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Introduction: Abandonment rates for myoelectric upper limb prostheses can
reach 44%, negatively affecting quality of life and increasing the risk of injury
due to compensatory movements. Traditional myoelectric prostheses rely on
conventional signal processing for the detection and classification of movement
intentions, whereas machine learning offers more robust and complex control
through pattern recognition. However, the non-stationary nature of surface
electromyogram signals and their day-to-day variations significantly degrade
the classification performance of machine learning algorithms. Although single-
session classification accuracies exceeding 99% have been reported for 8-class
datasets, multisession accuracies typically decrease by 23% between morning
and afternoon sessions. Retraining or adaptation can mitigate this accuracy loss.
Methods: This study evaluates three paradigms for retraining a machine
learning-based classifier: confidence scores, nearest neighbour window
assessment, and a novel signal-to-noise ratio-based approach.
Results: The results show that all paradigms improve accuracy against no
retraining, with the nearest neighbour and signal-to-noise ratio methods
showing an average improvement 5% in accuracy over the confidence-based
approach.
Discussion: The effectiveness of each paradigm is assessed based on
intersession accuracy across 10 sessions recorded over 5 days using the NinaPro
6 dataset.

KEYWORDS

surface electromyography, hand gesture recognition, inter-session retraining, machine
learning, myoelectric prostheses

1 Introduction

The need for upper-limb prostheses continues to rise, and in 2021, there was
an estimated 1.5 million upper-limb amputees worldwide (Nazarpour et al., 2021).
Concurrently, prosthesis abandonment rates remain as high as 44% in 2020; abandonment
is problematic and can lead to further injury as a result of compensatory movements of
intact limbs (Salminger et al., 2022; Rausch et al., 2022). There are many reasons for device
abandonment, but key drivers include weight, lack of sensory feedback, and functional
limitations (such as unexpected movements and range of movements limited by simplistic
control strategies; Ostlie et al., 2012; Cordella et al., 2016). A 2016 review of upper-limb
amputee needs showed that improved functionality was critical and specifically identified:
increased individual control of actuators, increased number of movements, and dexterity
improvements such as control of the grip strength and precision of actuation (Cordella
et al., 2016).
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FIGURE 1

Block diagram demonstrating the typical myoelectric prosthesis controller. The dashed bounding box represents the parts of the control system that
could be replaced by machine learning algorithms, reducing the input to just the EMG sensors. The dotted lines represent how retraining could be
implemented in the controller.

To limit the computational demand and weight of the
prosthesis controller, typical myoelectric prostheses use gross
muscle activations (recorded from residual muscles in the stump)
as inputs. These control the movement of the fingers, whilst
the wrist and thumb positions are changed manually (Calado
et al., 2019). Pattern recognition algorithms have been used
to provide simultaneous control of multiple degrees-of-freedom,
using machine learning algorithms to classify movement intention
from surface electromyographic (sEMG) signals (Igual et al., 2019).
Figure 1 shows a typical myoelectric prosthesis control system
and illustrates where machine learning might be implemented.
Machine learning classifiers have achieved accuracies as high as
99.52% on a 15-class sEMG dataset using 8 sEMG channels,
demonstrating the potential for significant improvement of control
by expanding the degrees-of-freedom (Bhagwat and Mukherji,
2020).

Despite the potential benefits of pattern recognition schemes,
commercial adaptation remains limited. Barriers include
computational complexity arising from machine learning
and the need for a greater number of sEMG electrodes (Atzori and
Müller, 2015; Parajuli et al., 2019).

Electromyographic signals recorded using sEMG are non-
stationary (Phinyomark et al., 2012); electrode location (Hargrove
et al., 2006), limb position (Scheme et al., 2010), temperature
(Racinais, 2013), muscle fatigue (Guo et al., 2017), and skin-
electrode impedance (Roy et al., 2007; Sae-lim et al., 2018) all

Abbreviations: CNN, convolutional neural network; CR, confidence-based

retraining; ENN, Edited Nearest Neighbours; IQR, interquartile range; FFT, Fast

Fourier Transform; LDA, linear discriminant analysis; QA, quality acceptance;

sEMG, surface electromyography; SNR, signal-to-noise ratio.

influence the recorded signal. Noise and interference are ever
present from sources including power lines and muscle crosstalk
(Chen et al., 2023; Germer et al., 2021). Many of these factors
are either constrained or minimised in a controlled laboratory
environment. However, in a home-use setting, they can contribute
dramatically to a decrease in sEMG signal quality and thus classifier
performance. For example, the reduction in classification accuracy
between a morning training session and an afternoon testing
session can be as high as 27% (mean over 10 participants; Palermo
et al., 2017). Accounting for the non-stationarity of sEMG within
sessions, such as from limb position changes, can be achieved by
training a classifier in multiple positions and applying sensor fusion
(Fougner et al., 2011; Mobarak et al., 2025).

Similarly, retraining or adapting classifiers on data from
sessions across multiple days is a potential mechanism to enable
translation from the laboratory to the home. Retraining can involve
creating a new classifier by combining seen and new windows
of sEMG or updating an existing classifier through incremental
training (Radmand et al., 2014). In contrast, adaption updates
the model’s hyper-parameters directly based on some external
input (Vidovic et al., 2016; Huang et al., 2017). Adaptation
based on new data has been shown to improve classification
accuracy by up to 25% (Vidovic et al., 2016), whilst retraining
using data from different limb positions increases accuracy
across all positions by approximately 13% (Radmand et al.,
2014).

Instead of using all new windows in retraining it is possible
to select only the most beneficial windows. This reduces
computational complexity by only retraining on windows that are
likely to improve accuracy. Sensinger et al. showed that offline
supervised window selection increased accuracy on unseen data
by 30% whilst offline unsupervised methods increased accuracy
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by 20% (Sensinger et al., 2009). Online retraining has also
been demonstrated by comparing an iterative learner to a non-
adaptive one, with a 9.03% reduction in accuracy degradation
at the end of 1 day (Huang et al., 2017). Online retraining
has the advantage that it may facilitate continual adaptation,
albeit at the cost of additional computational complexity.
Alternatively, instead of retraining the classifier, it is possible
to simply reject poor-quality windows of testing data using a
confidence score from the classifier. This has been shown to
reduce unintentional movements and increase classifier accuracy
but comes with the risk of unresponsiveness if too many
windows are rejected (Scheme et al., 2013; Robertson et al.,
2019).

