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On collective behavior in
C. elegans

Nemanja Antonic*, Aymeric Vellinger and Elio Tuci

Faculty of Computer Science, University of Namur, Namur, Belgium

C. elegans is a model organism in many biological domains, such as genetics,
neurophysiology, and behavioral ecology. Despite our relatively deep knowledge
of the neuronal, genetic and molecular mechanisms underlying C. elegans
communication, we still lack a comprehensive understanding of emergent
group-level dynamics. We review the literature on collective behavior of C. elegans
by categorizing works in this relatively small research field along three main
axes corresponding to primary collective responses: aggregation, swarming,
and collective decision-making. Through an analysis of the methods and
scientific contributions of these works, we develop a critical perspective that
points to important gaps in our understanding of the mechanisms underlaying
the emergence of collective responses. We discuss the consequences of
the lack of evidence concerning the effect of population density on the
emergence of specific group dynamics, and the relatively limited knowledge
related to how self-generated pheromones regulate local interactions and
contribute to the emergence of group responses. We elaborate on the
methodological problems of developing experimental scenarios to disentangle
causal relationships between population density, pheromone-based interactions
and collective responses. We propose to overcome these limitations with an
interdisciplinary approach based on the use of in vivo experiments, mathematical
and computer-based models.
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1 Introduction

In biology, many different species carry out activities engaging multiple individuals.
These activities are generally referred to as collective behavior, such as flocking in birds,
schooling in fishes, and herding in different mammals. Complex forms of collective
behavior can also be observed in social insects, such as ants, bees, and termites, where
important decisions about where to search for food or where to build the nest are made
collectively (see e.g., Bonabeau et al., 1997; Seeley and Buhrman, 1999).

The combined results of studies based on the direct observation of collective behavior
in both natural habitats and laboratory settings revealed that distributed individual
mechanisms underpin coordinated and collaborative activity. In other words, group
responses emerge as a spontaneous (self-organized) spatio-temporal order from repeated
individual interactions generally governed by simple rules (Sumpter, 2006; Camazine et al.,
2020).

In the last two decades, self-organized collective behaviors in natural organisms
have inspired roboticists who have sought to engineer into robots local individual rules
underpinning self-organized group responses (Schranz et al., 2021). The most emblematic
example of this interdisciplinary approach to technology building is swarm robotics,
a domain in which robots are: (i) designed by taking into account some of the most
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salient characteristics of social insects, such as distributed
control, local perception, and simple stigmergic-like forms
of communication (Holland and Melhuish, 1999) and (ii)
programmed to react locally in order to trigger the virtuous self-
organized processes leading to complex group responses (Dorigo
and Şahin, 2004; Brambilla et al., 2013). Bioinspired principles
provide swarm roboticists a promising approach for creating
robots capable of displaying adaptivity, robustness to changing
environmental conditions, resilience and fault-tolerance similar
to that observed in social insects (Trianni and Campo, 2015).
However, several issues are still severely limiting the deployment
of swarms of robots outside laboratory settings in natural,
unconstrained environments (Dorigo et al., 2021). Some of these
issues are inherently linked to theoretical and methodological
limitations in engineering self-organized collective behavior in
robots. Other limiting issues are those common to all electro-
mechanical and silicon-based artificial systems which lack the
perceptual acuity, dexterity, adaptability and resilience that make
biological systems particularly suited to operate in their respective
ecological niches.

Constant scientific progress pushes further the boundaries of
knowledge and consequently fuels innovation and technological
advancement in robotics. Very recently a radically different
approach to the design of robots has emerged, one which calls
for biological animal robots; that is, biological organisms that
are behaviorally reprogrammed through genetic modifications to
behave not as they would according to their evolutionary and
ontogenetic history, but as desired by humans (Rabinowitch,
2019a). The idea of biological animal robots is made possible
by synthetic connectomics (Rabinowitch, 2019b) a discipline
consisting on the modification of an organism neural layout as
described in its connectome (i.e., a map of the neural connections).
This can be done through the genetic engineering of new
synaptic connections (Rabinowitch et al., 2024), together with the
implementation of additional synthetic biological tools (Kukhtar
and Fussenegger, 2023).

The first animal whose complete connectome had been
mapped out is C. elegans, a 1 mm roundworm with 302
neurons (White et al., 1986) making it an ideal candidate for the
application of synaptic and neuronal engineering. The methods
of synthetic connectomics can be used to instill specific human-
desired behaviors in C. elegans by equipping the worm with
a connectome designed to induce a particular response in a
completely autonomous fashion. Swarms of biological animal
robots could potentially be built using populations of C. elegans
with synthetically restructured connectomes, bringing forth
specific sequences of emergent group responses (e.g., aggregation,
swarming toward a target, collective decisions, coordinated, and
cooperative actions, etc.) (Rabinowitch, 2019a).

The first step in applying synaptic and neuronal engineering to
C. elegans is to understand the operational principles underlying
behavioral responses, which helps to define the building blocks
that will eventually be modified to create worms with a partially
or completely artificial connectome. The majority of the scientific
literature related to C. elegans focuses on individual worm
responses and the underlying neural mechanisms, while the
analysis of emergent group responses and therefore the social

TABLE 1 Primer of the main modeling approaches discussed in this paper.

Type Target Scope

Keller-Segel
(Differential
Equations)

Population The model studies how the population
density distributes when interacting
with one or more chemical cues.

Agent-based Individual The model describes how the
interaction of individuals among each
other and with the environment lead to
group behaviors.

Neural
network

Neural mechanisms Computing system inspired by the
architecture of brains apt at explaining
the neural dynamics of an individual in
response to one or more stimuli.

behavior of C. elegans remains only partially studied (Ding
et al., 2020a). Nevertheless, there lies a huge potential in the
possibility of engineering collective responses in C. elegans
to perform tasks that could be highly beneficial to human
beings, such as swarms of C. elegans attacking pathogens
in crops.

This paper proposes a framework based on terms mainly
used in collective behavior to review and categorize studies
that investigate the nature of the operational principles driving
the collective response of C. elegans either through empirical
studies or through mathematical and computational models.
This categorization helps to determine the ground on which to
construct future experimental investigations to identify causal
relationships between individual mechanisms and group-level
behavioral responses in populations of C. elegans. At the same
time, we believe that by critically framing this body of literature
in C. elegans we contribute to identify mechanisms that could
be “hacked” with the methods of synthetic connectomics to
design swarms of biological animal robots. The framework we
propose is organized around three main types of collective
responses: aggregation, swarming, and collective decision-making.
In our view, these three behaviors can be considered the
“principal components” with which to categorize the available
research literature and to identify potentially promising future
developments in the study of collective behavior in populations
of C. elegans.

