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Background: Physiotherapy robots offer a feasible and promising solution for 
achieving safe and efficient treatment. Among these, acupoint recognition 
is the core component that ensures the precision of physiotherapy robots. 
Although the research on the acupoint recognition such as hand and ear has 
been extensive, the accurate location of acupoints on the back of the human 
body still faces great challenges due to the lack of significant external features.
Methods: This paper designs a two-stage acupoint recognition method, which is 
achieved through the cooperation of two detection networks. First, a lightweight 
RTMDet network is used to extract the effective back range from the image, 
and then the acupoint coordinates are inferred from the extracted back range, 
reducing the inference consumption caused by invalid information. In addition, 
the RTMPose network based on the SimCC framework converts the acupoint 
coordinate regression problem into a classification problem of sub-pixel block 
subregions on the X and Y axes by performing sub-pixel-level segmentation of 
images, significantly improving detection speed and accuracy. Meanwhile, the 
multi-layer feature fusion of CSPNeXt enhances feature extraction capabilities. 
Then, we designed a physiotherapy interaction interface. Through the three-
dimensional coordinates of the acupoints, we independently planned the 
physiotherapy task path of the physiotherapy robot.
Results: We conducted performance tests on the acupoint recognition system 
and physiotherapy task planning in the physiotherapy robot system. The 
experiments have proven our effectiveness, achieving a recall of 90.17% on 
human datasets, with a detection error of around 5.78 mm. At the same time, it 
can accurately identify different back postures and achieve an inference speed 
of 30 FPS on a 4070Ti GPU. Finally, we conducted continuous physiotherapy 
tasks on multiple acupoints for the user.
Conclusion: The experimental results demonstrate the significant advantages 
and broad application potential of this method in improving the accuracy and 
reliability of autonomous acupoint recognition by physiotherapy robots.
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1 Introduction

With the continuous deepening of population aging and the 
improvement of public health awareness, traditional Chinese 
medicine, as a natural therapy for regulating body functions, is 
gradually attracting more and more attention. Chinese medicine 
therapy stimulates specific acupoints to trigger local and systemic 
sensory mechanisms and biological responses in the body, and has 
significant therapeutic effects in relieving various types of pain, 
promoting blood circulation, improving physical comfort, and 
psychological relaxation (Kerautret et al., 2024; Li et al., 2025). 
However, traditional physical therapy services are expensive, vary in 
quality, and suffer from a shortage of professional therapists, making 
it difficult to meet growing health demands. As an innovative product 
integrating artificial intelligence, robotics technology and traditional 
Chinese medicine theory, physiotherapy robots offer a new solution 
and development direction to address this issue (Pang et al., 2019; 
Zhao et al., 2023). Several countries and regions have successively 
introduced relevant support policies, providing strong financial 
support and resource guarantees for research in this field, effectively 
promoting the application of physiotherapy robots in clinical 
rehabilitation, home nursing, and other scenarios (Zhao and Guo, 
2023). Currently, there are a variety of physiotherapy robot products 
on the market that offer a range of functions (Yang et al., 2024), 
including massage, moxibustion, and tuina massage, among other 
traditional Chinese medicine physiotherapy methods. The level of 
intelligence is constantly improving, gradually promoting the 
development of intelligent physiotherapy toward personalization 
and precision.

Therapeutic acupoints are mainly distributed along the human 
meridian system and are a core component of traditional Chinese 
medicine theory. Physiotherapy robots rely on the precise localization 
of human acupoints to effectively exert their therapeutic effects (Yu et 
al., 2024). However, there are still many challenges in achieving 
autonomous acupoint recognition, especially in locating acupoints on 
the back. Compared to areas such as the face or limbs, the back lacks 
obvious structural landmarks, has relatively smooth skin texture, and 
varies greatly between individuals (Yang et al., 2025a). Therefore, how 
to improve the accuracy of physiotherapy robots in acupoint 
recognition on the back remains one of the challenges that need to be 
overcome in its development. In this paper, we propose an acupoint 
recognition method for autonomous physical therapy robot systems 
that combines high accuracy and dynamic performance to 
automatically identify patients’ acupoints. We systematically modeled 
the location of acupoints on the back as a key point recognition task 
and trained the two-stage neural network through our own established 
dataset to predict the relevant acupoints. And this acupoint 
recognition network was applied to the physiotherapy robot system 
built by oneself, enabling the physiotherapy robot to perform 
physiotherapy tasks automatically. Our main contributions are 
as follows:

	•	 An indirect data annotation method is proposed. Firstly, manual 
annotation is carried out on the human body, then software 
annotation is conducted using annotation software, and finally 
the manual marks on the images are removed through algorithms 
to systematically improve the consistency of annotation and the 
quality of training data.

	•	 Based on the two-stage network architecture, a key point 
prediction network for back physiotherapy acupoints was 
designed, that is, the combination of target range detection and 
key point detection was used for physiotherapy acupoint 
recognition, and it was applied to the self-built physiotherapy 
robot system, which can significantly improve the accuracy and 
objectivity of localization.

