models across different subsets of the 
training data, helping to enhance the generalizability of the 
predictions. The model that had the best area under the precision-
recall curve (PR AUC) on the validation set, per feature subset, was 
subsequently tested on the test set to evaluate the generalizability of 
the feature subset per approach. The PR AUC curve was used to 
select the best-performing models on the validation set, as it 
emphasizes the trade-off between precision (positive predictive 
value) and recall (sensitivity), making it especially suited for 
imbalanced datasets, like ours, where worsening cases are sparse. In 
addition to the PR AUC curve, the area under the receiver operating 
characteristic curve (ROC AUC) was also used to give an insight 
into the discriminative capabilities of the models. For PR AUC, a 
value significantly above the prevalence of the positive class indicates 
meaningful performance. For ROC AUC, a value of 0.5 indicates 
random performance, and higher values reflect better discrimination 
(Çorbacıoğlu and Aksel, 2023).

To get an actual picture of the sensitivity and specificity of the 
models, we used Youden’s index (J) to calculate the optimal threshold 
for binary classification (Youden, 1950). Furthermore, to validate 
whether the results generated by our models are not a result of random 
chance, we  also conducted permutation analysis by shuffling the 
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outcome variable, i.e., the disability worsening, and re-running model 
training. The permutation was performed 50 times, and the models 
were then subsequently evaluated.

To interpret the predictions of the ML models, SHapely Additive 
exPlanations (SHAP) (Lundberg et al., 2019) were employed. SHAP 
values were computed for the features of selected models, followed by 
the generation of summary plots to visualize feature importance and 
their impact on predictions. The plots ranked the features by their 
mean absolute SHAP values and their respective effect on the 
likelihood of disability worsening.

Moreover, the Radiomics Quality Score (RQS) framework was 
followed to ensure methodological rigor and adherence to radiomics 
standards (Lambin et al., 2017). The CLEAR (Checklist for Evaluating 
the Reporting of AI in Radiology) checklist was also used to evaluate 
the transparency and reproducibility of the ML pipeline, ensuring 
clarity and alignment with best practices for AI reporting (Kocak 
et al., 2023).

Results

Cohort characteristics

By combining and shuffling DS1 and DS2, a total of 247 PwMS 
were included in this study. The 247 participants were divided, using 
stratified shuffled split, into training (n = 148), validation (n = 49), and 
test (n = 50) sets. Subjects in the training set had an average age of 
41.32 years (±12.13), while those in the validation and test sets had 
averages of 44.79 years (±10.92) and 38.52 years (±10.25), respectively. 
The female-to-male ratio remained almost consistent across sets at 
approximately 3.3:1. Worsening disability was observed in 6.9% of the 
training set, 9.8% of the validation set, and 6.0% of the test set. The 
summary of cohort characteristics for shuffled datasets is outlined in 
Table 2.

The longitudinal imaging approach resulted in a dataset reduction 
of unique participants and sessions because it was constructed by 
calculating feature differences between T0 and T1 sessions. The 
characteristics of the delta datasets are summarized in Table 3.

Feature selection

Tissue segmentation using SAMSEG produced 41 anatomical 
features (volumes only) from different brain regions. Out of 41, two 
features, “unknown volumes” and “fifth ventricle volume,” were 
dropped due to their negligible size in the MRI. The remaining 39 
features, along with two lesion-specific features from LST—namely, 
the number of lesions and lesion volume—constituted the radiomics 
volume feature subset. In instances where LST failed to provide the 
lesion volume feature, the SAMSEG-derived WML volume was used 
as a substitute. Additionally, high-dimensional radiomics features 
extracted using Pyradiomics yielded a total of 200 features for the 
radiomics features without the volumes subset.

Subsequently, per the prognostic approach, intercorrelated 
features were dropped, the details of which are summarized in 
Appendix C. All the unique retained non-intercorrelated features 
underwent RFECV to get the optimum number of features for 
downstream ML analysis. The feature subsets selected by RFECV for 
the best-performing models per approach are shown in Table 4.

TABLE 2  Characteristics of the training, validation, and test datasets.

