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End-to-end robot intelligent
obstacle avoidance method
based on deep reinforcement
learning with spatiotemporal
transformer architecture
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To enhance the obstacle avoidance performance and autonomous
decision-making capabilities of robots in complex dynamic environments,
this paper proposes an end-to-end intelligent obstacle avoidance method that
integrates deep reinforcement learning, spatiotemporal attention mechanisms,
and a Transformer-based architecture. Current mainstream robot obstacle
avoidance methods often rely on system architectures with separated
perception and decision-making modules, which suffer from issues such
as fragmented feature transmission, insufficient environmental modeling, and
weak policy generalization. To address these problems, this paper adopts
Deep Q-Network (DQN) as the core of reinforcement learning, guiding the
robot to autonomously learn optimal obstacle avoidance strategies through
interaction with the environment, effectively handling continuous decision-
making problems in dynamic and uncertain scenarios. To overcome the
limitations of traditional perception mechanisms in modeling the temporal
evolution of obstacles, a spatiotemporal attention mechanism is introduced,
jointly modeling spatial positional relationships and historical motion trajectories
to enhance the model's perception of critical obstacle areas and potential
collision risks. Furthermore, an end-to-end Transformer-based perception-
decision architecture is designed, utilizing multi-head self-attention to perform
high-dimensional feature modeling on multi-modal input information (such as
LiDAR and depth images), and generating action policies through a decoding
module. This completely eliminates the need for manual feature engineering
and intermediate state modeling, constructing an integrated learning process
of perception and decision-making. Experiments conducted in several typical
obstacle avoidance simulation environments demonstrate that the proposed
method outperforms existing mainstream deep reinforcement learning
approaches in terms of obstacle avoidance success rate, path optimization,
and policy convergence speed. It exhibits good stability and generalization
capabilities, showing broad application prospects for deployment in real-world
complex environments.
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1 Introduction

With continuous breakthroughs in artificial intelligence (Chen
et al,, 2025), automatic control, and environmental perception
technologies (Ni et al., 2025), the autonomous navigation and
obstacle avoidance capabilities of robots have become key factors
in enabling intelligent mobile robotic systems (Ullah et al,
2024). Especially in various typical application scenarios such as
warehouse logistics, urban delivery, agricultural operations, and
public services, robots are often required to operate continuously
in dynamic, complex, and even unknown environments, placing
higher demands on their path planning and obstacle avoidance
decision-making capabilities (Katona et al., 2024). Meanwhile, the
uncertainty, diversity, and real-time nature of these environments
pose significant challenges to the perception, reaction speed, and
robustness of robotic systems (Wang et al., 2021).

Against this background, intelligent obstacle avoidance
technologies for robot groups have rapidly developed and become
a hot research topic in the robotics field. Specifically, path
planning technologies are responsible for identifying a feasible
route from a starting point to a target point within a given map
or environment, while obstacle avoidance technologies require
robots to dynamically perceive and avoid both static and dynamic
obstacles during movement, achieving local or global path
adjustment and optimization (Almazrouei et al., 2023). Traditional
methods mostly rely on a sequential “mapping-then-planning”
framework, which, while effective in structured environments,
often faces issues such as high computational complexity, delayed
responses, and strong dependence on environmental stability when
dealing with scenarios featuring randomly appearing obstacles or
frequent environmental changes (Guo et al., 2022).

In complex scenarios, robots must simultaneously handle
various types of static and dynamic obstacles, such as stacked
objects, pedestrians, other mobile devices, and obstacles resulting
from unexpected events (Zheng et al, 2022). Traditional path
planning methods often struggle to cope with such situations.
For instance, heuristic algorithms like the widely used A x
algorithm (Liu et al., 2022) demonstrate strong feasibility and
controllability in static environments but suffer from inefficiencies
and poor adaptability in dynamic or time-sensitive applications.
Additionally, intelligent optimization methods such as Ant Colony
Optimization (ACO; Miao et al, 2021) and Particle Swarm
Optimization (PSO; Shami et al., 2022) have improved path quality
and global search capability to some extent, but still face bottlenecks
such as unsmooth paths, susceptibility to local optima, and slow
convergence rates, making them inadequate for modern robots
operating in highly dynamic environments.

On the other hand, traditional obstacle avoidance frameworks
typically adopt modular processing pipelines, where perception,
mapping, path planning, and control are handled in separate
stages (Qin et al,, 2023). While this design offers clear structure
and relatively low engineering implementation costs, in practical
deployments, accumulated errors between modules, delays in
information transmission, and a lack of global modeling capability
often degrade obstacle avoidance performance. Particularly in
unstructured or semi-structured environments such as farmlands,
mountainous areas, narrow corridors, or temporary warehouse
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setups, it is difficult to completely model feasible paths in advance,
limiting the adaptability of traditional methods to diverse and
uncertain scenarios. As application scenarios become increasingly
complex and expectations for robot intelligence continue to rise,
building intelligent obstacle avoidance systems with enhanced
environmental awareness, dynamic adaptability, path quality
assurance, and decision-making optimization has become a key
research direction for mobile robotics (Lahn et al., 2023).

In recent years, Deep Reinforcement Learning (DRL) has
emerged as a prominent approach in robot obstacle avoidance
research due to its strong autonomous learning capabilities and
adaptability (Dai et al., 2024). Especially DRL models based
on algorithms like Deep Q-Network (DQN) can continuously
interact with the environment to learn optimal obstacle avoidance
strategies in complex scenarios, eliminating the need for prior
modeling and handcrafted rules (Issa et al., 2021). However, when
handling high-dimensional sensory data and dynamic obstacle
distributions, relying solely on perception modules based on
traditional convolutional neural networks often fails to capture
temporal dependencies and global environmental features, limiting
the generalization and robustness of learned policies.

To address these challenges, this paper proposes an end-to-
end intelligent robot obstacle avoidance method that integrates
deep reinforcement learning with a spatiotemporal Transformer
architecture. This method adopts DQN as the core for policy
learning, introduces the powerful global modeling capability of
the self-attention mechanism in Transformers, and incorporates a
spatiotemporal attention structure to jointly perceive and model
the spatial distribution and temporal evolution of obstacles,
thereby improving the adaptability of decision-making strategies
to dynamic environmental changes (Phatak et al., 2023). The
proposed architecture establishes an integrated end-to-end
learning pipeline from perception to decision-making, effectively
overcoming the limitations of traditional methods in multi-stage
processing and local feature modeling.

Before detailing our contributions, we justify our choice of
DQN over other DRL frameworks. While PPO and A3C offer
superior sample efficiency and stability in continuous action spaces,
and SAC excels in stochastic environments, DQN provides several
advantages for our specific application: (1) discrete action spaces
are more suitable for robot navigation commands (move forward,
turn left/right, stop), (2) the Q-value function naturally aligns with
our spatiotemporal feature representation from the Transformer,
(3) the experience replay mechanism enables efficient utilization
of our diverse simulation data, and (4) the deterministic policy
output ensures consistent obstacle avoidance behaviors essential for
safety-critical applications.

The contributions of this paper are as follows:

1. Deep Q-Network (DQN) is introduced as the core framework
for robot obstacle avoidance strategy learning, constructing
an adaptive learning path from perceived states to action
decisions. Traditional obstacle avoidance methods rely

on handcrafted rules or supervised signals and struggle

with continuous decision-making in dynamic, complex, or
unknown environments. In contrast, by combining DQN with
environmental state learning to approximate Q-value functions,

robots can autonomously optimize obstacle avoidance strategies
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through interaction with the environment without requiring
explicit models. Compared with static strategies or conventional
Q-learning, DQN utilizes deep neural networks to achieve
high-dimensional state space mapping, significantly improving
the generalization and decision-making efficiency of obstacle
avoidance behaviors. Furthermore, experience replay and target
network update mechanisms stabilize the learning process and
prevent policy oscillations.