2 Related work

2.1 Current research status of 
physiotherapy robots

Many universities and enterprises at home and abroad have 
invested in the research and development of traditional Chinese 
medicine physiotherapy robots. This field is gradually moving 
toward a composite direction that integrates visual perception, force 
control feedback, and multi-probe coordination (Xing et al., 2021; 
Liu et al., 2024). Wang et al. (2018) designed a compact, space-
saving portable back massage robot that optimizes electromagnetic 
force distribution through the establishment of a 3D electromagnetic 
simulation model, ensuring that the massage robot can cover the 
entire back area and improve massage effectiveness. However, it 
does not have acupoint recognition capabilities and cannot perform 
precise physical therapy. However, physiotherapy robots still have 
insufficient adaptation to individual differences in acupoint 
recognition and certain limitations in robustness in complex 
application scenarios. Dong et al. (2022) designed a compliant 
parallel robotic massage arm that combines serial elastic actuators 
(SEA) to achieve unified force-position control without relying on 
a complete dynamic model. Sayapin (2017) developed an intelligent 
autonomous mobile massage robot. The device uses a three-degree-
of-freedom motion system and a triangular topology design. It 
consists of three vacuum massage cups and linear drivers connected 
to the vacuum massage cups. It uses a sliding cupping massage 
method to slide and stretch muscle tissue to achieve a massage 
effect. Due to structural design limitations, the robot may not be 
able to adapt to the complex curves of the human body and does 
not have an acupoint positioning function. Choi et al. (2021) 
developed an abdominal massaging device named Bamk-001. This 
device is equipped with five thermoelectric modules and can stably 
provide a constant-temperature heat compress at 40 °C, bringing 
continuous warm therapeutic effects to the abdomen. Meanwhile, 
with the coordinated operation of the five airbags, rhythmic 
pressure is applied to the patient’s abdomen through a clockwise 
circulation of inflation, thereby simulating the technique of artificial 
massage. However, this device is unable to precisely locate human 
acupoints. Its massage effect is limited to the entire abdominal area 
and lacks targeted acupoint stimulation functions. Therefore, it has 
limitations in application scenarios such as traditional Chinese 
medicine meridian therapy that require precise positioning. Zhu et 
al. (2023) designed a peristaltic wearable massage robot for the 
treatment of diseases related to lymph and blood circulation. This 
robot uses a fluid fabric muscle plate as the driver and is driven by 
a hydraulic transmission device, which enables the robot to provide 
dynamic compressive force to meet the massage requirements even 
at higher frequencies. This robot mainly relies on a fixed compressed 
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wave pattern to improve lymphatic or blood circulation and is 
unable to precisely identify the locations of human acupoints. 
Autonomous acupoint recognition by physical therapy robots is the 
key foundation for realizing personalized physical therapy plans. 
Accurate acupoint recognition not only directly affects the accuracy 
and effectiveness of physical therapy, but also provides a reliable 
basis for technique selection, force control, and treatment path 
planning. Especially for the back area, there are many acupuncture 
points distributed over a wide area, and their precise location is 
particularly critical for effective therapeutic intervention.

2.2 Research status of acupoint recognition 
method

With the rapid advancement of computer vision, deep learning 
and sensor technology, researchers have attempted to apply methods 
such as image recognition, 3D reconstruction, infrared thermal 
imaging and neural networks to acupoint recognition to enhance its 
accuracy and degree of automation (Liu et al., 2023; Huang et al., 
2025). Mamieva et al. (2023) proposed using a binocular telescope 
structure as the basis for a keypoint detection network to improve 
model construction effectiveness. This framework demonstrated 
high average precision (AP) values under multi-scale inference 
strategies and achieved excellent facial detection results. However, 
the model’s ability to process blurry images in low-light environments 
still needs improvement, and it relies heavily on high-performance 
external devices. Malekroodi et al. (2024) applied a real-time 
landmark detection system to identify anatomical landmarks in 
images, convert their coordinates into spatial coordinates 
corresponding to acupoints, and locate 38 specific acupoints on the 
face and hands. He also used a convolutional neural network (CNN) 
specifically optimized for pose estimation and trained it with 
restricted medical imaging data, to detect five key acupoints on the 
arms and hands. Zheng (2022) developed a mobile augmented reality 
(AR) system based on a facial landmark recognition network, 
combining deep learning models with traditional Chinese medicine 
bone measurement methods to achieve real-time identification and 
localization of facial acupoints. However, in practical applications, 
this method has certain limitations when dealing with complex 
situations such as facial rotation, and it relies on complete facial 
image input. Yuan et al. (2024) improved the YOLOv8-pose key 
point detection algorithm for facial acupoints. By integrating ECA 
attention to enhance acupoint feature extraction and replacing the 
original neck module with a more lightweight Slim-neck module, 
they provided significant reference value for facial acupoint 
localization and detection. However, the self-built dataset in the 
paper fails to fully cover all kinds of extreme scenarios, which may 
limit the generalization ability of the model when facing the diverse 
application scenarios in the real world. Wang et al. (2023) constructed 
a cascaded network model using HRNet as the backbone and 
introduced a dual attention mechanism combining SE and CA, 
effectively enhancing the model’s ability to perceive local key features. 
Seo et al. (2024) focused on the problem of accurately locating 
acupoints in 2D hand images, comparing the performance of two 
deep learning architectures, HRNet and ResNet, to explore methods 
for improving the accuracy of hand acupoint detection. Yang et al. 
(2025b) proposed a hybrid model RT-DEMT, which combines the 

efficient state space model Mamba with a Transformer module based 
on the DETR architecture, improving the accuracy and speed of back 
acupoint localization. This model primarily relies on visual images 
as input and has not yet integrated multimodal information such as 
infrared, depth maps, or human body structure point clouds. 
Therefore, its recognition robustness in complex environments still 
has certain limitations. Zhang et al. (2024) proposed a method for 
detecting back acupoints based on an improved OpenPose, which 
enhanced the reasoning speed. However, the number of evaluated 
acupoints is relatively small, and the robustness verification in 
complex scenarios still needs to be improved. In conclusion, acupoint 
recognition on the back is of great significance in application 
scenarios such as moxibustion and physical therapy. Due to the 
diversity of postural changes on the human back, the design and 
proposal of an acupoint recognition algorithm that can adapt to 
postural changes and lighting interference is of great theoretical and 
practical significance for improving the therapeutic effects and 
application value of physical therapy robots.

2.3 Physiotherapy robot

This paper establishes its own physical therapy robot hardware 
platform, as shown in Figure 1, which mainly consists of a physical 
therapy robotic arm, a robotic arm control box, a depth camera, a 
rigid-flexible coupling massage head and air pump, a computer, and a 
physiotherapy bed.