The selection of optimal windows for retraining provides a
distinct benefit for adapting sEMG classifiers between independent
recording sessions. However, few methods exist for directly
selecting optimal data and comparison of the respective benefits
and drawbacks of existing paradigms is limited. This study
provides a comparison of two existing window selection paradigms
from the literature, supervised confidence-based (Sensinger et al.,
2009) and Edited Nearest Neighbour (ENN; Ding et al., 2019).
A third, quality acceptance (QA), is additionally compared
and is novel, using the signal-to-noise ratio (SNR) of each
window. The confidence-based paradigm was selected to provide
a retraining option driven by the output of the current
classifier trained on previous windows. The ENN paradigm
alternatively explores the new windows independently to the
pattern recognition classifier, using a nearest neighbour algorithm.
The proposed QA paradigm accepts windows above a signal quality
threshold and is thus driven solely by the prior conception of
an acceptable signal. The selected paradigms provide a range
of complexity in their decision-making, allowing comparison
of the underlying selection processes in addition to their
performance.

The impact of the paradigms on classification accuracy
is evaluated on an open source dataset, Ninapro DB6, which
contains data obtained from 10 participants (each over 10
independent recording sessions; Palermo et al., 2017). As
such, this work presents the first comparison, to the authors’
knowledge, between any of the paradigms on multi-session data
obtained over several days. All three paradigms were assessed for
retraining, rejection, and a combination approach. Furthermore,
the complexity of the paradigms and their capacity to perform
on noisier data are assessed, highlighting their suitability to
clinical applications. In addition, the assessments are performed
using two common sEMG classifiers, linear discriminant
analysis (LDA), a traditional classifier, and convolutional neural
networks (CNN), which allows iterative training. This enables
comparison of the impact of the paradigms on each classifier
and the comparison of the individual classifier’s application to
retraining.

The study is organised with the methods presented in Section
2, detailing the data used, the paradigms, and the metrics for
comparison. The results are presented in Section 3. An analysis
and discussion of the paradigm performance results is provided in
Section 4, additionally identifying the benefits and drawbacks of the
compared paradigms.

2 Methods

2.1 Datasets

To assess the proposed window selection paradigms, the
Non-Invasive Adaptive Hand Prosthetics Database 6 (DB6) was
used (Palermo et al., 2017). DB6 is an open dataset of 10
healthy anatomically intact participants who performed a series of
recording sessions twice daily for 5 consecutive days, for 10 total
sessions per participant. In each session, the participants performed
12 repetitions of 7 different grasp activations in order: Large
Diameter, Adducted Thumb, Index Finger Extension, Medium
Wrap, Writing Tripod, Power Sphere, and Precision Sphere. This
presents an 8-class problem with the inclusion of the rest periods
as class zero. Each grasp activation involved moving from rest,
picking up an object suitably shaped for the grasp, holding it for
4 s, and then placing the object back down. Each participant was
guided to perform each 4-s activation, with a 4-s rest between
individual grasps. sEMG signals were recorded using 14 Delsys
Tringo Wireless electrodes (Delsys Inc, USA) sampled at 2 kHz.
Electrodes were placed circularly at 2 positions of the forearm. One
circle of 8 electrodes was placed around the radio-humeral joint,
and the other of 6 was placed below the first. The dataset’s baseline
accuracy score of 52.43% was established using the Waveform
Length feature and a Random Forest classifier (Palermo et al.,
2017).

2.2 Pre-processing

Pre-processing consisted of min-max normalisation of the
sEMG between -1 and 1, which preserves the shape and distribution
of the signals whilst bounding it to a set range that is more suitable
for use as CNN inputs. A sliding window approach was used to
segment the signal, using a 200 ms window width and 10 ms step.
These values are recommended for real-time classification of sEMG
(Hakonen et al., 2015). Time-domain features were then extracted
from each window (waveform length, zero crossings, slope sign
change, mean absolute value; Hudgins et al., 1993). Classes were
assigned to each window based on the restimulus vector provided
in DB6. This vector was created post-recording to identify the true
periods of sEMG activity from the participant, which typically last
longer than the originally prompted 4 s.

Whilst the restimulus vector provided in DB6 differentiates
between clear activity and rest, in some cases rest periods are
contaminated with sEMG activity. Contaminants are likely the
result of small adjustments made by the participant following
the grasp. Therefore, some rest periods are significantly shorter
than 4 s.

A full second of clean rest was found per recording for the
SNR calculation. The duration of each rest period was assessed in
the restimulus vector. Where a marked rest period was found to
be longer than 2 s, the central 1 s was used for that signal’s SNR
calculation. Table 1 presents the equations for all features extracted
from each window.

As per the original DB6 analysis, each session was segmented
into a training and testing set—the odd repetitions used for training
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and the even for testing, example shown in Figure 2. This provided
a roughly 50:50 split of the dataset and ensured that there was no
information leakage between the two sets. Due to having a rest
period between each activation, a class imbalance exists favouring
the rest class. As such, the rest windows were undersampled such
that no class was significantly biased in training or testing. The
average number of windows of the activity classes was used as a

TABLE 1 Equations for each feature used for the machine learning
algorithms, and the SNR for the QA paradigm.

