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Background: Physiotherapy robots offer a feasible and promising solution for
achieving safe and efficient treatment. Among these, acupoint recognition
is the core component that ensures the precision of physiotherapy robots.
Although the research on the acupoint recognition such as hand and ear has
been extensive, the accurate location of acupoints on the back of the human
body still faces great challenges due to the lack of significant external features.
Methods: This paper designs a two-stage acupoint recognition method, which is
achieved through the cooperation of two detection networks. First, a lightweight
RTMDet network is used to extract the effective back range from the image,
and then the acupoint coordinates are inferred from the extracted back range,
reducing the inference consumption caused by invalid information. In addition,
the RTMPose network based on the SImCC framework converts the acupoint
coordinate regression problem into a classification problem of sub-pixel block
subregions on the X and Y axes by performing sub-pixel-level segmentation of
images, significantly improving detection speed and accuracy. Meanwhile, the
multi-layer feature fusion of CSPNeXt enhances feature extraction capabilities.
Then, we designed a physiotherapy interaction interface. Through the three-
dimensional coordinates of the acupoints, we independently planned the
physiotherapy task path of the physiotherapy robot.

Results: We conducted performance tests on the acupoint recognition system
and physiotherapy task planning in the physiotherapy robot system. The
experiments have proven our effectiveness, achieving a recall of 90.17% on
human datasets, with a detection error of around 5.78 mm. At the same time, it
can accurately identify different back postures and achieve an inference speed
of 30 FPS on a 4070Ti GPU. Finally, we conducted continuous physiotherapy
tasks on multiple acupoints for the user.

Conclusion: The experimental results demonstrate the significant advantages
and broad application potential of this method in improving the accuracy and
reliability of autonomous acupoint recognition by physiotherapy robots.
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1 Introduction

With the continuous deepening of population aging and the
improvement of public health awareness, traditional Chinese
medicine, as a natural therapy for regulating body functions, is
gradually attracting more and more attention. Chinese medicine
therapy stimulates specific acupoints to trigger local and systemic
sensory mechanisms and biological responses in the body, and has
significant therapeutic effects in relieving various types of pain,
promoting blood circulation, improving physical comfort, and
psychological relaxation (Kerautret et al, 2024; Li et al, 2025).
However, traditional physical therapy services are expensive, vary in
quality, and suffer from a shortage of professional therapists, making
it difficult to meet growing health demands. As an innovative product
integrating artificial intelligence, robotics technology and traditional
Chinese medicine theory, physiotherapy robots offer a new solution
and development direction to address this issue (Pang et al., 2019;
Zhao et al., 2023). Several countries and regions have successively
introduced relevant support policies, providing strong financial
support and resource guarantees for research in this field, effectively
promoting the application of physiotherapy robots in clinical
rehabilitation, home nursing, and other scenarios (Zhao and Guo,
2023). Currently, there are a variety of physiotherapy robot products
on the market that offer a range of functions (Yang et al., 2024),
including massage, moxibustion, and tuina massage, among other
traditional Chinese medicine physiotherapy methods. The level of
intelligence is constantly improving, gradually promoting the
development of intelligent physiotherapy toward personalization
and precision.

Therapeutic acupoints are mainly distributed along the human
meridian system and are a core component of traditional Chinese
medicine theory. Physiotherapy robots rely on the precise localization
of human acupoints to effectively exert their therapeutic effects (Yu et
al., 2024). However, there are still many challenges in achieving
autonomous acupoint recognition, especially in locating acupoints on
the back. Compared to areas such as the face or limbs, the back lacks
obvious structural landmarks, has relatively smooth skin texture, and
varies greatly between individuals (Yang et al., 2025a). Therefore, how
to improve the accuracy of physiotherapy robots in acupoint
recognition on the back remains one of the challenges that need to be
overcome in its development. In this paper, we propose an acupoint
recognition method for autonomous physical therapy robot systems
that combines high accuracy and dynamic performance to
automatically identify patients’ acupoints. We systematically modeled
the location of acupoints on the back as a key point recognition task
and trained the two-stage neural network through our own established
dataset to predict the relevant acupoints. And this acupoint
recognition network was applied to the physiotherapy robot system
built by oneself, enabling the physiotherapy robot to perform
physiotherapy tasks automatically. Our main contributions are
as follows:

o An indirect data annotation method is proposed. Firstly, manual
annotation is carried out on the human body, then software
annotation is conducted using annotation software, and finally
the manual marks on the images are removed through algorithms
to systematically improve the consistency of annotation and the
quality of training data.
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» Based on the two-stage network architecture, a key point
prediction network for back physiotherapy acupoints was
designed, that is, the combination of target range detection and
key point detection was used for physiotherapy acupoint
recognition, and it was applied to the self-built physiotherapy
robot system, which can significantly improve the accuracy and
objectivity of localization.

