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Overcoming visual degradation in challenging imaging scenarios is essential for
accurate scene understanding. Although deep learning methods have integrated
various perceptual capabilities and achieved remarkable progress, their high
computational cost limits practical deployment under resource-constrained
conditions. Moreover, when confronted with diverse degradation types, existing
methods often fail to effectively model the inconsistent attenuation across
color channels and spatial regions. To tackle these challenges, we propose
DWMamba, a degradation-aware and weight-efficient Mamba network for
image quality enhancement. Specifically, DWMamba introduces an Adaptive
State Space Module (ASSM) that employs a dual-stream channel monitoring
mechanism and a soft fusion strategy to capture global dependencies. With
linear computational complexity, ASSM strengthens the models ability to
address non-uniform degradations. In addition, by leveraging explicit edge
priors and region partitioning as guidance, we design a Structure-guided
Residual Fusion (SGRF) module to selectively fuse shallow and deep features,
thereby restoring degraded details and enhancing low-light textures. Extensive
experiments demonstrate that the proposed network delivers superior qualitative
and quantitative performance, with strong generalization to diverse extreme
lighting conditions. The code is available at https://github.com/WindySprint/
DWMamba.

KEYWORDS

image quality improvement, multi-scenario enhancement, vision mamba, state space
model, structural cue

1 Introduction

Images captured in real-world environments are often affected by various degradation
factors, such as reduced visibility, blurred textures, and color distortion (Zhuang et al.,
2022), which substantially hinder subsequent visual perception tasks. Developing a
robust and efficient image enhancement method is therefore crucial, with two key
requirements: (1) real-time performance for deployment on resource-constrained devices
(Zhang et al., 2024c), and (2) strong adaptability to diverse types of degradation.
Among these challenging scenarios, underwater environments represent a particularly
complex case. Due to light absorption and scattering, underwater images frequently
suffer from uneven brightness, amplified noise, and severe color deviation. Designing
a robust enhancement method for underwater scenes is not only vital for underwater
computer vision applications but also serves as a meaningful benchmark for general image

Frontiers in Neurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2025.1676787
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2025.1676787&domain=pdf&date_stamp=2025-10-02
mailto:hzxcyanwind@mail.dlut.edu.cn
https://doi.org/10.3389/fnbot.2025.1676787
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2025.1676787/full
https://github.com/WindySprint/DWMamba
https://github.com/WindySprint/DWMamba
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Fu et al. 10.3389/fnbot.2025.1676787

FIGURE 1

Metrics and generalizability comparison of advanced methods. The left side shows UCIQE and single-image latency. The right side shows
underwater images including color deviation, low-light, overexposure, and sandy scenarios from top to bottom, along with enhanced results from
different methods.

enhancement. Figure 1 presents a comparison of parameters
and enhancement results for several state-of-the-art methods.
While some methods achieve satisfactory underwater visibility
enhancement, they often fail when confronted with other severe
degradations (e.g., uneven brightness or strong visual interference).
In contrast, DWMamba delivers both high efficiency and robust
enhancement across a wide range of challenging scenarios.

Traditional methods (Berman et al., 2020; Zhou et al., 2023c;
Kang et al., 2023) aim to improve image quality by reversing
the degradation process or adjusting pixel values. However, as
they rely on pre-defined priors or handcrafted region partitioning,
their effectiveness is often limited under variations in lighting,
turbidity, and shooting conditions (Zhou et al., 2024b). In recent
years, deep learning methods have received considerable attention
owing to advances in computing hardware and model optimization
techniques (Liu et al., 2021; Jin et al., 2022; Liu M. et al., 2024; Fan
et al., 2025; Huang H. et al., 2025). Convolutional neural network
(CNN)-based approaches (Fu et al., 2022; Jiang N. et al., 2022)
have demonstrated strong performance in local feature extraction
and achieved remarkable visibility enhancement. Nevertheless,
limited by the convolutional kernel size, CNNs struggle to capture
long-range dependencies, making it difficult to adequately address
locally degraded regions (e.g., overexposed areas or low-light
regions) in uneven degradation scenarios. To overcome this issue,
Transformer-based methods (Peng et al., 2023; Khan et al., 2024)
leverage global receptive fields and dynamic weights, enabling more
comprehensive color correction and detail enhancement. However,
their computational complexity grows quadratically with image

resolution, which severely restricts their practicality in resource-
constrained environments. Although some approaches attempt to
improve efficiency by partitioning input regions (Chen et al., 2021;
Huang et al., 2022), these strategies inevitably reduce the receptive
field and impair high-level semantic understanding.

Mamba (Gu and Dao, 2023), a recently proposed selectively
structured state space model, demonstrates strong capability in
modeling long-range dependencies and efficiently processing
long natural language sequences due to its linear computational
complexity. However, when applied to 2D image sequences,
Mambas limited receptive field strategy fails to capture
relationships between unscanned regions. To better adapt to
the visual domain, VMamba (Yue et al., 2024) introduces a
four-way scanning mechanism to establish a more comprehensive
receptive field. Inspired by this property, we extend VMamba
to the task of image quality improvement (IQI), aiming to
achieve efficient and robust visual enhancement. In practice,
directly applying VMamba suffers from several limitations:
(1) The absence of explicit structural cues prevents the model
from adequately focusing on degradation details, particularly
in low-light conditions, which limits the enhancement of
degraded textures. (2) Degraded images often exhibit significant
inter-channel differences, yet the model lacks a mechanism to
monitor global channel dependencies during channel mapping,
leading to insufficient correction of color deviations. (3) During
four-way scanning, uneven regional degradation causes feature
inconsistencies across different directions, and directly aggregating
these results reduces the models attention to critical features.
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Therefore, how to further strengthen the model’s perception and
compensation ability for uneven degradation while maintaining
efficient computation is an issue of concern.