Feature Equation

Mean absolute
value

N∑
i=0

|xi |
N

Slope sign
changes

N−1∑
i=1

f (x)

f (x) =

⎧⎪⎨
⎪⎩

1 (xi > xi+1 & xi > xi−1) | (xi < xi+1 & xi < xi−1)

0 otherwise

Zero crossings
N−1∑
i=0

f (x)

f (x) =

⎧⎪⎨
⎪⎩

1 (xi > 0 & xi+1 < 0) | (xi < 0 & xi+1 > 0)

0 otherwise

Waveform
length

N−1∑
i=0

|xi+1 − xi|

SNR 10 log10(Ps/Pr)

Ps is the sum of the Fast Fourier Transform (FFT) of the signal period, and Pr is the sum of
the FFT of the first acceptable rest period of at least 1 s.

target for the undersampling. All pre-processing was performed
using MATLAB R2023a (MathWorks).

2.3 Dataset selection paradigms

Three dataset selection paradigms were considered and
evaluated, confidence retraining, Edited Nearest Neighbour, and a
novel SNR-based approach.

2.3.1 Confidence retraining
Confidence-based retraining (CR) uses the classifier’s largest

computed class probability for each window to decide whether it
is kept for retraining (Sensinger et al., 2009). For most classifiers,
a probability vector is output and the predicted class is the index
with the maximum probability. A window is retained for retraining
if its maximum probability is equal to or above the threshold.
Previously, Sensinger et al. (2009) compared supervised and
unsupervised confidence-based retraining and found supervised to
perform best. As such, the supervised method was employed in
this work, where the retraining class for each accepted window
uses its true label, rather than the predicted output of the previous
classifier.

A percentage was selected to ensure that the most probable
class was significantly more probable than any other class (i.e., the
sum of all 7 other class probabilities is <= 100 − CRthreshold%).
Conversely, a threshold too high could lead the paradigm to
retain too few windows, which could impact performance. A

FIGURE 2

Example sEMG signals from 3 of the 14 sensors, for visual clarity, from DB6 (Palermo et al., 2017). Gray bounding boxes differentiate periods of
muscle activity from rest. Odd repetitions of muscle activation are stored in the training set and even repetitions in the testing set. The windows from
the rest periods are randomly undersampled from the entire signal to ensure a balanced dataset.
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previous study by Robertson et al. (2019) recommended that the
confidence thresholds for rejection be between 60 and 75% to
permit responsive controllers. To meet these three conditions, a
75% threshold was used in this work.

2.3.2 Edited nearest neighbour
Edited Nearest Neighbour (ENN) is implemented using an

adjusted version of the algorithm by Ding et al. (2019), (See
Algorithm 1). First, the training data are applied to a k-Nearest
Neighbour tree. Each window in the new training dataset is assessed
against its 7 nearest neighbours using the previously extracted time-
domain features. The nearest neighbour tree is created using the
KDTree object from the scikit-learn Python library (Pedregosa
et al., 2011). The inverse distance from each neighbour is used as
a weighting for which class the window belongs to. If the class
with the maximum weighting matches the true class assigned to the
window, it is selected for retraining. Due to the 10 ms step of the 200
ms sliding window, the neighbouring window will contain 190 ms
(95%) of the same data as the previous window. Thus, neighbours
with high similarity in information must be ignored, or else the
ENN paradigm will retain all windows. Therefore, the nearest 20
neighbours are excluded when considering a window for retraining.
This should typically exclude the 10 neighbours on either side of a
window, which contain 50% or more overlapping information.

Create a KDTree from the new dataset, X
for window, w, in X do

Get nearest neighbours 21 through 27, N
Create a zero vector of length 8, V0..7
for neighbour, n, in N do

Calculate distance, d, between w and n
Add 1

d to Vi where i is the class of n
end for
Expected Class = argmax(V)
if Expected Class = Known Class of w then

Accept w into retraining set
end if

end for

Algorithm 1. ENN-based retraining.

2.3.3 Quality acceptance
Unlike CR and ENN which select windows for retraining

based on machine learning algorithms, the QA paradigm proposed
here relies solely on a single feature, the SNR. SNR is a quality
metric; it is the ratio of the power of the sEMG during volitional
muscle activation vs. rest. Low SNR can indicate an electrically
noisy environment, poor electrode contact, or electrode movement.
The paradigm seeks to provide a simplistic method of assessing a
singular window’s suitability for retraining, based on a general prior
conception of quality. In comparison, the evaluation performed
by the CR and ENN is computationally more complex and relies
specifically on signals that have been processed by the existing
system, which could skew their performance.

The SNR of a window was calculated using the equation in
Table 1. A direct thresholding approach is used to select windows. A
threshold SNR of >1.8 dB is based on previous work (Chang et al.,
2020). As the recording electrodes are placed evenly around the
arm, not all will detect a signal during muscle activation. Therefore,
only the three largest SNRs for each window are compared with the
threshold.

These three paradigms allow comparison of machine learning-
based methods, the use of a secondary deterministic machine
learning assessor, and a purely data-based paradigm.

2.4 Classifiers

Classification performance was assessed using an LDA
implemented with scikit-learn (Pedregosa et al., 2011) and a
CNN implemented using Tensorflow (Abadi et al., 2015). The
CNN structure (Figure 3), was as proposed by Atzori et al.
for sEMG classification and used an Adam optimiser with a
learning rate of 0.001, reduced to 0.0001 for retraining (Atzori
et al., 2016). LDA and CNN are common classifiers in sEMG
literature and were selected to confirm that the results are
consistent between traditional and deep learning approaches (Khan
et al., 2020). In addition, Sensinger et al. (2009) suggested that
neural network-based models may be inherently more suitable
for retraining as they can be readily adjusted with new data.
As such, a comparison of the two classifier’s performances using
the retraining paradigms is presented. As a traditional machine
learning algorithm, the LDA was trained and tested using the
extracted time domain features. The CNN, however, used the signal
data from the window as the convolution layers learn their own
feature mapping during training. All models were trained and
tested on a PC containing an Intel i9-11900 and an NVIDIA
RTX 3080.