Dataset Training set Validation set Test set p-value

Participants 148 49 50 –

Sessions 470 166 178 –

Age in years at baseline 41.32 ± 12.13 44.79 ± 10.92 38.52 ± 10.25 Training vs. Validation – 0.04*

Validation vs. Test – 0.01*

Training vs. Test – 0.37

Female to Male ratio 3.2:1 3.3:1 3.3:1 Training vs. Validation – 0.98

Validation vs. Test – 0.99

Training vs. Test – 0.99

EDSS at baseline (IQR, 25th–

75th percentile)

2.0 (1.5–3.0) 2.5 (1.5–4.0) 2.0 (1.5–3.0) 0.008*

Percentage Split (of total) 60% 20% 20% –

Acquisition date range 2008–2019 2010–2019 2010–2019 –

Worsening (%) 6.9% 9.8% 6.0% Training vs. Validation – 0.67

Validation vs. Test – 0.58

Training vs. Test – 0.84

This table summarizes the cohort characteristics for the training, validation, and test datasets. The p-values indicate comparisons between datasets (Training vs. Validation, Validation vs. Test, 
and Training vs. Test). For EDSS at baseline, comparisons were performed using the Kruskal–Wallis test with Dunn’s post-hoc tests and Benjamini–Hochberg correction for multiple 
comparisons. For Age in years at baseline, two-sample t-tests were applied. Female-to-Male ratio and Worsening percentage were compared using chi-square tests. A p-value <0.05 is marked 
with an asterisk (*) and indicates a statistically significant difference.

TABLE 3  Characteristics of longitudinal imaging approach training, 
validation, and test datasets.

Dataset Training set Validation set Test set

Participants 97 36 33

Sessions 161 63 70

Worsening (%) 5.5% 6.3% 7.1%
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Machine learning models performance

The results of the best ML model per prognostic approach are 
summarized in Table 5. As shown in Figures 4, 5, for the clinical 
approach, LGBM performed the best by achieving a validation PR 
AUC of 0.12 and a validation ROC AUC of 0.57. On the test set, it 
attained a PR AUC of 0.08 and a ROC AUC of 0.6.

For the baseline imaging approach, LGBM performed best in the 
radiomics and clinical features subset. As shown in Figures  6, 7, 
LGBM achieved a validation PR AUC of 0.28 and a validation ROC 
AUC of 0.73. On the test set, it attained a PR AUC of 0.20 and an 
ROC AUC of 0.64. While the non-harmonized baseline models also 
generalized well on the test set, they, however, did not achieve better 
results compared to the baseline harmonized model (see 
Appendix D).

For the longitudinal imaging prognostic approach, the BRFC 
model trained on non-harmonized radiomics features achieved the 
best results compared to the harmonized approach, with a validation 
PR AUC of 0.32 and ROC AUC of 0.78, while on the test set, it 
achieved a PR AUC of 0.11 and an ROC AUC of 0.69 (see Figures 8, 
9). The longitudinal imaging harmonized models and the combined 
models, both harmonized and non-harmonized, did not generalize 
well on the test set (see Table 5).

Using Youden’s index (J) to determine the optimal threshold, the 
clinical model achieved a sensitivity of 0.8 and specificity of 0.48 on 

the test set. For the baseline imaging prognostic approach, the LGBM 
trained on the harmonized radiomics and clinical features attained a 
sensitivity of 0.4 and specificity of 0.85 on the test set. Detailed metrics 
for each approach are shown in Table 6.

SHAP-based feature analysis

The SHAP analysis identified the most influential features 
contributing to the prediction of disability worsening across the best-
performing models in the baseline imaging and longitudinal imaging 
prognostic approaches. For the baseline imaging prognostic approach 
with harmonized radiomics and clinical features, as shown in 
Figure 10, the SHAP analysis revealed GLCM maximum probability 
(WML), left lateral ventricle volume, and GLDM dependence 
non-uniformity (NAWM) as the top three features influencing 
predictions. Features like gender (female) had a lower impact on the 
model outcome.

In the SHAP summary plot (Figures 10, 11), features are ranked 
by their mean absolute SHAP value, which quantifies their overall 
importance in the model. The higher the mean absolute SHAP value, 
the greater the feature’s contribution to predictions across all subjects. 
The color coding in the plot represents the value of the feature for each 
subject: red points correspond to higher feature values, while blue 
points indicate lower feature values. For example, a higher GLCM 

TABLE 4  Selected features from the best-performing models for disability worsening prediction.