We provide a brief primer of the main modeling approaches
discussed in this paper in Table 1. The models described in the
following sections are derived from direct observations, thus they
valid by construction, albeit only for the phenomenon at hand and
often for a limited interval of parameter values.

The remainder of the paper is structured as follows. Section 2
gives an overview of the research work focused on aggregation
behavior in populations of C. elegans ; Section 3 reviews studies
on different types of collective and coordinated movements, most
of which are directed toward a source of odor (i.e., chemotactic
responses). Section 4 gives an overview of those few research
works targeting collective decision-making processes in C. elegans.
In Section 5, we build upon the critical review developed in
previous sections to identify fruitful directions for future works to
boost our understanding of the mechanisms of collective behavior
in C. elegans.
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2 Aggregation

Aggregation is a phenomenon where a group, initially
uniformly distributed, reaches a spatial organization in which
there exists a set of one or more high population clusters, and
another set of one or more spatial clusters with a low, or null,
population density (Dias et al., 2021). The C. elegans literature on
aggregation shows that this group response is regulated by various
factors related to genetics, developmental stage, and environmental
conditions such as oxygen level, temperature or chemicals
concentration, and local worm density. Moreover, we also noticed
that different methodological tools (e.g., in vivo experiments,
mathematical and computer-based simulation models) have been
used to promote a relatively dispersed exploration that does not
facilitate the development of a thorough understanding of the
mechanisms underpinning aggregation in C. elegans.

Being one of the simplest possible collective responses
and a prerequisite for other more complex social interactions,
aggregation is an ineludible candidate to be studied and
bioengineered into C. elegans. In this Section, we review the studies
that have already identified the mechanisms underlying different
forms of aggregation in populations of C. elegans. C. elegans
communicate through the release of a class of pheromones termed
ascarosides, which were first observed to be attractive to male N2
and hermaphrodite npr − 1 worms, while they were repulsive
to hermaphrodite N2 worms (Macosko et al., 2009). A class
of derivative pheromones, termed indole ascarosides, promote
aggregation among other social signals (Srinivasan et al., 2012).
These molecules are composed of four modules: a head group,
a carbohydrate, a fatty acid and an acid terminus. Variations of
their chemical composition result in different transmitted social
signals. For example, variation of a module transforms a repellent
indole ascaroside into an attractive one. This library of indole
ascarosides could then be used by the worms to interact via a
highly developed social communication scheme, a first evidence of
multi-layered social signaling in C. elegans. A remarkable feature
of the indole ascarosides is that they are known to be effective
on N2, npr − 1 and the Hawaiian strain hermaphrodite worms
at picomolar concentrations. Artyukhin et al. (2018), discovered
86 new ascaroside pheromones, further expanding our knowledge
of the vocabulary used by C. elegans to communicate. The release
of these pheromones depends on the developmental stage and
the environmental conditions, although the exact function of
some ascarosides remains unknown (Artyukhin et al., 2018). A
comprehensive review of nematode pheromones and nematode
signaling can be found in Muirhead and Srinivasan (2020) and Yang
et al. (2023).

Worms release attractive pheromones upon encountering
a specific stimulus, which triggers the aggregation process, as
observed in first larval stage (L1) worms. Such scenarios are
ideal setups to study and unveil the mechanisms of aggregation,
and also to bio-engineer collective responses which would not
spontaneously emerge in non genetically modified worms.

Artyukhin et al. (2015) observe that L1 worms form circular
aggregates when food scarcity is sensed, particularly when a high
number of worms (106 starved worms) are placed in a 6 cm plate
containing a low concentration (i.e., 0.01%) of ethanol or any other

even-chain alcohol. The morphology of the aggregates then shifts
from disk-like to stripe pattern in the course of days, remaining
mostly stable in its structure, due to the consumption of ethanol.
This is proven by the fact that adding ethanol to a population
of worms deployed in a stripe pattern morphology causes the
dissolution of the stripe pattern and the re-creation of the circular
pattern. Furthermore, the study shows that mutant worms that
are unable to metabolize ethanol still aggregate in the presence
of wild L1 worms. Hence, the authors speculate that both food
scarcity as well as social interactions mediated by some sort of
communication signal trigger aggregation. The social interaction
induced aggregation is studied in Avery et al. (2021), where the
authors develop a mathematical model based on a Keller-Segel
system to test the hypothesis that aggregation in L1 worms could
be driven by the secretion of a short-range attractant and a longer
range repellent pheromone. The disk-like patterns are correctly
replicated through numerical solutions of the mathematical model,
giving insights into the dynamics governing the aggregation in
starved L1 worms. In particular, the model demonstrates that
aggregation in food scarce environments can be accounted for by
the combination of attractant and repellent pheromones secreted
by the larvae. This first example of larval aggregation suggests that
this collective response in C. elegans is modulated by both attractive
and repulsive signals. The use of a Keller-Segel system to model
aggregation allows for the inclusion of any number of stimuli, at the
cost of losing detail at individual behavioral level. Moreover, these
systems require knowledge which is not always available such as
details about the functional relationship between the concentration
of one or more stimuli and the worm density. Nevertheless,
Keller-Segel systems remain a valuable methodological tool to
disentangle the causal relationships between multiple stimuli and
worm responses.

At adult stage, food presence and population density modulate
aggregation patterns observed in C. elegans, with significant
variations in the group responses in social and solitary strains. de
Bono and Bargmann (1998) conduct experiments on the
aggregation of npr-1 (social) and N2 (solitary) worms in the
presence of food. The results of the experiments show that the
presence of food and the population density are important factors
contributing to aggregation in several species. In particular, in the
presence of food, N2 worms tend to lower their speed of motion
and disperse, while npr-1 mutants move rapidly toward food and
form aggregates on the borders of the food patch, a behavior
referred to as “bordering” (de Bono and Bargmann, 1998).

In a follow-up study, de Bono et al. (2002) show that bordering
is a group response that can be observed in npr-1 worms under
different circumstances, suggesting that it could represent an
adaptive response to stressful environmental conditions. Examples
of stressful environments include, but are not limited to, food
scarcity and unfavorable temperatures.