2.5 Dataset augmentation

The purpose of retraining the classifier is to adapt to the non-
stationarity of the sEMG. Whilst DB6 encapsulates some of this
variability, it is, in general, a high-quality dataset. As such, it was
artificially augmented to degrade the overall quality (Chang et al.,
2020). An augmented dataset (AB6) was constructed by adding
pink noise to the original data. The pink noise for each recording
was scaled by the greatest integer value which did not bring the
average SNR below the 1.8 dB threshold. This ensured that the
added noise did not saturate the original signals or cause paradigms
to remove too many windows. The mean and standard deviation
of the three largest SNRs were 5.53 dB ± 3.58 and 2.44 dB ±
1.91 for DB6 and AB6, respectively. Pink noise was used because
its magnitude is scaled inversely to its frequency. Therefore, it
predominantly affects the lower frequency range of the sEMG
(<500 Hz) whilst adding some high-frequency noise. AB6 was then
segmented according to the windowing and pre-processing of the
base dataset.
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FIGURE 3

Architecture of the convolutional neural network used to classify sEMG signals. The input vector of each layer is presented above the structure, whilst
the operations at each layer and any parameters are given below. All layers used a ReLU activation except the output layer, where a softmax
activation was used. The architecture is based on the one presented by Atzori et al. (2016).

2.6 Paradigm comparison

The process of training and testing the classifiers using the
data selection paradigms is presented in Figure 4. First, the base
classifiers (LDA and CNN) were trained using the training set
of session 1, and baseline performance was established using the
corresponding test set. The training set of session 2 was then
exposed to the paradigm, and the accepted windows were used to
retrain the classifier. Next, the test set from session 2 was used to
establish the performance of the retrained classifier. This process
was then repeated for the remaining sessions.

Scheme et al. (2013) previously showed that the rejection
of low-confidence windows can significantly improve the
overall classifier accuracy. In an online system, rejection is
the equivalent of not changing the current motor outputs
for that window. As long as the rejection rate is not so
great that updates to the output become too infrequent,
this can permit more controllable pattern recognition
systems. Therefore, the three paradigms were also used to
reject windows from the test set. In this case, only testing
windows accepted by the paradigms were considered for the
performance metrics.

In addition to being compared with one another for both
retraining and rejection, each paradigm is compared individually
with an existing post-processing technique for overlapping
windows, majority vote. The majority vote aims to smooth classifier
output by evaluating neighbouring window outputs for each update
step and selecting the most common class from these. This has
been shown to improve accuracy compared to classification alone
(Tigrini et al., 2024). The majority vote can be applied as long
as the overlap is smaller than the acceptable system delay, 100
ms (Farrell, 2011). Equation 1 provides the limit for the value
of m neighbours that can be used from either side of a window
to meet the acceptable delay requirement; thus, the number of
neighbours equals 2m + 1 (Englehart and Hudgins, 2003). Given
the 10 ms overlap used, 21 neighbours were used to assess
the majority vote. Comparison of the majority vote with the
paradigms was performed following retraining by applying either
majority vote or paradigm-based rejection to each of the sessions
test scores.

m × Overlap ≤ 100ms (1)

The primary performance indicator was classification accuracy,
calculated as the percentage of correct classifications from the total
on each testing set. Confusion matrices comparing the predicted
classes with the true classes and the change in F1-score across
sessions were then used to analyse the paradigm’s impact on the
individual class accuracy.

The Wilcoxon signed-rank test was used to determine
statistically significant differences in classifier accuracy for all
participants and sessions, as recommended by Demšar (2006). The
output accuracies for each combination of classifier and paradigm
were assessed against their paired output accuracies of the same
classifier where no retraining was undertaken. An alpha value of
0.05 is used for all tests of significance.

3 Results

3.1 Baseline

Figure 5 presents the mean accuracy of all LDA classifiers for
each of the 10 participants trained on session 1 and tested on all
10 sessions of each dataset without retraining (baseline accuracy).
Accuracy drops significantly between sessions 1 and 2, with an
immediate mean accuracy loss across all participants and both
datasets of 35.37%. An overall mean loss between sessions 1 and 10
of 41.94% is recorded. For some participants, accuracy drops below
chance (12.5%) as shown in black in Figure 5.

3.2 Retraining

The median accuracy for each session is shown for both
LDA and CNN classifiers on both datasets in Figure 6. All 3
retraining paradigms significantly improve the accuracy (p-values
< 0.001) between each session compared with the baseline for all
classifier and dataset combinations. In the final session (session
10), accuracies increased against baseline by a mean of 26.89% for
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FIGURE 4

Diagram depicting the training and testing processes. Example session data are shown split into training and testing, with training procedures on the
right block diagram and testing on the left. Each diagram is split showing the initial session 1 procedure and the subsequent paradigm-based
retraining process for the remaining sessions.

FIGURE 5

Mean accuracy and interquartile range of LDAs trained on session 1
of each participant, for both DB6 and AB6. Every session is then
tested with the LDA with no retraining intervention, to establish a
baseline of subsequent session accuracy. A dashed line represents
the 12.5% random chance of an 8-class classification.

QA, 21.86% for CR, and 27.65% for ENN across both classifiers
and datasets. The CR paradigm on AB6 presents the minimum

improvement in session 10 accuracy, with an increase of 18.86%.
The QA and ENN paradigms both improved accuracy significantly
compared to the CR paradigm (p-value < 0.001).

Across all 4 combinations of classifier and dataset, the ENN
paradigm performed best at improving inter-session accuracy, with
a mean loss between sessions 1 and 10 of 5.88% accuracy. QA was
second with a mean loss of 6.12%, and CR was last with a mean loss
of 10.93%. The accuracy loss was more significant with LDA than
with CNN, but the paradigm performance trend persists in each
classifier.