2 Related work

2.1 Current research status of
physiotherapy robots

Many universities and enterprises at home and abroad have
invested in the research and development of traditional Chinese
medicine physiotherapy robots. This field is gradually moving
toward a composite direction that integrates visual perception, force
control feedback, and multi-probe coordination (Xing et al., 2021;
Liu et al, 2024). Wang et al. (2018) designed a compact, space-
saving portable back massage robot that optimizes electromagnetic
force distribution through the establishment of a 3D electromagnetic
simulation model, ensuring that the massage robot can cover the
entire back area and improve massage effectiveness. However, it
does not have acupoint recognition capabilities and cannot perform
precise physical therapy. However, physiotherapy robots still have
insufficient adaptation to individual differences in acupoint
recognition and certain limitations in robustness in complex
application scenarios. Dong et al. (2022) designed a compliant
parallel robotic massage arm that combines serial elastic actuators
(SEA) to achieve unified force-position control without relying on
a complete dynamic model. Sayapin (2017) developed an intelligent
autonomous mobile massage robot. The device uses a three-degree-
of-freedom motion system and a triangular topology design. It
consists of three vacuum massage cups and linear drivers connected
to the vacuum massage cups. It uses a sliding cupping massage
method to slide and stretch muscle tissue to achieve a massage
effect. Due to structural design limitations, the robot may not be
able to adapt to the complex curves of the human body and does
not have an acupoint positioning function. Choi et al. (2021)
developed an abdominal massaging device named Bamk-001. This
device is equipped with five thermoelectric modules and can stably
provide a constant-temperature heat compress at 40 °C, bringing
continuous warm therapeutic effects to the abdomen. Meanwhile,
with the coordinated operation of the five airbags, rhythmic
pressure is applied to the patient’s abdomen through a clockwise
circulation of inflation, thereby simulating the technique of artificial
massage. However, this device is unable to precisely locate human
acupoints. Its massage effect is limited to the entire abdominal area
and lacks targeted acupoint stimulation functions. Therefore, it has
limitations in application scenarios such as traditional Chinese
medicine meridian therapy that require precise positioning. Zhu et
al. (2023) designed a peristaltic wearable massage robot for the
treatment of diseases related to lymph and blood circulation. This
robot uses a fluid fabric muscle plate as the driver and is driven by
a hydraulic transmission device, which enables the robot to provide
dynamic compressive force to meet the massage requirements even
at higher frequencies. This robot mainly relies on a fixed compressed
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wave pattern to improve lymphatic or blood circulation and is
unable to precisely identify the locations of human acupoints.
Autonomous acupoint recognition by physical therapy robots is the
key foundation for realizing personalized physical therapy plans.
Accurate acupoint recognition not only directly affects the accuracy
and effectiveness of physical therapy, but also provides a reliable
basis for technique selection, force control, and treatment path
planning. Especially for the back area, there are many acupuncture
points distributed over a wide area, and their precise location is
particularly critical for effective therapeutic intervention.

2.2 Research status of acupoint recognition
method

With the rapid advancement of computer vision, deep learning
and sensor technology, researchers have attempted to apply methods
such as image recognition, 3D reconstruction, infrared thermal
imaging and neural networks to acupoint recognition to enhance its
accuracy and degree of automation (Liu et al., 2023; Huang et al,,
2025). Mamieva et al. (2023) proposed using a binocular telescope
structure as the basis for a keypoint detection network to improve
model construction effectiveness. This framework demonstrated
high average precision (AP) values under multi-scale inference
strategies and achieved excellent facial detection results. However,
the model’s ability to process blurry images in low-light environments
still needs improvement, and it relies heavily on high-performance
external devices. Malekroodi et al. (2024) applied a real-time
landmark detection system to identify anatomical landmarks in
images, convert their coordinates into spatial coordinates
corresponding to acupoints, and locate 38 specific acupoints on the
face and hands. He also used a convolutional neural network (CNN)
specifically optimized for pose estimation and trained it with
restricted medical imaging data, to detect five key acupoints on the
arms and hands. Zheng (2022) developed a mobile augmented reality
(AR) system based on a facial landmark recognition network,
combining deep learning models with traditional Chinese medicine
bone measurement methods to achieve real-time identification and
localization of facial acupoints. However, in practical applications,
this method has certain limitations when dealing with complex
situations such as facial rotation, and it relies on complete facial
image input. Yuan et al. (2024) improved the YOLOv8-pose key
point detection algorithm for facial acupoints. By integrating ECA
attention to enhance acupoint feature extraction and replacing the
original neck module with a more lightweight Slim-neck module,
they provided significant reference value for facial acupoint
localization and detection. However, the self-built dataset in the
paper fails to fully cover all kinds of extreme scenarios, which may
limit the generalization ability of the model when facing the diverse
application scenarios in the real world. Wang et al. (2023) constructed
a cascaded network model using HRNet as the backbone and
introduced a dual attention mechanism combining SE and CA,
effectively enhancing the model’s ability to perceive local key features.
Seo et al. (2024) focused on the problem of accurately locating
acupoints in 2D hand images, comparing the performance of two
deep learning architectures, HRNet and ResNet, to explore methods
for improving the accuracy of hand acupoint detection. Yang et al.
(2025b) proposed a hybrid model RT-DEMT, which combines the
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efficient state space model Mamba with a Transformer module based
on the DETR architecture, improving the accuracy and speed of back
acupoint localization. This model primarily relies on visual images
as input and has not yet integrated multimodal information such as
infrared, depth maps, or human body structure point clouds.
Therefore, its recognition robustness in complex environments still
has certain limitations. Zhang et al. (2024) proposed a method for
detecting back acupoints based on an improved OpenPose, which
enhanced the reasoning speed. However, the number of evaluated
acupoints is relatively small, and the robustness verification in
complex scenarios still needs to be improved. In conclusion, acupoint
recognition on the back is of great significance in application
scenarios such as moxibustion and physical therapy. Due to the
diversity of postural changes on the human back, the design and
proposal of an acupoint recognition algorithm that can adapt to
postural changes and lighting interference is of great theoretical and
practical significance for improving the therapeutic effects and
application value of physical therapy robots.

2.3 Physiotherapy robot

This paper establishes its own physical therapy robot hardware
platform, as shown in Figure 1, which mainly consists of a physical
therapy robotic arm, a robotic arm control box, a depth camera, a
rigid-flexible coupling massage head and air pump, a computer, and a
physiotherapy bed.