Bordering is just an instance of a larger set of aggregation
responses observed during social feeding. These responses are
regulated not only by food that tends to aggregate worms, but also
by pheromones that tend to keep the worms away from each other.
So far, experiments on group responses in the context of social
feeding as in de Bono and Bargmann (1998) and de Bono et al.
(2002) have been conducted using a relatively small population size
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(±80 worms), which may limit the generalizability of the findings
to larger populations.

Ding et al. (2019) simulate, using an agent-based model,
the behavioral responses of both npr-1 and N2 worms during
aggregation on food patches (ie., social feeding). Each worm is
modeled as an agent undergoing a persistent attractive random
walk toward higher local worm densities with a density-dependent
reversal rate (i.e., how often an agent reverses its direction of
motion). The model shows that the different group responses
observed in npr-1 and N2 worms when placed in an environment
with patches of food can be replicated by modulating reversal rates
and the speed of single worm motion with respect to the density
of the worms. In particular, to model biological data, npr-1 worms
reverse more often as the local density increases, while N2 worms
do not. On the other hand, both strains have to decrease their
velocity as the local density increases, with npr-1 moving quicker
than N2 worms. Gray et al. (2005) find that the reversal rate of N2
worms is indirectly proportional to the presence of food: with food
scarcity, they tend to reverse their direction.

Another environmental factor that induces aggregation in
C. elegans is the oxygen level sensed by the worm. Experiments
conducted by Demir et al. (2020) found that sub-optimal levels
of oxygen (above 12%) induce the formation of aggregates with
morphologies resembling Turing patterns in both N2 and npr-1
worms. Moreover, these experiments reveal that the presence of
food does not alter the aggregation dynamics, suggesting that the
levels of oxygen have a stronger effect on worm behavior than
availability of food. The authors develop a macroscopic Keller-
Segel model which allows to predict aggregation by imposing
boundaries on the density of worms, which in turn depends on
the initial oxygen levels. The model suggests that aggregation in
both strains happens in the presence of suboptimal levels of oxygen
and a relatively high population density, providing numerical
bounds for the population density given a specific oxygen level.
However, the model suffers from a numerical limitation on the
upper bound of the worm density: if the density is above this bound,
the model predicts that no aggregation occurs, in contradiction
with findings that leverage an agent-based model undergoing a
persistent random walk (Vellinger et al., 2024).

Several models are developed to test hypotheses on the nature
of worms individual mechanisms underlying aggregation. For
example, at the macroscopic level, the aggregation process in a high
density population of C. elegans is expressed as a phase separation
process in Chen and Ferrell (2021). The authors describe the
colony formation (i.e., aggregation) of the worms as a condensation
phenomenon, where the formation of a cluster breaks the symmetry
of the system, leading to high and low density areas. This process is
modeled with a single ordinary differential equation, where the key
parameter for the stability of the aggregate is given by the amount
of worms entering and leaving the aggregate itself. The limitation
of such a model resides in that it depends on a parameter which is
extrapolated from observations, without any rule to predict it based
on external conditions; essentially, it lacks predictive properties.

Conversely, a microscopic (agent-based) model based on active
physics for the dynamical network aggregates in C. elegans is
proposed by Sugi et al. (2019). In this model, the main
factors influencing the aggregation process are the alignment of

worms after collisions and smooth turning. The model takes
into account a repulsive and an attractive force generated by
the excluded volume of worms and by the surface tension
of water around worms, respectively. The microscopic model
successfully reproduces the dynamical network formation and its
dependence on experimentally controlled parameters, providing
a minimal physical description of C. elegans collective motion
within the framework of active matter physics. However the results
indicate that the model is unable to accurately reproduce the
behavior of the worms. It is argued that this is due to factors
such as individual trajectories not being taken into account.
Nevertheless, the inclusion of these features could significantly
increase the complexity and the computational resources required
to run the model, thereby hindering the use of the model for
large populations.

The physical medium on which worms move influences their
locomotion: they swim in liquids and crawl on solid surfaces.
When swimming in a liquid, it has been observed that worms
within an aggregate are able to synchronize their gait (Yuan et al.,
2014). The model suggests that the main factor influencing gait
synchronization is the distance between worms. In particular,
worms that are closer to each other tend to synchronize their gait
more frequently than those far apart. The model approximates
the physical embodiment of the worm with a fine-grained level
of details that renders the simulation of large size populations
computationally expensive. The experiments carried in Yuan
et al. (2014) feature few worms, leaving out the possibility to
investigate how density-induced phenomena could interact with
the synchronization induced effect. A similar model to Yuan et al.
(2014) was developed few years before by Niebur and Erdös (1991).
In this early model, the authors consider the dynamics of groove
formation on the drag forces. The formation of grooves under
the body of the worm in different environmental conditions, such
as wet agar or a water film, modifies the lateral forces the worm
can exert to propel itself. The model shows the physics behind
the locomotion of worms, arguing that the latter are governed
by the surface on which the worms move, which ultimately plays
a role in the likelihood of gait synchronization and thus the
dynamics of worms inside aggregates. We hypothesize that worm
gait synchronization could bring forward coordinated movement
among worms. Thus, the use of a specific medium, liquid or solid,
given the knowledge of how the medium influences the likelihood
of gait synchronization, could play a vital role in engineering
specific responses. Moreover, the morphological properties of
the environment induce the emergence of group responses in
C. elegans. For example, the presence of a vertical structure, such
as a toothbrush bristle, in a high worm density environment
without food induces the worms to form tower-like structures.
It was reported that C. elegans worms are able to form a 3
dimensional tower as a mechanism for dispersal (Perez et al.,
2025). This structure is adopted both in the wild and in laboratory
settings, across multiple strains and developmental stages, without
a clear specialization of individuals within towers. The tower-like
aggregate is able to move on its own, extending the arms toward
passing objects and subsequently dispersing. It is also responsive to
touch, which implies that mechano-sensation plays an important
role. In the context of bioengineering animal neural circuits,
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understanding the neural basis of tower formation could help in
designing neural modifications that induce this phenomenon in a
desired setting.

Overall, the literature on C. elegans aggregation is composed
of macroscopic and microscopic models. The macroscopic models
are characterized by sets of differential equations, such as Keller-
Segel models (Demir et al., 2020; Avery et al., 2021) that describe
the interaction of a population density with one or more chemicals
or simpler models with a single equation that describes the rate at
which worms leave an aggregate (Chen and Ferrell, 2021). These
models are useful for describing the interaction mechanisms of
large populations of C. elegans although a mean field approach
requires knowledge about how exactly worms integrate multiple
cues and how this integration brings forward specific behaviors.
For this reason, agent-based models (Niebur and Erdös, 1991; Yuan
et al., 2014; Ding et al., 2019; Sugi et al., 2019; Vellinger et al.,
2024) are necessary to gain knowledge of the response of a single
worm to one or more stimuli, which can then be expanded to
include the effect of other worms. With this spirit, the following
sections contain the basic blocks for understanding the operational
principles underpinning single worm responses in scenarios which
are extensible to large populations.