3.3 Class imbalance

A common issue in classification scenarios is the performance
impact resulting from imbalanced data, where a significantly over-
represented class within the dataset skews the classifier output
(Kumar et al., 2021). In a context where the dominant class
represents very similar information, such as the rest class in the
DB6, undersampling the class can resolve the imbalance. However,
in the retraining paradigms presented here, the new data are being
selected based on the paradigms’ conditions, which therefore could
result in an imbalance in data. In some cases, this imbalance could
be further reinforced in subsequent sessions. Therefore, assessing
the paradigms’ effect on class balance in both the selection of

Frontiers in Neurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2025.1627872
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Donnelly et al. 10.3389/fnbot.2025.1627872

FIGURE 6

Mean classification accuracies for participants across each session following retraining by each paradigm, for each classifier (a) LDA, (b) CNN.
Paradigms are indicated by line color, whilst datasets are separated between solid and dashed lines. The 8-class chance line is shown in black dashes.

windows for retraining and the classification performance must be
considered.

To investigate the impact on class balance, averaged confusion
matrices and the F1-score were used. The confusion matrices
illustrate the actual accuracy of each class as a percentage along
the diagonal, whilst the F1-score change between sessions presents
a summary of the degree by which each class’s performance
changes. Figures 7, 8 present the averaged confusion matrices from
all participants’ LDA and CNN classifier outputs, respectively.
Subfigure a) shows the classifier trained on Session 1, whilst
subfigures b), c), and d) show the classifier post-retraining with
each paradigm and testing on Session 10. When using LDA, the
accuracies of the activation classes (1–7) decrease on all paradigms
between 7 and 41%, whilst the rest class accuracy starts low at
45% and increases by 24–26%. This improved accuracy of the rest
class was expected; rest should be relatively consistent across all
sessions due to minimal muscle activity, and new exemplars that
readily resemble noise during the recording session are added to the
training pool. However, these results suggest the LDA performance
was greater than the baseline due to improved rest accuracy at the
detriment of activation accuracy, presenting imbalanced retraining.

The CNN classification accuracy of the rest class starts higher
at 76% and decreases slightly for each paradigm by a maximum of
5%. The individual activation class accuracy change occurs between
a decrease of 15% and an increase of 10%. This presents a more
balanced retraining than LDA and reflects the overall accuracy
trend in Figure 6.

In the case of the LDA using the CR paradigm, the classes
with the lower initial accuracy (3, 4, and 7) experience a further
drop in accuracy. This indicates that less new windows for these
classes were added in the retraining process because the initial
classification rate was lower. This effect was less apparent on the
CNN, where the accuracy of classes 6 and 7 increases.

Table 2 shows the change in F1-score between session 1 and
session 10. A negative change represents a lower score in session
10 and thus shows that the class’s overall precision and recall have
reduced. For the retraining to have a balanced impact, it would be
expected that the precision and recall would change by a zero or
small non-zero amount. For LDA, the F1 score of the rest class
increased on average by 0.082 compared to the significant decrease
of all activation classes with a range of -0.018 to -0.335.

For CNN, the F1 score shows a more random distribution of
increases and decreases with activation scores changing between
-0.104 and 0.107. This again indicates that the performance
of the retraining was not at the significant detriment of any
particular class. The negative change in the rest class reflects
the accuracy loss in Figure 8. The interquartile ranges (IQRs)
of the CNN also demonstrate a tighter change in score than
the LDA. From the Macro F1-scores, it can be seen that only
the QA paradigm has a positive overall change on average
between the participants of 0.016. Whilst the ENN paradigm
also has a positive accuracy change in Figure 6, the negative
F1-score of -0.012 indicates that the misclassification rate
increases slightly.
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FIGURE 7

Averaged confusion matrices (in %) from the LDA classifier outputs. (a) shows the session 1 output of the LDA after being trained with the full training
set. (b–d) show the session 10 output after the LDA was retrained using QA, ENN, and CR, respectively.

3.4 Window retention

The retention rate of the paradigms was also compared. Table 3
presents the mean retention of each class across the participants
for all paradigm, classifier, and dataset combinations. The QA and
the ENN paradigm retention percentages are the same for each
classifier as the paradigms are deterministic and the same features
(SNR and time-domain, respectively) are input for either classifier.
The QA paradigm retains 7% of the rest class in AB6 and 45% in
DB6, as the rest class should have no activity this retention rate

was expected. On DB6, almost all muscle activity windows are
retained, and on AB6, a mean of 83% of all activity windows are
retained. It can be seen that class 5 was significantly affected by the
augmentation.

The ENN and CR paradigms achieved improved accuracies
using significantly less of the dataset. ENN retained 63% of
the windows in both DB6 and AB6; however, the individual
class percentages vary, further demonstrating the impact of the
augmentation. The balance of class retention was typically weighted
toward the rest class for both paradigms. This was reduced by ∼
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FIGURE 8

Averaged confusion matrices (in %) from the CNN classifier outputs. (a) shows the session 1 output of the CNN after being trained with the full
training set. (b–d) show the session 10 output after the CNN was retrained using QA, ENN, and CR, respectively.

10% on AB6 because the augmentation caused the rest to become
less distinct from muscle activity. The CR paradigm retained less
than the ENN paradigm with the LDA by 1.80% and 14.50% on
DB6 and AB6, respectively, and more with the CNN by 1.71% and
4.96%, respectively.

3.5 Paradigm informed window rejection

The rejection of windows and the intersession performance
were assessed across all three paradigms. A single instance of each

classifier was trained on session 1 per participant, and the classifiers
were not re-trained on subsequent sessions. For the CR and
QA paradigms, windows that fell below the retraining acceptance
threshold were rejected from testing. Similarly, for ENN, where the
paradigm suggested a class different from the true label, the window
was rejected. Compared to baseline, small improvements were
observed (Figure 9); however, the general improvement was worse
than using the paradigms for retraining. On DB6, the immediate
mean loss for QA was 32.78%, ENN was 29.47%, and CR was
31.63%. The overall mean loss between sessions 1 and 10 for QA
was 36.69%, ENN was 33.63%, and CR was 34.67%. Positively,
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however, the mean loss follows a very similar pattern for each
dataset to that of the baseline. This indicates that the rejected
windows are outliers that would have led to incorrect predictions.