In this work, we propose a degradation-aware and weight-
efficient Mamba network for image quality improvement, called
DWMamba. The framework primarily adopts an adaptive state
space module (ASSM) to effectively capture global feature
dependencies. Compared to VMamba, our method introduces a
lightweight channel monitoring mechanism before the scanning
mechanism, and implements a fusion learning strategy based
on directional properties, which proves to be beneficial for the
completeness of global dependencies. Furthermore, we designed a
structure-guided residual fusion module (SGRF), which employs
explicit edge priors and region partitioning as cues to guide the
targeted fusion of shallow and deep features. Extensive comparative
experiments demonstrate that DWMamba achieves competitive
enhancement results with ideal computational resource. Moreover,
we extended the model to different lighting environments (e.g.,
low-light, overexposure, haze, and sandy scenarios) without
additional training, the impressive visual improvements further
validate the robustness of DWMamba. The main contributions of
this paper are summarized as follows:

• We present DWMamba, a novel Mamba-based network that
integrates an adaptive state space module and a structure-
guided residual fusion module (SGRF), offering new insights
for IQI model design.

• We design an Adaptive State Space Module (ASSM) that
incorporates a dual-stream channel monitoring mechanism
and a soft fusion strategy, enabling finer-grained dependency
modeling for accurate degradation restoration.

• We conduct extensive experiments showing that DWMamba
achieves state-of-the-art performance on multiple
benchmark datasets with lower computational cost, and
demonstrates strong generalization across diverse visual
degradation scenarios.

2 Related work

2.1 Traditional methods

Traditional methods can be broadly categorized into two types:
restoration-based and enhancement-based methods. Restoration-
based methods restore the input image by simulating degradation
imaging and reversing this process. Dark channel prior (DCP) (He
et al., 2011) provided insights into the image pixel distribution, the
works (Peng et al., 2018; Liang et al., 2021) successfully extended
DCP to various degraded scenarios. To address differences in
channel attenuation, the works (Berman et al., 2020; Zhou et al.,
2024d) introduces multiple priors to obtain higher quality images.
Enhancement-based methods improve image quality through
rational region partitioning and pixel adjustment. By focusing
on color loss and pixel balancing, the works (Ancuti et al.,
2019; Zhou et al., 2023a) effectively addressed the problems
of color distortion and backscattering. Utilizing various image
decomposition and fusion strategies, the works (Kang et al.,

2023; An et al., 2024; Mishra et al., 2024) achieved multi-level
enhancement of degraded images.

However, due to reliance on pre-set prior knowledge or single
statistical feature, traditional methods may fail to generate the
desired results in out-of-range scenarios.

2.2 Learning-based methods

With powerful feature learning capabilities and reasonable
data matching, deep learning methods demonstrate good visual
enhancement effects. The work (Liu M. et al., 2024) integrates
two transformers that focused on multi-scale and global features,
enhancing the network’s response to attenuated color channels
and degraded spatial regions. Introducing the color compensation
mechanism, the works (Liu C. et al., 2024; Wang Y. et al.,
2024) provide reasonable enhancement for the severely degraded
channels, resulting in more natural images. The works (Li et al.,
2021; Jiang Z. et al., 2022; Zhou et al., 2024c; Zhang et al.,
2024a) adopt the multi-branch architecture to enrich feature
representation, enabling the network to flexibly address the
complex degradation characteristics. The works (Zhang et al.,
2024d; Zhao et al., 2024) introduce the frequency domain to refine
the image details, further extending the representation abilities
of models.

To reduce the requirement of training data, unsupervised
techniques or cross-domain knowledge transfer are applied to IQI
tasks. The work (Jiang Q. et al., 2022) employs transfer learning
for translating underwater images to the air domain, and then
uses shared dehazing weights to further enhance the images. The
work (Nathan et al., 2025) combines the in-air natural outdoor
dataset with the imaging model to train the diffusion model, and
obtains restored images through multiple rounds of denoising. By
using target detection or evaluation metrics as training rewards, the
works (Liu et al., 2022; Wang H. et al., 2024) generate enhanced
images conducive to related tasks. The work (Fu et al., 2022)
reconstructs raw image by estimating the relevant elements in
the imaging process while utilizing the homology constraint to
supervise image quality.

Deep learning methods have made significant progress in IQI
tasks, but high parameters limit their practicality in resource-
limited environments. More critically, the generalization of these
methods is greatly challenged by variations in lighting conditions.