3 Swarming

Swarming refers to group movements of a population of agents
toward a common direction, usually in a coordinated fashion
and stemming from a collective decision, with aligned velocity
vectors. The coordinated response of a group of bioengineered
C. elegans could have numerous applications. For example, a group
of worms might be programmed to swarm toward a bacterial
patch and, equipped with a strain-specific bacteriophage virus,
destroy it. The literature on swarming in C. elegans is relatively
limited. In those few studies focused on swarming, the group
movement is generated in response to chemical stimuli. Thus,
swarming is generally referred to as collective chemotaxis. It
has been observed that groups of C. elegans also swarm toward
patches of bacterial food (Ding et al., 2020b). In particular, worms
first aggregate on a food patch and, once food is consumed,
they collectively move toward another patch. In the presence
of multiple food patches with varying density, worms distribute
proportionally to the density of the food patch (Madirolas et al.,
2023). This proportional distribution is observed for food patches
made of different bacterial strains, although its mechanisms remain
unexplored. It is assumed that the release of different types of
pheromones contributes to the distribution of worms among the
food patches, balancing the local worm density (Dal Bello et al.,
2021; Luo and Portman, 2021; Molina-García and Barrios, 2021). A
similar mechanism was observed during chemotaxis in Matsuura
et al. (2005), where experiments show that the relative amount of
N2 worms reaching the source of an attractive chemical stimulus
(measured by the chemotaxis index) is inversely correlated to
the population density. The authors account for this evidence by
formulating the hypothesis that the release of repellent pheromones
by worms hinders the development of a group movement toward
the stimulus. The repellent pheromones are produced to alert other

worms that a particular attractive odor, usually associated to food, is
being (or will be soon) depleted. Thus, this pheromone production
could have evolved to regulate the population density of C. elegans
at a food location.

An agent-based model of chemotaxis based on the pirouette
rate is described in Pierce-Shimomura et al. (1999). This model
is able to qualitatively and quantitatively reproduce the pirouette
behavior of C. elegans during chemotaxis assays with attractive
odors. The authors provide a detailed description of operational
principles accounting for the development of chemotaxis in
individual C. elegans. In particular, the concentration of the
attractive stimulus modulates the worms’ pirouette rate, which
is argued to be the main strategy worms use to explore
their environment. The worm movement during chemotaxis is
decomposed into two behavioral states: one characterized by mostly
straight runs, by which the worms exploit their “knowledge” of the
odor gradient in order to climb it; the other, consisting of sharp
reorientations, by which the worms explore the environment to
avoid points of odor local minima. The exploration is performed
via a three-stage process. First, worms compare the current level of
the chemical concentration with what they previously experienced,
a process termed differentiation. Levels above a certain sensory
threshold are attenuated (low-pass filtering) and a non-linear
function is applied to the currently sensed gradient to obtain the
pirouette probability.

The influence of pirouettes in C. elegans during chemotaxis
is also the subject of the work in Yoshimizu et al. (2018), which
shows that the chemotactic behavior of worms moving toward a
food source differs depending on whether the worms are alone or
with other worms. In accordance to what was previously shown
in Matsuura et al. (2005), the results discussed in Yoshimizu et al.
(2018) suggest that N2 worms releases some repulsive pheromone
which influences the pirouette rate of the other worms when
climbing a chemical gradient. In particular, in single-worm studies,
N2 C. elegans tends to directly climb the gradient. When operating
in groups or even in pairs, N2 C. elegans first disperse with pirouette
behavior and only later move toward the attractant source.

It is also noted that single worms have a higher probability
of performing pirouettes at lower concentration of the attractive
cue than those in groups and pairs. As in other similar studies,
the relatively small group size (max 8 worms) hinders the
possibility to observe and correctly evaluate the extent to which
the group density influences pirouette initiation, dispersal and
consequently chemotaxis.

Ding et al. (2020a) address strain-specific behavioral differences
in collective foraging. In particular, they perform a comparative
study of the specific relationships betweens the behavior of solitary
(i.e., N2) and social (i.e., npr-1) strains of C. elegans and the
distributions of food in a self-regenerating food environment
developed in Bhattacharya and Vicsek (2014). The results of this
study suggest that the foraging of the two strains depends on
the food distribution: the solitary N2 strain is more efficient in
an environment containing uniformly distributed food, rather
than patchily distributed food. In the social npr-1 strain, the
opposite holds true. The experiments also indicate that the N2
strain is always more efficient than npr-1 in consuming food.
Nevertheless, this conclusion applies only to the relatively small
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groups (≈ 40 worms) used in the study. In larger groups density-
induced responses of social feeders may enhance their foraging
efficiency and consequently reverse the conclusions of this study.

Pandya et al. (2015) build an agent-based model looking at
C. elegans chemotaxis toward bacteria which release an attractive
odor and, once ingested, kill the worms through the release of a
toxin. Experiments with 100 N2 worms are performed to analyse
the correlation between the chemotaxis index and (i) the diffusion
constant, which dictates the rate of diffusion of the attractive odor,
and (ii) the strength of the attraction, which dictates how strongly
worms respond to an attractive odor.

In the microscopic model, the heading direction is influenced
by the direction toward the bacterial colony and the perceived
strength of attraction, while the velocity is drawn from a normal
distribution based on the experimental data. In a previous
study, Zhang et al. (2005) have shown that after a short exposure
to a toxic bacteria, worms are able to learn to subsequently avoid it.
Thus, the model is expanded by allowing the agents to learn about
the toxicity of the attractive source and consequently decrease
their probability of heading toward it, through an association
between food toxicity and attractive odor. Furthermore, the authors
analyse the response of the model when the odor is not static, but
dynamically fluctuates with a periodic pulse. They find that longer
pulse periods are associated with a lower chemotaxis index. Overall,
the model predicts a consistent decrease in the chemotactic index
when agents are able to learn about the toxic substance across values
of the diffusion constant and of attraction strength.