The Wilcoxon test reported that all results were statistically
different from both the baseline and their paired-equivalent
retraining results (p-value < 0.001).

3.6 Combining retraining with rejection

Although rejection alone did not improve classification
accuracy between sessions, it should still further improve the
retraining of a classifier. Prior work has shown the efficacy of
rejection in improving a classifier’s performance on testing data
from the same recording session. As such, if the rejection is
applied after the retraining, then a similar improvement should be
observed. Figure 10 shows the mean accuracy of the 10 participants
when each paradigm was used both for window selection in the
training set and for rejection in the test set.

The classification accuracy of CR increased across all sessions,
with final scores greater than DB6 baseline by 42.87% with the LDA
and 61.20% with the CNN, confirming its efficacy for rejection as
per Scheme et al. (2013). The combined rejection-retrain accuracies
were then compared to retraining only. Table 4 shows the mean
percentage of the test dataset that was rejected by each paradigm.
The same Wilcoxon signed-rank test was used to compare the
paired data. Both the CR and ENN paradigms had a significant
difference in accuracy for all combinations of dataset and classifier
(p-value < 0.001 ). The CR paradigm’s mean session 1 accuracy
improved by 13.18% on DB6 and by 22.21% on AB6, whilst session
10 accuracy improved by 28.06% on DB6 and by 31.39% on AB6.

The accuracy of the ENN paradigm increased less so, in session
1 by 4.19% on DB6 and by 6.29% on AB6, and in session 10 by
6.02% on DB6 and 7.14% on AB6. The percentage of rejection
of AB6 for all paradigms was higher than that of DB6. This was
reflected in the accuracy improvement on AB6 for the CR and ENN
paradigms.

For the QA paradigm, accuracies on DB6 for both classifiers
were found to be significantly different (p-value < 0.001); however,
on AB6, both classifiers were not significantly different (p-value:
LDA = 0.16, CNN = 0.39). From Table 4, it can be seen that the QA
paradigm rejected a smaller portion of the windows. However, the
QA paradigm retains <10% of the rest class (0) on AB6 (Table 3).
This suggests why accuracy does not improve significantly with
rejection as the paradigm rejects a readily classifiable class. The F1-
score difference between sessions 1 and 10 was calculated again and
presented in Table 5. As with solely retraining, the LDA showed
a significant improvement in performance for the rest class with
an average increase of 0.267 and a decrease for all activity classes
ranging between -0.108 and -0.426. The larger respective increase
and decrease further reinforce the fact that the LDA develops a
bias toward the rest class during the retraining process. The CR
paradigm has the greatest Macro decrease over the 10 sessions of
-0.277, whilst its accuracy was the highest of the paradigms. This
value results from the high misclassification rate of classes 2, 3, and
4 observed both from their low F1-scores and the high rejection rate
of the paradigm. The F1-score changes of the CNN are again much
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TABLE 3 Mean percentage class retention of the training set of all classifiers, dataset, and paradigm combinations calculated across all participants.

Classifier and dataset Paradigm Mean class retention (%) Mean retention (%)

0 1 2 3 4 5 6 7

LDA-DB6 QA 45.35 99.47 99.20 99.43 99.44 94.95 99.40 83.37 90.08

ENN 82.85 68.41 50.67 56.17 56.91 60.42 70.28 57.31 62.88

CR 84.98 72.15 42.70 53.74 47.40 59.52 70.95 57.19 61.08

LDA-AB6 QA 7.90 85.19 92.76 87.44 94.54 47.22 91.56 78.86 73.18

ENN 74.24 73.00 54.59 63.68 61.41 55.27 73.12 64.24 64.94

CR 55.72 58.71 36.78 43.57 40.44 36.74 69.10 58.89 49.99

CNN-DB6 QA 45.35 99.47 99.20 99.43 99.44 94.95 99.40 83.37 90.08

ENN 82.85 68.41 50.67 56.17 56.91 60.42 70.28 57.31 62.88

CR 71.47 69.39 63.84 58.51 61.27 60.02 69.57 62.71 64.60

CNN-AB6 QA 7.90 85.19 92.76 87.44 94.54 47.22 91.56 78.86 73.18

ENN 74.24 73.00 54.59 63.68 61.41 55.27 73.12 64.24 64.94

CR 81.81 72.75 65.37 63.32 65.16 72.78 73.51 63.82 69.81

Summary means allowing an overview comparison of the entire retention of a combination given at the end of each row.

FIGURE 9

Mean accuracy of LDAs trained on session 1 of each participant.
Subsequent trials are tested with the LDA using the paradigms to
reject windows which failed to meet their acceptance criteria. Gray
lines represent the DB6 and AB6 baselines.

more balanced than that of the LDA with a distribution of positive
and negative changes amongst all the classes. The ENN paradigm
achieves the largest Macro F1-score change in the positive direction
across both classifiers.

The use of each paradigm for rejection after retraining was
additionally compared with majority vote post-processing. The
accuracy scores obtained on DB6 for both rejection-based and
majority vote-based post-processing are provided in Figure 11.
For both classifiers, the ENN and CR paradigms outperform the
majority vote method. The ENN improved the overall mean of
the dataset compared to the majority vote by 5.35% and 3.28%,
whilst CR improved by 18.58% and 24.03% for the LDA and CNN,
respectively. The QA paradigm performed worse than the majority

vote method, scoring a 3.94% and 4.04% lower overall mean for
each classifier, respectively. In all cases, differences were considered
significant using the Wilcoxon test (p-values < 0.001).

4 Discussion

This work has compared how three window selection
paradigms impact the classification performance of sEMG data
captured over 5 days in 10 separate recording sessions. The
paradigms select windows of new data that should enable the
respective classifier to adapt to non-stationarities and drift. The
effect of the three paradigms was compared using both an
LDA and a CNN to demonstrate their efficacy with traditional
and deep machine learning classifiers. This work compares the
direct performances of the paradigms, their effect on class
balance, and their use in rejection and retraining, as well as
in combination.