2. A
as a crucial component for perception modeling and

spatiotemporal attention mechanism is incorporated
policy optimization in obstacle avoidance tasks, aiming to
simultaneously capture key spatial features and temporal
evolution patterns in the environment. Traditional perception
modules tend to focus only on local spatial information at
the current moment, lacking dynamic modeling capabilities
for historical states, resulting in instability when dealing with
moving obstacles or complex scenarios. To address this, this
paper proposes a fused attention structure combining temporal
and spatial information. By embedding a spatiotemporal joint
attention module during feature encoding, the model can
dynamically focus on critical obstacles, path boundaries, or
motion trends across different time points and spatial regions.
This mechanism constructs dependencies between local and
global information, enabling the model to more accurately
identify potential collision risks and safe passages without losing
important contextual information.

3. An end-to-end Transformer architecture is designed as the
core modeling framework for the robot obstacle avoidance
system, aiming to overcome the information fragmentation
and feature loss issues caused by traditional separated
perception-decision  structures. Compared with previous

approaches relying on handcrafted feature extraction or

stacked

Transformer-based framework offers powerful global modeling

convolutional-recurrent networks, the proposed
capabilities and parallel processing efficiency. It can capture
long-range dependencies of critical obstacles and potential
spatial
the Transformer encoder performs sequential modeling

paths in multi-scale environments.  Specifically,
of spatiotemporal information, while the decoder directly
outputs action policies or value functions, providing high-
quality semantic representations for deep reinforcement
learning. This Transformer-based architecture not only
improves the generalization and response speed of obstacle
avoidance strategies in dynamic and complex scenarios but
also significantly reduces reliance on intermediate modules or
manually designed features, demonstrating excellent end-to-end

intelligent obstacle avoidance performance.

The structure of this paper is organized as follows:

Section 2 reviews related work and discusses prior research,
summarizing their strengths and limitations. Section 3 details the
proposed method, including the DQN framework, spatiotemporal
attention mechanism, and Transformer architecture, along with
explanations of the algorithmic workflow. Section 4 presents the
experimental setup, comparative evaluations, ablation studies, and
visualized results. Finally, Section 5 discusses the conclusions,
limitations of this study, and outlines directions for future research.
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2 Related work

We organize our analysis of existing obstacle avoidance
methods along four critical dimensions: (1) perception mechanism
and feature extraction capabilities, (2) reinforcement learning
framework and policy optimization strategy, (3) architectural
integration level and information flow design, and (4) temporal
modeling and sequential dependency handling. This systematic
framework allows us to identify specific gaps that our proposed
method addresses.

In dynamic, variable, and unstructured environments, the
primary challenges faced by robots in obstacle avoidance include
perception uncertainty, the complexity of environment modeling,
the real-time nature of path planning, and the robustness of
decision-making behavior (Wijayathunga et al., 2023). Traditional
methods, such as path planning algorithms based on A x
, Dijkstra, and Ant Colony Optimization, have demonstrated
certain effectiveness in structured environments. However, these
approaches typically require static modeling of the environment
and rely on accurate maps, lacking the adaptability to handle
unexpected obstacles and dynamic changes. Moreover, these
algorithms commonly suffer from limitations such as tortuous
paths, slow convergence, and sensitivity to local optima, making
them inadequate for complex, real-world scenarios.

To address the limitations of traditional methods, the
research community has introduced Simultaneous Localization and
Mapping (SLAM) techniques (Alsadik and Karam, 2021), enabling
robots to achieve self-localization and environment modeling
in unknown environments. Significant progress has been made
in SLAM, from classical Extended Kalman Filter (EKF)-based
methods to enhanced algorithms like Particle Filter (PF) and Rao-
Blackwellized Particle Filter (RBPF; Zhang, 2022). The Gmapping
algorithm proposed by Grisetti et al. (2007), a representative of
RBPF-SLAM, achieved high-precision 2D map construction. With
advances in visual perception technologies, Visual SLAM (VSLAM)
has emerged as a research hotspot, integrating robust image feature
detection algorithms such as SIFT and SURE, and has been widely
applied in object recognition and 3D mapping (Ansari, 2019; Ni
et al., 2024). However, SLAM still faces challenges in practical
applications, including slow processing speeds and sensitivity to
feature occlusion and lighting variations, which limit its obstacle
avoidance responsiveness in highly dynamic environments.

In recent years, the rise of deep learning has brought new
paradigms to robotic obstacle avoidance. As research in this
field has progressed, increasing efforts have been dedicated to
enhancing the real-time performance, accuracy, and generalization
capability of obstacle avoidance systems to meet the demands
of complex and variable environments (Raghvendra et al,
2024). Notably, the emergence of transformer-based reinforcement
learning approaches, including Decision Transformers (Chen
et al, 2021) and Trajectory Transformers (Janner et al., 2021),
has introduced sequence modeling paradigms to RL that show
promise for handling temporal dependencies in robotic decision-
making. These attention-based architectures have demonstrated
effectiveness in offline RL settings and long-horizon planning
tasks, though their application to real-time obstacle avoidance
remains limited due to computational constraints and the need for
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specialized spatial reasoning mechanisms. From the evolution of
recent work, it is evident that research paradigms have gradually
expanded from rule-driven approaches to data-driven, structure-
integrated, and task-specialized directions, with transformer-
based methods representing the latest frontier in end-to-end
learning approaches.

Firstly, explorations into lightweight visual perception are of
significant practical value. For instance, the method proposed in
Misir and Celik (2025), based on an improved MobileNetV2 for
visual obstacle avoidance, designed a neural network with low
parameter volume, combined with a custom dataset integrating
color intensity and ultrasonic data, achieving high recognition
accuracy and successful deployment on a mobile robot platform
(Zhang et al., 2022). This demonstrates considerable practicality
and engineering feasibility. However, the closed nature of its
experimental scenes and data construction limits the model’s
generalization ability in complex and dynamic environments.
Furthermore, it lacks quantitative analysis regarding algorithmic
latency and computational load, posing reliability challenges for
real-world applications. Meanwhile, task-specialized pathways
for robotic obstacle avoidance have also demonstrated notable
advantages. For example, Jian et al. (2025) focused on surgical
robotics and proposed the STV-PDNN structure, integrating
velocity control optimization and null-space redundancy control,
achieving high-precision and stable trajectory control during
surgical procedures with excellent policy robustness and trajectory
continuity. However, its validation scope is narrow, confined
to specific procedures and structures, lacking comprehensive
evaluations in diversified anatomical scenarios and effective
strategies for handling dynamic obstacles and sensor interference.
From the perspective of control and trajectory optimization
integration, Li et al. (2025b) and Wang et al. (2025b) proposed
trajectory tracking methods combining Model Predictive Control
(MPC) with Sliding Mode Control, and an integrated planning-
tracking obstacle avoidance framework, respectively. Both
approaches improved system performance through soft and hard
constraint modeling, optimized planning, and controller design.
Notably, Wang et al. (2025b) enhanced system adaptability in
unstructured environments by introducing dynamic obstacle
intention modeling into optimization objectives, breaking the
conventional hierarchical design. Nevertheless, both studies suffer
from limited application scenarios, simplified dynamic obstacle
modeling, and incomplete complexity analysis, which restrict their
scalability to real-world multi-target, multi-obstacle interactive
environments. In the field of coordinated obstacle avoidance for
multiple manipulators in open environments, Wu et al. (2025)
proposed a dual-arm collaborative obstacle avoidance method,
incorporating obstacle classification mechanisms and avoidance
direction adjustment strategies. It exhibited strong flexibility and
collision avoidance capabilities during practical task execution,
especially for fine-grained obstacle avoidance control in complex
operation scenarios. However, this method has yet to adequately
address the complexity and dynamic diversity of obstacles in
extreme environments. It also lacks in-depth investigation into
system robustness under sensor errors and has not conducted
quantitative comparisons with mainstream methods, affecting the
comprehensiveness of its practical value verification.
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To systematically position our contribution, we identify four
key limitations in existing approaches: (1) Perception Limitations:
Most methods rely on CNN-based local feature extraction
or simple attention mechanisms that fail to capture long-
range spatiotemporal dependencies crucial for dynamic obstacle
prediction, (2) Integration Gaps: Traditional approaches maintain
separation between perception and decision modules, leading to
information loss and suboptimal policies, (3) Temporal Modeling
Deficiencies: Existing methods either ignore temporal dynamics
entirely or use limited memory mechanisms (LSTM) that suffer
from gradient vanishing in long sequences, and (4) Scalability
Issues: Many approaches are tested only in simplified scenarios and
lack comprehensive evaluation across diverse environments. Our
method addresses these limitations through: unified spatiotemporal
modeling via Transformer architecture, complete end-to-end
integration eliminating information bottlenecks, comprehensive
temporal dependency modeling without gradient issues, and
extensive validation across multiple challenging environments.