2.3 State space models

State Space Models (SSMs), as a classical sequence modeling
structure in control theory, recently received extensive attention in
the field of deep learning. Structured SSM (S4) (Gu et al., 2021)
is a pioneering work in deep state space modeling, significantly
improved modeling efficiency by improving the structure of
the state matrix. Building on S4, Mamba (Gu and Dao, 2023)
introduces a selectivity mechanism to break the constraints of
constant transition, allowing SSM to pass or forget correlations
between elements along the sequence. To introduce Mamba’s
properties into the visual domain, VMamba (Yue et al., 2024)
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FIGURE 2

Network architecture of our proposed DWMamba. The left side below figure shows the detailed structure of the Adaptive State Space Module
(ASSM), including the Dual-stream Channel Monitoring Module (DS-CMM) and the Soft Fusion Visual State Space Module (SF-VSSM); the right side
shows the sample block. The details of the Structure-guided Residual Fusion Module (SGRF) are shown in Figure 5.

proposes a cross-scan module to apply the four-way scanning
mechanism, which fully expands the restricted receptive field.
Inspired by the outstanding performance of VMamba, various
low-level vision tasks [e.g., super-resolution Guo et al., 2025; Shi
et al., 2025, low-light enhancement Bai et al., 2024; Liu et al.,
2025, image dehazing Zhou et al., 2024a, and image denoising Liu
Y. et al., 2024] quickly saw a boom in applications. Meanwhile,
the work (Chen and Ge, 2024) first introduces the VMamba
in the underwater image enhancement field and achieves high
accuracy with a small number of parameters. In addition, the
works (Guan et al., 2024; Dong et al., 2024) introduce the channel
interaction mechanisms to capture the dependencies, while the
work (Zhang et al., 2024b) introduces a physical imaging model
to constrain the enhancement process, these methods maintain
the linear remote modeling capability and effectively cope with
wavelength-dependent channel attenuation.

However, existing VMamba-based IQI methods lack explicit
cues to guide the targeted enhancement of local degradation details.
Additionally, scanning features exhibit significant directional
characteristics, and directly adding them results in insufficient
attention to important features.

3 Methodology

3.1 Overall architecture

As shown in Figure 2, DWMamba adopts a multi-scale
UNet architecture and contains a three-stage feature extraction

process. For the degraded image I ∈ R
H×W×3, we first utilize

11 convolution and channel projection to obtain the feature
embedding E0 ∈ R

H×W×C0 , where H and W represent the height
and width, respectively, and C0 represents the initial number of
expanded channels. Subsequently, the features are passed through
two layers of symmetric encoder-decoder, each containing ASSM
and corresponding sampling operation. In the lightweight network,
we configure the number of ASSM as [1, 1, 2, 1, 1] to ensure
effective feature extraction and low computational complexity. The
sampling process is conducted by Rearrange operation, LN layer,
and Linear layer, with the scale and channel of features undergoing
a two-fold opposite change each time. Unlike the encoding process,
we choose to up-sample the results of skip connections in the
decoder. With the structure-explicit modeling IC0 ∈ R

H×W×1

and the region modeling IR0 ∈ R
H×W×1 extracted from I, we

construct a SGRF to guide the network in performing targeted
enhancement of degraded textures and low-light regions. After two
stages of feature reconstruction, the high-quality enhanced image
IE ∈ R

H×W×3 is refined by 1 × 1 convolution.

3.2 Adaptive state space module

During multi-dimensional mapping in deep networks, the
degradation differences between feature channels are further
amplified. However, due to the absence of an effective mechanism
to capture interactions between channels, VMamba has limitations
in correcting color deviations, which diminishes its practical
effectiveness. Considering the above, we design the ASSM as shown
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FIGURE 3

Specific flow of SS2D+. Unlike the original SS2D, we employ an improved strategy SS2D+ at the end, which discriminatively adds features from
different directions and performs fusion learning. The heatmaps of horizontal adding (h) and vertical adding (v) results, SS2D, and SS2D+ are shown
on the left.

in Figure 2 to assist in feature attention and region partitioning
in the network. For the input features f ∈ R

H×W×C, we first
normalize them through a LayerNorm (LN) layer, and then use DS-
CMM to capture channel dependencies. Unlike traditional channel
attention, it adopts a dual-branch structure and captures channel
interactions through different pooling mechanisms and multiple
residual connections, which is computed as follows:

f CI = f + f × (
CLC

(
f A

) + CLC
(
f M

))
Sig , (1)

where f A and f M represent the features after average pooling
and maximum pooling, respectively, and (·)Sig is the sigmoid
function. CLC (·) is a feature extraction module containing a
LeakyReLU function placed between two convolutional layers.
Next, the features f CI labeling the channel importance are fed into
the vision state space module. The shallow features f S are obtained
by LN and linear layers (Lin), while the deeper features f ′S are
extracted by depth-wise convolution (DWC) and SiLU function:

f S = Lin
(
LN

(
f CI

))
, f ′S = (

DWC
(
f S

))
SiLU . (2)

Through the four-way scanning mechanism, VMamba
overcomes the modeling limitations of SSM in 2D images and
enhances the perception of non-causal features. The focus of this
mechanism is to extend multiple scanning directions to capture
dependencies. However, in practical underwater applications, we
have observed notable directional properties in the modeling of
horizontal and vertical directions. For instance, in the heatmaps
of Figure 3, the horizontal scanning result highlights attention
between horizontally adjacent texture features, while the vertical
scanning result distinctly delineates the vertical division of
image regions. Due to the differences between these two results,
directly adding them not only interferes with the unique feature
contributions, but also compromises the integrity of important
feature modeling. To this end, we have introduced a softer
fusion strategy SF to enhance the aggregation of features from
different directions.