Among them, the robotic arm is a 7-degree-of-freedom series
robotic arm, mainly serving as part of the physiotherapy execution
mechanism to complete tasks such as acupoint recognition and
reproducing manual techniques. At the end, it is equipped with a
pneumatic rigid-flexible coupling probe, which has various forms
such as palm and finger. The air pump is a high-pressure air pump
equipped with a PWM control system, which can provide high-
pressure gas of different frequencies and pressures, and switch and
control the force through pneumatic means. The D435i depth camera
is selected to obtain the real-time color RGB images of the
physiotherapy bed and the corresponding depth image data, and feed
them back to the computer. The computer is responsible for the
operation of the human-computer interaction system, the acquisition
of camera image data, as well as the acupoint recognition, the
generation of control instructions for the mechanical arm, and the
planning of physiotherapy tasks and other major calculations. The
physiotherapy bed can undergo various posture changes and
height adjustments.

3 Method

In this section, the proposed network structure and localization
framework are systematically described for the problem of acupoint
recognition on the back. In Section 3.1, the acquisition process of
the experimental dataset and its preprocessing strategy are
introduced in detail. In Section 3.2, the constructed acupoint
recognition network framework is described in detail. In Section 3.3,
evaluation metrics for performance verification are proposed and
explained, providing standards for subsequent experimental
analysis. Finally, in Section 3.4, the coordinate transformation and
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FIGURE 1
Structure diagram of the physiotherapy robot platform.

trajectory planning of robots when performing physiotherapy tasks
are explained.

3.1 Data set and processing

Since deep learning is a data-driven predictive method, the quality
of the dataset has a significant impact on model performance. In the
current process of constructing acupoint datasets, software annotation
directly on images or automatic annotation using mathematical models
is commonly used. Due to factors such as projection distortion and
camera nonlinear distortion, visual errors are inevitable during the
annotation process, and some areas cannot be accurately annotated due
to a lack of sufficient positioning information. For this purpose, this
study proposes an indirect data annotation method. First, frontline
Chinese medicine experts are invited to perform manual annotation on
the human body. Then, annotation software is used for software
annotation. Finally, an algorithm is used to remove the manual markings
from the images. This study recruited 100 people as volunteers. Before
the experiment began, they were all informed in detail of the research
purpose, experimental procedures and related precautions, and
voluntarily signed the informed consent form on the basis of full
understanding. The participants’ body types were evaluated based on
the body mass index (BMI). Before the experiment, their height and
weight were obtained through questionnaires and calculated according
to BMI. Among these volunteers, 2 had a BMI less than 18.5, 80 had a
BMI between 18.5 and 24, 15 had a BMI between 24 and 28, and 3 had
a BMI more than 28. Our sample covered all BMI stratifications, among
which normal body types accounted for the majority.

Data collection was carried out in a well-lit laboratory. Three
different types of depth cameras were used to obtain multi-resolution
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images, and the back postures of the volunteers were captured from
multiple angles. The specific steps for data collection are as follows:

« Volunteers lay prone on the bed, removed their back clothing,
and professional Chinese medicine experts identify their
acupoints. For female subjects, the experiment was independently
conducted by female professionals, and the subjects participated
wearing underwear. After locating the acupoints, the experts
mark the corresponding locations with round adhesive labels. As
shown in Figure 2.

o After completing the acupoint marking, the camera gimbal was
controlled by a self-written data collection program to capture
images of the volunteer’s back from different angles, including
horizontal, multi-angle horizontal rotation, and multi-angle tilt.
After the program finished collecting data, a mobile phone was
used to supplement the images from multiple random angles to
enhance data diversity. As shown in Figure 3.

« To avoid the impact of factors such as angle, lighting changes, or
annotation errors during data collection, the collected images
must be manually screened. After screening, the Labelme
annotation tool is used to precisely annotate the center points of
circular labels in the images and extract the pixel coordinate
information of the acupoints. As shown in Figure 4, it is an
example of annotation.

After completing the software annotation, according to the
dataset production process, the images need to be de-labeled to
obtain images without black labels and corresponding json files.
For image de-labeling, this paper makes improvements based on
the Criminisi image restoration algorithm (Yang et al., 2020; Li et
al., 20245 Yao, 2019). The Criminisi algorithm is a patch filling
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FIGURE 2

The process of experts locating acupoints and applying labels. (A) The process of locating the acupoint. (B) Label the acupoints.
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FIGURE 3
Multi-angle acquisition process of back acupoint images.

method that determines the repair order by comparing the
effective information of boundary pixels. It finds the optimal filling
patch within the entire image range through matching calculation
rules to complete the filling of the pixel, and then performs a
boundary and priority update cycle after completing one filling.
Figure 5 shows the repair process of pixel P using the
Criminisi algorithm.

In Figure 5A, the curve 0Q represents the boundary between the
normal region and the region to be repaired, the area © above the
curve is the normal range, different colors represent different textures
in the area. The area U below the curve is the target area to be repaired,

Frontiers in Neurorobotics

and P is the pixel point on the boundary Q. ‘¥'p is the pixel block to
be repaired centered on P, and np is the unit normal vector of the
boundary of the area to be repaired. VI IJ,‘ is the unit isophote gradient
vector of P, \I"q is the pixel block searched for and most similar to
Wy, and gis the center of ¥q. Figure 58 shows the effect of repairing
point P.