Based on our systematic analysis, while existing works
demonstrate progress in individual components, they exhibit
fundamental limitations in achieving true end-to-end
spatiotemporal modeling for dynamic obstacle avoidance in
the practical deployment of obstacle avoidance algorithms,
control precision, and task adaptability, revealing a multi-level
integration trend from visual perception and motion control to
policy optimization. However, several unresolved issues remain:
most methods have been validated in limited environments,
lacking systematic evaluations for dynamic, unstructured, and
multi-obstacle interactive scenarios; obstacle avoidance systems
often decouple perception and decision-making, leading to
response delays and increased system complexity; and some
lightweight or end-to-end solutions lack coordinated optimization
of hardware resources and real-time performance. Against
this backdrop, this paper aims to develop an end-to-end deep
reinforcement learning obstacle avoidance framework integrating
a spatiotemporal attention mechanism. Leveraging the advantages
of the Transformer architecture in sequential modeling and global
perception, combined with the adaptive learning capability of
policy optimization, this study addresses the decision-making
challenges of obstacle avoidance in densely dynamic environments,
filling the current research gap between sequential modeling
capacity, dynamic adaptability, and deployment-friendliness.

Although considerable achievements have been made in SLAM
and DRL, VSLAM and image processing, as well as path planning
and control strategies, there is still a lack of a method capable
of integrating environment perception, spatiotemporal sequence
modeling, and autonomous policy learning into a unified, end-
to-end obstacle avoidance framework without relying on explicit
mapping. Existing methods often adopt decoupled designs for
perception, mapping, and control, resulting in complex systems,
difficult deployments, and delayed responses. To address this
research gap, this paper proposes an end-to-end robot intelligent
obstacle avoidance method based on deep reinforcement learning
and a spatiotemporal Transformer architecture. This approach
employs Transformer as the backbone model, incorporating
spatial attention mechanisms to enhance environmental obstacle
modeling and integrating DRL for self-optimized policy learning,
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aiming to achieve an efficient, robust, and generalizable robotic
obstacle avoidance system in dynamic environments.

In the data collection phase, NH-ORCA (Non-Holonomic
Optimal Reciprocal Collision Avoidance) algorithm is employed
for multi-robot collision avoidance to generate training trajectories
that account for the kinematic constraints of wheeled mobile
robots. The overall architecture is shown in

illustrates the complete workflow of our proposed
end-to-end obstacle avoidance system, which consists of three
interconnected phases: dataset collection, training, and inference.
In the dataset collection phase (left panel), we generate diverse
training scenarios through two pathways: single robot exploration
using frontier exploration techniques to create basic navigation
data {g;, 7;}, and multi-robot collision avoidance scenarios using
NH-ORCA
Avoidance) algorithm to produce complex interaction data
{g/* /). Additionally, we collect RGB image pairs with and
without dynamic obstacles {oj, ofl} to form our comprehensive

(Non-Holonomic Optimal Reciprocal Collision

dataset Dgy. The training phase (top right) integrates our
NavFormer architecture with both offline reinforcement learning
and self-supervised learning mechanisms, where the Causal
Transformer processes the collected trajectories and visual
encoders handle the multimodal sensory inputs. The inference
phase (bottom right) deploys the trained NavFormer model in real-
time, taking current observations (o, r) and generating appropriate
actions (a) for multi-robot cluttered dynamic environments.

10.3389/fnbot.2025.1646336

The bidirectional arrows indicate the iterative feedback between
training and data collection, enabling continuous improvement of
the obstacle avoidance policy.

3.1 Deep Q-network

The end-to-end architecture integrates data collection, feature
extraction, and decision-making in a unified learning framework,
eliminating the need for separate perception and planning modules
typical in conventional robotic systems.

Our implementation incorporates several key extensions to the
standard DQN framework to adapt it to spatio-temporal obstacle
avoidance tasks. When integrated with Transformer-based feature
extraction, the Q network processes high-dimensional spatio-
temporal features rather than raw observation data. The modified
experience replay algorithm maintains the sequence dependencies
required for dynamic obstacle tracking by preserving temporal
consistency. Therefore, by considering obstacle distance-adaptive
greedy exploration for safer exploration and multi-scale reward
shaping, we simultaneously balance immediate collision avoidance
and long-term navigation efficiency.

To achieve efficient and intelligent obstacle avoidance for
mobile robots in complex and dynamic environments, we
adopt the Deep Q-Network (DQN) as the core policy learning
algorithm. On this basis, a spatiotemporal perception mechanism
is integrated to construct an intelligent obstacle avoidance system
that unifies perception and decision-making. The DQN algorithm
approximates the state-action value function through a deep

FIGURE 1

Overall algorithm architecture. NH-ORCA (Non-Holonomic Optimal Reciprocal Collision Avoidance) generates training data for multi-robot collision

avoidance scenarios.
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neural network, effectively addressing the limitations of traditional
Q-learning in high-dimensional state spaces while offering
strong policy learning capabilities and environmental adaptability.
Our enhanced DQN architecture integrating spatiotemporal
Transformer features is detailed in , where the Transformer
module processes multimodal observations into high-dimensional
representations that enable the Q-network to make globally-
informed decisions.

In our approach, the observation space S encompasses multi-
modal sensory inputs including RGB images, depth maps, and
robot kinematic states. Specifically, each state s, € S is defined

10.3389/fnbot.2025.1646336

b d th
as s = {Irg i ,pt,w,Qt} where Ig e RHEXWx3 represents

the RGB observatlon, I; depth RHEXWxL denotes the depth
information, and {py, v;,6;} capture the robot’s position, velocity,
and orientation respectively.

As illustrated in ,
multimodal inputs through the Transformer module to generate
embedded patches, which are then fed into the modified Q-
network. The patch + position embedding corresponds to our
spatiotemporal feature integration, while the multi-head attention
mechanism enables selective focus on critical obstacles. The final
Q(s, a) output directly maps to discrete navigation actions.

our architecture processes
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Within the reinforcement learning framework, the robot
obstacle avoidance task can be modeled as a Markov Decision
Process (MDP), denoted as a quintuple:

M= (S,A,P,R,y) (1)

where S represents our enhanced state space that integrates
spatiotemporal features extracted by the Transformer encoder,
specifically S = {Z”, p, v, 0;} where Z” denotes the Transformer
output features and {p;, v¢, 0;} represent robot kinematic states; A
denotes our discrete action space A = {forward, left, right, stop}
designed for safe navigation in dynamic environments. P(s'|s, a)
is the state transition probability, describing the probability of
transitioning to the next state s’ after executing action a in state s;
R(s, a) is the reward function, defining the feedback obtained after
performing an action; y € [0, 1] is the discount factor, used to
balance long-term returns and immediate rewards.

To handle the high-dimensional observation space effectively,
we employ a hierarchical feature extraction strategy where
convolutional layers process visual inputs while fully connected
layers handle kinematic states. The spatiotemporal attention
mechanism (detailed in Section 3.2) then selects the most
relevant features across both spatial and temporal dimensions
for decision-making.