Following the settings in the four-way scanning mechanism,
f ′S is serialized as a patch sequence and captures the interactions
between sequence elements from four directions. To capture more
accurate spatial remote dependencies, we employ an adding-
fusion learning process SS2D+. Specifically, SS2D+ performs a

discriminative addition on scanning results in the same direction,
then superimposes the addition results from different directions
at the channel level through concatenation. Further feature fusion
is achieved through linear and LN layers, allowing the network
to integrate the modeling properties of both directions, thereby
highlighting the attention to important features:

f SS2D+ = LN
(
Lin

((
f h1+h2

)
,
(
f v1+v2

))
CAT

)
, (3)

where
(
f h1+h2

)
and

(
f v1+v2

)
represent the adding results in

horizontal and vertical directions, respectively. Finally, the remote
dependencies are labeled on the shallow feature f S, and connected
with f CI in a residual manner to obtain the final modeling result:

f ASSM = f CI + Lin
(
f SS2D+ ⊗ Lin

(
f S

)
SiLU

)
. (4)

3.3 Structure-guided residual fusion
module

As shown in Figure 4, explicit modeling of structural cues
brings significant benefits in degraded scenarios, mainly reflected
in two aspects: Firstly, edge modeling can directly highlight key
textures in blurred details, which is highly effective in improving
image clarity and contrast. Secondly, due to uneven brightness
distribution, high-quality region modeling tends to yield richer
feature information. By leveraging this property to distinguish
regions with varying brightness, the model can more thoroughly
understand the imaging structure and depth information. Due to
the differences between encoded and decoded features, the fused
features require a guiding mechanism to focus on degradation
details and illumination loss. Based on structural cues, this
mechanism can promote the model to enhance texture details
and increase sensitivity to illumination changes, thereby further
improving image enhancement performance.

To this end, we introduce a Structure-guided Residual Fusion
Module (SGRF) during the decoding stage, the structure is shown
in Figure 5. Firstly, SGRF generates an initial edge modeling IC ∈
R

H×W×1 by the Canny operator (Liu et al., 2025) to guide the edge
texture enhancement of the up-sampled fusion result. The process
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FIGURE 4

Modeling examples of different image regions. High-quality regions are framed in red and low-quality regions are framed in green.

FIGURE 5

Structure of the structure-guided residual fusion module. With the region normalization shown on the right, we transform edge modeling IC into
region modeling IR with rich feature distinctions.

is represented as follows:

f edge = CS
(
(ρ + IC) ∗ up

(
f s, f d

)
CAT

)
, (5)

where f s and f d represent shallow encoded features and deep
decoded features, and up (·) represents the up-sampling process. In
addition, since black pixels will distort the original features, we set a
constant matrix ρ to emphasize the edge information. All pixels of
ρ are assigned a value of 1. After adding it to IC, the original black
pixel regions (i.e., pixels with a value of 0) exert no influence on the
original features, while the texture distribution regions enhance the
original features. Then, SGRF learns the edge enhancement feature
f edge through convolutional layers and SiLU function (CS).

To fully utilize the structural modeling properties, we construct
a clear illumination region division IR ∈ R

H×W×1 by region
normalization to guide the visibility improvement in low-light
regions. The procedure first divides IC into multiple regions
r1, r2, ..., ri, rn of size R×R, and then calculates the mean μ to replace
the pixel value p of the region. The computation for the i-region is

as follows:

μi = 1
R2

∑
pijri

pij. (6)

In region modeling IR, regions with rich edge detail exhibit
higher pixel values, which also implies low pixel values in low-
light regions. We use the constant matrix ρ to invert the pixel
distribution of the region. When ρ is subtracted from IR, pixel
values in low-light areas are amplified while those in bright regions
are suppressed, thereby guiding the network to focus on regions
with light illumination loss. The relevant process is as follows:

f SGRF = f edge + CS
(
(ρ − IR) ∗ BN

(
f edge

))
, (7)

where BN (·) represents the BatchNorm layer. Finally, SGRF
combines the two enhancement features by residual connection,
enabling the network to enhance degraded details and low-light
regions in a more targeted manner.
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FIGURE 6

Comparison of enhancement results for all methods on the UIEB dataset. Each row represents a different scene, with variations in color and clarity
reflecting distinct processing methods.

FIGURE 7

Comparison of residuals and red channel distribution between all enhanced images and GT. The first row shows the original images and the
enhanced images from different methods, while the second row shows the corresponding residual images. The third row displays the red channel
pixel distribution, with the blue and red lines representing the enhanced image and GT, respectively.

3.4 Loss functions

(1) Charbonnier Loss: As a variant of the L1 loss, the
charbonnier loss varies more gently when the gradient is large,
which helps to measure high-frequency details (e.g., edges,
textures, etc.) between images. In addition, this loss is more
robust to outliers, ensuring training stability.

LC =
√
‖IE − IGT‖2 + ε2, (8)

where IE and IGT represent enhanced and ground truth (GT)
images, and ε represents a constant used to stabilize the loss,
which is set to 10−3.