Among them, the robotic arm is a 7-degree-of-freedom series 
robotic arm, mainly serving as part of the physiotherapy execution 
mechanism to complete tasks such as acupoint recognition and 
reproducing manual techniques. At the end, it is equipped with a 
pneumatic rigid-flexible coupling probe, which has various forms 
such as palm and finger. The air pump is a high-pressure air pump 
equipped with a PWM control system, which can provide high-
pressure gas of different frequencies and pressures, and switch and 
control the force through pneumatic means. The D435i depth camera 
is selected to obtain the real-time color RGB images of the 
physiotherapy bed and the corresponding depth image data, and feed 
them back to the computer. The computer is responsible for the 
operation of the human-computer interaction system, the acquisition 
of camera image data, as well as the acupoint recognition, the 
generation of control instructions for the mechanical arm, and the 
planning of physiotherapy tasks and other major calculations. The 
physiotherapy bed can undergo various posture changes and 
height adjustments.

3 Method

In this section, the proposed network structure and localization 
framework are systematically described for the problem of acupoint 
recognition on the back. In Section 3.1, the acquisition process of 
the experimental dataset and its preprocessing strategy are 
introduced in detail. In Section 3.2, the constructed acupoint 
recognition network framework is described in detail. In Section 3.3, 
evaluation metrics for performance verification are proposed and 
explained, providing standards for subsequent experimental 
analysis. Finally, in Section 3.4, the coordinate transformation and 
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trajectory planning of robots when performing physiotherapy tasks 
are explained.

3.1 Data set and processing

Since deep learning is a data-driven predictive method, the quality 
of the dataset has a significant impact on model performance. In the 
current process of constructing acupoint datasets, software annotation 
directly on images or automatic annotation using mathematical models 
is commonly used. Due to factors such as projection distortion and 
camera nonlinear distortion, visual errors are inevitable during the 
annotation process, and some areas cannot be accurately annotated due 
to a lack of sufficient positioning information. For this purpose, this 
study proposes an indirect data annotation method. First, frontline 
Chinese medicine experts are invited to perform manual annotation on 
the human body. Then, annotation software is used for software 
annotation. Finally, an algorithm is used to remove the manual markings 
from the images. This study recruited 100 people as volunteers. Before 
the experiment began, they were all informed in detail of the research 
purpose, experimental procedures and related precautions, and 
voluntarily signed the informed consent form on the basis of full 
understanding. The participants’ body types were evaluated based on 
the body mass index (BMI). Before the experiment, their height and 
weight were obtained through questionnaires and calculated according 
to BMI. Among these volunteers, 2 had a BMI less than 18.5, 80 had a 
BMI between 18.5 and 24, 15 had a BMI between 24 and 28, and 3 had 
a BMI more than 28. Our sample covered all BMI stratifications, among 
which normal body types accounted for the majority.

Data collection was carried out in a well-lit laboratory. Three 
different types of depth cameras were used to obtain multi-resolution 

images, and the back postures of the volunteers were captured from 
multiple angles. The specific steps for data collection are as follows:

	•	 Volunteers lay prone on the bed, removed their back clothing, 
and professional Chinese medicine experts identify their 
acupoints. For female subjects, the experiment was independently 
conducted by female professionals, and the subjects participated 
wearing underwear. After locating the acupoints, the experts 
mark the corresponding locations with round adhesive labels. As 
shown in Figure 2.

	•	 After completing the acupoint marking, the camera gimbal was 
controlled by a self-written data collection program to capture 
images of the volunteer’s back from different angles, including 
horizontal, multi-angle horizontal rotation, and multi-angle tilt. 
After the program finished collecting data, a mobile phone was 
used to supplement the images from multiple random angles to 
enhance data diversity. As shown in Figure 3.

	•	 To avoid the impact of factors such as angle, lighting changes, or 
annotation errors during data collection, the collected images 
must be manually screened. After screening, the Labelme 
annotation tool is used to precisely annotate the center points of 
circular labels in the images and extract the pixel coordinate 
information of the acupoints. As shown in Figure 4, it is an 
example of annotation.

After completing the software annotation, according to the 
dataset production process, the images need to be de-labeled to 
obtain images without black labels and corresponding json files. 
For image de-labeling, this paper makes improvements based on 
the Criminisi image restoration algorithm (Yang et al., 2020; Li et 
al., 2024; Yao, 2019). The Criminisi algorithm is a patch filling 

FIGURE 1

Structure diagram of the physiotherapy robot platform.
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method that determines the repair order by comparing the 
effective information of boundary pixels. It finds the optimal filling 
patch within the entire image range through matching calculation 
rules to complete the filling of the pixel, and then performs a 
boundary and priority update cycle after completing one filling. 
Figure 5 shows the repair process of pixel P using the 
Criminisi algorithm.

In Figure 5A, the curve ∂Ω represents the boundary between the 
normal region and the region to be repaired, the area Φ  above the 
curve is the normal range, different colors represent different textures 
in the area. The area Ù  below the curve is the target area to be repaired, 

and P is the pixel point on the boundary ∂Ω. Ψ p  is the pixel block to 
be repaired centered on P, and pn  is the unit normal vector of the 
boundary of the area to be repaired. ⊥∇ pI  is the unit isophote gradient 
vector of P, Ψq  is the pixel block searched for and most similar to 
Ψ p , and q is the center of Ψq . Figure 5B shows the effect of repairing 
point P.

As filling progresses, the average confidence level for the region 
will gradually decrease and eventually reach zero. Since the priority 
calculation is based on the product of the two values, this inevitably 
leads to the priority calculation failing to accurately reflect the regional 
information, resulting in calculation failure. This prevents the repair 

FIGURE 2

The process of experts locating acupoints and applying labels. (A) The process of locating the acupoint. (B) Label the acupoints.