In practice, our adapted DQN processes the Transformer
output features Z (from Equation 24) as state representations,
enabling the Q-network to make decisions based on globally-
aware spatiotemporal features rather than local observations. The
training process incorporates curriculum learning where obstacle
complexity gradually increases, and the replay buffer maintains
temporal windows to preserve sequential dependencies essential for
dynamic obstacle prediction

In DQN, a deep neural network Qp(s,a) is employed to
approximate the Q-function, where 6 denotes the network
parameters. The network takes the current state (e.g., image) as
input and outputs Q-value estimates for each possible action.
Training is performed by minimizing the mean squared error
loss function:

£(6) = Eggars~p [ (4 — Qu(s.))’] @

where the target Q-value y; is defined as:

yo=r+ymaxQ (s,a) 3)
a

Here, 0~ represents the parameters of a target network, which
are periodically copied from the current network parameters 0 to
stabilize training.

To further improve the stability of value estimation and the
convergence speed of the policy, we adopt a decoupled action
selection and evaluation process. The target value is modified
as follows:

yr=r1+yQy-(s,argmax Qy(s’,a’)) (4)
a
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Our reward function R(s,a) is designed to encourage safe
navigation while maintaining efficiency:

R(s,a) = Rgoal + Reotision + Rprogress + Rsmoothness (5)

where Rgo, provides positive reward for reaching the target,
Reontision  heavily penalizes collisions (—100), Rprogress rewards
forward movement toward the goal, and Rgmoothness €nicourages
stable control actions to avoid oscillatory behavior.

Additionally, considering that different actions do not always
have significant differences in certain states, we decompose the Q-
value function into a state-value function V(s) and an advantage
function A(s, a), formulated as:

Q(s,a; 0,a,8) = V(s:6,B)

+ (A(s,a; 0,a) — ﬁ ZA(S, a; 9,a)> (6)

In this formulation, 6 represents the shared parameters of
the convolutional layers; @ corresponds to the parameters of the
advantage function branch; B corresponds to the parameters of the
state-value function branch.

The DQN framework follows standard implementation with
experience replay and target networks. We adopt Double DQN
and Dueling DQN variants to improve learning stability and value
estimation accuracy.

3.2 Spatiotemporal attention mechanism

In the end-to-end intelligent obstacle avoidance method
proposed in this paper, a spatiotemporal attention mechanism is
introduced as a key module to enhance the robots perception
of the temporal evolution and spatial distribution of obstacles
in dynamic environments. Unlike traditional static image-
based perception, the information received by a robot during
real-world obstacle avoidance is characterized by significant
temporal dependencies and spatial locality. Changes in obstacle
positions, motion trends, and occlusion relationships often
require joint modeling of both temporal and spatial dimensions.
To address this, we design a spatiotemporal fusion model
based on the Self-Attention mechanism, which extracts critical
dynamic behavioral features from sequential historical states
and models both local structures and global dependencies in
the spatial dimension, thereby comprehensively improving the
robot’s understanding of complex scenarios and the robustness
of its decision-making policy. The architecture is shown in
Figure 3.
detailed
Spatiotemporal Attention (SPA) mechanism, which consists

Figure 3 illustrates the architecture of our
of three main components: Co-attention Gate, Motion Guided
Attention Module, and Decoder Block. The Co-attention Gate
takes feature maps F* and F” as inputs, where F® represents
appearance features and F denotes motion features extracted
from consecutive frames. The gate mechanism uses average
pooling and 1 x 1 convolutions followed by sigmoid activation

to generate attention weights ¢ and g™, which modulate the
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Architecture diagram of SPA.

importance of appearance and motion information respectively.
The Motion Guided Attention Module further refines these
features through ring convolution operations and sigmoid gating
to produce enhanced spatial-temporal representations G* and G™.
Finally, the Decoder Block integrates these multi-scale features and
outputs the final attended representation f** that captures both
spatial dependencies and temporal dynamics essential for obstacle
avoidance decision-making.

At each time step ¢, the robot obtains a sequence of continuous
observation image frames of length T through its sensors,
denoted as:

xi € RHXWXC

X = {141 X T42>- > Xt} (7)

where H, W, and C represent the height, width, and number of
channels of each image, respectively. For unified processing, each
image frame is first embedded into a fixed-dimensional feature
vector through convolutional layers or an encoder:

F={f* " (8)
where f® represents appearance features and f” denotes motion
features as shown in Figure 3, with each feature vector f; € R4

The feature sequence is then input into the spatiotemporal
attention module for processing. To jointly model temporal
dependencies and spatial perception, a dual-attention mechanism
is introduced, consisting of a Temporal Attention module and a
Spatial Attention module, defined as follows.
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Temporal attention aims to capture key temporal features
from the historical state sequence that influence current decision-
making. For each time step i € [t — T + 1, t], query, key, and value
vectors are obtained through linear transformations:

Following the Co-attention Gate module in Figure 3, we
compute gated features:

g% = o(Conv; 1 (AvgPool(f*))) © f* (9)
g" = o (Convix(f™) © f" (10)
All time steps are then organized into matrix form:
Qr = [Qt—T+1)--->CIt]T, Kr = [kt—T+l>---»kt]T)
Vr = it owl’ (1)
The temporal attention output is computed as:
KT
Attngjye(F) = softmax (de»T> Vr (12)
k

In our formulation, f® represents appearance features, f™
denotes motion features, G* and G™ are the corresponding
gated attention maps, and the operations © and @ represent
element-wise multiplication and addition respectively. This
process achieves weighted aggregation of key historical moments,
strengthening the robot’s understanding of obstacle motion trends
and behavior patterns.
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For spatial attention modeling, at each time step i, based on
the image feature map f; € RF*Wx4, positional embeddings and
local window partitioning are applied to extract spatial information.
Denoting the embedding at each spatial position as fi(h’w) € RY, the
attention computation is as follows:

h, oW W
Qhw = W(QS)fi( w)’ ki = I(<S)fi( )) Vit = W%/S)fi( w')

(13)
The corresponding spatial attention output is:
Attgpace(fhw = D, A View  (14)
(W wW)eN (hw)
with the attention weight computed by:
exp (qh,w : kh’,w’/\/ dk)
), (W) = (15)

Z(h”,w”)e./\f(h,w) exp (%,w . kh”,w”/\/d>k>

where N (h, w) denotes the neighborhood region centered at (h, w).

After obtaining the temporal attention output F; = Attngime(F)
and the spatial attention output f‘:p ““ for each frame, a
spatiotemporal fusion module is introduced to aggregate the spatial
features of key frames in the time series:

t
}‘; = Z A - Flatten (JA‘:PME> , A= softmax(¢(ﬁ-)) (16)

i=t—T+1

where ¢(-) is an attention scoring function used to compute fusion
weights. The final fused featureﬁ is then fed into the policy network
or reinforcement learning decision module.