As filling progresses, the average confidence level for the region
will gradually decrease and eventually reach zero. Since the priority
calculation is based on the product of the two values, this inevitably
leads to the priority calculation failing to accurately reflect the regional
information, resulting in calculation failure. This prevents the repair
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FIGURE 4
Annotation example.
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FIGURE 5
Schematic diagram of the Criminisi algorithm principle. (A) Before
repair. (B) After repair.

sequence from being reasonably arranged, ultimately leading to
poorer repair results. To address this issue, the priority calculation
method was improved by changing the priority calculation from a
product form to an exponential sum form with base e (Jin et al., 2023),
and limiting the confidence level to a certain range to avoid priority
failure caused by low confidence levels. Equations (1)-(3) are the
improved priority calculation Equations:

P(p) = eC(P)+D(P) (1)

qu@ ﬁ()c(q)

=Y ¢ iy
c(r)=1" o, (p)> ko @
kthrTC(P)Skthr

VI
D(p |viins (3)

o
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When performing matching calculations, the Criminisi
algorithm does not consider the texture characteristics of the areas
to be repaired and the normal areas, and is somewhat blind. It only
mechanically repeats the matching of texture features through
matching rules, requiring traversing all pixels in the normal area of
the image space, resulting in excessive computing costs. We adopt
an improved matching mechanism based on the elliptic model,
equivalent the marked region to the elliptic model, dividing the
region into four regions along the elliptic symmetry axis, and
limiting the entire matching search region within a reasonable
range to seek the local optimal solution within this range (Fan et al.,
2025). Therefore, when performing similarity matching calculations
to find patches to fill in, prioritizing nearby areas for screening can
not only effectively shorten the matching time, but also reduce the
problem of pixel texture changes caused by mismatches.

This de-labeling algorithm is an improvement based on Criminisi.
It calculates the average peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) between the images
processed by the two algorithms to illustrate the differences in image
restoration quality and conducts subjective evaluation through
subjective visual effects. Equations (4) and (5) are respectively the
calculation formulas for PSNR and SSIM:

Imax 2 Imax 2 Imax 2
PSNR =10/ 10g10~———+log;p~—— +log g~ (4)
810 MSE 810 MSE 810 MSE
(Z,ux,uy +Cl)(26xy +c2)

SSIM (x,y)=1(x,)xc(x,)xs(xy) =

ﬂazc + Ga% + (5)
,u§+c1 0')2,+C2
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FIGURE 6
Two-stage acupoint recognition network structure.
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In these formulas, I inax, 1 fgnax, 1 ;}nax represent the maximum pixel
values for their respective channels, and u,, u y represents mean values
for x and y respectively, Ox, Oy, denotes variance, and denotes
covariance, ¢; = (le)z, 0= (kzL )2, ki and k, take values of 0.01 and
0.03 respectively, represents dynamic range of the images.

Since the number of acupoint markers is positively correlated with
the image processing time, the processing speed of the algorithm for
a single acupoint is defined as the average processing efficiency (APE)
(unit: seconds per acupoint), as shown in Equation (6):

n
APE =12Ti ©
n:
i=1

In the formula, T; represents the total time used by the algorithm
to process a single image.

To evaluate the difference in processing efficiency between the
Criminisi algorithm and the improved algorithm, we use the average
efficiency improvement metric as defined in Equation (7).

1 n|y L
n=;2m=—2,»=1 1_F x100% )

In the formula, T, T represent the processing time of Criminisi
and improved algorithm for single-image processing respectively, n is
the total number of samples, and 7; represents the efficiency
improvement for a single image.

To enhance the diversity of the dataset and thereby improve the
generalization ability and recognition robustness of the model, we
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adopted a single-graph data augmentation method, mainly achieved
through random scale transformation, random clipping, and random
horizontal flipping.

3.2 Acupoint recognition network model

The overall architecture of the network model in this study adopts
a two-stage structure, that is, the combination of target range detection
and key point detection for acupoint recognition. In this framework,
the RTMDet network model (Bakhtiyorov et al., 2025; Lyu et al., 2022;
Zhang et al., 2025) is first utilized to conduct object detection on the
entire image and obtain the bounding box of the back area. Input this
bounding box as ROI (region of interest) information into the
RTMPose network model (Jiang et al., 2023; Kang et al., 2025; Zheng
et al., 2025) to guide the subsequent key point prediction. The entire
image still serves as the input for RTMPose, but the key point search
range is effectively constrained by the bounding box, thereby reducing
the interference of background noise and irrelevant information. The
RTMDet model in the first stage is responsible for accurately locating
the back region, enabling the prediction task in the second stage to
focus on smaller and more relevant areas. The RTMPose model in the
second stage conducts acupoint key point location on this basis, which
can focus computing resources on key areas, thereby significantly
improving prediction accuracy while ensuring reasoning speed.

The designed acupoint recognition network architecture is shown
in Figure 6. Specifically, in the first stage, the RTMDet model is used
to efficiently detect the patient’s back area. The CSPNeXt backbone
network is used to extract multi-scale features, which are then
combined with the PAFPN structure to enhance feature fusion
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capabilities. A dynamic label assignment strategy, SimOTA, is used to
optimize sample matching, ultimately outputting precise back area
bounding boxes and their corresponding positions in the camera
coordinate system. The second stage is based on the RTMPose model
to achieve accurate acupoint recognition. The GAU module (Hua et
al., 2022) is the gate self-attention mechanism, which enhances the
feature expression ability by combining the gating mechanism of GLU
with single-head attention. Through the SimCC framework,
coordinate prediction is converted into a sub-pixel classification task.
Combined with the KL divergence loss function to optimize
localization accuracy, the final result is the precise location of the
acupoint. This solution maintains real-time performance while
comprehensively ~ balancing  detection  accuracy  and
computing efficiency.

This paper employs a learning rate scheduling strategy combining
AdamW and Flat CosineLR. The first half adopts AdamW with a fixed
learning rate of 0.05, and the second half adopts Flat
CosineLR. AdamW replaces L2 regularization through weight decay,
effectively preventing overfitting. Flat CosineLR first keeps the
learning rate constant for a period of time (flat phase), then gradually
reduces the learning rate to a minimum value. This strategy helps the
model converge quickly in the early stages of training and fine-tune

parameters in the later stages.