FIGURE 3

Multi-angle acquisition process of back acupoint images.
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sequence from being reasonably arranged, ultimately leading to 
poorer repair results. To address this issue, the priority calculation 
method was improved by changing the priority calculation from a 
product form to an exponential sum form with base e (Jin et al., 2023), 
and limiting the confidence level to a certain range to avoid priority 
failure caused by low confidence levels. Equations (1)–(3) are the 
improved priority calculation Equations:
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When performing matching calculations, the Criminisi 
algorithm does not consider the texture characteristics of the areas 
to be repaired and the normal areas, and is somewhat blind. It only 
mechanically repeats the matching of texture features through 
matching rules, requiring traversing all pixels in the normal area of 
the image space, resulting in excessive computing costs. We adopt 
an improved matching mechanism based on the elliptic model, 
equivalent the marked region to the elliptic model, dividing the 
region into four regions along the elliptic symmetry axis, and 
limiting the entire matching search region within a reasonable 
range to seek the local optimal solution within this range (Fan et al., 
2025). Therefore, when performing similarity matching calculations 
to find patches to fill in, prioritizing nearby areas for screening can 
not only effectively shorten the matching time, but also reduce the 
problem of pixel texture changes caused by mismatches.

This de-labeling algorithm is an improvement based on Criminisi. 
It calculates the average peak signal-to-noise ratio (PSNR) and 
structural similarity index measure (SSIM) between the images 
processed by the two algorithms to illustrate the differences in image 
restoration quality and conducts subjective evaluation through 
subjective visual effects. Equations (4) and (5) are respectively the 
calculation formulas for PSNR and SSIM:
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FIGURE 4

Annotation example.

FIGURE 5

Schematic diagram of the Criminisi algorithm principle. (A) Before 
repair. (B) After repair.
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In these formulas, max
rI , max

gI , max
bI  represent the maximum pixel 

values for their respective channels, and xu , yu  represents mean values 
for x and y respectively, σ x , σ y , denotes variance, and denotes 
covariance, ( )= 2

1 1c k L , ( )= 2
2 2c k L , 1k  and 2k  take values of 0.01 and 

0.03 respectively, represents dynamic range of the images.
Since the number of acupoint markers is positively correlated with 

the image processing time, the processing speed of the algorithm for 
a single acupoint is defined as the average processing efficiency (APE) 
(unit: seconds per acupoint), as shown in Equation (6):

	 =
= ∑

1

1 n

i
i

APE T
n 	

(6)

In the formula, iT  represents the total time used by the algorithm 
to process a single image.

To evaluate the difference in processing efficiency between the 
Criminisi algorithm and the improved algorithm, we use the average 
efficiency improvement metric as defined in Equation (7).
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In the formula, c
iT , p

iT  represent the processing time of Criminisi 
and improved algorithm for single-image processing respectively, n is 
the total number of samples, and ηi represents the efficiency 
improvement for a single image.

To enhance the diversity of the dataset and thereby improve the 
generalization ability and recognition robustness of the model, we 

adopted a single-graph data augmentation method, mainly achieved 
through random scale transformation, random clipping, and random 
horizontal flipping.

3.2 Acupoint recognition network model

The overall architecture of the network model in this study adopts 
a two-stage structure, that is, the combination of target range detection 
and key point detection for acupoint recognition. In this framework, 
the RTMDet network model (Bakhtiyorov et al., 2025; Lyu et al., 2022; 
Zhang et al., 2025) is first utilized to conduct object detection on the 
entire image and obtain the bounding box of the back area. Input this 
bounding box as ROI (region of interest) information into the 
RTMPose network model (Jiang et al., 2023; Kang et al., 2025; Zheng 
et al., 2025) to guide the subsequent key point prediction. The entire 
image still serves as the input for RTMPose, but the key point search 
range is effectively constrained by the bounding box, thereby reducing 
the interference of background noise and irrelevant information. The 
RTMDet model in the first stage is responsible for accurately locating 
the back region, enabling the prediction task in the second stage to 
focus on smaller and more relevant areas. The RTMPose model in the 
second stage conducts acupoint key point location on this basis, which 
can focus computing resources on key areas, thereby significantly 
improving prediction accuracy while ensuring reasoning speed.

The designed acupoint recognition network architecture is shown 
in Figure 6. Specifically, in the first stage, the RTMDet model is used 
to efficiently detect the patient’s back area. The CSPNeXt backbone 
network is used to extract multi-scale features, which are then 
combined with the PAFPN structure to enhance feature fusion 

FIGURE 6

Two-stage acupoint recognition network structure.
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capabilities. A dynamic label assignment strategy, SimOTA, is used to 
optimize sample matching, ultimately outputting precise back area 
bounding boxes and their corresponding positions in the camera 
coordinate system. The second stage is based on the RTMPose model 
to achieve accurate acupoint recognition. The GAU module (Hua et 
al., 2022) is the gate self-attention mechanism, which enhances the 
feature expression ability by combining the gating mechanism of GLU 
with single-head attention. Through the SimCC framework, 
coordinate prediction is converted into a sub-pixel classification task. 
Combined with the KL divergence loss function to optimize 
localization accuracy, the final result is the precise location of the 
acupoint. This solution maintains real-time performance while 
comprehensively balancing detection accuracy and 
computing efficiency.

This paper employs a learning rate scheduling strategy combining 
AdamW and Flat CosineLR. The first half adopts AdamW with a fixed 
learning rate of 0.05, and the second half adopts Flat 
CosineLR. AdamW replaces L2 regularization through weight decay, 
effectively preventing overfitting. Flat CosineLR first keeps the 
learning rate constant for a period of time (flat phase), then gradually 
reduces the learning rate to a minimum value. This strategy helps the 
model converge quickly in the early stages of training and fine-tune 
parameters in the later stages.

