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Effective and efficient
self-supervised masked model
based on mixed feature training
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Research Department, Guangzhou Preschool Teachers College, Guangzhou, China, *Library,
Guangdong University of Foreign Studies, Guangzhou, China

Under the influence of Masked Language Modeling (MLM), Masked Image
Modeling (MIM) employs an attention mechanism to perform masked training
onimages. However, processing a single image requires numerous iterations and
substantial computational resources to reconstruct the masked regions, resulting
in high computational complexity and significant time costs. To address this
issue, we propose an Effective and Efficient self-supervised Masked model based
on Mixed feature training (EESMM). First, we stack two images for encoding and
input the fused features into the network, which not only reduces computational
complexity but also enables the learning of more features. Second, during
decoding, we obtain the decoding features corresponding to the original images
based on the decoding features of the two input original images and the mixed
images, and then construct a corresponding loss function to enhance feature
representation. EESMM significantly reduces pre-training time without sacrificing
accuracy, achieving 83% accuracy on ImageNet in just 363 h using four V100
GPUs—-only one-tenth of the training time required by SIimMIM. This validates
that the method can substantially accelerate the pre-training process without
noticeable performance degradation.

KEYWORDS

masked image modeling, self-supervise learning, neuromorphic computing, Swin
transformer, attention mechanism

1 Introduction

Brain-inspired computing has provided a novel paradigm for addressing information
perception and integration in complex environments. When processing multi-observation
information, the human visual system does not simply perform pixel-level superposition of
visual inputs (Liu et al., 2023). Instead, it employs a hierarchical, attention-guided fusion
mechanism to efficiently extract redundant and complementary information, forming a
stable and robust understanding of scenes. Inspired by this mechanism, this paper aims to
solve the fusion problem of image sets (Chen et al., 2021; Grill et al., 2020). We observe that
the key to the brain’s information integration lies in the processes of selective attention and
the formation of feature invariance. Specifically, the visual cortex enhances overlapping
and consistent features (such as object edges and shapes) while suppressing inconsistent or
noisy information, thereby constructing a more complete and reliable scene representation
(Bao et al., 2021; Zhou et al., 2021).

Self-supervised learning is widely regarded as a brain-inspired paradigm, as it
resembles the human brain’s predictive coding mechanism that acquires knowledge by
predicting missing information and refining internal representations without explicit
supervision (Bao et al, 2021; He et al,, 2022; Xie et al., 2022). Learning the intrinsic
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characteristics of images through attention mechanisms enables
hierarchical visual processing models to autonomously acquire
feature representations from data (Ren et al, 2025; Wang
et al., 2023). Compared to traditional supervised learning, self-
supervised learning relies on self-attention mechanisms to train
on massive unlabeled data, significantly reducing annotation costs
while enhancing the model’s generalization capability in low-data
scenarios. As a result, self-supervised learning has emerged as one
of the mainstream approaches for tackling complex visual tasks
(Chen et al., 2020; Dosovitskiy et al., 2020; Wei et al., 2022a).

In recent years, masked self-supervised learning methods have
achieved remarkable progress in the visual domain, particularly
Masked Image Modeling (MIM) models, which have demonstrated
strong feature learning capabilities (Chen et al., 2020; Huang et al.,
2022; Grill et al., 2020).

SimMIM, a representative MIM method, leverages a pyramid
network structure and local-window self-attention mechanism
to excel at capturing both detailed and global image features.
However, as dataset sizes and image resolutions increase, the
growth in data volume leads to longer training durations, and
the computational cost of SimMIM rises dramatically (Wei et al,
2022a; Caron et al., 2021). Thus, reducing pretraining time and
resource consumption while maintaining model performance has
become a critical challenge in self-supervised learning (Huang et al.,
2022; Li et al., 2023; Wei et al., 2022b; Kakogeorgiou et al., 2022).

GreenMIM (Huang et al., 2022) is an improvement on the
traditional SimMIM method, introducing more efficient mask
design and optimized model structure, reducing the amount
of computation, thus improving the speed of SimMIM pre-
training, and more suitable for large data sets and high-resolution
images. Although GreenMIM further improves the computational
efficiency of SImnMIM, GreenMIM still relies on the single feature
reconstruction method, that is, the mask design is used to optimize
the network, so it does not fundamentally reduce the reconstruction
computation of a single image (He et al., 2022; Baevski et al., 2022).