3.3 Evaluation indicator

Define the average pixel error for acupoint prediction in a single
image APEgcypoint> the actual error APDEqpoint> the average
recognition pixel error corresponding to the detection sample
MAPE cypoint » and the actual error mAPDEjpoins as evaluation
indicators for acupoint recognition accuracy. The specific expressions
are shown in Equations (8)-(13):

1 & 10
APE;cypoint :*zmax Bj, _Gi,j,z -—0 (8)
m* k
j=1
1 1
po U
2 2
P=x, ¥p )
35 35
Lp Vp ]
1 1
*g Vg
2 2
Gi=|x; g (10)
35 35
[*s Vs |
APDEacupoint =1.3x APEacupoint (11)
1, i
MAPE cypoint = ;zAPE;cupoint (12)

i=1
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1< ;
MAPDE ¢ point :;zAPDErlzcupoint (13)
i=1

Among them, P, and G; are, respectively, the predicted distribution
matrix and the true distribution matrix of the acupoints in the i image,
m is the number of identified acupoints, and n is the number of
volunteers tested.

Combining the acupoint patches used during data collection and
acupoint selection, the area marked by experts is taken as the center
of the effective acupoint area. The size of the effective acupoint region
is set to a 10 mm circular area. The model predicts the acupoints to be
the same 10 mm circular area. By analyzing the spatial relationship
between the two circular regions, the error in the model’s predicted
acupoints relative to the effective region is quantified. This defines the
accuracy of acupoint recognition and the prediction error of
acupoints, as shown in Figure 7.

If the predicted area of the model overlaps with the effective area
of the label set, it is considered an effective recognition and is
recorded as a positive example. If the two do not overlap, it indicates
that there is an error in recognition and is recorded as a negative
example. At this time, the error is denoted as d. When evaluating the
model, recall is used to judge the overall accuracy of the model in
acupoint recognition in a single image expressed by Equation (14).

1. TP
Recall ==y ———— (14)
acupoint " E TP + EN

where 7 is the number of volunteers tested, TP and FN correspond,
respectively, to the positive and negative examples mentioned above,
this formula indicates the average recognition accuracy of a
single image.

Model prediction
of acupoint area

Model prediction

of acupoint area

FIGURE 7
Relationship between model prediction and effective acupoint
regions. (A) Effective identification (TP). (B) Existing error (FN).
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3.4 Robot physiotherapy task planning

The coordinates of the acupoints output by the acupoint
recognition model are the pixel coordinates of the acupoints in the
image. During actual physiotherapy, the control of the physiotherapy
end is based on the coordinates of the base coordinate system.
Therefore, it is necessary to convert the recognized acupoints into
the coordinates of the base coordinate system. Due to the different
resolutions of depth cameras and color cameras, in order to obtain
depth data at pixel coordinates, resolution conversion is required,
that is, the registration of depth images and color images. The
specific calculation method adopts the equivalence method, as
shown in Equations (15) and (16). The image pixel coordinates are
interpolated and filled through the normalization factor, that is, the
color image coordinates correspond to the coordinates under the
depth image, and the current depth value is the depth value z of the
pixel coordinates under the color image.

U =uxs,,,v' =vxsy (15)

z(u,v):d(u',v') (16)

Among them, u,v,u',v',s,,sp,,2,d represents the current pixel
coordinates of the acupoint and the coordinates converted to the
resolution of the depth map, the normalization factor, the current
pixel coordinate depth value, and the depth data, respectively.

Then, convert the pixel coordinates to the camera coordinate
system coordinates. Since the D435i camera is a planar camera, a
central perspective model is adopted for modeling. The conversion
relationship between image coordinates and camera coordinates is
shown in Equations (17)-(20):

z
xC:x><7C (17)
z
yc:yXTC (18)
u:i+uo (19)
w
V:L+V0 (20)
Ph

Thus, Equations (21) and (22) can be obtained.

(i) e, on

f

) :(v—vo)xphxzc 22)

‘ f

The parameters such as focal length and principal point in the
above calculation process can all be calibrated using the traditional
checkerboard method based on Zhang Zhengyou’s calibration
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method, and can be obtained in the internal parameter matrix of the
camera after calibration calculation,as shown in Equation (23).

T 04
Pw
k=lo L o v (23)
Ph
0 0 11

Among them, f, pw,ph,(uo,vo) respectively represent the focal
length of the camera, the width and height of each pixel point, and the
coordinates of the principal point, which are the intersection points
of the image plane and the optical axis.

Finally, after obtaining the coordinates in the camera coordinate
system, they need to be converted to the coordinates in the base
coordinate system and provided to the planning system for control,
satisfying the following relationship as defined by Equation (24).

b
Boase =T Peamera (24)

Among them, DPrase :(xb> Vb> Zb> I)T , Peamera = (xo Yes Zc» I)T
ch are the homogeneous coordinate forms in the base coordinate system
and the camera coordinate system respectively, as well as the
homogeneous form of the coordinate transformation matrix between the
camera coordinate system and the base.

According to the physiotherapy diagnosis plan, the operator sets
the physiotherapy acupoints, physiotherapy techniques, as well as
parameters such as force and time through the human-machine
interface. As the actuator, the physiotherapy robotic arm reaches the
acupoint recognition points in sequence for acupoint recognition.
After the acupoint recognition is completed, it locates the acupoints
to be physiotherapy one by one according to the names of the
acupoints to be physiotherapy stored in the system and performs
physiotherapy according to the set techniques. To facilitate the control
of the physiotherapy process, the human-computer interaction
interface design and control integration were carried out based on
QT. The interface is shown in Figure 8.