3.3 Evaluation indicator

Define the average pixel error for acupoint prediction in a single 
image acupointAPE , the actual error acupointAPDE , the average 
recognition pixel error corresponding to the detection sample 

acupointmAPE , and the actual error acupointmAPDE  as evaluation 
indicators for acupoint recognition accuracy. The specific expressions 
are shown in Equations (8)–(13):
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Among them, iP  and iG  are, respectively, the predicted distribution 
matrix and the true distribution matrix of the acupoints in the i image, 
m is the number of identified acupoints, and n is the number of 
volunteers tested.

Combining the acupoint patches used during data collection and 
acupoint selection, the area marked by experts is taken as the center 
of the effective acupoint area. The size of the effective acupoint region 
is set to a 10 mm circular area. The model predicts the acupoints to be 
the same 10 mm circular area. By analyzing the spatial relationship 
between the two circular regions, the error in the model’s predicted 
acupoints relative to the effective region is quantified. This defines the 
accuracy of acupoint recognition and the prediction error of 
acupoints, as shown in Figure 7.

If the predicted area of the model overlaps with the effective area 
of the label set, it is considered an effective recognition and is 
recorded as a positive example. If the two do not overlap, it indicates 
that there is an error in recognition and is recorded as a negative 
example. At this time, the error is denoted as d. When evaluating the 
model, recall is used to judge the overall accuracy of the model in 
acupoint recognition in a single image expressed by Equation (14).

	 =
=

+∑
1

1 n

acupoint
i

TPRecall
n TP FN 	

(14)

where n is the number of volunteers tested, TP and FN correspond, 
respectively, to the positive and negative examples mentioned above, 
this formula indicates the average recognition accuracy of a 
single image.

FIGURE 7

Relationship between model prediction and effective acupoint 
regions. (A) Effective identification (TP). (B) Existing error (FN).

https://doi.org/10.3389/fnbot.2025.1696824
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al.� 10.3389/fnbot.2025.1696824

Frontiers in Neurorobotics 09 frontiersin.org

3.4 Robot physiotherapy task planning

The coordinates of the acupoints output by the acupoint 
recognition model are the pixel coordinates of the acupoints in the 
image. During actual physiotherapy, the control of the physiotherapy 
end is based on the coordinates of the base coordinate system. 
Therefore, it is necessary to convert the recognized acupoints into 
the coordinates of the base coordinate system. Due to the different 
resolutions of depth cameras and color cameras, in order to obtain 
depth data at pixel coordinates, resolution conversion is required, 
that is, the registration of depth images and color images. The 
specific calculation method adopts the equivalence method, as 
shown in Equations (15) and (16). The image pixel coordinates are 
interpolated and filled through the normalization factor, that is, the 
color image coordinates correspond to the coordinates under the 
depth image, and the current depth value is the depth value z of the 
pixel coordinates under the color image.

	 ′ = × = ×′,w hu u s v v s 	 (15)

	 ( ) ( )= ′ ′, ,z u v d u v 	 (16)

Among them, ′ ′, , , , , , ,w hu v u v s s z d  represents the current pixel 
coordinates of the acupoint and the coordinates converted to the 
resolution of the depth map, the normalization factor, the current 
pixel coordinate depth value, and the depth data, respectively.

Then, convert the pixel coordinates to the camera coordinate 
system coordinates. Since the D435i camera is a planar camera, a 
central perspective model is adopted for modeling. The conversion 
relationship between image coordinates and camera coordinates is 
shown in Equations (17)–(20):
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Thus, Equations (21) and (22) can be obtained.
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The parameters such as focal length and principal point in the 
above calculation process can all be calibrated using the traditional 
checkerboard method based on Zhang Zhengyou’s calibration 

method, and can be obtained in the internal parameter matrix of the 
camera after calibration calculation,as shown in Equation (23).
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Among them, ( )ρ ρ 0 0, , , ,w hf u v  respectively represent the focal 
length of the camera, the width and height of each pixel point, and the 
coordinates of the principal point, which are the intersection points 
of the image plane and the optical axis.

Finally, after obtaining the coordinates in the camera coordinate 
system, they need to be converted to the coordinates in the base 
coordinate system and provided to the planning system for control, 
satisfying the following relationship as defined by Equation (24).

	 = b
base c cameraP T P 	 (24)

Among them, ( )= , , , 1 T
base b b bP x y z , ( )= , , , 1 T

camera c c cP x y z , 
b
cT  are the homogeneous coordinate forms in the base coordinate system 

and the camera coordinate system respectively, as well as the 
homogeneous form of the coordinate transformation matrix between the 
camera coordinate system and the base.

According to the physiotherapy diagnosis plan, the operator sets 
the physiotherapy acupoints, physiotherapy techniques, as well as 
parameters such as force and time through the human-machine 
interface. As the actuator, the physiotherapy robotic arm reaches the 
acupoint recognition points in sequence for acupoint recognition. 
After the acupoint recognition is completed, it locates the acupoints 
to be physiotherapy one by one according to the names of the 
acupoints to be physiotherapy stored in the system and performs 
physiotherapy according to the set techniques. To facilitate the control 
of the physiotherapy process, the human-computer interaction 
interface design and control integration were carried out based on 
QT. The interface is shown in Figure 8.

After receiving the physiotherapy task, the entire process 
trajectory of the mechanical arm physiotherapy mainly consists of the 
following five steps,

	(1)	 The robotic arm moves from the initial posture to the posture 
for acupoint recognition.

	(2)	 The robotic arm moves from the position for acupoint 
recognition to above the first physiotherapy acupoint.

	(3)	 The robotic arm performs physiotherapy actions in accordance 
with the physiotherapy plan.

	(4)	 After the current acupoint physiotherapy is completed, proceed 
to the next physiotherapy acupoint.

	(5)	 After the current physiotherapy stage is completed, return to 
the physiotherapy point recognition point from the 
last acupoint.