Approach Harmonization Feature subset Number of features Selected features

Clinical Not applicable Clinical only 3 EDSS_T0, clinical age in years, gender (female)

Baseline imaging

Harmonized 

(LongCombat)

Radiomics and clinical 

features
10

GLRLM run variance (WML), GLCM maximum probability 

(WML), first order kurtosis (NAWM), left lateral ventricle 

volume, GLDM dependence non uniformity (NAWM), right 

amygdala volume, GLSZM large area low gray level emphasis 

(WML), EDSS_T0, clinical age in years, gender (female)

Non harmonized
Radiomics and clinical 

features
13

GLRLM run variance (WML), left thalamus volume, left 

lateral ventricle volume, first order minimum (WML), right 

amygdala volume, right accumbent area volume, right 

thalamus volume, left pallidum volume, GLSZM size zone 

non uniformity (WML), shape minor axis length (NAWM), 

EDSS_T0, clinical age in years, gender (female)

Longitudinal 

imaging

Harmonized 

(LongCombat)

Radiomics volume 

features
1

delta right cerebellum cortex volume

Non harmonized Radiomics features 3

delta GLCM difference entropy (WML), delta GLDM gray 

level non uniformity (WML), and delta left choroid plexus 

volume

Combined

Harmonized 

(LongCombat)
Radiomics features 6

left thalamus volume, delta left cerebellum cortex volume, 

delta right hippocampus volume, delta right thalamus volume, 

right thalamus volume, delta GLSZM large area high gray 

level emphasis (NAWM)

Non harmonized
Radiomics and clinical 

features
11

delta GLSZM gray level non uniformity (NAWM), left 

thalamus volume, delta GLDM large dependence high gray 

level emphasis (NAWM), right thalamus volume, brain stem 

volume, delta right thalamus volume, delta right caudate 

volume, EDSS_T0, clinical age in years, delta clinical age in 

years, gender (female)
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maximum probability (red points) was associated with a lower 
likelihood of disability worsening, reflecting its inverse relationship 
with the outcome.

For the longitudinal imaging approach with a non-harmonized 
radiomics feature subset, the delta GLDM gray level non-uniformity 
(WML) and delta GLCM difference entropy (WML) had a higher 
predictive capability for disability worsening, whereas the delta left 
choroid plexus volume had a relatively lower contribution to the 
model’s outcome (Figure 11).

For details on the specific model parameters and Optuna settings, 
we refer to Appendix I, whereas the details of the CLEAR checklist 
and RQS are provided in Appendices E, F, respectively.

The results of the permutation testing conducted by shuffling the 
outcome variable and re-evaluating the models are presented in 
Appendix J. The findings showed that the performance of the 
permuted models in all the prognostic approaches was worse 
compared to the original models.

Discussion

In this study, we  explored the potential of FLAIR MRI-based 
radiomics and ML techniques on multicentric data to predict disability 
worsening in people with multiple sclerosis. We deployed three ML 
models, namely LOGIT, BRFC, and LGBM, across four different 
prognostic approaches, i.e., clinical, baseline imaging, longitudinal 
imaging, and combined. Except for the clinical approach, the imaging 
and combined prognostic approaches further consist of harmonized 
and non-harmonized feature subsets comprising radiomics volume 
features, radiomics features without volumes, and radiomics features, 
as well as radiomics and clinical feature subsets.

Addressing our first research question, whether radiomics-based 
models can outperform models relying solely on clinical variables, 
we found that the LGBM model trained on harmonized radiomics and 
clinical features generalized the best on the test set, achieving a PR 
AUC of 0.2 and ROC AUC of 0.64 on the test set. As shown in 

TABLE 5  Performance metrics of the best-performing models across approaches, harmonization strategies, and feature subsets.