After receiving the physiotherapy task, the entire process
trajectory of the mechanical arm physiotherapy mainly consists of the
following five steps,

(1) The robotic arm moves from the initial posture to the posture
for acupoint recognition.

(2) The robotic arm moves from the position for acupoint
recognition to above the first physiotherapy acupoint.

(3) The robotic arm performs physiotherapy actions in accordance
with the physiotherapy plan.

(4) After the current acupoint physiotherapy is completed, proceed
to the next physiotherapy acupoint.

(5) After the current physiotherapy stage is completed, return to
the physiotherapy point recognition point from the
last acupoint.

To enhance the flexibility of human-computer interaction
during physical therapy, different trajectory planning methods are
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adopted for trajectory control in each step. The first three steps
and the fifth step are interpolated through the S-velocity curve
planning algorithm in the joint Angle space to improve flexibility,
while the fourth step uses the arc curve planning in
Cartesian space.

4 Experiments and results

The recognition effect is mainly reflected in the accuracy and real-
time performance of the key points recognition of physiotherapy. We
integrated the acupoint recognition network into the physiotherapy
robot system, and designed the accuracy and real-time related
experiments of the key points recognition to verify the performance
of the recognition system, and further carried out the physiotherapy
task trajectory planning experiment. Verify the applicability and
reliability of the the
physiotherapy scenario.

entire detection system in robot

Set up an acupoint recognition system test platform, install the
D435i camera at the end of the robotic arm, set the height from the
bed to 1 m, collect 40 data sets for acupoint accuracy testing and real-
time detection efficiency, configure the computer with a 4070Ti GPU,
set the camera resolution to 640 x 480, and measure that each pixel is

converted to an actual distance of approximately k = 1.3 mm.

4.1 Result analysis and evaluation of the
improved Criminisi algorithm

The marked images were processed one by one according to the
Criminisi algorithm and the improved algorithm, and the
experimental process data were recorded and saved. Calculate the
PSNR and SSIM of the same image after processing by the two
algorithms. The calculation results are shown in Table 1.

Frontiers in Neurorobotics

As can be seen from Table 1, the SSIM of the images processed by
the two algorithms is relatively high, while the PSNR is close to 40db.
The evaluation of these two objective indicators indicates that the
restoration quality of the previous two algorithms is similar, but there
are differences.

In Figure 9, Figures 9B,C are the result graphs obtained by
de-labeling Figure 9A with Criminisi algorithm and improved
algorithm respectively, and Figures 9F,F are the result graphs obtained
by de-labeling Figure 9D with Criminisi algorithm and improved
algorithm respectively. By comparing the images before and after
processing and their local magnifications, it can be found that the
Criminisi algorithm is prone to problems such as discontinuous
boundaries and pixel mutations between different patches after
restoration. Under the same conditions, the improved algorithm
effectively alleviates the above phenomenon, making the repaired area
and the surrounding skin appear more natural and the transition
smoother subjectively visually. Since the application scenario of this
study is acupoint recognition, there are high requirements for the
coherence and naturalness of the repair area. Therefore, the proposed
algorithm performs more superior in meeting this demand.

Calculating the APE and 77 for the Criminisi and improved
algorithms, and plot the APE of the algorithms as shown in Figure 10,
the algorithm repair efficiency evaluation table is shown in Table 2.

Firstly, as can be seen from Figure 10, the APE of the Criminisi
algorithm is significantly greater than that of the improved algorithm,
indicating that the improvement of the matching mechanism by the
algorithm can effectively enhance the computational efficiency of the
algorithm and save processing time. Moreover, the processing
efficiency of each single sheet of the algorithm fluctuates around a
certain mean value, and the fluctuations are relatively small, indicating
strong stability of the algorithm. Secondly, as shown in Table 2, the
average APE of the Criminisi algorithm is 13.4817. After the
improvement, the average APE of the algorithm is reduced by 9.1487
compared with the former, and the algorithm efficiency is increased
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by 67.8%. Therefore, the improved algorithm can effectively increase
the speed of acupoint de-labeling processing and has strong practical
significance for the processing of large-scale acupoint datasets.

4.2 Accuracy test for acupoint recognition

To evaluate the accuracy of the acupoint recognition method, this
study selected several volunteers as test subjects, collected predicted
coordinates, and calculated evaluation indicators.

A total of 1,000 high-quality datasets were selected from the
dataset and distributed in a ratio of 8:2 between the training set and
the validation set. Each was trained for 300 rounds, and the validation
set error was calculated every 10 rounds. The training results of the
acupoint detection model are shown in Figure 11. As can be seen from
Figure 11A, the accuracy is already relatively high around 50 rounds.
After 300 rounds of training, the model’s accuracy in the training set
is close to 1. From Figure 11B, the accuracy in the validation set
reaches over 80% around 150 rounds, which is relatively high. After
300 rounds of training, the accuracy reaches over 90%. Figure 12
shows the prediction results of the acupoint recognition model after
training. M1-M6 are the acupoints in the middle of the human back,
L1-L14 are the acupoints on the left side of the human back, and
R1-R14 are the acupoints on the right side of the human back.

We conducted an average statistical analysis based on 40 samples.
To demonstrate the representativeness of the results, the relevant

TABLE 1 Evaluation of algorithm repair efficiency.