To enhance the flexibility of human-computer interaction 
during physical therapy, different trajectory planning methods are 
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adopted for trajectory control in each step. The first three steps 
and the fifth step are interpolated through the S-velocity curve 
planning algorithm in the joint Angle space to improve flexibility, 
while the fourth step uses the arc curve planning in 
Cartesian space.

4 Experiments and results

The recognition effect is mainly reflected in the accuracy and real-
time performance of the key points recognition of physiotherapy. We 
integrated the acupoint recognition network into the physiotherapy 
robot system, and designed the accuracy and real-time related 
experiments of the key points recognition to verify the performance 
of the recognition system, and further carried out the physiotherapy 
task trajectory planning experiment. Verify the applicability and 
reliability of the entire detection system in the robot 
physiotherapy scenario.

Set up an acupoint recognition system test platform, install the 
D435i camera at the end of the robotic arm, set the height from the 
bed to 1 m, collect 40 data sets for acupoint accuracy testing and real-
time detection efficiency, configure the computer with a 4070Ti GPU, 
set the camera resolution to 640 × 480, and measure that each pixel is 
converted to an actual distance of approximately k = 1.3 mm.

4.1 Result analysis and evaluation of the 
improved Criminisi algorithm

The marked images were processed one by one according to the 
Criminisi algorithm and the improved algorithm, and the 
experimental process data were recorded and saved. Calculate the 
PSNR and SSIM of the same image after processing by the two 
algorithms. The calculation results are shown in Table 1.

As can be seen from Table 1, the SSIM of the images processed by 
the two algorithms is relatively high, while the PSNR is close to 40db. 
The evaluation of these two objective indicators indicates that the 
restoration quality of the previous two algorithms is similar, but there 
are differences.

In Figure 9, Figures 9B,C are the result graphs obtained by 
de-labeling Figure 9A with Criminisi algorithm and improved 
algorithm respectively, and Figures 9E,F are the result graphs obtained 
by de-labeling Figure 9D with Criminisi algorithm and improved 
algorithm respectively. By comparing the images before and after 
processing and their local magnifications, it can be found that the 
Criminisi algorithm is prone to problems such as discontinuous 
boundaries and pixel mutations between different patches after 
restoration. Under the same conditions, the improved algorithm 
effectively alleviates the above phenomenon, making the repaired area 
and the surrounding skin appear more natural and the transition 
smoother subjectively visually. Since the application scenario of this 
study is acupoint recognition, there are high requirements for the 
coherence and naturalness of the repair area. Therefore, the proposed 
algorithm performs more superior in meeting this demand.

Calculating the APE and η  for the Criminisi and improved 
algorithms, and plot the APE of the algorithms as shown in Figure 10, 
the algorithm repair efficiency evaluation table is shown in Table 2.

Firstly, as can be seen from Figure 10, the APE of the Criminisi 
algorithm is significantly greater than that of the improved algorithm, 
indicating that the improvement of the matching mechanism by the 
algorithm can effectively enhance the computational efficiency of the 
algorithm and save processing time. Moreover, the processing 
efficiency of each single sheet of the algorithm fluctuates around a 
certain mean value, and the fluctuations are relatively small, indicating 
strong stability of the algorithm. Secondly, as shown in Table 2, the 
average APE of the Criminisi algorithm is 13.4817. After the 
improvement, the average APE of the algorithm is reduced by 9.1487 
compared with the former, and the algorithm efficiency is increased 

FIGURE 8

Control interface of acupoint recognition system.
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by 67.8%. Therefore, the improved algorithm can effectively increase 
the speed of acupoint de-labeling processing and has strong practical 
significance for the processing of large-scale acupoint datasets.

4.2 Accuracy test for acupoint recognition

To evaluate the accuracy of the acupoint recognition method, this 
study selected several volunteers as test subjects, collected predicted 
coordinates, and calculated evaluation indicators.

A total of 1,000 high-quality datasets were selected from the 
dataset and distributed in a ratio of 8:2 between the training set and 
the validation set. Each was trained for 300 rounds, and the validation 
set error was calculated every 10 rounds. The training results of the 
acupoint detection model are shown in Figure 11. As can be seen from 
Figure 11A, the accuracy is already relatively high around 50 rounds. 
After 300 rounds of training, the model’s accuracy in the training set 
is close to 1. From Figure 11B, the accuracy in the validation set 
reaches over 80% around 150 rounds, which is relatively high. After 
300 rounds of training, the accuracy reaches over 90%. Figure 12 
shows the prediction results of the acupoint recognition model after 
training. M1-M6 are the acupoints in the middle of the human back, 
L1–L14 are the acupoints on the left side of the human back, and 
R1–R14 are the acupoints on the right side of the human back.

We conducted an average statistical analysis based on 40 samples. 
To demonstrate the representativeness of the results, the relevant 

parameters of five samples and the average statistical results of the 
overall sample are listed in Table 3. Through the evaluation of the 
positioning accuracy of the model, the average pixel error of acupoint 
recognition is 4.45 pixels. After the scale coefficient k conversion, the 
corresponding actual physical error is approximately 5.78 mm, the 
sample variance is 2.91 and the average recall rate reaches 
approximately 90.17%. During the execution of the task, this error 
mainly stems from the positioning error of the X-axis and Y-axis and 
the approximate error of proportional geometric measurement. 
Meanwhile, in the Z-axis, it also includes the error of sensor depth 
information. The results show that this detection method has high 
accuracy and can meet the application requirements of most 
physiotherapy scenarios such as massage and moxibustion.

TABLE 1  Evaluation of algorithm repair efficiency.

Metrics name SSIM  (%) PSNR  (db)

Value 0.989946 37.646238

FIGURE 9

Comparison of the repair effects of the de-labeling algorithm. (A) Sample I. (B) Criminisi algorithm. (C) Improved algorithm. (D) Sample II. (E) Criminisi 
algorithm. (F) Improved algorithm.