While
reconstruction accuracy, they often overlook the impact of data

most current self-supervised models prioritize
redundancy on training efficiency, resulting in high computational
costs during the pre-training phase. Existing research still lacks
a universal solution that can significantly reduce pre-training
complexity without altering the model architecture. Inspired by
the visual system of the brain, which “integrates information
through multiple observations,” this study addresses the research
gap by proposing a lightweight masked modeling strategy from the
perspective of input-level optimization. This is achieved through
the superposition and separate reconstruction of multi-source
images, effectively bridging this methodological void. we propose
a novel self-supervised pre-training method called the Effectivee
and Efficient Self-supervised Masked Model (EESMM). EESMM
employs an innovative design that superimposes two different
images at the pixel level to generate a mixed input incorporating
features from both, while separately computing reconstruction
losses for each original image during the decoding phase.

This mechanism enables the model to directly learn fused
feature representations from the mixed input during training,
rather than being limited to features from a single image. We
present an overview of the network architecture in Figure 1,
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through the dual loss constraint in the decoder, it effectively
prevents the loss of critical information during the fusion process,
ensuring that the model accurately captures subtle differences
in each image. Therefore, compared to self-supervised models
such as SimMIM or GreenMIM, EESMM significantly improves
pre-training efficiency while maintaining performance. The main
contributions of this study can be summarized as follows:

1. We propose an effective and efficient mixed feature algorithm
that incorporates image superposition techniques, significantly
reducing training time and computational resource consumption
while maintaining high model performance.

2. We design a decomposition-reconstruction mechanism for
superimposed images and ensure effective feature learning of each
input image by separately calculating losses, thereby mitigating
information loss and enhancing feature representation capability.

3. Extensive experiments validate the effectiveness and
applicability of EESMM . Experimental results demonstrate that
our method outperforms most existing self-supervised learning
methods on classification and visual tasks.

2 Related works

Inspired by BERT, the self-supervised learning approach
Masked Image Modeling (MIM) trains models to predict or
reconstruct randomly masked image patches or pixels, enabling
the model to learn contextual information from the images.
By forcing the model to understand both global and local
features, MIM helps uncover the intrinsic structure of image
content. This method demonstrates exceptional performance in
hierarchical visual models such as Vision Transformer (ViT),
enabling pretraining on unlabeled datasets and achieving excellent
results in downstream vision tasks. The advantage of MIM lies
in its ability to efficiently learn image features without requiring
extensive labeled data, making it applicable to a variety of computer
vision tasks such as classification, detection, and segmentation.

Devlin et al. (2019) introduced the BERT model to the
vision domain. BEiT proposed a method for constructing a visual
vocabulary by dividing input images into patches and applying
a random masking strategy, allowing image patches to function
similarly to tokens in NLP for prediction. BEiT uses Vision
Transformer (ViT) as its backbone and encodes image patches
into discrete identifiers via the visual vocabulary, enabling self-
supervised pretraining. Experimental results demonstrated that
pretrained BEiT models excelled in image classification tasks,
significantly outperforming prior unsupervised learning methods
(He et al., 2022).

Following BEiT, Masked Autoencoders (MAE) (He et al., 2022)
introduced a simpler yet more scalable framework. MAE randomly
masks parts of the input image, training the encoder using only
the unmasked patches, which significantly reduces computational
complexity. The decoder then reconstructs the masked patches
based on the encoder’s output. MAE’s innovation lies in its
minimalist architecture, enabling easy scalability to large datasets
while delivering superior performance in downstream tasks like
image classification and object detection.
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FIGURE 1

Model architecture of EESMM. We begin by combining the two original images into a single input through pixel-level fusion. The central part is a
hierarchical encoder using Swin Transformer for feature extraction, where Patch Merging layers progressively reduce the feature map size. Finally, in
the decoding and reconstruction stage, the reconstructed image is decomposed, and losses are calculated between the reconstructed parts and the
original input images (Loss1, Loss2, and Loss3), as well as between the decomposed images and the pre-superimposed originals.