In summary, the spatiotemporal attention mechanism
introduced in this paper provides essential perception and
modeling support for intelligent obstacle avoidance by mobile
robots in complex dynamic environments. By jointly modeling
the behavioral evolution features in the temporal dimension and
obstacle distribution information in the spatial dimension, it
addresses the limitations of traditional perception methods in
terms of locality, sequential dependency modeling, and global
consistency representation. Temporal attention dynamically
captures critical historical states, revealing obstacle movement
trends and potential risk changes, while spatial attention precisely
focuses on key local regions in the current observation frame,
enabling fine-grained recognition of multiple obstacles and
multi-scale targets. The combination of the two not only
enhances the robot’s overall environmental understanding but
also provides higher-quality, decision-relevant semantic feature
inputs for downstream policy networks, thereby significantly
improving the robustness and generalization capability of
obstacle avoidance strategies in complex, changing scenarios.
Theoretically, this mechanism exhibits excellent scalability
and modularity, allowing it to naturally integrate with deep
reinforcement learning frameworks and build a unified end-to-
end perception-decision system. It thus lays a solid foundation
for the development of high-performance, adaptive robotic
navigation systems.
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3.3 Transformer architecture

The key distinction of our “end-to-end” transformer lies in its
architectural adaptations for direct sensor-to-action mapping: (1)
Input Integration: Unlike conventional transformers that process
single-modality sequential data, our architecture simultaneously
handles RGB images, depth information, and kinematic states
through unified patch embeddings, (2) Attention Mechanism:
We modify the self-attention to incorporate spatial proximity
bias for obstacle-aware feature selection, (3) Output Decoder:
The final layer directly outputs Q-values for discrete actions
rather than requiring separate decision-making modules, and
(4) Training Objective: The entire pipeline is optimized end-to-
end using reinforcement learning signals rather than supervised
learning on intermediate representations. As the core module
for perception and modeling, the Transformer architecture is
employed to uniformly process sequential input data from
multimodal sensors. With its powerful global modeling capability
and multi-head self-attention mechanism, it effectively extracts key
spatiotemporal features that influence robot obstacle avoidance
behavior. Compared to traditional Convolutional Neural Networks
(CNNs) or Recurrent Neural Networks (RNNs), the Transformer
architecture can model long-term dependencies in parallel and
maintains strong feature alignment capabilities in both spatial
and temporal dimensions, making it particularly well-suited
for obstacle behavior modeling and multisource information
fusion in dynamic environments. The architecture is shown in
Figure 4.

Within a temporal window of length T, the robot collects a
sequence of multimodal perception frames:

RHXWXC

X = {x1,x2,...,x7}, Xt € (17)

where each x; represents the image/depth frame obtained at time ¢,
and H, W, and C denote the height, width, and number of channels
of the frame, respectively. Each frame is first subjected to feature
extraction and flattening, followed by a linear transformation to
obtain a unified-dimensional embedding representation:

z; = Flatten(x;) - Wg + bg, z; € R? (18)

where Wy € RUIxWxC)xd

is the embedding matrix and bg €
RY is the bias vector. To clarify the architectural integration:
the ResNet-based feature extractor (Figure 4) serves as the visual
encoder that processes raw sensor inputs into compact spatial
representations z; € R512, These features are then temporally
organized and fed into our Transformer encoder (described below)
to capture spatiotemporal dependencies. The Transformer output
Z is subsequently processed by the Dueling DQN network (also
shown in Figure 4) to generate action decisions. To preserve
temporal information, a positional encoding p; € R¥ is introduced,
and the final input sequence to the Transformer is:

Z =A{z1 +p1,22 + p2s...,2r + pr} (19)

The Transformer encoder consists of multiple stacked layers,
each composed of a Multi-Head Self-Attention mechanism and a
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Feed Forward Network (FFN). The core computation within each
layer involves three main steps:
For each layer input Z = {z1, 2, ..., zr}, query, key, and value

vectors are generated through linear projections:

Q=2zw? K=zwK, v=zw" wQwK w" e R
(20)
The attention matrix is then computed as:
. QK"
Attention(Q, K, V) = softmax ﬁ 1% (21)
k

To enhance the model’s representation capability, h attention
heads are introduced, with each head corresponding to different
linear projections:

MultiHead(Z) = Concat(heady, ... ,headh)WO (22)

where:

head; = Attention(ZW<, ZWK, ZW)), WO e RMxd  (23)

After each sublayer, residual connections and Layer
Normalization are applied:

7' = LayerNorm(Z + MultiHead(2)) (24)

7" = LayerNorm(Z' + FFN(Z')) (25)

The Feed Forward Network (FEN) is defined as:

FFN(x) = o (xW7 + b1)W5 + b, (26)

where Wi € R™, W, e R4,

To further enhance the Transformer’s ability to model temporal
continuity and spatial distribution characteristics, this paper
introduces a position-sensitive spatiotemporal weighting mask
mechanism within the multi-head attention module. During the
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attention weight computation, positions with larger spatial or
temporal distances are assigned lower weights:

qikj
exp (T?; —X- 8,~j>
aiky
2 j exp (\/dik —A- 8,»1-/>

where §;; represents the spatiotemporal distance between positions

ajj = (27)

i and j, and A is a decay factor used to suppress interference
from distant positions. In the final encoded output Z”, each vector
carries rich semantic information from multiple time steps and
spatial locations, serving as the state input to the reinforcement
learning policy network to guide the robots obstacle avoidance
decision-making.

This contrasts sharply with traditional robotic systems that
employ separate modules for perception (CNN-based feature
extraction), mapping (SLAM), planning (A* or RRT), and control
(PID controllers), each requiring manual tuning and intermediate
data conversion. Our end-to-end approach eliminates these
boundaries by learning a unified representation that directly maps
sensory observations to optimal actions through the transformer’s
global attention mechanism.

In summary, as a sequence modeling method based on
the self-attention mechanism, the Transformer architecture
offers an efficient, unified perception and decision-making
modeling paradigm for robot obstacle avoidance tasks through its
exceptional global dependency modeling capability and parallel
computing advantages. By dynamically assigning weights to
relationships between time steps and spatial positions in the
input sequence, the Transformer adaptively focuses on the most
critical spatiotemporal feature information for obstacle avoidance
decision-making, significantly enhancing the robot’s understanding
of dynamic environments and response speed. By integrating
the Transformer architecture into the reinforcement learning
framework, this study constructs an end-to-end unified learning
pipeline from raw perception to behavioral decision-making. This
approach also provides a theoretically rigorous and practically
efficient solution for multimodal information fusion, multi-
object dependency modeling, and decision policy optimization
in complex environments. Therefore, the Transformer is not
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only a perception enhancement module but also a fundamental
component for improving the synergy, generalization, and
robustness of autonomous robot obstacle avoidance systems.

4 Experiment

4.1 Experimental setup and dataset

To verify the effectiveness and generalization capability of the
proposed method, all experiments were conducted on a unified
software and hardware platform to ensure the comparability
and reproducibility of different approaches under the same
environment. All models were implemented based on PyTorch
and trained on a high-performance workstation running Ubuntu
20.04, equipped with an NVIDIA GeForce RTX 4090 GPU
(24 GB VRAM) and an Intel Core i9-13900K processor. For
model training, the Adam optimizer was employed to update the
parameters of the policy network, with an initial learning rate set to
le-4 and a batch size of 64. The target network was synchronized
every 1,000 steps. The training process consisted of 1,000 epochs,
and a dropout rate of 0.1 was applied to prevent overfitting.

This
performance evaluations of the proposed end-to-end robot

work systematically conducted experiments and
intelligent obstacle avoidance method using three interactive
simulation environments (RoboTHOR, CARLA, TurtleBot3) for
data generation and one real-world dataset (EuRoC MAV) for
validation. These cover a wide range of application scenarios,
from static indoor environments to dynamic outdoor scenes,
and from ground robots to aerial platforms, thereby verifying the
model’s generalization ability and robustness under multi-modal
input and complex spatiotemporal conditions. To clarify our
experimental methodology: RoboTHOR, CARLA, and TurtleBot3
serve as simulation environments where we generate synthetic
training and testing data by running our proposed algorithm in
various scenarios. The EuRoC MAYV represents a real-world dataset
containing pre-recorded multimodal sensor data from actual
aerial vehicle flights. This hybrid approach allows us to evaluate
our method’s performance across both controlled simulation
conditions and real-world data complexities. The four datasets
used are introduced as follows:

e RoboTHOR
Developed by the Allen Institute for AI, RoboTHOR

(Deitke et al., 2020) is an interactive visual navigation and
obstacle avoidance simulation platform that provides highly
realistic 3D indoor home environments. It supports robots
performing navigation and obstacle avoidance tasks in multi-
room structures. The platform integrates various sensory
inputs (such as RGB images, depth maps, and semantic
labels) and control outputs, making it suitable for training
and evaluating end-to-end vision-control integrated models.
In this study, a multi-scene indoor obstacle avoidance test
set was constructed using RoboTHOR to evaluate the path
planning accuracy and local obstacle avoidance capability
of the proposed method in static and mildly dynamic
indoor environments.

e CARLA
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CARLA (Gannamaneni et al., 2021) is an open-source
autonomous driving simulator built on Unreal Engine,
widely used for research on navigation and obstacle
avoidance in urban road environments. It provides a
realistic simulation of dynamic elements such as traffic
flow, traffic lights, pedestrians, and vehicles, and supports
multi-sensor simulation (RGB, LiDAR, IMU, GPS, etc.).
In this study, CARLA was employed to build highly
dynamic complex obstacle scenarios to examine the model’s
spatiotemporal modeling ability and obstacle avoidance
robustness in urban environments with dynamic obstacles
and sudden disturbances.