(2) Structural Similarity Index Measure (SSIM) Loss: Based on
the measures of luminance, contrast and structure, the SSIM
loss evaluates the image similarity from multiple perspectives,
benefiting the network in generating visually enhanced images
with improved brightness and structure.

LS = 1 − (
l (IE, IGT) ∗ c (IE, IGT) ∗ s (IE, IGT)

)
, (9)

where l (·, ·) is luminance similarity, c (·, ·) is contrast
similarity, and s (·, ·) is structural similarity.

To train the proposed DWMamba, we adopt a combination of
the two loss functions, aiming to encourage the network to generate
enhanced results that are more similar to GT images in terms of
detail and brightness. The total loss function is calculated as follows:

Ltotal = LC + λLS, (10)

where λ represents the balance weight, which we set to 0.5
by default.

4 Experiments

4.1 Experiment setup

(1) Implementation details: We implemented DWMamba with
the PyTorch 2.1.1 framework on a machine with an Intel Core
i7-12700KF CPU, two NVIDIA GeForce RTX 4090 GPUs, and
64 GB of memory. The model was trained by the ADAM
optimizer, with the learning rate set to 0.0001, the epochs to
100, and the batch size to 8.

During testing, DWMamba was compared with eleven
advanced methods, including four traditional methods:
TEBCF (Yuan et al., 2021), MLLE (Zhang et al., 2022),
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TABLE 1 Quantitative comparison for all methods on the UIEB dataset (optimal, sub-optimal).

TEBCF MLLE MSPE ICSP TACL PUGAN TUDA ASNet DD
former

UVZ Mamba
IR

DW
Mamba

PSNR↑ 20.48 17.25 21.92 12.61 22.79 25.67 22.82 21.68 23.53 23.61 22.52 26.37

SSIM↑ 0.883 0.739 0.890 0.585 0.825 0.895 0.927 0.876 0.889 0.935 0.786 0.953

UCIQE↑ 0.630 0.616 0.630 0.603 0.629 0.629 0.594 0.608 0.614 0.621 0.608 0.633

ENTROPY↑ 7.496 7.547 7.405 6.945 7.557 7.572 7.594 7.599 7.491 7.511 7.425 7.591

CEIQ↑ 3.433 3.469 3.369 3.159 3.457 3.474 3.479 3.482 3.412 3.441 3.384 3.488

Params
(M)

- - - - 11.37 95.65 31.36 0.755 7.580 5.387 0.626 0.430

FLOPs (G) - - - - 56.86 72.05 174.4 48.97 17.87 499.5 10.21 5.018

Times (s) 1.479 0.072 0.176 0.083 0.658 0.438 0.051 0.030 0.033 0.122 0.037 0.028

FIGURE 8

Comparison of enhancement results and UCIQE for all methods on the OceanDark and UFO datasets, with red values indicating optimal metrics.
Each row (AD) depicts a different underwater scene.

FIGURE 9

Detail enlargement comparison for all methods on the EUVP and LNRUD Datasets. Rows labeled (AD) show images of different underwater objects.

MSPE (Zhou et al., 2023b), and ICSP (Hou et al., 2024),
six deep learning methods: TACL (Liu et al., 2022), PUGAN
(Cong et al., 2023), TUDA (Wang et al., 2023), ASNet (Park
and Eom, 2024), DDformer (Gao et al., 2024), and UVZ

(Huang Z. et al., 2025), one mamba-based method: MambaIR
(Guo et al., 2025). These methods were based on CNN,
unsupervised techniques, Transformer, Mamba, and hybrid
frameworks, respectively, and were experimented using the
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TABLE 2 Quantitative comparison for all methods on the four non-reference datasets (optimal, sub-optimal).

Dataset Metric TEBCF MLLE MSPE ICSP TACL PUGAN TUDA ASNet DDformer UVZ MambaIR DWMamba