SimMIM and iBOT (Xie et al., 2022; Zhou et al., 2021) are
two influential MIM studies. SImMIM introduces a simple MIM
pretraining framework, similar to MAE, where part of the image is
randomly masked, and a simple decoder is used for reconstruction.
iBOT extends BEiT by introducing an online tokenizer and self-
supervised multi-task learning, improving the handling of image
patches and performance in downstream tasks. Additionally, some
studies explore cross-modal self-supervised learning, like Data2Vec
(Baevski et al., 2022), a general SSL framework that applies to
speech, vision, and language. Unlike traditional MIM methods,
Data2Vec focuses on the applicability of a unified architecture
across different data modalities.

In contrast to existing MIM methods, EESMM adopts a
simplified masking and modeling strategy that significantly
reduces pretraining time by half without substantial accuracy loss.
Furthermore, by optimizing the structure of inputs and decoders,
EESMM minimizes parameter count and computation, drastically
cutting the time cost of pretraining.

3 Methodology

3.1 Preliminaries

Masked Image Modeling (MIM) is a self-supervised learning
method that trains models to reconstruct masked regions of input
images, capturing both global and local features. By applying a
binary mask matrix M to the input image I, a masked image I, asked
is created. The model’s objective is to reconstruct the masked
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regions, producing I. The mean squared error (MSE) loss function
is used to measure the difference between the original image I
and the reconstructed image I, helping the model learn feature
representations. This method is particularly effective in label-free
scenarios, enhancing performance in tasks like image classification
and object detection.

In this process, two input images, I; and I, are masked using
binary masks, M; and M, which specify the masked regions. The
masked images are obtained through element-wise multiplication:

Ii masked = I1 © My, (1)

Iz,masked =LOM; (2)

where © denotes element-wise multiplication. A mask value of
0 masks the pixel, while 1 retains it. This approach helps the
model learn from incomplete information and improves its ability
to recover original images, enhancing robustness and learning
semantic features.

Hierarchical Vision Transformer (HViT) is an efficient
visual transformer model that combines the hierarchical feature
extraction mechanism of convolutional neural networks (CNNs)
with the self-attention mechanism. It addresses the computational
complexity of ViT in processing high-resolution images.

HViT mitigates this issue by introducing local self-attention
mechanisms. The key idea is to compute self-attention within local
windows after partitioning the image into patches, significantly
reducing computation while preserving detailed information. The
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model progressively aggregates features layer by layer, transitioning
from local to global feature extraction. At lower layers, HViT
calculates feature dependencies between neighboring patches using
local self-attention; at higher layers, global self-attention captures
relationships across the entire image. This hierarchical design
resembles CNN’s feature pyramid, where the resolution of feature
maps decreases layer by layer, but semantic information increases,
achieving a balance between performance and efficiency.

Given an input image X € RF*WXC HVIT first divides it
into patches of size P x P, flattens them into 1D vectors, and
extracts neighborhood features using local self-attention. At higher
layers, it employs global self-attention mechanisms to enhance
the representation of the entire image. This hierarchical structure
not only improves computational efficiency for high-resolution
scenarios but also enhances the model’s capability to understand
global semantics.

3.2 Superposition-based masked image
modeling

Despite the significant progress of prior masked image
modeling (MIM) research in self-supervised visual representation
pretraining, these methods often require extended pretraining
time. This is primarily due to the necessity of processing large
amounts of data, leading to considerable computational overhead
and prolonged training time. However, in existing self-supervised
learning models, large datasets are often indispensable, as data

Reconstructed Features

Convolutional 2D

Cutting and splitting

Loss3

Input image  Original Image A Original Image B

FIGURE 2

An illustration of the decoder construction, with the blue box
representing the reconstructed image, and the yellow and green
boxes representing the result of the decoder disassembling the
superimposed image.
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richness is key to learning effective visual features. To reduce data
processing demands and shorten pretraining time, the EESMM
model introduces a simple yet effective image superposition
technique. For specific steps, please refer to Algorithm 1.