Metrics name

SSIM (%)

PSNR (db)

Value 0.989946 37.646238

10.3389/fnbot.2025.1696824

parameters of five samples and the average statistical results of the
overall sample are listed in Table 3. Through the evaluation of the
positioning accuracy of the model, the average pixel error of acupoint
recognition is 4.45 pixels. After the scale coefficient k conversion, the
corresponding actual physical error is approximately 5.78 mm, the
sample variance is 2.91 and the average recall rate reaches
approximately 90.17%. During the execution of the task, this error
mainly stems from the positioning error of the X-axis and Y-axis and
the approximate error of proportional geometric measurement.
Meanwhile, in the Z-axis, it also includes the error of sensor depth
information. The results show that this detection method has high
accuracy and can meet the application requirements of most
physiotherapy scenarios such as massage and moxibustion.
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Comparison of algorithm repair efficiency.
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We also measured the average error data and related analysis
contents of the relevant acupoints of 20 subjects, and calculated the
accuracy of each acupoint one by one. The accuracy statistics of the
acupoints located on the spine are shown in Table 4, and the accuracy
statistics of the acupoints on both sides of the spine are shown in
Table 5. Here, the acupoints at the same height on both sides of the
spine were taken as the acupoint pairs for average calculation. Among
them, the accuracy rate of acupoints located on the spine is generally
higher than that of acupoints on both sides of the spine. Meanwhile, the
accuracy rate of M1 and M2 acupoints is higher than that of M5 and
M6 acupoints. This is because during the process of experts marking
acupoints, they often take M1 and M2 acupoints as the marking

TABLE 2 Evaluation of algorithm repair efficiency.

Algorithm name

APE (s/acupoint)

10.3389/fnbot.2025.1696824

benchmarks and give priority to marking them. From the perspective
of human musculoskeletal system, the characteristics of these two
acupoints are more obvious compared to M5 and M6 acupoints. For
acupoints with weaker characteristics, the detection difficulty is greater.
Meanwhile, experts often mark the acupoints on the spine first and
then look for the pairs of acupoints on both sides, especially for those
of the same height. The accuracy of the pairs of acupoints on both sides
is directly related to the accurate values of the acupoints on the spine.

4.3 Real-time testing of acupoint
recognition

In physical therapy scenarios, due to the movement of the patients
body and changes in lighting, it is necessary to constantly update the
location of acupoint recognition. Therefore, the acupoint recognition

Loss and acc change diagram. (A) Training set loss and accuracy. (B) Validation set loss and accuracy.

system must have the ability to update detection in real time. To evaluate
Criminisi algorithm 134817 ! this real-time performance, the detection speed of the acupoint
Proposed algorithm 4.333 67.8 recognition, that is, the number of image frames inferred per second, is
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FIGURE 12

Acupoint recognition effect diagram. (A) Example diagram I . (B) Example diagram II.
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used as the real-time evaluation index for acupoint prediction. Volunteers
were arranged to dynamically move their body postures, and the
detection effects of different body postures were tested.

The detection results of the acupoint recognition model are shown
in Figure 13, where the red areas indicate the acupoint locations predicted
by the model. From left to right are dynamic acupoint recognition images
of the back under different postures. After stabilization, the number of
detection frames was recorded, and the average value was calculated to
be 30 (FPS). It can be seen that the detection results have a very high
detection efficiency, and this method has good applicability.

4.4 Experiment on trajectory planning for
physiotherapy tasks

Through the human-machine interface operation, parameters
such as the physiotherapy technique, duration and intensity were
selected, and then the physiotherapy began. The experimental process
is shown in Figure 14.

In this section, four acupoints on the back were selected for the
full-process physiotherapy trajectory planning experiment. Four
techniques were planned in sequence, and the end poses and trajectory
planning data were recorded. The full-process trajectories of each
technique and the typical trajectories of the techniques are shown in
Figure 15. Point A is the system initialization pose location, and point
B is the waiting point for acupoint recognition. The system moves
from point A to point B for acupoint recognition. After the recognition
is completed, points C and D are selected based on the chosen
acupoints, which are above the acupoints to be treated. These points

TABLE 3 Performance of the sample test set for acupoint accuracy
indicators.

Sample 1 2 3 4 5

i 4.14 2.13 2.76 521 491
APEacupoint (pix)

APDEézcupoint (mm) > 7 356 672 | 633
MAPE gcupoint (pix) 445
MAPDE acypoint (mm) 578

90.17

Recallacupo,'nt (%)

TABLE 4 Accuracy test statistics of acupoints in the middle of the spine.

Acupuncture

point

MAPDE gcupoint (mm)

TABLE 5 Accuracy test statistics of acupoints on both sides of the spine.

Acupuncture L1&

point R1 R2 R4 R4 R5 R6

MAPDE acupoint 288 | 309 | 378 | 562 684 | 539

(mm)

L2 L3& L4& L5& L6& L78 L8& L19& L10& L1lE Li12 L13

10.3389/fnbot.2025.1696824

are, respectively, the first and last acupoints to be treated. The AB, BC,
and CD sections are planned using the S-speed curve.

4.5 Comprehensive analysis

In Table 6, we made a comprehensive comparison between the
proposed method and the existing acupoint recognition methods
from four dimensions of positioning accuracy, convenience of use,
cost, scope of application. From the comparison results, it can be seen
that although the method in literature (Zheng, 2022) stands out in
terms of convenience, cost and has a wide scope of application, its
positioning accuracy is relatively low. The method in literature (Wang
et al,, 2023) has high positioning accuracy but has the shortcomings
of inconvenience in use, high cost and limited scope of application.
The method in literature (Zhang et al., 2024) has advantages in
convenience and cost. However, the positioning accuracy is moderate
and the scope of application is limited. Overall, our method achieves
a more balanced performance in these four dimensions, with more
competitive comprehensive performance, providing a more practical
solution for acupoint recognition.