While Pandya et al. (2015) focus on the collective behavior
and density-dependent chemotaxis of C. elegans, Soh et al. (2015)
take a different approach by building an agent-based model for
the simulation of the full body movement of C. elegans during
chemotaxis. They start from a model of a robot snake to model
the motion of the full body of a worm through a Newton-Euler
system. This system allows to model the translational and rotational
dynamics of a rigid body through a set of differential equations
for the position and the torque of a rigid body (Hahn, 2002).
Additionally, they model the information-processing of C. elegans
where a set of second-order differential equations governs the
output of sensory neurons responsible for the detection of the
attractant odor. The output of the sensory neurons is then fed to
a neural network composed of three layers of interneurons, which
finally outputs the probability of performing a specific movement
selected from pirouette, the weathervane mechanism (a curving
of the body toward the highest concentration of the odor during
forward motion), and random walk. The results indicate that the
gradient of the attractive source could be determined based on the
angle of the head, where the sensory neuron for the attractive odor
is located, and the second-order differentiation of the chemical
gradient. However, their parameter tuning was done manually and
thus may not represent the natural C. elegans features. Moreover,
it considers the model of a single worm, thus its relationship with
density-dependant behaviors is not explored.

Matsuoka et al. (2008) construct an agent-based model with
Monte Carlo simulations for the thermotaxis i.e., the movement
influenced by temperature, for large (> 25, 000 worms) populations
of C. elegans. Their simple model confirms results already
obtained in previous studies where the cultivation temperature of

worms influences their preferences for temperature. In particular,
worms presented with a thermal gradient below their cultivation
temperature move more randomly than when presented with a
gradient above the cultivation temperature.

C. elegans can be sensitive to the level of humidity, displaying
hygrotaxis (Russell et al., 2014). The preferred level of atmospheric
moisture in adult worms depends on their experience during the
developmental phase. In particular, if they experience lack of food
and high humidity levels, at adult stage they are attracted to lower
levels of humidity.

Furthermore, Parida and Padmanabhan (2016) report that
C. elegans are able to perform durotaxis, i.e., to move in response
to the stiffness of the underlying surface. In particular, worms are
attracted to stiffer regions. This holds true even when a humidity
difference is present, although the effect of moisture dominates the
effect of stiffness when the difference in stiffness of the regions is
low. Moreover, in the presence of a chemical attractant, worms
climb the chemical gradient without preference for the surface
stiffness. Overall, hygrotactic and durotactic assays provide insights
into the response of C. elegans to varying environmental conditions,
which could potentially influence the response of worm collectives
and thus should be kept in mind for the design of biological
animal robots.

The relatively limited number of models on swarming
tends to exploit agent-based models as a methodological tool
for representing individual responses to attractive or repulsive
stimuli (Pierce-Shimomura et al., 1999; Matsuoka et al., 2008;
Pandya et al., 2015; Soh et al., 2015). The principles of
C. elegans swarming are less understood than those underpinning
aggregation. The reason behind this is that the environment in
aggregation scenarios is globally isotropic, meaning that the stimuli
are globally uniformly distributed, while local gradients are induced
by, e.g., oxygen consumption. On the other hand, in swarming
scenarios, the environment is globally not isotropic. For example,
food patches need to be non-uniformly distributed for worms
to leave them by swarming toward another patch, and an odor
gradient must be present for worms to climb it. Moreover, common
laboratory strain N2 worms are inadequate for the development of a
swarming group response as the effect of their pheromones tends to
induce dispersion. Thus, one plausible direction for bioengineering
swarming C. elegans could be the modification of the neural circuit
responsible for producing an aversive response to pheromones in
N2 worms. Whether it is more adequate to completely suppress the
aversion or to modulate it, either to a less aversive or to an attractive
response, requires further investigation.

4 Collective decision-making

A decision-making process is referred to as collective once
none of the actors of the process can be considered responsible
for the final decision. Experimental studies show that worms
are able to make decisions on the fly by integrating multiple,
possibly contradicting, environmental cues. For example, once on
a particular food patch, the decision of a worm to remain or to
leave the patch is based on considering sensory cues that generate
opposite responses, since the food itself can generate both an
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attractive and a repulsive reaction (de Bono et al., 2002). In these
circumstances, the final decision depends on the particular strain at
hand (Bendesky et al., 2011).

As shown in Tanimoto and Kimura (2019), behavioral choices
determined by conflicting chemical signals require the neural
accumulation of antagonistic cues either through recurrent
synaptic circuits responsible for sensing these cues (Gold and
Shadlen, 2007) or through intracellular mechanisms (Curtis and
Lee, 2010). The neural mechanisms underlying this type of
decisions can be unveiled by analyzing (i.e., by isolating and
observing the activity of) the neural sub-modules responsible for
generating the possible responses starting from a particular set
of stimuli (Tanimoto and Kimura, 2019). For example, Ishihara
et al. (2002) place a stripe of repulsive odor between the initial
position of the worms and an attractive odor. Their findings
show that wild isolates cross the stripe, whereas N2 worms, in
general, do not, suggesting different mechanisms for the integration
of the environmental cues. Another example is given by the
neural network for chemotaxis constructed in Appleby (2012). The
resulting circuitry is simpler than the one possessed by worms,
although able to reproduce chemotaxis in a biologically plausible
way. The more intricate circuit of C. elegans is responsible for the
integration of multiple, possibly overlapping, sensory cues into a
common downstream circuitry.

The principle of integrating multiple sensory cues applies
also to foraging C. elegans. As they consume the food patch,
they alternate between two behavioral states: roaming, which
typically occurs when a worm leaves a patch in search for a
better one, and dwelling, characterized by a local exploitation
of the patch. The choice to leave the patch is mediated by
numerous stimuli, such as satiety and chemical odors (Ji et al.,
2021). For example, worms adjust their search strategy based
on the food distribution encountered within the last half an
hour (Calhoun and Hayden, 2015). Moreover, the neurons
responsible for the transition between the roaming and dwelling
states are known (Ji et al., 2021). Furthermore, it has been
observed that the choice to leave a food patch happens mostly
during the roaming state. In particular, worms briefly accelerate
right before leaving the patch (Scheer and Bargmann, 2023). A
sensory cue responsible for the transition between the roaming
and dwelling state is given by pheromones, signaling the presence
of competitors (Molina-García and Barrios, 2021). For example,
as discussed in Section 2, ascaroside pheromones are mostly
repulsive for hermaphrodite N2 worms. However, in the presence
of food, the repulsion diminishes (Molina-García and Barrios,
2021). The modulation from attraction to repulsion is present
only in hermaphrodites and is mediated by the abundance
of food (Dal Bello et al., 2021; Molina-García and Barrios,
2021).