3.2.1 Hybrid feature learning

Hybrid feature learning refers to capturing multiple semantic
features simultaneously by overlaying different image inputs,
thereby improving the ability of the model to understand complex
scenes. As shown in Figure 2, data compression is effectively
achieved by combining two images to create a training sample.
Specifically, two different images I and I, are selected, weighted

input: training dataset Birain, test dataset Brest
number of training cycles E
output: trained model model
# L: loss function.
# xeRP<hxwxc. p denotes the number of patches, h,
w are the height and width of each patch, and ¢
denotes the number of channels.
# num_patches e R"1: number of patches per
section, where N is the number of sections.
# mask_ratio: The ratio of mask patches.
# total_epoches: Number of pre-training cycles.
# epoch: Current cycle number.
Where P denotes the number of patches, h and w are
the height and width of each patch respectively,
and ¢ denotes the number of channels.
initialize model model = CreateEESMMModel ()
initialize optimizer optimizer
for per cycle epoch from 1 to £ do
for each batch batch in Bt¢rain do
X < batch.images
Xcomposite < %2221 Xi // see Equation 3
(Xnasked, M} < Mask (Xcomposite, p) // see
Equation 1
Z < model .encoder (Xpasked )
X < model .decoder(Z)
L« »C(S(‘ Xcompositer M)
optimizer.zero_grad()
L .backward()
optimizer.step()
end for
end for
for each batch batch in Btest do
X < batch.images
Xcomposite < %Z?:W Xi
{Xnasked, M} < Mask (Xcomposite, P)
Z < model .encoder (Xpasked )
X < model .decoder(Z)
accuracy « ComputeAccuracy (X, Xcomposite )
{accuracy: accuracy of model prediction}
end for
return model

Algorithm 1. EESMM.
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and combined to generate a new superimposed image,where the
weight 11 and the weight X, are fixed.: Iiextmixed = Ay - I +
Az - I,. We combine two occlusion images Ij masked and I masked
processed as a mixed image Ijnixed as input to the model. In other
words, some of the information in the two images is integrated
into a single representation, and the model only needs to process
the superimposed image during training, thus greatly reducing the
need to process large amounts of raw image data. The process of
generating a mixed image is as follows:

Inixed = A1 - Rotate(I} masked> 61)
+ A1 - Flip(I} jmasked» horizontal)
+ Az - Scale(I; masked> S2)
+ A2 - Crop(Iy,masked> 72) (3)

During training, the model forces the model to learn the hybrid
features in the hybrid image by reconstructing the two original
images from the superimposed input images. The reconstruction
process involves masking part of the image and calculating the loss
function as the sum of the errors between the reconstructed image
and the respective original images. It is ensured that each original
image is recovered accurately.

This mechanism significantly improves the model’s ability
to process multi-source information, facilitating efficient feature
extraction and reconstruction.

3.2.2 Feature reconstruction and loss function

The decoder f takes the mixed image Iy, created by overlaying
two original images I, and Ij, as input and generates the
reconstructed mixed image I.. By subtracting I, and I, from I, the
two reconstructed images I; and I, are obtained as follows:

I, :f(IO) (4)
Ii=1.-1, (5)
i=1-1, (6)

The loss function is designed to measure the difference between
the reconstructed and original images, guiding parameter updates.
For each reconstructed result 1; and 1,, the pixel-wise difference
with the original images I; and I, is computed, using occlusion
mask matrices M; and M; to specify which pixels contribute to the
loss calculation. The loss function is defined as:

1 ~
Lsp =—— E myij - (Iij — Inij)
IMy| <=
J
S g (o — Togy)? %
51y sl shy)
M| 45

Here, |M;| and |M;| represent the number of valid pixels
in the mask matrices, ie., the occluded pixels. The weighted
summation of reconstruction errors ensures the model focuses on
the occluded regions.
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blended
reconstructing the original image, the model enhances its

By extracting features from the image and
adaptability and robustness to recover the details of the original
image, thus learning the features of the original image. This design
encourages the model to leverage information from non-occluded
regions for effective reconstruction, enhancing performance and

maintaining high quality even with partial information.

4 Experiments

4.1 Training setup

4.1.1 Pre-training setup

The input superimposed image with a size of 224 x 224
is first subjected to simple data enhancement (e.g., random
cropping, horizontal flipping) and normalization. The encoder
part is initialized with Swin Transformer (Liu et al., 2021) and
a self-supervised pre-training strategy based on MAE (Ie et al,
2022). Specifically, we randomly mask 75% of the image patches
and use a lightweight decoder with an embedding dimension of
512. The decoder takes as input the visible patch representations
and masking tokens output by the encoder and appends them to
the final stage of the encoder, which is used to learn the feature
representations of the masked patches. Subsequently, the decoder
predicts the normalized pixel values of the masked patches through
a linear layer and splits the output of the superimposed image into
two predicted images in ratio 1/2.