We placed the proposed method and the current mainstream key
point detection methods under the same experimental conditions for
performance verification, using exactly the same hardware
configuration and strictly following the same data preprocessing
process to eliminate the interference of experimental environment
differences on the evaluation results. The comparative experiment
adopts the test dataset. The acupoint recognition accuracy of the
proposed method is quantified by calculating the acupoint prediction
error (APE) corresponding to all effective pixels, and the detection
speed of acupoint recognition, that is, the number of image frames per
second (FPS), is calculated to quantify the real-time performance of
acupoint recognition of the proposed method. It can be seen from
Table 7 that the method we proposed performs best on APE,
significantly lower than other methods. In terms of reasoning
efficiency, although it is slightly lower than YoloVs8, it is higher than
the method based on human body model, and the gap with RTM-pose
is also within an acceptable range. On the whole, our method has
achieved a good balance between accuracy and efficiency, and has an
advantage in the accuracy of acupoint coordinate prediction. It can
better meet the high requirements for acupoint recognition accuracy
in physiotherapy scenarios and lay a solid foundation for the precise
execution of subsequent physiotherapy actions.

5 Discussion

This paper conducts research on the autonomous acupoint
recognition of physiotherapy robots. In response to the difficulties such

L14 &

R7 R8 RO R10 R11 & & R14

R12 R13

493 5.67 5.79 5.79 6.01 5.82 5.32 4.59

Frontiers in Neurorobotics

frontiersin.org


https://doi.org/10.3389/fnbot.2025.1696824
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhang et al.

as the dense distribution of acupoints on the back, the indistinct
external features, and the changes in posture and lighting, a two-stage
detection method combining RTMDet and RTMPose is proposed, and
model generalization is carried out for acupoint recognition under

dynamic conditions. Through experimental verification, we

FIGURE 13
Recognition effect diagram. (A) Example diagram 1. (B) Example
diagram 1I.

10.3389/fnbot.2025.1696824

demonstrate the robustness and practicality of the proposed method in
complex environments. In the task of locating acupoints, accurately
identifying the positions of key points depends not only on local texture
features, but also on the overall structure and contextual semantic
information. Traditional single-stage networks often struggle to strike a
good balance between ensuring target detection and precise prediction
of key points simultaneously. The two-stage architecture effectively
alleviates this contradiction by decoupling target detection from key
point localization. The first stage of the RTMDet network model focuses
on the back region of the human body, eliminating redundant
interference information; while the second stage of the keypoint
localization network RTMPose focuses on high-precision acupoint
recognition tasks within the cropped local region. Through module
division and task decoupling, this structure not only improves the
robustness and generalization ability of the model, but also provides
better spatial constraints and feature support for precise acupoint
recognition in complex contexts. Based on the defined accuracy error
metric, it achieves a recall of 90.17% on the human body dataset, with
a detection error of around 5.78 mm. Moreover, it can still conduct real-
time detection when the volunteer moves their body and their posture
changes, and the accuracy is almost unaffected. The average frame rate
remains above 30 frames, indicating that the system can meet the
requirements of real-time application scenarios. However, it should be
noted that since the data collection is carried out in a well-lit and
controllable laboratory environment, which differs from the actual
application scenarios, different light intensities may have a certain
impact on the accuracy of acupoint recognition. Moreover, the data of
this study mainly came from subjects with healthy body types and did
not include data cases of diseases such as “scoliosis.” Therefore, when it
comes to users with similar physical disabilities and scoliosis, the

Initialization
(Parameter
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Device
Initialization)

FIGURE 14
Physiotherapy process.
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FIGURE 15
Physiotherapy task planning trajectory diagram. (A) The entire process trajectory of physiotherapy task planning I. (B) The typical trajectory of
physiotherapy task planning I. (C) The entire process trajectory of physiotherapy task planning Il. (D) The typical trajectory of physiotherapy task
planning Il.

generalization is reduced. In future research, we plan to introduce other
perception methods to build a multimodal fusion acupoint recognition
system, in order to enhance the adaptability and accuracy of the model
in complex clinical scenarios. Meanwhile, we have expanded our
research scope from the back to other parts of the human body such as
the abdomen and ears, gradually establishing a high-quality database of
acupoints throughout the body.

6 Conclusion

In response to the imbalance between the demand and supply of
physical therapy for the aging and sub-healthy population, the
application of robots for physical therapy has become a highly
promising solution. However, the current level of automation in
acupoint recognition of physical therapy robots is insufficient, and
there is still room for improvement in recognition accuracy. In terms
of dataset collection and production, a high-precision dataset
production method was designed, which involves manual labeling first
and then marking through algorithms, thereby improving the quality

Frontiers in Neurorobotics

TABLE 6 Comprehensive performance comparison table of acupoint
recognition methods.

Evaluation Our
criteria
Positioning

Low High Medium High
accuracy
Convenience High Low High High
Cost Low High Low Low
Scope of

Widely Limit Limit Widely
application

of the dataset. Based on the deep learning algorithm model, a two-stage
acupoint recognition model is proposed. Object detection adopts
network architectures such as CSPNeXt and enhances detection speed
and accuracy through a multi-head sharing mechanism. Key point
detection is based on the SimCC architecture, converting regression
problems into classification problems, which improves detection speed
and raises detection accuracy to the sub-pixel level. By transforming
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TABLE 7 Comparison table of acupoint recognition accuracy and speed.

Method APE FPS
YoloV8 8.94 59
Method based on human

10.89 10
body model
RTM-pose 6.52 36
Our 5.78 30

the coordinates, we planned the task execution trajectory of the
physiotherapy robot to ensure that it could precisely reach the target
acupoints when performing physiotherapy actions. The algorithm
model has been verified. The average pixel error of acupoint recognition
is 4.45 pixels, the actual physical error is about 5.78 mm, and the
average recall rate is about 90.17%. This indicates that the detection
model method has a high detection accuracy and can meet the needs
of most physiotherapy scenarios. This research is conducive to
promoting the deep integration of traditional Chinese medicine and
artificial intelligence technology, and driving the development of
physiotherapy robots.
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