OceanDark

UCIQE↑ 0.584 0.583 0.568 0.596 0.591 0.580 0.556 0.573 0.572 0.588 0.574 0.598

ENTROPY↑ 7.377 7.456 7.621 6.929 7.709 7.559 7.581 7.528 7.570 7.619 7.683 7.735

CEIQ↑ 3.354 3.369 3.526 3.183 3.556 3.459 3.473 3.455 3.437 3.489 3.557 3.577

UFO

UCIQE↑ 0.628 0.626 0.632 0.627 0.624 0.627 0.591 0.617 0.617 0.610 0.622 0.640

ENTROPY↑ 7.450 7.533 7.438 7.037 7.453 7.509 7.584 7.510 7.394 7.288 7.462 7.541

CEIQ↑ 3.397 3.425 3.375 3.252 3.378 3.420 3.465 3.424 3.337 3.279 3.398 3.445

EUVP

UCIQE↑ 0.616 0.617 0.621 0.631 0.621 0.614 0.585 0.593 0.601 0.612 0.605 0.621

ENTROPY↑ 7.619 7.329 7.465 6.679 7.646 7.615 7.654 7.588 7.533 7.554 7.539 7.662

CEIQ↑ 3.502 3.330 3.401 3.159 3.510 3.489 3.516 3.474 3.428 3.449 3.450 3.530

LNRUD

UCIQE↑ 0.626 0.615 0.628 0.610 0.624 0.625 0.593 0.613 0.612 0.608 0.618 0.634

ENTROPY↑ 7.504 7.552 7.463 7.102 7.533 7.551 7.611 7.557 7.454 7.393 7.489 7.580

CEIQ↑ 3.432 3.447 3.393 3.289 3.433 3.451 3.484 3.457 3.380 3.347 3.417 3.472

NPE
ENTROPY↑ 7.286 6.706 7.399 6.172 7.265 7.461 7.309 7.247 7.152 7.348 7.542 7.546

CEIQ↑ 3.279 2.904 3.374 3.068 3.256 3.376 3.309 3.263 3.165 3.314 3.475 3.476
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FIGURE 10

Comparison of enhancement results for all methods on the NPE dataset. Row (A, B) display different low-light outdoor scenes.

TABLE 3 Component settings and metrics comparison for all ablation configurations (optimal, sub-optimal).

Configuration #1 #2 #3 #4 #5 #6 #7 #8

Base � � � � � � � �

DS-CMM � � � �

SF � � � �

SGRF � � � �

PSNR↑ 24.88 25.70 25.90 26.17 26.22 26.36 26.11 26.37

SSIM↑ 0.941 0.945 0.946 0.948 0.943 0.949 0.949 0.953

UCIQE↑ 0.621 0.624 0.625 0.621 0.622 0.627 0.628 0.633

ENTROPY↑ 7.571 7.547 7.570 7.535 7.545 7.556 7.585 7.591

CEIQ↑ 3.479 3.465 3.475 3.454 3.456 3.468 3.486 3.488

FIGURE 11

Enhanced results of all ablation configurations.

training models provided in the original paper. As MambaIR is
not specifically designed for underwater image enhancement,
we retrained it under same experimental configurations for
fair comparison.

(2) Datasets and metrics: We randomly selected 810 pairs of
real images from the UIEB (Li et al., 2019) dataset to train
DWMamba, using the remaining 80 pairs as a reference
test dataset. To verify the applicability, we also conducted
extensive experiments on five non-reference datasets, namely

OceanDark (Marques and Albu, 2020), UFO (Islam et al.,
2020a), EUVP (Islam et al., 2020b), LNRUD (Ye et al., 2022),
and NPE (Wang et al., 2013). The image sizes of all datasets
were resized to 256 × 256 to facilitate the experiments.
For the referenced datasets, we used two full-reference
metrics such as PSNR and SSIM to measure the similarity
between the enhancement results and the GT images.
Additionally, three non-reference metrics such as UCIQE
(Yang and Sowmya, 2015), ENTROPY, and CEIQ (Fang
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FIGURE 12

Comparison of results using different operators. The top shows the raw image and the enhanced results using different operators, and the bottom
shows the corresponding edge detection results.

et al., 2014) were used to evaluate the quality of all
enhancement results.

4.2 Comparison on the reference dataset

Figure 6 shows the enhancement examples of all methods on
the UIEB dataset. The results from ICSP and ASNet exhibited
varying degrees of overexposure, leading to oversaturated image
colors. On the contrary, TEBCF and MLLE darkened the image
brightness and masked the original image details, TEBCF and UVZ
introduced artifacts in the enhancement process. The results from
MSPE and TACL showed over-enhancement of the red channel,
which disturbed the background color. The results of TUDA and
MambaIR presented a relatively blurred scene, thereby reducing the
color attractiveness of its results. PUGAN and DDformer effectively
enhanced the image visibility, but the image details still need
to be further enhanced. Our DWMamba demonstrated excellent
performance in terms of color, clarity, and detail, particularly in
the hazy scene (d), where the fish texture and scene colors were
significantly enhanced.

In Figure 7, we further compared the similarity between the
different methods and GT using residual figures and red channel
distribution figures. The white regions in the residual figures
directly reflects the differences between the enhanced images and
GT, while the distribution figures highlight the most damaged
channels. Compared with the residual figures of the raw images,
the white regions from TEBCF, ICSP, and ASNet were more
extensive, indicating a more significant difference from GT. In
contrast, UVZ and DWMamba had the smallest white regions, and
the red channel distributions more closely matched those of GT,
proving that the enhancement results were highly consistent with
GT images.

Table 1 provides a performance metrics comparison for all
methods on the UIEB dataset. Our method stands out among
all methods for its competitive performance, lower complexity,

TABLE 4 Metrics comparison of networks using different operators
(optimal, sub-optimal).

PSNR↑ SSIM↑ UCIQE↑ ENTROPY↑ CEIQ↑
Sobel 25.92 0.948 0.630 7.609 3.501

Scharr 26.29 0.950 0.628 7.583 3.482

Laplacian 26.27 0.949 0.627 7.532 3.450

Canny 26.37 0.968 0.633 7.591 3.488

and higher operational efficiency. Notably, DWMamba achieves
optimal values in most of the metrics and is slightly behind TUDA
and ASNet in Entropy, demonstrating its well-balanced trade-off
between efficiency and effectiveness.