During the training process, the total training period of the
model is 800 epochs, of which the first 100 epochs are the warm-
up phase. The learning rate is gradually increased from 1le-6 to le-4,
the base learning rate is set to 2e-4, the minimum learning rate is le-
5, and the optimization is performed using the AdamW optimizer
with a weight decay of 0.05 and a layer decay of 0.9. The batch
size is 256. gradient accumulation is used in the training, and the
epsilon value of the optimizer is set to le-6 to ensure the stability of
the values.

4.1.2 Fine-tuning setup

To fine-tune the model, we discard the decoder and directly
append a 1,000-way fully connected layer to the average pooling
output of the encoder as a classifier. The model is also optimized
using the AdamW optimizer (Loshchilov and Hutter, 2017) for
a total of 100 training epochs, with 20 warm-up epochs. The
base/warm-up learning rates are 1.25 x 1074/2.5 x 1077, and a
cosine annealing schedule (Loshchilov and Hutter, 2016) is used.
Weight decay is set to 0.05, with layer-wise learning rate decay
(Bao et al, 2021) set to 0.9/0.8/0.9. The stochastic depth ratios
(Huang et al., 2016) for swwin-b/swwin-1/Twins-L are 0.2/0.3/0.2.
Data augmentation is the same as in Bao et al. (2021).

4.2 Results

We compare EESMM with current state-of-the-art Masked
Image Modeling methods in Table 1, including MAE and SimMIM.
The evaluation metrics are mainly top-1 classification accuracy

frontiersin.org
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TABLE 1 Comparison of different methods.

10.3389/fnbot.2025.1705970

Method Backbone Param.(M) Epochs Hours Supervision FT
BEIT (Bao et al., 2021) ViT-B 86 800 - DALL-E 83.2
MAE (He et al., 2022) ViT-B 86 1,600 2,069 RGB 83.6
MaskFeat (Wei et al., 2022a) ViT-B 86 800 - HOG 84.0
data2vec (Baevski et al., 2022) ViT-B 86 800 - Feature 84.2
iBOT (Zhou et al., 2021) ViT-B 86 1,600 - Momentum 84.0
EsViT (Lietal, 2021) Swin-B/W14 87 300 - Momentum 83.9
SimMIM224 (Xie et al., 2022) ViT-B 86 800 3,307 RGB 83.8
SimMIM192 (Xie et al., 2022) Swin-B 88 800 1,609 RGB 84.0
SimMIM192 (Xie et al., 2022) Swin-L 197 800 2,821 RGB 85.4
CAE (Chen et al., 2024) ViT-B 86 800 - DALL-E 83.6
GreenMIM (Huang et al., 2022) Swin-B 88 800 887 RGB 83.8
LoMaR (Chen et al., 2025) ViT-B 90 300 - RGB 83.3
Spikformer V2 (Zhou et al., 2024) ViT-B 172 300 - RGB 80.3
EESMM Swin-B 88 800 363 RGB 83.1

Where hours represents the total time required for model training and FT represents the accuracy after fine-tune.

on the validation set and the pre-training time of the model, the
experimental results are based on averages calculated from multiple
independent runs. Note that all results of EESMM are obtained
by supervised fine-tuning of the encoder through self-supervised
pre-training without additional intermediate fine-tuning. In this
experiment, we evaluate the performance of multiple models under
different configurations to explore the impact of each factor on
model accuracy. The experiments cover a variety of models using
both ViT-B and Swin-B network architectures, with SImMIM192
achieving the best accuracy of 85.4% under the Swin-L network
architecture. In contrast, EESMM achieved the lowest accuracy of
83.1% using the Swin-B network structure. In addition, the pre-
training time for SimMIM224 was significantly longer at 3307
compared to 1.3 for MAE, and this difference may have affected
the final accuracy of the model. Most of the other models have
a training data volume of 86M or 88M and a training time of
800epoch or 1600epoch, but different data sources (e.g., DALL-
E, HOG, RGB, and Feature) also have a significant effect on the
accuracy. Overall, these results suggest that the choice of network
structure, the length of pre-training time, and the data sources used
have a significant impact on the final performance of the model.
Our method (224
computational efficiency with both Swin-B and Swin-L backbones.