Approach Harmonization Feature 
subset

Best 
model

Validation PR 
AUC

Validation 
ROC AUC

Test PR 
AUC

Test 
ROC 
AUC

Clinical Not applicable Clinical only LGBM 0.16 0.65 0.08 0.6

Baseline imaging

Harmonized (LongCombat)
Radiomics and 

clinical features

LGBM 0.25 0.65 0.2 0.64

Non harmonized
Radiomics and 

clinical features

BRFC 0.22 0.69 0.13 0.74

Longitudinal 

imaging

Harmonized (LongCombat)
Radiomics 

volume features

BRFC 0.41 0.66 0.25 0.48

Non harmonized
Radiomics 

features

BRFC 0.32 0.78 0.11 0.69

Combined

Harmonized (LongCombat)
Radiomics 

features

LOGIT 0.54 0.9 0.06 0.41

Non harmonized
Radiomics and 

clinical features

LGBM 0.53 0.91 0.06 0.44

FIGURE 4

Area under the precision-recall curve (PR AUC) or model performance on clinical validation and test sets. The PR curves illustrate the performance of 
the best-performing model, the LGBM model trained on clinical features for predicting disability worsening. Validation PR AUC was 0.12, while the test 
set PR AUC was 0.08.
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Appendix D, the combination of radiomics and clinical features 
outperformed both the clinical-only and radiomics-only prognostic 
approaches, demonstrating the added value of integrating advanced 
imaging biomarkers with routinely available clinical data. Although a 
PR AUC of 0.2 may appear low in absolute terms, its interpretation 
differs from that of the ROC AUC. The baseline for PR AUC is not 
0.50 but the prevalence of the positive class. In our cohort, disability 
worsening occurred in ≈10% of visits, meaning that a random 
classifier would yield a PR AUC of 0.10 (Maier-Hein et al., 2024). 
Against this baseline, our model’s PR AUC of 0.20 reflects a doubling 
of performance relative to chance. This indicates that, across 
thresholds, the model enriches true disability worsening cases among 
the high-risk predictions more effectively than random selection 
would achieve. While modest in absolute terms, such an improvement 
is meaningful in a severely imbalanced setting, where incremental 
gains above baseline can translate into clinical utility by prioritizing 
patients for closer monitoring.

For our second research question, whether radiomics features can 
predict disability worsening in PwMS, the most generalizable model 
was the LGBM trained on harmonized data with the radiomics and 
clinical features subset. As seen in Figure  9, the most influential 
features constitute textural features from the WML and NAWM. The 
role of textural features in MS disease worsening has been studied 
previously (Harrison et al., 2010; Herlidou-Même et al., 2003; Kassner 
and Thornhill, 2010; Loizou et al., 2010; Loizou et al., 2011; Loizou 
et al., 2015; Loizou et al., 2020; Meier and Guttmann, 2003; Zhang 
et al., 2008) and our study further strengthens the notion that textural 
features can capture the diffuse pathological changes in these areas. 
The textural features extracted from WML tend to capture the 
heterogeneity and structural characteristics of the lesions, which can 
provide a noninvasive means of assessing lesion activity and overall 
burden, which is critical for MS disease worsening (Zhang et  al., 
2013). As previously studied, the heterogeneity in voxel intensities 
corresponds to demyelination, axonal loss, and inflammation in the 

FIGURE 5

Receiver operating characteristic curve with area under the curve (ROC AUC) for model performance on clinical validation and test set. The ROC 
curves display the discriminative ability of the best-performing LGBM model trained on clinical features for predicting disability worsening. The ROC 
AUC for the validation set was 0.57, with a test set ROC AUC of 0.60. The red dots indicate the optimal thresholds determined using Youden’s index, 
balancing sensitivity and specificity.

FIGURE 6

Area under the precision-recall curve (PR AUC) for model performance on baseline imaging validation and test sets with harmonized radiomics and 
clinical feature subset. The PR curves illustrate the performance of the best-performing model LGBM trained on baseline imaging harmonized 
radiomics and clinical feature subset for predicting disability worsening. Validation PR AUC was 0.25, while the test set PR AUC was 0.20.
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WML (Zhang et al., 2013; Barkovich, 2000). Furthermore, previous 
studies have shown that textural heterogeneity can act as relevant 
biomarkers to predict worsening (Loizou et al., 2011; Tozer et al., 
2009). This could be due to the origin of the MRI signal from the 
endogenous protons, which are affected by the structural changes at 
the microscopic level in pathology (NAWM and WML), causing 
magnetic resonance signal variation at the macroscopic scale (Zhang 
et al., 2013).

The top predictor among the WML textural features in our study 
was GLCM Maximum Probability (WML), which shows an inverse 
relationship with disability worsening. This feature essentially 
measures the most probable co-occurrence of intensity values within 
an ROI (Haralick et al., 1973). In the case of WML, this would mean 
that a higher value of GLCM Maximum Probability would indicate a 
higher degree of homogeneity of intensity values, whereas lower 

values would indicate lower homogeneity or increased heterogeneity 
in the WML. Therefore, the more textural heterogeneity a lesion 
exhibits, the more demyelination and other microstructural changes 
occur within that lesion (Zhang et al., 2013; Barkovich, 2000). The 
textural features extracted from the NAWM were also deemed as 
predictive features. They represent possible diffuse pathological 
changes such as gliosis or early demyelination, which are not visible 
to the naked eye on MRI. This is in line with the literature (Zhang, 
2012; Zhang et al., 2009).