4.1 Classifier comparison

Although CNNs and LDA have been shown to achieve high
classification accuracy (> 90%) on sEMG data (Pinzon-Arenas
et al., 2019; Lorrain et al., 2011), there is limited work that compares
their use in retraining. CNNs can be partially fit, allowing new
training data to be introduced to the classifier at a later time, which
more readily allows them to adapt to non-stationary inputs such
as sEMG—as later training epochs influence the network’s weights
more. Alternatively, the LDA must be trained on all data at one
time, which means that old data have as much influence on the
classifier as new data. In this work, it has been shown that the initial
accuracy in session 1 using the CNN is lower in both datasets than
with the LDA by 10%. However, the mean reduction in accuracy for
all paradigms is only 0.44% over the 10 sessions with the CNN and
14.83% with the LDA. The limited reduction in accuracy is evidence
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FIGURE 10

Mean classification accuracies for participants across each session following retraining and subsequent rejection by each paradigm, for each
classifier (a) LDA, (b) CNN. Paradigms are indicated by line color, whilst datasets are separated between solid and dashed lines. The 8-class chance
line is shown in black dashes.

of the CNN’s suitability for retraining. Its lower initial accuracy
could be attributed to the general network structure, rather than
fine-tuning the hyperparameters for each participant (Atzori et al.,
2016).

In addition, the F1-scores presented in Tables 2, 5 show the
CNN better preserves a balance of performance across all classes in
both retraining and retraining with rejection. The LDA only shows
positive F1-score changes for the rest class in both cases and a large
negative average Macro change of -0.149 and -0.207, respectively.
This indicates that its accuracy is achieved to the detriment of
the activation classes. Alternatively, the CNN has a more balanced
distribution of changes across all classes, further demonstrated by
its smaller average Macro score on all paradigms of -0.0003 and
0.016, respectively. This reinforces the suggestion that the CNN
classifier is more suited to retraining. These findings align with the
proposal of Sensinger et al. (2009) that the iterative nature of the
CNN may improve on the performance of an LDA in retraining.

4.2 Paradigm comparison

The importance of retraining is demonstrated in Figure 6; all
three paradigms show a reduced loss of accuracy compared to the
baseline loss by session 10 of 41.94% in Figure 5. When used for
window selection retraining, both the QA and ENN paradigms
outperform the CR paradigm, improving accuracy by ∼5%. When
considering the function of a prosthesis, even small improvements

TABLE 4 Mean percentage rejection rate of windows from the testing set
for each classifier, dataset, and paradigm combination, across all
participants and sessions.

Classifier-dataset Paradigm Mean rejection (%)

LDA-DB6 QA 10.89

ENN 32.72

CR 61.06

LDA-AB6 QA 33.17

ENN 39.15

CR 73.17

CNN-DB6 QA 10.89

ENN 32.72

CR 65.91

CNN-AB6 QA 33.17

ENN 39.15

CR 79.33

in accuracy can result in smoother and more intuitive control
for amputees. Furthermore, an increase in accuracy suggests a
more reliable pattern recognition scheme, indicating less frequent
retraining may be necessary in subsequent sessions. In a clinical
device, this could benefit amputees by reducing the time and
cognitive load required to retrain the controller. In all cases, the use
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of the AB6 dataset reduces total accuracy across all sessions, with
the mean starting accuracies for the LDA reduced by 10.19% and
by 6.55% for the CNN.

From the retention data shown in Figure 2, the higher
performance of QA is likely due to its high window retention rate.
Although this could be a positive trade-off, high window retention
rates could lead to storage issues on embedded devices if multiple
sessions must be stored. Furthermore, over an extended period,
overtraining could become present, resulting in accuracy reduction
without systems to manage for this. The ENN and CR paradigms
retain a significantly lower amount but still improve accuracy
compared to the baseline; in the case of the ENN paradigm, a slight
improvement is found over the QA paradigm (0.76%). The overall
retention rates of the ENN and CR paradigms are similar in all
combinations except LDA AB6 where the CR paradigm is lower
by 10%. This indicates that the paradigm may require adjustable
thresholds depending on the type of classifier used as the increased
noise has a greater affect on the LDA. The impact of added noise
is similarly observed with the QA paradigm as its retention rate is
also reduced. As this paradigm does not depend on the classifier,
if recordings were taken from an even noisier environment, the
paradigm may fail altogether. However, this could also be used as a
warning system in a prosthesis system for significantly poor quality
recording.

As observed in Figure 7, the difference in accuracy between
the ENN and CR paradigms is caused by their retention method.
The CR paradigm retains classes on which the classifier predicts
the answer confidently, so the loss of accuracy in classes 1, 2, and
5 is less than in the others. However, the ENN paradigm retains
based on the similarities between windows before being introduced
to the classifier, so its accuracy retention is more balanced, and its
misclassification rates do not rise as much as the CR paradigm.
No retention target or limit was set during this work; however,
this has indicated that a monitoring system ensuring retention
of a minimum number of windows per class may improve the
paradigm’s performance.

When comparing the approaches for rejection of the test
set, it is observed that the CR paradigm significantly increases
the accuracy in Figure 10. However, as shown in Table 4, the
CR paradigm rejects a mean of 69.87% of the testing windows,
whereas the QA and ENN paradigms reject 22.03% and 35.92%
respectively. The Macro F1-scores suggest that the ENN and QA
paradigms consistently perform better than the CR paradigm.
The individual class scores also indicate generally that the CR
paradigms class balance is worse, likely because the CR paradigm
significantly rejects more of the classes it misclassifies. Given the
function-driven nature of upper limb prostheses, a class balance
is imperative to the controllability of the device. If over time a
class performance degrades significantly, the device function is
compromised. Furthermore, as suggested by Scheme et al., the
window rejection rate should not be so high that it makes the
system feel unresponsive (Scheme et al., 2013). Although offline
testing was performed in this work and thus controllability could
not be directly assessed, a ∼70% window rejection is likely to cause
the system’s update rate to become inconsistent and fall below an
acceptable level. This further indicates the QA and ENN paradigms
may be more suitable than CR for rejection or that participant-
specific rejection thresholds may need to be ascertained.
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1FIGURE 1

Mean classification accuracies for participants across each session following retraining by each paradigm and subsequent rejection or majority vote
post-processing on DB6, for each classifier (a) LDA, (b) CNN. Paradigms are indicated by color, solid lines show paradigm based rejection, whilst
dashed lines show majority vote results. The 8-class chance line is shown in black dashes.