input size) significantly improves
For example, with Swin-B, it requires only 0.47 GPU hours per
epoch, compared to 2 and 2.8 h for SimMIM 192 and SimMIM 224,
respectively. With Swin-L, our method takes just 0.29 GPU hours
per epoch, while SimMIM 192 and SimMIM 224 take 3.5 and 5.6
GPU hours, respectively. This design reduces GPU consumption
and computational overhead, maintaining efficient training and
strong performance. Detailed comparisons are shown in Figure 3.
Table 2 compares the performance of various methods
including EfficientNet-B5, EfficientNet-B7, ViT-B/16, ViT-L/16,
Deit-B, CeiT, and our own model EESMM. All methods use ViT-

B as the backbone network, while EESMM employs a Swin-B
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FIGURE 3

Comparison with other models in terms of efficiency. All methods
use swing —b/swing -l trunks with a batch size of 2,048. The
experiments for our method were performed on a machine with 2
V100 gpu, CUDA 11 and PyTorch 1.8, whereas the experiments for
SimMIM required 2 or 4 machines.

backbone. In terms of computational complexity, the FLOPs of
EESMM is 11.3G, which falls between the values of other methods.
On the CIFARIO dataset, EESMM achieves the top accuracy
of 99.1%, tying with Deit-B for the best performance. On the
CIFAR100 dataset, EESMM attains an accuracy of 89.9%, which
is an excellent result, second only to the 90.7% achieved by
EfficientNet-B7.

4.3 Ablation study

In our ablation experiments, we use Swin-B as the backbone
and reduce experimental overhead by setting the default input

frontiersin.org
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TABLE 2 Performance comparison of different methods on the CIFAR-10
and CIFAR-100 fine-tuning benchmarks.

Method Backbone FLOPs CIFAR10 CIFAR100
EfficientNet- ViT-B 10.3G 98.1 90.1
B5 (Tan and

Le, 2019)

EfficientNet- ViT-B 37.3G 98.9 90.7
B7 (Tan and

Le, 2019)

ViT-B/16 ViT-B 18.7G 98.1 87.1
(Dosovitskiy

et al., 2020)

ViT-L/16 ViT-B 65.8G 97.9 86.4
(Dosovitskiy

et al., 2020)

Deit-B ViT-B 52.8G 99.1 89.8
(Touvron

etal., 2021)

CeiT (Yuan ViT-B 4.5G 99.0 89.8
etal., 2021)

EESMM Swin-B 113G 99.1 89.9

Results are reported in classification accuracy (%). FLOPs indicate computational complexity.

TABLE 3 Comparison of EESMM with mainstream MIM models in terms of
features and training time.

Model Adaptive VIT Hot-swapping Time (h)

SimMIM J J 3,307
BEIT J x -
MAE X X 2,069
GreenMIM J X 887
EESMM J V 363

image size to 192 x 192. The window size is adjusted to 6
to accommodate the changed input dimensions. We use the
ImageNet-1K image classification dataset for both pre-training and
fine-tuning.

For self-supervised pre-training, we train the model for 100
epochs using the AdamW optimizer (Loshchilov and Hutter, 2017)
with a cosine learning rate scheduler. The training hyperparameters
are as follows: a batch size of 2048, a base learning rate of 8 x 1074 a
weight decay 0f0.05, 81 = 0.9, and B, = 0.999. A warm-up process
is applied over the first 10 steps, utilizing light-data augmentation,
including random resize cropping with a scaling range of [0.67, 1]
and an aspect ratio range of [3/4, 4/3], followed by random flipping
and color normalization.

The default settings for the EESMM component are as follows: a
random masking strategy with a patch size of 32 x 32 and a masking
ratio of 0.6, a linear prediction head targeting an output image size
0f 192 x 192, and an L, loss for masked pixel prediction. Ablation
studies are conducted by altering one setting at a time while keeping
the others at their default values.