TurtleBot3

TurtleBot3 (Kashyap and Konathalapalli, 2025) is a
compact mobile robot platform officially supported by
ROS, whose Gazebo simulation model is commonly used
for teaching and research on tasks such as path planning,
navigation, and obstacle avoidance. Its clean and controllable
simulation environment is ideal for training and debugging
reinforcement learning models. In this work, the proposed
method was trained and evaluated across multiple TurtleBot3
indoor maps. Taking advantage of its precise control model
and high reproducibility, the algorithm’s path efficiency
and control stability in typical indoor environments
were verified.

EuRoC MAV Dataset

The EuRoC MAV Dataset (Burghoffer et al., 2023) is
a multi-modal navigation dataset for Micro Aerial Vehicles
(MAVs), provided by the European Robotics Research Center.
It includes real aerial photography data from multiple
industrial and indoor scenarios, combining high-frequency
image frames, IMU sensor data, and ground-truth pose labels.
Widely used in tasks such as VIO, SLAM, and obstacle
avoidance, this study selected several challenging scenes
from this dataset to test the obstacle avoidance decision
performance of the proposed method on aerial platforms,
with particular focus on strategy adaptability and sequential
modeling ability under highly dynamic, high-degree-of-
freedom movements.

4.2 Evaluation metrics

To comprehensively assess the performance of the proposed
deep reinforcement learning-based intelligent obstacle avoidance
method incorporating a spatiotemporal Transformer architecture,
four key evaluation metrics were selected from multiple
dimensions, including obstacle avoidance capability, path
efficiency, and task response time. These metrics effectively reflect
the safety, intelligence, and practicality of the model in different
environments and are suitable for obstacle avoidance tasks in
dynamic and complex scenarios.

Our comprehensive hyperparameter configuration includes

DQN parameters with learning rate o le — 4 (selected from
tested range le —5to le — 3), discount factor y = 0.99, experience
replay buffer size of 100,000, target network updates every 1,000

steps, and e-greedy exploration decaying from 1.0 to 0.01 over
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50,000 steps; Transformer architecture with hidden dimension d =
512, 8 attention heads, 6 encoder layers, feedforward dimension
dg =
encoding length of 1,000; spatiotemporal attention mechanism

2048, dropout rate of 0.1, and maximum positional

using temporal window T' = 10 frames, 7 x 7 spatial neighborhood,
attention temperature ¢ = 0.1, and fusion weight decay A =
0.001; and training configuration employing batch size 64, Adam
0.9, B2 = 0.999), weight decay le — 4,

gradient clipping threshold 1.0, and exponential learning rate

optimizer (B; =

decay of 0.95 every 100 epochs. Systematic sensitivity analysis
across all parameters revealed robust performance within £20%
hyperparameter variations, with learning rate and attention head
number identified as the most critical factors affecting convergence
speed and final performance respectively.

e Obstacle Avoidance Success Rate (OASR)

This metric measures whether the robot successfully
avoids all obstacles and reaches the target point during the
task. It reflects the overall obstacle avoidance capability and
strategy effectiveness of the system.

NSHCCBSS

Success Rate(OASR) = x 100% (28)

total

where Ngccess 18 the number of successful, collision-
free task completions, and Ny, is the total number of
experiments. In this work, OASR is used to compare the
safety navigation capability of different methods in complex
dynamic environments and serves as a core metric for strategy
reliability evaluation.
e Collision Rate (CR)
The Collision Rate measures the frequency of collisions
occurring during the navigation process, serving as a negative
indicator for obstacle avoidance robustness and safety. It is

defined as:

Neoliision

Collision Rate(CR) = x 100% (29)

total
where N_ojision 1S the number of tasks in which at least
one collision occurred. The proposed strategy enhances the
perception of dynamic obstacles through the spatiotemporal
modeling capability of the Transformer architecture, thereby
reducing collision rates at the control level and improving
system safety.
o Average Path Length

This metric reflects the spatial efficiency of the path chosen
by the robot from the starting point to the target point. Shorter
paths generally indicate more optimized strategies.

Nsuccess

L; (30)

Average Path Length =

success
i=1

where L; represents the total path length in the i successful
navigation, and Ny,ceess is the number of successful task
completions. In this work, this metric is used to compare the
global efficiency of different strategies in path planning, with
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particular attention to path convergence performance under
dynamic obstacle interference.
e Average Navigation Time
The Average Navigation Time assesses the robot’s response
speed and execution efficiency in completing the task, which is
closely related to control decision latency and the stability of
obstacle avoidance behavior.

Nsuccess

Average Navigation Time = T; (31)

success
i=1

where T; represents the time taken to successfully complete
the i task, and Nycess is the number of successful task
completions. The proposed end-to-end architecture reduces
intermediate processing time from perception to control and
improves the strategy’s foresight through the global modeling
capability of the Transformer, effectively shortening the task
response time.

4.3 Experimental results analysis

We compare the proposed algorithm with representative
baseline methods that encompass different paradigms in the field
of obstacle avoidance based on deep reinforcement learning.
A bio-inspired multi-underwater spherical robot control system
employs a mobile obstacle avoidance strategy using a collaborative
formation mode. This method combines a perception module
based on convolutional neural networks (CNN) with standard
deep reinforcement learning (DQN) for multi-robot coordination,
representing a traditional vision-based reinforcement learning
approach. A fast finite-time binary formation control method
with obstacle avoidance functionality, suitable for multi-agent
systems with delays. This method employs a distributed consensus
algorithm combined with A3C reinforcement learning, focusing
on multi-agent coordination in delayed environments. Baseline
methods are implemented using their original hyperparameters (if
available) or carefully tuned to ensure optimal performance in the
experimental environment.

To comprehensively verify the effectiveness of the proposed
end-to-end robot intelligent obstacle avoidance method based on
deep reinforcement learning and a spatiotemporal Transformer
architecture, this section systematically analyzes and compares
the experimental results on four different types of datasets
(RoboTHOR, CARLA, TurtleBot3, EuRoC MAV). We evaluate the
model’s performance under multi-scene and multi-task conditions
from four key metrics: obstacle avoidance success rate (OASR),
collision rate (CR), average path length (APL), and average
navigation time (ANT). Particular emphasis is placed on analyzing
the model’s obstacle avoidance robustness, path planning efficiency,
and real-time control capability in complex dynamic environments.
Additionally, comparisons with various representative baseline
models are conducted to highlight the advantages of the proposed
method in global modeling, spatiotemporal feature extraction, and
policy optimization.

As shown in Table 1, in the RoboTHOR environment, the
proposed method achieves an OASR of 91.21%, significantly higher
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TABLE 1 Comparison of indicators of various models on RoboTHOR and CARLA dataset.

RoboTHOR CARLA
OASR(%)  CR(%) APL(m) ANT(s)  OASR(%)  CR(%) APL(m) ANT(s)
MOAC-MURS (Li et al., 20252) 88.15 10.12 22.34 52.36 80.56 17.23 36.8 63.65
DWA-DRL (Wang et al., 20252) 77.23 20.25 38.4 65.93 83.89 5.57 24.55 54.56
FTBF-OA (Chang et al., 2025) 76.12 14.98 45.2 68.74 81.67 15.05 33.65 66.87
CBE-MPC (Liu et al., 2025) 79.45 11.34 32.15 62.41 75.01 2275 413 67.38
PMO-DQN (Hu et al., 2025) 75.08 21.53 49.75 69.99 74.96 24.03 47.98 70.08
GP-RL-UAV (Enriquez et al., 2025) 82.34 12.56 27.91 57.15 82.78 13.78 29.1 58.1
Ours 91.21 3.15 16.85 46.82 92.35 42 182 48.13

TABLE 2 Comparison of indicators of various models on urtleBot3 and EuRoC MAV dataset.