4.3 Comparison on the non-reference
datasets

In this section, we present the performance of all methods
on the four non-reference datasets. Figure 8 visualizes the
enhancement effects and UCIQE metrics of the different methods
on the OceanDark and UFO datasets. For dark scenes in
OceanDark, most methods overexposed or darkened the brightness
and failed to reasonably enhance the scene visibility. In contrast,
TACL, ASNet, and our DWMamba effectively enhanced the
brightness and contrast of the scene. However, TACL resulted
in textures blurred by hazy lighting, while ASNet excessively
enhanced the red channel in shadow regions. The UFO dataset
highlights the color deviation and hierarchical scenes. TEBCF,
MLLE, and ASNet rendered distant scenes less colorful, with even
MLLE producing an illogical purple background. MSPE, UVZ,
and MambaIR significantly enhanced color saturation, but there
were still noticeable color deviations. PUGAN and DWMamba
not only effectively enhanced color attractiveness while retaining
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TABLE 5 Metrics comparison of different baseline model and model size (optimal, sub-optimal).

PSNR↑ SSIM↑ UCIQE↑ ENTROPY↑ CEIQ↑ Parameter (M) FLOPs (G)

-r/w conv-S 22.22 0.916 0.583 7.358 3.330 0.324 4.400

-r/w vit-S 21.69 0.904 0.575 7.289 3.281 0.627 7.386

-r/w swin vit-S 22.59 0.921 0.592 7.352 3.337 0.694 7.876

DWMamba-S 26.37 0.953 0.633 7.591 3.488 0.404 5.018

-r/w conv-L 21.86 0.919 0.614 7.543 3.451 3.826 32.41

-r/w vit-L 22.30 0.910 0.581 7.338 3.312 8.139 62.45

-r/w swin vit-L 24.98 0.944 0.619 7.523 3.445 9.547 71.25

DWMamba-L 26.80 0.953 0.620 7.549 3.465 5.715 43.32

FIGURE 13

Comparison of results using baseline model. Row (A, B) display classic blue and green deviation scenes.

well-defined scene boundaries, and DWMamba achieved the best
UCIQE with the most vibrant colors.

Figure 9 enlarges the enhanced details for the EUVP and
LNRUD datasets. ASNet introduced unnatural yellow colors,
significantly deviating from the true color distribution. The
results of ICSP generally suffered from over-rendering of cyan,
while MSPE and TEBCF excessively enhanced the red channel,
and these over-saturated colors severely interfered with textural
appearance. On the other hand, MLLE reduced the overall
brightness of the image, making the enlarged details less clear.
Although TACL and PUGAN considerably improved the visual
effect of the underwater scene, the enlarged details were still
affected by color deviation. The enhanced results of MambaIR
demonstrated excellent color reproduction, but introduced other
colors and blurred details. Compared to the above methods,
TUDA and DWMamba significantly improved scene visibility,
with the enlarged texture presenting clearer details. As shown in
Table 2, our DWMamba achieved both optimal and sub-optimal
values on the four unreferenced datasets, further proving its
excellent enhancement effect and wide applicability. In addition,
TUDA achieves outstanding performance in ENTROPY and CEIQ
through excellent brightness enhancement and detail restoration.

In addition, Figure 10 presents the enhancement results of all
methods on the low-light NPE dataset. It can be observed that most
methods fail to effectively improve the overall brightness, resulting
in unclear and dim outputs. The results of MSPE and ICSP suffer

TABLE 6 Comparison of computational complexity at different image
sizes.

Size 64 128 256 512 1024

FLOPs (G) 0.3136 1.2546 5.0182 20.073 80.2916

Time (s) 0.3830 0.4115 0.4116 0.5110 1.1534

from oversaturation and overexposure, which obscure fine details.
PUGAN, DDformer, and UVZ excessively amplify the red channel,
leading to noticeable color distortions. In contrast, MambaIR and
DWMamba consistently enhances both brightness and contrast
in low-light scenes while preserving natural color tones without
introducing artifacts. For quantitative evaluation, since UCIQE is
specifically designed for underwater scenarios, only ENTROPY and
CEIQ were adopted for the NPE dataset. The results demonstrate
that DWMamba achieves the best performance on both metrics.

4.4 Ablation study

In Table 3, we provided a detailed configuration and analysis
of the key components of DWMamba, using the UNet architecture
and the original VMamba as a baseline (#1). Figure 11 illustrates
that the network with complete components produces more
prominent texture details and more natural background color,
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FIGURE 14

Generalizability of DWMamba across diverse poor-lighting scenarios. (a–d) Are low-light images from the NPE (Wang et al., 2013) dataset, (e–h) are
overexposure images from the MIT (Bychkovsky et al., 2011) dataset, (i–l) are haze images from the O-HAZE (Ancuti et al., 2018) dataset, and (m–p)
are sandy images from the WEAPD (Xiao et al., 2021) dataset. The results clearly demonstrate that DWMamba possesses domain-agnostic properties.

effectively avoiding color deviation and the introduction of other
colors. In contrast, in the absence of SF, i.e. using the original
SS2D, that is, when using the original SS2D, the background
exhibits excessive enhancement of the red channel, while the
overall brightness of the image decreases. Without DS-CMM or
SGRF, the fish texture and the background exhibit an uncorrected
blue deviation, highlighting deficiencies in region division. When
lacking both DS-CMM and SF, i.e. using the original VSSM,
the enhanced results showed blurred textures and dull colors.
This highlights the importance of more comprehensive feature
dependency modeling. As shown in Table 3, the complete network
achieves the most outstanding metric performance, indicating
that all three components are beneficial for the performance
improvement of the baseline model. Notably, the absence of
SGRF results in the most significant performance degradation,
demonstrating its effectiveness in focusing on degradation details
and illumination loss.