For fine-tuning, we also employ the AdamW optimizer with
100 epochs of training and a cosine learning rate scheduler,
including a 10-epoch warm-up. The fine-tuning hyperparameters
are as follows: a batch size of 2048, a base learning rate of 5 x 1073,
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a weight decay of 0.05, B; = 0.9, B2 = 0.999, a stochastic depth
ratio of 0.1 (Huang et al., 2016), and hierarchical learning rate decay
with a factor of 0.9. The data augmentation methods used include
RandAugment (Cubuk et al., 2020), CutMix (Yun et al., 2019), label
smoothing (Szegedy et al., 2016), and random erasing (Zhong et al.,
2020).

For our approach, the evaluation was performed on a machine
with four 32GB V100 gpu’s, and for SimMIM, the evaluation was
performed on 2 or 4 machines because it could not fit on one
machine with the default batch size of the original paper (ie.,
2048). To verify the importance of the image overlay mechanism,
we performed ablation experiments on ImageNet by removing the
overlay module and using different masking ratios, respectively.
The results of the experiments are shown in Table 3, where the pre-
training time of the model increases significantly when the overlay
module is removed, along with a slight decrease in the accuracy.
We can see from the Figure 3 that for images of size 2242, SimMIM
training is very slow and requires a lot of memory, and even
though training with smaller images greatly reduces training time
and memory consumption, it still lags far behind our method of
training with images of size 2242, Specifically, for the same number
of trainings, our method is comparable to the baseline performance
using swing -b, with 2x speedup and 60% memory reduction.
We also observe that the improvement in efficiency grows as swing
-L increases, e.g., a 2.7 x speedup compared to SinMIM192, which
highlights the efficiency of our method with larger models.

As shown in Figure 4 (right). When the training period is
100 epochs, the average training time per epoch is 28 minutes.
As the number of training epochs increases to 500 epochs, the
time for individual epochs decreases to 25 minutes, and as the
number of training epochs further increases to 800 epochs, the
training time for each epoch further decreases to 17 minutes.
This shows that as the total training epochs increase, the training
time for individual epochs shows a decreasing trend. This trend
may be due to the gradual convergence of the model over a
longer training period, or the fact that the model parameters
become more efficiently tuned as the training progresses, leading
to a reduction in the computational resources required for each
epoch. We speculate that this phenomenon may be related to
optimization techniques or efficient use of hardware resources
during the training process, resulting in improved computational
efficiency over more training cycles.

Moreover, we can see from the Figure 4 (left), as the Mask Ratio
increases from 50 to 70%, the accuracy of the model gradually
increases. When the Mask Ratio is 50%, the Top-1 accuracy is
82.5%; as the ratio increases to 60 and 70%, the accuracy increases
to 82.7% and 83.1% respectively. However, when the Mask Ratio is
further increased to 80%, the accuracy drops to 82.2%. This suggests
that increasing the Mask Ratio within a certain range can improve
the model performance, but too high a Mask Ratio may lead to a
decrease in the accuracy, indicating the need to find the optimal
balance of the Mask Ratio in model training.

5 Discussion and conclusion

In this paper, we present a hybrid and masked autoencoder
(EESMM ) for efficient visual representation learning. Our
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FIGURE 4
Ablation Studies of the mask ratio (left), the decoder blocks (middle), and the epochs (right).

EESMM uses a superimposed input created by blending two
(or more) images with random masks and applies double
reconstruction to recover the original two (or more) images from
the superimposed hidden representation, which we further explore
using Swin Transformer having a larger window size for efficient
representation learning. One of the limitations of our algorithm
is that it requires a batch masking scheme to achieve optimal
efficiency. While this limitation has little impact on MIM pre-
training, it restricts the application of our approach to a broader
setup, e.g., the use of token sparification (Yin et al,, 2021; Ramesh
et al., 2021) trainingvit, which requires instantiated sparification.
These applications are beyond the scope of the present work,
and we will leave them reserved for future research. Finally,
empirical results from multiple vision benchmarks show that
EESMM can efficiently learn high-quality visual representations
with a better FLOPs/performance tradeoff than previous MIM
work. While this paper focuses on the visual domain, we hope
that our work will inspire future work in other forms, such as text
and audio.
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