Method TurtleBot3 EuRoC MAV
OASR(%)  CR(%) APL(m) ANT(s) OASR(%)  CR(%) APL(m) ANT(s)

MOAC-MURS (Li et al., 20252) 88.34 18.45 3146 56 76.66 13.08 42.11 67.15
DWA-DRL (Wang et al., 2025a) 86.12 19.6 34.92 64.93 82.67 10.01 28.25 59.25
FTBF-OA (Chang et al., 2025) 77.23 25.25 43.69 66.64 73.78 27.73 50.46 68.93
CBF-MPC (Liu et al., 2025) 90.43 7.89 21.71 51.79 88.05 9.98 23.82 53.87
PMO-DQN (Hu et al., 2025) 89.45 16.17 26.07 61.45 80.19 1117 3071 60.76
GP-RL-UAV (Enriquez et al., 2025) 75.56 265 48.05 69.08 79.34 11.22 37.53 65.51
Ours 94.55 6.75 15.52 45.46 95,61 6.05 19.86 49.92

than the best-performing comparison method (MOAC-MURS,
88.15%) and over 16 percentage points better than the lowest
value (Hu et al., 75.08%). Meanwhile, the CR of the proposed
method is only 3.15%, much lower than other methods (e.g., DWA-
DRL. 20.25%, PMO-DQN. 21.53%), demonstrating strong policy
robustness and safety. In terms of path efficiency, the APL is
only 16.85 meters, superior to all comparison models, indicating
that the model can seek more optimal strategies while ensuring
safety. The proposed method also excels in ANT, requiring only
46.82 s to complete a task, significantly faster than FTBF-OA.
(68.74 s) and Hu et al. (69.99 s), demonstrating quicker response
capability and control efficiency. In the more challenging CARLA
urban driving environment, the proposed method continues to
maintain its leading performance, achieving an OASR of 92.35%,
the only model exceeding 90%, far surpassing comparison methods
such as PMO-DQN. (74.96%) and CBF-MPC. (75.01%). In terms
of CR, it remains the lowest at 4.2%, highlighting excellent
dynamic obstacle avoidance capability. For path planning and time
efficiency, the proposed method requires only 18.2 meters and
48.13 s, outperforming other methods like PMO-DQN. (47.98
meters, 70.08 s) by a wide margin.

In summary, in Table 2 and Figure 5, experimental results on
TurtleBot3 and EuRoC MAV further confirm the universality and
adaptability of the proposed method in static + dynamic, ground
-+ aerial, structured + unstructured environments. Whether in
OASR, path efficiency, or task response time, the proposed method
consistently demonstrates significant advantages, showcasing the
natural strength of the Transformer in spatiotemporal feature

Frontiersin Neurorobotics

13

modeling and the potential of deep reinforcement learning for
policy adaptive optimization. It also indicates that the proposed
perception-decision integrated architecture has broad practical
deployment value.

As shown in Table 3, the resource consumption and efficiency
comparison experiments reveal that the proposed method not
only outperforms other methods in performance metrics but
also exhibits significant advantages in computational efficiency,
model size, and inference speed, fully demonstrating the model’s
lightweight design and deployment friendliness. On RoboTHOR,
the proposed method achieves the shortest training time (61.34
s), over 38% faster than the slowest (Enriquez et al., 99.81 s),
indicating higher efficiency in parameter updates. The inference
time per step averages only 92.37 milliseconds, notably lower than
Wang et al. (199.83 ms) and Li et al. (178.46 ms), favoring real-time
robot responses in practical applications. In terms of computational
complexity, the proposed method requires only 15.34 GFLOPs,
the lowest among all methods (compared to Enriquez et al. 34.17
G, Li et al. 30.48 G), confirming its deployability on resource-
constrained platforms. Furthermore, the model’s parameter count
is only 142.83 M, the smallest among all methods, reflecting highly
optimized network design. On the more complex CARLA dataset,
the proposed method maintains its lead, with a training time of
63.27 s, over 15% shorter than most other comparison methods.
The inference time averages just 95.12 milliseconds, much faster
than Wang et al. (148.73 ms), Li et al. (183.27 ms), and Liu et al.
(194.59 ms). In terms of computational complexity, the model
requires only 16.78 GFLOPs, significantly lower than Li et al. (33.99
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Comparative visualization of each model indicator on four dataset.

TABLE 3 Comparison of training indicators on RoboTHOR and CARLA dataset.

Method RoboTHOR CARLA
Training Inference Flops(G) Para.(M) Training Inference Flops(G) Para.(M)
time(s)  time(ms) time(s)  time(ms)
MOAC-MURS (Li et al., 20252) 87.69 178.46 30.48 317.52 97.52 183.27 33.99 368.42
DWA-DRL (Wang et al., 20252) 68.97 199.83 26.93 264.16 84.19 148.73 27.84 22791
FTBE-OA (Chang et al., 2025) 93.28 128.53 21.69 235.49 70.58 132.05 22,05 293.05
CBE-MPC (Liu et al., 2025) 75.42 143.29 23.57 39271 95.73 194.59 31.12 209.68
PMO-DQN (Hu et al,, 2025) 82.13 108.64 17.82 188.27 78.36 165.94 1921 32578
GP-RL-UAV (Enriquez et al., 2025) 99.81 156.81 34.17 359.03 89.47 117.88 24.36 399.91
Ours 61.34 92.37 1534 142.83 63.27 95.12 1678 156.34

G) and Liu et al. (31.12 G). The parameter count remains the lowest

As shown in Table 4, the proposed method consistently

at 156.34 M, verifying the model’s balanced design in ensuring  outperforms all comparison methods across all metrics, reflecting

performance while minimizing computational overhead. a comprehensively optimized approach. On the TurtleBot3 dataset,
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TABLE 4 Comparison of training indicators on urtleBot3 and EuRoC MAV dataset.

TurtleBot3 EuRoC MAV

Training Inference Flops(G) Para.(M) Training Inference Flops(G) Para.(M)

time(s)  time(ms) time(s)  time(ms)
MOAC-MURS (Li et al., 2025a) 98.06 169.08 29.73 333.67 100.08 188.42 32.67 347.98
DWA-DRL (Wang et al., 2025a) 86.92 200.05 25.27 241.73 73.41 192.63 24.98 253.89
FTBE-OA (Chang et al., 2025) 80.29 137.62 28.56 385.24 88.24 145.9 26.11 315.55
CBE-MPC (Liu et al., 2025) 7276 15234 21.14 195.12 69.83 114.21 19.97 287.31
PMO-DQN (Hu et al., 2025) 91.17 122.79 35.62 278.49 79.62 12655 23.42 21476
GP-RL-UAV (Enriquez et al., 2025) 76.84 176.15 20.06 302.1 94.37 158.77 3455 384.12
Ours 65.53 101.46 18.03 170.59 67.89 99.83 15.89 131.02

the training time (65.53 s) is about 10% shorter than the next-best
method (Liu et al., 72.76 s), inference time (101.46 milliseconds)
is 17% lower than the best competing method (Hu et al., 122.79
milliseconds), and both GFLOPs (18.03G) and parameter count
(170.59 M) are the lowest, demonstrating higher computational
efficiency and a higher degree of lightweight design. On the
EuRoC MAV dataset, the proposed method again maintains
its lead, with the shortest training time (67.89 s), inference
time (99.83 milliseconds), and the lowest GFLOPs (15.89 G)
and parameter count (131.02 M), reducing overhead by 20-
50% and 20-60%, respectively, compared to other methods.
Notably, certain methods like Enriquez et al. have parameter
counts as high as 384.12 M, yet their inference time (158.77
ms) remains significantly inferior to the proposed method,
highlighting the efficiency of the model’s structural optimization.
Figure 6 presents a comparative visualization of the training
metrics for each model in the four datasets. Calculating efficiency
relationships and resource utilization patterns is important for
practical deployment considerations. We considered the trade-oft
between efficiency and performance, achieving better results while
reducing computational overhead. In terms of scalability across
datasets, even with increased environmental complexity, consistent
efficiency improvements can be maintained. We highlighted the
relationship between model parameters, floating point operations
(FLOPs), and actual performance improvements.