To verify the impact of different operators (Su et al., 2021) on
the network performance, we adopted Sobel, Scharr, Laplacian,
and Canny operators to construct the edge modeling of the
raw image, and employed region normalization for subsequent
region modeling. Figure 12 and Table 4 compare the enhancement
results and metrics using different operators, respectively.
Specifically, the network with the Sobel operator effectively
improves the visual quality, but fails to completely eliminate
the color deviation. The network using Scharr and Laplacian
operators generated hazier enhancement results, accompanied
by significant red over-enhancement. The network using the
Canny operator generates superior results in terms of color and
clarity, achieving optimal or sub-optimal evaluations across all

metrics. Further analyzing the edge detection results, we found
that the edge information from Sobel and Laplacian operators
were relatively weak and cannot clearly reflect the rich details
of the actual scene. Scharr and Canny operators generated more
prominent edge information, but Scharr introduced substantial
scene noise, which was detrimental to subsequent region
division. Therefore, we prioritized the Canny operator for edge
modeling.

Focusing on baseline model and model size, we conducted an
ablation study as shown in Table 5. First, we fixed the remaining
module configurations and replaced the core module ASSM with
a single convolutional layer (-r/w conv), Vision Transformer (-
r/w vit), and Swin Transformer (-r/w swin vit), where -r/w conv
can also be regarded as the network without ASSM. Furthermore,
we design small-scale configurations S: (layers: [1, 1, 2, 1, 1],
dimensions: [24, 48, 96, 48, 24]) and large-scale configurations L:
(layers. [2, 2, 9, 2, 2], dimensions: [48, 96, 192, 96, 48]). Among
these, DWMamba-S is the main experimental architecture in this
paper. Based on the relatively good performance of -r/w swin
vit, DWMamba-S achieved a significant reduction of 41.8% in
parameters and 36.2% in FLOPs, and increased PSNR by 16.7%.
Similarly, DWMamba-L reduced parameters by 40.1%, FLOPs by
39.1%, and increased PSNR by 7.2%. The results in Figure 13
further demonstrate the visual advantages of DWMamba over
other baseline models.

nOTABLY, although DWMamba exhibits significant
advantages in all metrics, the marginal gains in performance
diminish when scaled to large-scale model configurations,
especially in the non-reference quality assessment metrics. In
this regard, we believe that although more complex model
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architectures enhance the model’s ability to approximate GT
images, the information loss of deeper architectures and the
inherent limitations of GT data constrain the performance
improvement. Therefore, in future research, striking a balance
between model complexity and feature extraction capability will
be the essential direction to further improve the performance of
DWMamba and its similar models.

To assess the computational complexity of DWMamba, we
compared the model’s FLOPs and inference time across image
inputs of varying sizes. As shown in Table 6, when the width
and height of the input image doubled, the FLOPs increased
nearly fourfold, aligning with the linear distribution of pixel count
growth. This conclusively demonstrates that DWMamba inherits
the linear complexity characteristic of the State Space Model,
without introducing quadratic overhead.

4.5 Generalizability test

The complex and variable lighting conditions pose a
challenge to IQI algorithm’s generalization performance.
Specifically, this challenge is reflected in multiple aspects:
insufficient brightness due to light attenuation, overexposure
from artificial light sources, image hazing due to transmission
media, and visual interference from suspended particles, all
of which significantly impact image quality. To this end, we
conducted generalizability tests on four corresponding land
datasets, and applied the DWMamba model without parameter
tuning to these scenarios. As shown in Figure 14, for the low-
light and overexposed scenarios, DWMamba demonstrates
excellent adaptive brightness adjustment, making the dull
colors and textures more attractive. For the hazy and sandy
scenarios with more complex degradation, DWMamba does
not completely eliminate the adverse effects of these extreme
environments, but still shows significant visual improvement
and plays a positive role in enhancing image visibility and
scene understanding.

4.6 Limitation

While DWMamba achieves strong results across various real-
world scenarios, it struggles with severe degradation. When images
lose most of their color and detail, the enhancement task shifts
toward generation, and our method fails to produce satisfactory
visibility. Future research will focus on expanding multi-source
information fusion for underwater scenes and advancing its real-
world application.

5 Conclusion

In this paper, we present DWMamba, a novel adaptive
Mamba network for image quality improvement. Specifically,
we introduce a dual-stream channel monitoring mechanism
and a soft fusion mechanism in the vision state space model,
significantly enhancing its ability to capture global dependencies.
In addition, we establish explicit structural and regional modeling

to facilitate the targeted fusion of shallow and deep features.
Extensive experiments across various datasets demonstrate that
DWMamba exhibits not only excellent generalization but also
significant quality improvements under diverse extreme lighting
conditions. Notably, this multi-scenario applicability comes
without high computational costs, highlighting its potential for
practical applications.
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