The specific response of a worm, whether repulsive or
attractive, given by a stimulus is flexibly represented within the
neural circuit by encoding past experiences and predictions of
that stimulus (Molina-García et al., 2024). An example is that
worms are innately attracted to salt; however, through aversive
conditioning, the worm learns to avoid salt. When pairing a positive
stimulus to a negative experience, two memories compete for
behavioral expression.

Tanimoto et al. (2017) provide a simple state-machine (i.e.,
a type of model used to describe the behavior of a system
in terms of its states, transitions, and actions) for the odor
avoidance in C. elegans, where, in accordance to what discussed
in Pierce-Shimomura et al. (1999), worms alternate between a
state of pirouettes and a state of straight runs, depending on the
concentration of the repellent. The pirouette and the run states
are similar in terms of behavioral output to the dwelling and the
roaming states, respectively. This parallelism suggests that even
if the behavioral repertoire of the animal is limited in terms of
states, these are adaptable with respect to the environment. In
particular, the adaptation is represented by the modulation of the
transitions from a state to another, together with modifications
to the heading in such a way that the best direction can be
followed. The transition from pirouette to run is dictated by the
time integral of the change in repellent. The worms require an
accumulation of the antagonistic cue before they switch to the run
state, whereas the switch from run to pirouette only takes place in
response to variations in repellent: when it is positive, it means
the worm is going toward the repellent, so it needs to quickly
readjust its heading by means of pirouettes (see also Figure 5
in Pierce-Shimomura et al., 1999).

Haley and Chalasani (2024) provide a broad view of the
foraging strategies in C. elegans interpreted as a decision-making
process. In particular, they provide a useful schematic diagram that
provides a holistic view of all the decisions related to foraging
in C. elegans, from exploration to exploitation, including dietary
preferences and food distribution.

In their assay, Ghosh et al. (2016) place a ring of hyperosmotic
fructose around the initial position where worms are placed on the
agar plate. Their result indicate that a low proportion of worms
(≈ 30%) leave this ring, but when two spots of attractive dyacetil are
placed further from the ring, this proportion increases significantly
(80%). Motivated by these results, they uncover a neural circuit
that regulates the integration of threats and rewards in C. elegans,
revealing a neural architecture for how these decisions are made.

Further experiments are required to reveal whether group
effects, mediated by pheromone signaling, might also play a role
in the decision to initially disperse from the ring. More generally,
if we were to induce swarming into bioengineered worms as per
Section 3 and to combine it with the decision-making principles
of Ghosh et al. (2016), we could design a multi-level system of
biological robots. Such biological robots could first aggregate in a
spot, then through a carefully designed decision-making process,
select another spot to swarm to. This would represent a first
example of a completely autonomous biological swarming robot
capable of finding and destroying bacterial patches. However, such
a design requires careful consideration of the possible behaviors a
worm might favor depending on the environmental conditions at
hand. Other than chemical odors, another common environmental
cue is food, which induces specific behaviors.

Scholz et al. (2017) construct a Markov model for the stochastic
feeding of C. elegans, which consists of rapid bursts of pumping
food from the environment followed by states in which they
pause their feeding. They performed assays with different food
concentrations and found that worms stochastically switch from
sampling their environment, integrating information from the
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environment, to either committing to feeding in rapid bursts,
or to pausing. The probability of switching could be modeled
on a Bayesian inference process, where the decision taken by a
worm depends on its estimate of a probability distribution. The
results suggest that there exists a trade-off between the speed
and the accuracy with which worms are able to pump food.
Another trade-off exists between exploration and exploitation,
where worms try to maximize their intake with past knowledge
about their environment, without sacrificing their adaptability to
dynamic environments.

These results, coupled with previous studies, show that past
experiences, environmental cues, developmental stage and sex-
specific preferences shape the behavioral output of the worm. In
particular, all these factors are integrated within the neural circuit
of the worm, where numerous sensory neurons propagate signals
to a common downstream muscular circuitry (Macosko et al.,
2009). Understanding the operational principles of this biological
bottleneck could help to establish the rules that govern decision-
making in C. elegans. In the remainder of this section, we present
several C. elegans neural circuits that have been analyzed and
reconstructed in-silico.

Sarma et al. (2018) present the OpenWorm project, which
aims at building a framework that allows the simulation of
the biophysical neural activity and of the biological tissue of
C. elegans. Their goal is to develop a framework capable of
explaining how the behavior of the worm arises from its biological
features. In particular, they employ a level of detail that requires
relatively high computational power in order to simulate the
behavior of C. elegans. Although it is possible to select different
simulation engines which are more or less detailed, to date, some
functionalities of the framework do not correspond to the biological
behavior of the actual worm. The inherent complexity of such a
simulator renders it heavily dependant on the hardware used to
run the simulations and possibly unusable for the simulation of
multiple worms, let alone for a swarm.

The complexity of reconstructing the entire worm connectome
resides in that we know its structure (where neurons are placed),
but we lack the knowledge regarding its functionalities. For
example, the sign (inhibitory or excitatory) and strength of
some synapses is unknown. Furthermore, neurotransmitters
and extrasynpatically released neuropeptides play a crucial role
in determining the functionality of the worm neural network,
inducing functional variability across worms due to neural
plasticity and diverse past experiences (Randi et al., 2023).
A possible direction for clarifying the relationship between
structure and functionality in the C. elegans connectome
could be to abstract the neural sub-modules responsible for
specific behavioral responses to artificial neural networks.
For example, some connectomic-oriented approaches to
construct models inspired by the C. elegans connectomes
have been explored by Yan et al. (2022), demonstrating the
effectiveness of sparse backpropagation algorithms in creating
bionic structures that mimic the C. elegans nervous system.
Although it is not confirmed if C. elegans employs a mechanism
akin to backpropagation, its neural activities show similarities
to recurrent neural networks (RNNs) (Hassabis et al., 2017;
Della Vecchia, 2021). Hernandez et al. (2022) explored Spiking

Neural Networks (SNNs) to develop a C. elegans inspired
model. These connectome-inspired models often lack structural
bio-plausibility, but deliver adequate performances in their
given tasks.