FIGURE 10

Comparison of algorithm repair efficiency.
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We also measured the average error data and related analysis 
contents of the relevant acupoints of 20 subjects, and calculated the 
accuracy of each acupoint one by one. The accuracy statistics of the 
acupoints located on the spine are shown in Table 4, and the accuracy 
statistics of the acupoints on both sides of the spine are shown in 
Table 5. Here, the acupoints at the same height on both sides of the 
spine were taken as the acupoint pairs for average calculation. Among 
them, the accuracy rate of acupoints located on the spine is generally 
higher than that of acupoints on both sides of the spine. Meanwhile, the 
accuracy rate of M1 and M2 acupoints is higher than that of M5 and 
M6 acupoints. This is because during the process of experts marking 
acupoints, they often take M1 and M2 acupoints as the marking 

benchmarks and give priority to marking them. From the perspective 
of human musculoskeletal system, the characteristics of these two 
acupoints are more obvious compared to M5 and M6 acupoints. For 
acupoints with weaker characteristics, the detection difficulty is greater. 
Meanwhile, experts often mark the acupoints on the spine first and 
then look for the pairs of acupoints on both sides, especially for those 
of the same height. The accuracy of the pairs of acupoints on both sides 
is directly related to the accurate values of the acupoints on the spine.

4.3 Real-time testing of acupoint 
recognition

In physical therapy scenarios, due to the movement of the patient’s 
body and changes in lighting, it is necessary to constantly update the 
location of acupoint recognition. Therefore, the acupoint recognition 
system must have the ability to update detection in real time. To evaluate 
this real-time performance, the detection speed of the acupoint 
recognition, that is, the number of image frames inferred per second, is 

FIGURE 11

Loss and acc change diagram. (A) Training set loss and accuracy. (B) Validation set loss and accuracy.

FIGURE 12

Acupoint recognition effect diagram. (A) Example diagram Ⅰ. (B) Example diagram Ⅱ.

TABLE 2  Evaluation of algorithm repair efficiency.

Algorithm name APE (s/acupoint) η  (%)

Criminisi algorithm 13.4817 /

Proposed algorithm 4.333 67.8
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used as the real-time evaluation index for acupoint prediction. Volunteers 
were arranged to dynamically move their body postures, and the 
detection effects of different body postures were tested.

The detection results of the acupoint recognition model are shown 
in Figure 13, where the red areas indicate the acupoint locations predicted 
by the model. From left to right are dynamic acupoint recognition images 
of the back under different postures. After stabilization, the number of 
detection frames was recorded, and the average value was calculated to 
be 30 (FPS). It can be seen that the detection results have a very high 
detection efficiency, and this method has good applicability.

4.4 Experiment on trajectory planning for 
physiotherapy tasks

Through the human-machine interface operation, parameters 
such as the physiotherapy technique, duration and intensity were 
selected, and then the physiotherapy began. The experimental process 
is shown in Figure 14.

In this section, four acupoints on the back were selected for the 
full-process physiotherapy trajectory planning experiment. Four 
techniques were planned in sequence, and the end poses and trajectory 
planning data were recorded. The full-process trajectories of each 
technique and the typical trajectories of the techniques are shown in 
Figure 15. Point A is the system initialization pose location, and point 
B is the waiting point for acupoint recognition. The system moves 
from point A to point B for acupoint recognition. After the recognition 
is completed, points C and D are selected based on the chosen 
acupoints, which are above the acupoints to be treated. These points 

are, respectively, the first and last acupoints to be treated. The AB, BC, 
and CD sections are planned using the S-speed curve.

4.5 Comprehensive analysis

In Table 6, we made a comprehensive comparison between the 
proposed method and the existing acupoint recognition methods 
from four dimensions of positioning accuracy, convenience of use, 
cost, scope of application. From the comparison results, it can be seen 
that although the method in literature (Zheng, 2022) stands out in 
terms of convenience, cost and has a wide scope of application, its 
positioning accuracy is relatively low. The method in literature (Wang 
et al., 2023) has high positioning accuracy but has the shortcomings 
of inconvenience in use, high cost and limited scope of application. 
The method in literature (Zhang et al., 2024) has advantages in 
convenience and cost. However, the positioning accuracy is moderate 
and the scope of application is limited. Overall, our method achieves 
a more balanced performance in these four dimensions, with more 
competitive comprehensive performance, providing a more practical 
solution for acupoint recognition.

We placed the proposed method and the current mainstream key 
point detection methods under the same experimental conditions for 
performance verification, using exactly the same hardware 
configuration and strictly following the same data preprocessing 
process to eliminate the interference of experimental environment 
differences on the evaluation results. The comparative experiment 
adopts the test dataset. The acupoint recognition accuracy of the 
proposed method is quantified by calculating the acupoint prediction 
error (APE) corresponding to all effective pixels, and the detection 
speed of acupoint recognition, that is, the number of image frames per 
second (FPS), is calculated to quantify the real-time performance of 
acupoint recognition of the proposed method. It can be seen from 
Table 7 that the method we proposed performs best on APE, 
significantly lower than other methods. In terms of reasoning 
efficiency, although it is slightly lower than YoloV8, it is higher than 
the method based on human body model, and the gap with RTM-pose 
is also within an acceptable range. On the whole, our method has 
achieved a good balance between accuracy and efficiency, and has an 
advantage in the accuracy of acupoint coordinate prediction. It can 
better meet the high requirements for acupoint recognition accuracy 
in physiotherapy scenarios and lay a solid foundation for the precise 
execution of subsequent physiotherapy actions.

5 Discussion

This paper conducts research on the autonomous acupoint 
recognition of physiotherapy robots. In response to the difficulties such 

TABLE 3  Performance of the sample test set for acupoint accuracy 
indicators.