Overall, comprehensive analysis indicates that the proposed
method leads not only in obstacle avoidance accuracy and path
efficiency but also in model size, computational complexity,
training convergence speed, and inference response time. It
fully embodies the innovative concept of lightweight, efficient,
and deployable model design. Especially in practical robotic
applications, the proposed model’s high efficiency, low latency,
and low resource consumption characteristics provide a solid
foundation for deployment on embedded platforms or resource-
constrained systems, offering considerable practical value and
broad promotion potential.

As shown in Table 5, ablation study results demonstrate that the
full model proposed in this paper outperforms all variant models
(with any key module removed) on all core metrics across the four
datasets, verifying the indispensable roles of the deep reinforcement
learning module (DR), spatiotemporal attention mechanism (SPA),
and Transformer architecture in the system’s overall performance.

Frontiersin Neurorobotics 15

The full model shows significant advantages in OASR, CR, APL,
and ANT, fully reflecting the rationality and synergistic effect of the
proposed structural design.

On RoboTHOR, the full model achieves an OASR of 91.21%,
while removing the DR module drops it to 73.59%, and removing
SPA further drops it to 61.34%, demonstrating the crucial role
of reinforcement learning for long-term decision-making in
dynamic environments and the SPA for feature representation
and obstacle perception. Removing the Transformer causes OASR
to decline to 67.28% and CR to surge to 35.62%, while APL
increases dramatically to 51.49 meters, confirming the importance
of Transformer in capturing global temporal dependencies.
The full model’s APL of 16.85 meters and ANT of 46.82 s
remain optimal.

In the CARLA urban scene, the full model maintains its lead
with a 92.35% OASR and 4.2% CR. Removing the Transformer
drops OASR to 63.17%, increases CR to 26.05%, and significantly
raises both APL (58.36 meters) and ANT (81.37 s), showing
the critical importance of the Transformer in complex, dynamic,
multi-object environments. Removing DR or SPA also results in
noticeable performance declines, proving their indispensable roles
in policy optimization and spatiotemporal feature extraction.

Similar trends appear on TurtleBot3, where the full model
leads with a 94.55% OASR and the lowest CR of 6.75%. Removing
SPA causes the OASR to plummet to 64.96%, while removing the
Transformer keeps OASR at 74.31% but CR surges to 38.71%,
confirming the SPA’ role in integrating local and global obstacle
information for safe avoidance.

In the EuRoC MAYV dataset, the full model achieves a 95.61%
OASR and 6.05% CR, proving strong robustness and precise
path planning capability in high-DOF, temporally sensitive UAV
obstacle avoidance tasks. Removing the Transformer drops OASR
to 75.82%, raises CR to 22.54%, and nearly doubles ANT to
99.67 s, demonstrating the Transformer’s essential role in modeling
high-dimensional state transitions and sequential behaviors.
Figure 7 illustrates the results of the ablation experiments.
We provide insights into component interdependencies and
synergistic effects. The display module provides a hierarchy of
the most significant performance improvements contributed by
components, while demonstrating how the combination of DR,
SPA, and Transformer produces synergistic improvements that
exceed their individual contributions. In fault mode analysis, we
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TABLE 5 Ablation experiments of this model on four datasets.

RoboTHOR CARLA
OASR(%) CR(%) APL(m) ANT(s) OASR(%) CR(%) APL(m) ANT(s)
w/o DR 73.59 11.34 38.62 76.89 69.42 31.49 41.78 72.16
w/o SPA 61.34 23.78 27.83 67.23 71.83 15.97 32.14 96.08
w/o Trans. 67.28 35.62 51.49 92.54 63.17 26.05 58.36 81.37
Ours 91.21 3.15 16.85 46.82 92.35 4.2 18.2 48.13
TurtleBot3 EuRoC MAV
OASR(%) CR(%) APL(m) ANT(s) OASR(%) CR(%) APL(m)
w/o DR 66.05 18.23 36.29 79.02 62.78 40.27 34.91 84.65
w/o SPA 64.96 29.16 63.12 69.58 68.53 12.89 44.03 74.93
w/o Trans. 74.31 38.71 29.67 88.41 75.82 22.54 65.59 99.67
Ours 94.55 6.75 15.52 45.46 95.61 6.05 19.86 49.92
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identify which performance aspects are most affected when specific
components are removed.

In summary, Table 5 clearly verifies that the deep reinforcement
global policy optimality, the
attention mechanism strengthens dynamic

learning module ensures
spatiotemporal
change and key obstacle perception, and the Transformer provides
powerful long-term sequence modeling and global dependency
The these

enables the proposed method to consistently achieve optimal

awareness. collaboration among components
performance and efficiency across various complex environments,
demonstrating excellent scalability and generality, and forming a
vital foundation for building high-performance intelligent obstacle

avoidance systems.

5 Discussion and conclusion

The end-to-end robot intelligent obstacle avoidance method
proposed in this paper, based on deep reinforcement learning and

Frontiersin Neurorobotics

a spatiotemporal Transformer architecture, demonstrates excellent
performance across multiple simulation environments and when
evaluated on real-world sensor data. It consistently outperforms
existing mainstream methods in simulation-based evaluations in
terms of obstacle avoidance success rate, path efficiency, decision
response speed, and model lightweight design. Notably, while
our method shows promising results in simulation environments
and when tested on real-world sensor data, comprehensive
validation in actual physical deployment scenarios remains to
be conducted. However, two critical limitations specific to our
framework require immediate attention. First, our spatiotemporal
attention mechanism exhibits domain sensitivity during sim-to-
real transfer, where attention weights learned on simulated obstacle
patterns may not effectively transfer to real-world sensor noise
and lighting variations. This limitation is particularly pronounced
in our Transformer encoders spatial attention computation
(Equations 14-16), where synthetic depth data characteristics differ
significantly from real sensor outputs. Second, while our integrated
architecture achieves superior performance, the computational
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overhead of multi-head attention combined with experience replay
creates latency bottlenecks that limit real-time deployment on
resource-constrained robotic platforms, particularly affecting the
92.37 ms inference time requirement for safe obstacle avoidance.
Based on these specific limitations, we identify two concrete
research directions for immediate improvement. First, developing
domain-adaptive spatiotemporal attention mechanisms that
can automatically adjust attention weights during deployment
This
attention regularization techniques that maintain spatial-temporal

through meta-learning approaches. involves creating
modeling capabilities while adapting to real-world sensor
characteristics, potentially through adversarial training between
simulated and real sensor data. The specific implementation would
focus on modifying our attention computation (Equation 16)
Second, architectural

to include domain-invariant features.

optimization for embedded deployment through selective

attention pruning and quantization techniques specifically
designed for our Transformer-DQN integration. This involves
developing attention head importance scoring to identify which
spatial-temporal attention patterns are most critical for obstacle
avoidance, enabling targeted compression without performance
degradation. These improvements directly address our framework’s
deployment challenges while maintaining its core spatiotemporal
modeling advantages.

In summary, although our spatio-temporal Transformer-
DQN framework has made progress in simulated environments,
addressing specific challenges such as domain transfer sensitivity
and computational efficiency is crucial for achieving robust real-
world deployment. These targeted improvements represent the
most impactful next steps in translating our theoretical findings
into practical robot navigation systems.
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