A number of works rely on the optimisation of neural networks
that model the nature of the synapses located in neural sub-circuits
of C. elegans. Cangelosi and Parisi (1997) describe how they trained
a neural network to simulate the circuit responsible for the touch
response in C. elegans using a genetic algorithm. Similarly, Lanza
et al. (2021) build a recurrent neural network (RNN) for the
response of C. elegans to aversive stimuli using Monte Carlo
simulations. Barbulescu et al. (2023) train a RNN, a long-short
term memory (LSTM) unit and a gated recurrent unit (GRU) in
order to simulate the whole connectome of the worm, finding that
the latter is able to best simulate and adapt the network dynamics
against a wide range of stimuli. In order to test their models, they
use data generated from the c302 model of C. elegans (Gleeson
et al., 2018), the same framework leveraged by the OpenWorm
project, in particular using the NEURON simulator (Carnevale and
Hines, 2006). A similar approach is used by Roberts et al. (2016)
for the development of a stochastic state machine representing the
synaptic circuit responsible for the search behaviors of C. elegans.
They find four possible internal states for the worm: a forward and
a reversal of the movement and two states where they do not move.
The probability of switching between these states is found from
molecular level mechanisms of the neurons responsible for the
movement of the worm. Their findings suggest that the most likely
state for a worm is going forward, followed by a pause of movement,
which can lead to an equiprobable switch to the forward or the
reversal state. Finally, the reversal state almost exclusively leads to a
pause state, which leads almost exclusively to the forward state.

Izquierdo and Lockery (2010) found a minimal neural network
that models the klinotaxis of C. elegans through an evolutionary
algorithm which not only replicates correctly the klinotactic
behavior, but also displays novel orientation behaviors which arose
as emergent behaviors of the network. The results provide useful
insights in the understanding of the neural circuits which govern
the klinotaxis of C. elegans. Similarly, Matsumoto et al. (2024) find
a neural network model for the navigation of C. elegans: worms
integrate sensory knowledge about the local concentration of the
odor and motor information on the bearing angle of their neck,
thus leading to klinotaxis.

Another approach for modeling the whole nervous system
of C. elegans can be found in Pavlovic et al. (2014), where
authors utilize a Erdös-Rényi Mixture Model (ERMM) to find
blocks (or modules) of neurons which are related to the same
functional circuit. Indeed, providing functional blocks gives a
greater degree of explainability with respect to single neurons.
Their approach consists in detecting neural clusters which have
a high internal connectivity and a lower connectivity with other
clusters. The authors find that the stochastic ERMM yields 9
blocks, compared to 4 − 5 blocks in deterministic models. Overall,
the blocks correspond between the two methods, but ERMM
is able to provide a biologically more accurate block division,
allowing to compress the connectome of C. elegans. This approach
shows a promising path for the simulation of swarms of in-
silico worms.
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In summary, when populations of C. elegans integrate
conflicting stimuli (e.g., in a multiple options decision-making
scenario), individual factors coupled with environmental cues and
population-level dynamics contribute to determine the decision
of the collective. In particular, neural circuits handle antagonistic
signals, sensory inputs (e.g., chemical gradients, temperature shifts)
shape the worm’s immediate preference, and inter-individual
factors like crowding or pheromone-based signaling contribute to
the emergence of the final collective decision.

5 Discussion

We have opened this paper by introducing a novel approach
to the synthesis of artificial biological creatures based on the
methods of neuro-synthetic biology. We mentioned that synthetic
connectomics could potentially pave the way to a novel form
of direct engineering for the design of biological creatures
(i.e., biological animal robotics). In the design of biological
animal robots, the individual consists of a biological organism,
naturally evolved over millions of years, containing extensive
synthetic modifications to its nervous system intended to redefine
its behavior. The design principle underlying such biological,
carbon-based robotics is similar to that of modern silicon-based
robotics: the modified neural circuits act as a control unit,
harnessing the naturally-occurring wetware of biological animals,
thus overcoming the limitations of silicon-based hardware in terms
of adaptation and robustness in natural biological environments.
C. elegans being the first animal with a fully mapped connectome,
and with a relatively short developmental phase, represents a
highly beneficial biological platform for exploring the potential of
biological animal robotics. In particular, populations of C. elegans
could be designed to operate in a cooperative and coordinated way
to carry out tasks that are beyond the competencies of single worms.

The engineering of collective responses in populations of
C. elegans would benefit from a solid understanding of the
mechanisms regulating the natural worm responses in high-
density populations under varying environmental conditions.
Our review points to the fact that only a minority of C. elegans
literature focuses on population dynamics and the mechanisms
underpinning collective behavior in C. elegans. These few
studies use different methodological approaches ranging
from classic in vivo experiments, to microscopic (i.e., agent-
based) and macroscopic models implemented with systems of
differential equations. However, this interdisciplinary approach
has so far generated a still fragmented picture of C. elegans
collective behavior.

We reviewed the literature on collective behavior in
C. elegans with respect to three fundamental social responses
(i.e., aggregation, swarming, and collective decision-making).
With the aim to identify fruitful directions for future works, we
superpose to this three-behavior framework another framework,
originally illustrated by Nolfi and Floreano (2000), where the
mechanisms underlying collective responses are divided in three
categories based on the level (i.e., supra-organism, organism, and
sub-organism) at which they operate.

The supra-organism level, corresponding to the observed
collective response (e.g., aggregation, swarming, collective

FIGURE 1

Venn diagram composed of the three main collective responses
analyzed in this review. Each collective behavior is categorized into
a set, while the intersections represent observed or hypothesized
composite behaviors in C. elegans. The intersection of aggregation
and swarming is represented by food swarming, where worms first
aggregate on a patch, consume it, and swarm toward a more
prosperous patch. The intersection of swarming and collective
decision-making is hypothesized to be akin to a site selection task,
where worms need to select collectively a patch and swarm toward
it. To the best of our knowledge, this has not yet been observed in
collectives of C. elegans. The intersection of aggregation and
collective decision-making contains patch-leaving: aggregated
worms need to choose whether to leave the patch.

decision-making), includes mechanisms followed uniformly
by all individuals. These mechanisms are generally modeled
and investigated using systems of differential equations. The
organism level includes mechanisms that govern the interactions
among individuals and between the individual and the physical
environment through chemical, mechanical, and thermal cues.
These mechanisms are generally modeled and investigated using
agent-based models. Finally, the sub-organism level includes
mechanisms that modulate individual responses by taking into
account the individual physiological factors such as developmental
stage, sex, past experiences and the strain at hand. These
mechanisms are investigated by developing models that look at the
neural dynamics responsible for the worm motor output.