In addition to textural features, anatomical volumes such as left 
lateral ventricle volume and right amygdala volume were also deemed 
useful in our study. Although ventricular enlargement corresponds to 
brain atrophy, which corresponds further to disability worsening, in 
our study, the ventricular enlargement exhibited a negative correlation 
with disability worsening, unlike previous studies (Genovese et al., 

FIGURE 7

Receiver operating characteristic curve with area under the curve (ROC AUC) for model performance on baseline imaging validation and test sets with 
harmonized radiomics and clinical feature subset. The ROC curves display the discriminative ability of the best-performing LGBM model trained on 
baseline imaging, harmonized radiomics, and a clinical feature subset. The ROC AUC for the validation set was 0.65, with a test set ROC AUC of 0.64. 
The red dots indicate the optimal thresholds determined using Youden’s index, balancing sensitivity and specificity.

FIGURE 8

Area under the precision-recall curve (PR AUC) for model performance on longitudinal imaging validation and test sets with a non-harmonized 
radiomics feature subset. The PR curves depict the performance of the best-performing model, BRFC, for longitudinal imaging non-harmonized 
radiomics feature subsets. The validation PR AUC is 0.32, and the test PR AUC is 0.11.
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FIGURE 9

Receiver operating characteristic curve with area under the curve (ROC AUC) for model performance on longitudinal imaging validation and test sets 
with non-harmonized radiomics feature subset. The ROC curves display the discriminative ability of the best-performing BRFC model for longitudinal 
imaging non-harmonized radiomics feature subsets. The validation ROC AUC reached 0.78, while the test set ROC AUC was 0.69. The red dots 
indicate the optimal thresholds determined using Youden’s index, balancing sensitivity and specificity.

TABLE 6  Sensitivity, specificity, precision, and recall metrics for the best-performing models were determined by Youden’s index.

Approach Harmonization Feature 
subset

Best 
model

Youden’s 
index

Sensitivity Specificity Precision Recall

Clinical Not applicable Clinical only LGBM 0.03 0.8 0.48 0.09 0.8

Baseline imaging Harmonized 

(LongCombat)

Radiomics 

and clinical 

features

LGBM 0.0086 0.5 0.81 0.15 0.5

Longitudinal 

imaging

Non harmonized Radiomics 

features

BRFC 0.23 1.0 0.45 0.12 1.0

FIGURE 10

SHAP summary plot for model trained using baseline imaging prognostic approach with harmonized radiomics and clinical feature subset. The SHAP 
analysis highlights the top contributing features influencing the prediction of disability worsening. Key features include GLCM maximum probability 
(WML), left lateral ventricle volume, and GLDM dependence non-uniformity (NAWM), reflecting the importance of textural and anatomical 
characteristics in predicting worsening. Features like gender (female) and age at baseline had relatively lower contributions to the model’s predictions.
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2019; Jakimovski et al., 2020; Zivadinov et al., 2019). As shown in 
Appendix M, this negative correlation can be attributed to cases with 
advanced atrophy (high left lateral ventricle volume) being labeled as 
non-progressive, as their baseline disability score (EDSS_T0) is 
already high, leaving little room for measurable worsening within the 
two-year follow-up period.

Conversely, a larger right amygdala volume was associated 
negatively with disability worsening, pointing to the possible role of 
the limbic system in preserving cognitive and neurological function 
in MS. Lastly, the clinical features did not have as much of a higher 
influence as the others, but they remained important predictors 
nevertheless. The highest being the age at baseline exhibiting a positive 
correlation with disability worsening (Kalnina et al., 2024).

For our last research question, i.e., whether short-term changes in 
MRI features can predict disability worsening, we  used the 
longitudinal imaging prognostic approach in an attempt to capture 
temporal changes and exploit its use to make our models robust. 
We found that the BRFC trained on the non-harmonized radiomics 
feature subset achieved a PR AUC of 0.11 and ROC AUC of 0.69 on 
the test set. However, looking at the features and their corresponding 
SHAP values, we observed that the selected features, corresponding to 
the dynamic changes in lesion structure over time, exhibited a lower 
predictive power compared to the harmonized features selected in the 
baseline imaging approach. This could be due to the short temporal 
window between the baseline and follow-up and a reduction in the 
dataset, which inhibits their capability to fully capture short-term 
changes to explain disability worsening in PwMS.