Comparison of post-processing rejection with the established
majority vote technique showed that QA does not perform better
than the standard method. As such, the QA paradigm may not be
suitable for post-processing and should be prioritised for window-
selection retraining. The ENN and CR paradigms outperform
the majority vote, with CR improving approximately four times
more than ENN. Whilst this suggests that there is potential
for rejection paradigms to improve the magnitude of accuracy
increase compared to majority vote, the controllability of a system
employing majority vote is ensured by selecting a suitable number
of neighbouring windows. As highlighted, rejection risks impacting
the delay of the system updates if several windows are rejected
sequentially, future online control tests would provide better
indication of any benefit from rejection compared to majority vote.

In addition, when using the paradigms for rejection, a
significant drawback of ENN is identified, which may limit its
use in a clinical prosthesis. The ENN paradigm requires prior
knowledge of the window’s true class label, which is not possible
during online operation. Adjustment of the paradigm to operate in
an unsupervised manner would be necessary.

Finally, the runtimes of the three paradigms provide indication
of suitability for use solely in embedded systems. The application
of pattern recognition techniques to commercial prostheses is not
commonly adopted due to computational complexity; therefore,
paradigms should have a small computational cost. These are
calculated as the mean of all retraining sessions, resulting in 0.048±
0.03 s for QA, 0.028± < 0.01 s for CR, and 8.664± 2.07 s for ENN.

It is apparent that the CR paradigm is the fastest, requiring only
running the windows through the inference stage of the classifier.
The QA paradigm is slightly slower, comparing the feature against
a threshold. However, this does not account for the FFT calculation
required. The FFT calculation on MATLAB of a single window took
350 us, increasing the paradigm runtime by ∼25 s. However, an
optimised digital signal processing block could be used to reduce
this in an embedded system. The ENN paradigm is significantly
slower, as the underlying KNN algorithm is slow, limiting its use
solely on embedded control systems. Currently, this indicates that
threshold-based paradigms, such as QA, may be more appropriate,
despite a slight reduction in performance. Similar tests, performed
on embedded hardware, would provide clearer indication of the
suitability of each paradigm to a clinical application.

4.3 Future work

This work has compared paradigms across 10 recording
sessions from 10 participants, using both the original Ninapro
6 dataset and an augmented version with added noise. As with
rejection, future work could explore the use of participant-specific
hyperparameters or thresholds for each of the paradigms, to further
improve the individual classifier performances. However, the work
presented here uses only offline data, as such a significant next step
to demonstrating the effectiveness of the paradigms is to perform a
study with online data.
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In an online study, in addition to classification accuracy,
metrics can be used to indicate the controllability of the system
with and without retraining paradigms, such as monitoring the
completion rate of tasks (Robertson et al., 2019). In turn, the
use of these metrics can also help better tailor participant-specific
thresholds. Furthermore, the recruitment of amputee participants
is vital to show that performance improvements could be translated
to the clinical domain. As highlighted, whilst the ENN paradigm
achieved the greatest general performance, its application to online
systems may be limited where true labels are required, such as
in rejection. Therefore, future online testing could compare the
paradigms with alternative retraining methods, such as the iterative
online classifier presented by Huang et al. (2017).

In this study, each paradigm has been investigated individually
to directly compare their performances and rates of retention. A
potential avenue to improve overall performance could implement
the fusion of two or all of the paradigms. Similarly to ensemble
methods in machine learning, this fusion would use votes from each
paradigm to determine whether a sample is retained for retraining.
However, a fusion of the paradigms would increase computation
during retraining. In addition, the implementation of retention
targets or limits would need to be explored, to avoid class balance
issues occurring from under- or over-retention.

Whilst this work has shown that the CNN is more suited
to retaining, all cases using the LDA still significantly improved
accuracy statistically against the baseline. Therefore, a traditional
machine learning model that could be adapted to allow incremental
training should be assessed similarly and may achieve fall-off
behaviour and class balance similar to a CNN.

5 Conclusion

This study has presented a comparison of three paradigms
designed to select the best windows from new datasets when
adapting classifiers for sEMG pattern recognition. Adaption of
the pattern recognition classifier is an important addition for
sEMG control systems due to the non-stationary nature of the
sEMG signal, which results in performance degradation between
recording sessions.

The results of the study show that the use of Edited Nearest
Neighbour provided the greatest significant improvement in
accuracy for dataset selection on both the linear discriminant
analysis and the convolutional neural network classifiers. However,
drawbacks of the ENN were identified, requiring longer runtime
and prior knowledge of the true class of extracted windows. These
may limit its application in the clinical domain. Alternatively, the
proposed Quality Assessment paradigm also achieved a similar
improvement over the Confidence Retraining method, when only
applied to retraining. This indicates that dataset selection may
benefit from knowledge directly from the data, compared to the
current classifier’s exploration of it. The study investigated the
paradigms handling of non-stationary sEMG data captured from
10 sessions across 5 consecutive days from the open NinaPro 6
dataset. Whilst achieving a lower starting accuracy than the LDA,
the CNN was shown to maintain its accuracy better across the 10
sessions and in doing so retained a more balanced performance
across the classes. The LDA, however, maintained its accuracy by

improving its performance on the rest class at the detriment of the
activation classes. Between individual sessions, the rest class will
be more similar than the activations, as such these exemplars were
often reinforced. As such, the use of iteratively trained classifiers
such as CNN is recommended for retraining methods as they can
more readily adjust to the underlying drift in the data.
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