The Venn diagram in Figure 1 shows the three fundamental
collective behaviors and other social responses (hereafter, referred
to as derived) that we have identified as resulting from any
combination of the fundamental collective behaviors. Table 2 shows
how all the fundamental and derived social behaviors fit into
the three-level framework and the related work that has been
already dedicated to each of them. At the interaction between
aggregation and swarming, we placed food swarming (see Figure 1),
a process where worms first aggregate on a patch, consume it, and
subsequently swarm toward a more prosperous patch. Table 2 tells
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TABLE 2 Table of publications cited in this review organized.

(III) Avery et al., 2021;
Demir et al., 2020;
Chen and Ferrell,
2021; Perez et al.,
2025

Madirolas et al.,
2023

(II) de Bono et al., 2002;
Ding et al., 2019;
Vellinger et al.,
2024; Sugi et al.,
2019; Yuan et al.,
2014; Niebur and
Erdös, 1991

Matsuura et al., 2005;
Pierce-Shimomura et al.,
1999; Yoshimizu et al., 2018;
Ding et al., 2020a; Pandya
et al., 2015; Matsuoka et al.,
2008

Tanimoto et al., 2017; Haley
and Chalasani, 2024; Scholz
et al., 2017

Ding et al., 2020b

(I) Yang et al., 2023;
Muirhead and
Srinivasan, 2020

Soh et al., 2015 Tanimoto and Kimura, 2019;
Ishihara et al., 2002;
Molina-García and Barrios,
2021; Molina-García et al.,
2024; Ghosh et al., 2016;
Macosko et al., 2009; Sarma
et al., 2018; Randi et al., 2023;
Yan et al., 2022; Della Vecchia,
2021; Hassabis et al., 2017;
Hernandez et al., 2022;
Cangelosi and Parisi, 1997;
Lanza et al., 2021; Barbulescu
et al., 2023; Gleeson et al.,
2018; Carnevale and Hines,
2006; Pavlovic et al., 2014

Sawin et al., 2000 de Bono et al., 2002;
Milward et al., 2011;
Ji et al., 2021;
Scheer and
Bargmann, 2023

Appleby, 2012;
Roberts et al., 2016;
Izquierdo and
Lockery, 2010;
Matsumoto et al.,
2024

A • ◦ ◦ • • ◦

B ◦ • ◦ • ◦ •

C ◦ ◦ • ◦ • •
The top part divides the publications into three levels: supra-organism (III), organism (II) and sub-organism (I). The bottom part shows the possible combinations of collective responses
starting from the three axis of aggregation (A), swarming (B) and collective decision-making (C). Black and white dots indicate if a set is selected or not, respectively.

us that this phenomenon has been studied at the organism and sub-
organism level by Ding et al. (2020b) and Sawin et al. (2000). At the
interaction between swarming and collective decision-making we
placed site selection (see Figure 1), a process where worms need
to collectively select a patch and swarm toward it. An instance
of site selection has been studied at the supra-organism level
by Madirolas et al. (2023), although experiments make use of only
5 worms, and at the sub-organism level by Izquierdo and Lockery
(2010), Appleby (2012), Roberts et al. (2016), and Matsumoto et al.
(2024). The dynamics of organism level phenomena in site selection
tasks remain under explored and further studies are required to
link the supra and sub-organism levels for this response. At the
interaction between aggregation and collective decision-making
we placed patch-leaving (see Figure 1), where aggregated worms
need to choose whether to leave the current patch or remain
on it. Patch-leaving has been studied only at the sub-organism
level (de Bono et al., 2002; Ji et al., 2021; Scheer and Bargmann,
2023). Finally, we hypothesize that the intersection of the three sets
might contain compound social responses, allowing a combination
of the three responses. To the best of our knowledge, studies on
compound social responses in C. elegans are still non existent,
thus this column is omitted from the table. The empty cells
of Table 2 represent future directions for further developing the
field of collective behavior in C. elegans. For example, there exist
studies pertaining to the supra-organism level aggregation and site
selection sets, but not to the other sets. The absence of high-level
descriptions for swarming and collective decision-making shows

that the population-level dynamics of these two responses remain
poorly understood. Similarly, food swarming and patch leaving
miss a supra-organism level representation.

We believe that this relatively “patchy” state-of-the-art
description of mechanisms underlying collective behavior in
populations of C. elegans requires a more systematic research
work possibly supported by synergistic contributions from different
methodological tools. We suggest that experimental work should
focus on discerning the effects of pheromones from those
of population density. This could be done, for example, by
observing and analyzing the behavior of worms that are deficient
in pheromone production/sensing (e.g., daf-22 mutans), within
increasingly higher population densities in order to compare
their behavior to that of worms that produce pheromones (e.g.,
N2 or npr-1 mutants). Such comparative experiments could
exploit new techniques to automate tracking of single worms
and to analyse their behavior, in order to better understand
how density influences the behavior of worms and what effect
pheromones have in these high density aggregates. The use
of an interdisciplinary methodological toolkit could help in
overcoming practical limitations of our understanding of the
operational principles governing the release of pheromones in
varying environmental and social conditions. For example, it
could provide models and in-silico experiments of biologically
plausible responses to different types of stimuli. These models could
exploit in vivo elements, such as the tracking data of C. elegans,
to validate “data-driven” assumptions made on the dynamics
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governing the release of pheromones in specific environmental
conditions. Multiple types of descriptive data can be collected by
odor chambers (Chen et al., 2023) for populations of C. elegans
navigating odor gradients, potentially leading to the development
of models of the social interactions during swarming. Further and
more complex models could be used to validate assumptions on
the interactions of multiple causal factors of collective behavior.
Important factors are those related to the release of and response
to pheromones and those related to the dynamics governing
the reaction to mechanical social stimuli potentially leading to
gait synchronization.

To conclude, we believe that scientific progress on the
understanding of collective behavior of populations of C. elegans
requires an extensive analysis of data relative to the movement of
worms in increasingly higher density scenarios. Moreover, the field
would benefit from the development of data-driven models, which
need to be validated to provide insights into the causal rules linking
individual actions, neural mechanisms, environmental conditions,
and emerging collective responses. A theoretical and empirical
understanding of the principles driving natural collective behavior
in C. elegans could allow us to instill them with specific synthetic
collective behavior through neural and synaptic engineering. At
the same time, engineering synthetic collective behavior could
serve as a powerful method for uncovering lower-level mechanisms
underpinning collective behavior, effectively bridging the gap
between the functionality and the connectivity of the connectome,
providing a bottom-up description of collective behavior.
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