Sample 1 2 3 4 5

APE iacupoint  (pix)
4.14 2.13 2.76 5.21 4.91

APDE iacupoint  (mm)
5.34 2.74 3.56 6.72 6.33

mAPEacupoint (pix) 4.45

mAPDEacupoint (mm) 5.78

Recallacupoint (%) 90.17

TABLE 4  Accuracy test statistics of acupoints in the middle of the spine.

Acupuncture 
point

M1 M2 M3 M4 M5 M6

mAPDEacupoint (mm) 2.34 2.45 3.66 4.43 4.94 5.96

TABLE 5  Accuracy test statistics of acupoints on both sides of the spine.

Acupuncture 
point

L1 & 
R1

L2 & 
R2

L3 & 
R4

L4 & 
R4

L5 & 
R5

L6 & 
R6

L7 & 
R7

L8 & 
R8

L9 & 
R9

L10 & 
R10

L11 & 
R11

L12 
& 

R12

L13 
& 

R13

L14 & 
R14

mAPDEacupoint 

(mm)
2.88 3.09 3.78 5.62 6.84 5.39 4.93 5.67 5.79 5.79 6.01 5.82 5.32 4.59
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FIGURE 14

Physiotherapy process.

as the dense distribution of acupoints on the back, the indistinct 
external features, and the changes in posture and lighting, a two-stage 
detection method combining RTMDet and RTMPose is proposed, and 
model generalization is carried out for acupoint recognition under 
dynamic conditions. Through experimental verification, we 

demonstrate the robustness and practicality of the proposed method in 
complex environments. In the task of locating acupoints, accurately 
identifying the positions of key points depends not only on local texture 
features, but also on the overall structure and contextual semantic 
information. Traditional single-stage networks often struggle to strike a 
good balance between ensuring target detection and precise prediction 
of key points simultaneously. The two-stage architecture effectively 
alleviates this contradiction by decoupling target detection from key 
point localization. The first stage of the RTMDet network model focuses 
on the back region of the human body, eliminating redundant 
interference information; while the second stage of the keypoint 
localization network RTMPose focuses on high-precision acupoint 
recognition tasks within the cropped local region. Through module 
division and task decoupling, this structure not only improves the 
robustness and generalization ability of the model, but also provides 
better spatial constraints and feature support for precise acupoint 
recognition in complex contexts. Based on the defined accuracy error 
metric, it achieves a recall of 90.17% on the human body dataset, with 
a detection error of around 5.78 mm. Moreover, it can still conduct real-
time detection when the volunteer moves their body and their posture 
changes, and the accuracy is almost unaffected. The average frame rate 
remains above 30 frames, indicating that the system can meet the 
requirements of real-time application scenarios. However, it should be 
noted that since the data collection is carried out in a well-lit and 
controllable laboratory environment, which differs from the actual 
application scenarios, different light intensities may have a certain 
impact on the accuracy of acupoint recognition. Moreover, the data of 
this study mainly came from subjects with healthy body types and did 
not include data cases of diseases such as “scoliosis.” Therefore, when it 
comes to users with similar physical disabilities and scoliosis, the 

FIGURE 13

Recognition effect diagram. (A) Example diagram Ⅰ. (B) Example 
diagram Ⅱ.
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generalization is reduced. In future research, we plan to introduce other 
perception methods to build a multimodal fusion acupoint recognition 
system, in order to enhance the adaptability and accuracy of the model 
in complex clinical scenarios. Meanwhile, we have expanded our 
research scope from the back to other parts of the human body such as 
the abdomen and ears, gradually establishing a high-quality database of 
acupoints throughout the body.

6 Conclusion

In response to the imbalance between the demand and supply of 
physical therapy for the aging and sub-healthy population, the 
application of robots for physical therapy has become a highly 
promising solution. However, the current level of automation in 
acupoint recognition of physical therapy robots is insufficient, and 
there is still room for improvement in recognition accuracy. In terms 
of dataset collection and production, a high-precision dataset 
production method was designed, which involves manual labeling first 
and then marking through algorithms, thereby improving the quality 

of the dataset. Based on the deep learning algorithm model, a two-stage 
acupoint recognition model is proposed. Object detection adopts 
network architectures such as CSPNeXt and enhances detection speed 
and accuracy through a multi-head sharing mechanism. Key point 
detection is based on the SimCC architecture, converting regression 
problems into classification problems, which improves detection speed 
and raises detection accuracy to the sub-pixel level. By transforming 

FIGURE 15

Physiotherapy task planning trajectory diagram. (A) The entire process trajectory of physiotherapy task planning I. (B) The typical trajectory of 
physiotherapy task planning I. (C) The entire process trajectory of physiotherapy task planning II. (D) The typical trajectory of physiotherapy task 
planning II.

TABLE 6  Comprehensive performance comparison table of acupoint 
recognition methods.

Evaluation 
criteria

Zheng 
(2022)

Wang et 
al. (2023)

Zhang et 
al. (2024)

Our

Positioning 

accuracy
Low High Medium High

Convenience High Low High High

Cost Low High Low Low

Scope of 

application
Widely Limit Limit Widely

https://doi.org/10.3389/fnbot.2025.1696824
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang et al.� 10.3389/fnbot.2025.1696824

Frontiers in Neurorobotics 16 frontiersin.org

the coordinates, we planned the task execution trajectory of the 
physiotherapy robot to ensure that it could precisely reach the target 
acupoints when performing physiotherapy actions. The algorithm 
model has been verified. The average pixel error of acupoint recognition 
is 4.45 pixels, the actual physical error is about 5.78 mm, and the 
average recall rate is about 90.17%. This indicates that the detection 
model method has a high detection accuracy and can meet the needs 
of most physiotherapy scenarios. This research is conducive to 
promoting the deep integration of traditional Chinese medicine and 
artificial intelligence technology, and driving the development of 
physiotherapy robots.
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