To further validate our findings and eliminate the risk of 
overfitting, the permutation results, presented in Appendix J, indicate 
that the permuted models’ performance was notably worse than the 
original models. This indicates that the predictive power of our models 
is driven by meaningful patterns in the data rather than random noise 
or spurious correlations. Furthermore, the poor performance of the 
permuted models validates the robustness of our approach, as any 
enhancement in prediction performance observed in the original 
models cannot be attributed to chance.

Interestingly, the combined prognostic approach did not yield a 
generalizable predictive performance, suggesting that the baseline 
imaging prognostic approach is sufficient to capture the majority of 
relevant information for predicting disability worsening. The integration 
of longitudinal imaging features may have introduced noise, diluting the 
predictive signal of the more robust baseline features. These results 

underscore the need for careful feature selection and refined temporal 
analysis to optimize combined approaches.

This study brings important advancements compared to the 
existing literature. By leveraging multicentric data from two centers 
with diverse MRI acquisition protocols, it enhances the 
generalizability of findings. The robust preprocessing pipeline, 
including super-resolution reconstruction and longitudinal 
ComBat harmonization, attempted to ensure consistency in 
imaging data across sites and protocols. Additionally, the use of 
SHAP analysis provided interpretable insights into feature 
importance, offering a deeper understanding of the role of 
radiomics in predicting MS worsening. While MRI, unlike 
computed tomography, is inherently non-quantitative, our study, 
similar to previous work (Lavrova et al., 2021), demonstrates the 
potential of radiomics features in capturing subtle pathological 
changes. The selection of radiomics features from the WML and 
NAWM, coupled with radiomics and clinical features, further 
enhances the promise radiomics holds to bridge the gap between 
radiological findings and clinical outcomes, also known as the 
clinic-radiological paradox (Uitdehaag, 2018).

However, certain limitations must be  acknowledged. The small 
number of worsening disability worsening cases translated into a high-
class imbalance, which posed challenges despite the use of weighted 
adjustments. The reliance on reconstructed images without ground truth 
and the absence of T1-weighted sequences may have affected 
segmentation and feature quality. While initially, we performed ML 
analysis where DS2 was kept as a completely held-out external set, the 
models tended to generalize poorly on it (see Appendix G). Although 
longitudinal ComBat harmonization attempts to mitigate scanner and 
site variability, its ability to preserve subtle predictive patterns and 
address batch effects warrants further validation. Finally, the 
retrospective design may introduce selection bias and asymmetry, 
limiting the generalizability of these findings to broader populations.

Future studies should address these limitations by incorporating 
larger, multicentric, balanced datasets with higher-resolution MRI and 
ground-truth labels. Expanding the temporal window for delta 
radiomics and integrating advanced imaging modalities, such as 
diffusion-weighted imaging, may enhance the predictive power of 
radiomics. Moreover, exploring the role of other clinical variables, 
such as disease-modifying therapy, disease duration, and lesion 
topography (for example through periventricular, juxtacortical, and 
infratentorial labels or atlas-based lesion load), alongside imaging 

FIGURE 11

SHAP summary plot for model trained using longitudinal imaging prognostic approach with non-harmonized radiomics feature subset. The SHAP 
analysis for the delta non-harmonized model identifies delta GLDM gray level non-uniformity (WML) and delta GLCM difference entropy (WML) as the 
most predictive features for disability worsening. The delta left choroid plexus volume exhibited a lower contribution, underscoring the relative 
importance of dynamic changes in lesion structure over time.
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biomarkers could provide a more comprehensive understanding of 
worsening mechanisms in MS. Finally, deep radiomics with 
pre-trained foundation models can be deployed to see whether a deep 
learning algorithm might be  able to uncover patterns that the 
traditional ML algorithm with hand-crafted radiomics might have 
failed to capture.

Conclusion

This study highlights the potential of FLAIR MRI-based radiomics 
combined with ML to predict two-year disability worsening in 
PwMS. We  demonstrated that models combining radiomics and 
clinical features outperform clinical-only models. Furthermore, 
we found that radiomics features from WML and NAWM and routine 
clinical features from the baseline imaging prognostic approach 
emerged as predictors, reinforcing their diagnostic value. However, 
the longitudinal imaging approach demonstrated limited predictive 
power, emphasizing the need for refined temporal analysis. Future 
work should address class imbalance, enhance feature quality, and 
explore advanced imaging modalities to further advance MS 
worsening prediction.
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