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Introduction: To address the challenges of cumulative errors, insufficient
modeling of complex spatiotemporal features, and limitations in computational
efficiency and generalization ability in 4D trajectory prediction, this paper
proposes a high-precision, robust prediction method.

Methods: A hybrid model SVMD-DBO-RCBAM is constructed, integrating
sequential variational modal decomposition (SVMD), the dung beetle
optimization algorithm (DBO), and the ResNet-CBAM network. Innovations
include frequency-domain feature decoupling, dynamic parameter optimization,
and enhanced spatio-temporal feature focusing.

Results: Experiments show that the model achieves a low longitude MAE of
0.0377 in single-step prediction, a 38.5% reduction compared to the baseline
model; in multi-step prediction, the longitude R2 reaches 0.9844, with a 72.9%
reduction in cumulative error rate and an IQR of prediction errors less than 10%
of traditional models, demonstrating high accuracy and stability.

Discussion: Experiments show that the model achieves a low longitude MAE of
0.0377 in single-step prediction, a 38.5% reduction compared to the baseline
model; in multi-step prediction, the longitude R2 reaches 0.9844, with a 72.9%
reduction in cumulative error rate and an IQR of prediction errors less than 10%
of traditional models, demonstrating high accuracy and stability.
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1 Introduction

In recent years, the global aviation industry has experienced rapid growth, with air traffic
volumes continuing to rise. According to forecasts and observational data, flight density at major
airspace nodes and busy airports has significantly increased, directly leading to frequent flight
delays, growing airspace resource constraints, and increased workload for air traffic controllers,
among other serious issues (Ma et al., 2024). To effectively address the growing pressure on air
traffic control (ATC) systems caused by increasing air traffic volume and to enhance airspace
operational efficiency and safety, the International Civil Aviation Organization (ICAO) has
established TBO as the core strategy for future global air traffic management (ATM) (Ramasamy
etal, 2014). The core of TBO lies in utilizing high-precision four-dimensional data throughout
an aircrafts entire flight cycle to optimize flight paths and improve airspace utilization efficiency
(Zeng et al,, 2022). TBO as the core strategy for future global ATM (Ramasamy et al.,, 2014). The
core of TBO lies in utilizing high-precision four-dimensional trajectory information throughout
the entire flight cycle of an aircraft to achieve real-time information sharing and dynamic
collaborative decision-making among multiple stakeholders, including air traffic control, airports,
airlines, and aircraft (Zeng et al, 2022; Hao et al, 2018). This transformation imposes
unprecedentedly high demands on the accuracy and reliability of trajectory prediction. The Civil
Aviation Administration of China (CAAC) Air Traffic Management Bureau explicitly listed TBO
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and 4D trajectory prediction as key pillars for achieving ATM
modernization in the “Implementation Roadmap for the Civil Aviation
Air Traffic Management Modernization Strategy (CAAMS)” published
in March 2020 (International Civil Aviation Organization, 2018; Cheng
etal., 2020). High-precision, reliable flight path prediction, particularly
multi-step prediction capable of anticipating future flight states over an
extended period, has become a foundational technology for enhancing
air traffic management system operational safety, optimizing airspace
resource utilization, reducing flight delays, lowering control workload,
and ultimately realizing the TBO vision. Compared to single-step
prediction, which only forecasts the state at the next moment, multi-step
prediction provides a longer forecast horizon. This is of decisive
significance for real-time dynamic adjustment of flight paths, early
detection and resolution of potential flight conflicts, and optimization of
traffic management, making it a critical factor in ensuring flight safety
and efficiency in high-density airspace.

Currently, methods regarding short-term trajectory prediction
can be broadly categorized into three types of methods: mass motion-
based, state estimation-based, and machine learning-based. Trajectory
prediction based on mass motion (Peng et al., 2005) is to consider the
air vehicle as a particle, analyze the force on it, and establish a
prediction model by combining the kinematic model and the aircraft
parameters. This method has the problem of requiring too many
parameters related to the aircraft itself and the kinematics. Trajectory
prediction based on state estimation (Tang et al., 2020) regards the
motion process of an airplane as a state transfer process, constructs a
state transfer matrix through the equations of motion, and investigates
the relationship between the position at a future point in time and the
states of position, velocity, acceleration, etc. at a historical point in
time. However, the model constructed by this method has obvious
limitations in dealing with the trajectory data, which is difficult to
cope with the complex nonlinear relationships and external
disturbances in it, and the computational complexity is high.

Machine learning has been increasingly applied to trajectory
prediction by mining hidden information in large-scale data,
constructing neural networks, and capturing nonlinear relationships,
which is essential for improving prediction accuracy. Short-term
trajectory prediction can be divided into single-step and multi-step
prediction. Classical neural networks such as BP, LSTM, GRU, and their
RNN variants have been widely used; however, their recursive
mechanisms limit computational efficiency and parallelization. To
address these issues, convolutional neural networks (CNN) and temporal
convolutional networks (TCN) have been introduced into trajectory
prediction. In multi-step prediction, Jiao and Yang (2024) combined
TCN with Multi-Scale Convolution and spatio-temporal dual attention
to improve accuracy and continuity. Encoder-decoder structures have
also been adopted to capture long-term dependencies. For example, Lu
et al. (2024) proposed a Seq2Seq model integrating attention and
exponential decay sampling, while Huang and Ding (2022) developed a
TCN-BiGRU encoder-decoder optimized by Bayesian algorithms. Shi
et al. (2024) further enhanced efficiency with a GRU-TCN Seq2Seq
model using temporal pattern attention. Hybrid models have also shown
promise. Shafienya and Regan (2022) combined CNN-GRU and
3D-CNN with Monte Carlo dropout, reducing prediction error
significantly. Chuan et al. (2023) fused convolutional recurrent networks
with LSTM to capture navigation attributes and suppress error
accumulation. Dong et al. (2023) introduced a TCN-Informer model
achieving superior performance across multiple metrics. Other works
explored clustering and generative adversarial networks: Zhang and Liu
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(2025) used K-medoids with CTGAN for mid-to-long-term prediction,
while Wu et al. (2022) compared ConvlD-GAN, Conv2D-GAN, and
LSTM-GAN, finding ConvID-GAN most effective. LSTM remains
widely applied, as in Liu and Hansen (2018) with an encoder-decoder
LSTM and Zhao et al. (2019) with a deep LSTM for robust prediction in
complex flight environments.

In the latest research, optimization algorithms are widely used.
Lietal (2025) enhanced the sparrow search algorithm using sine
chaotic mapping to optimize the BP (back propagation) neural
network. Deng et al. (2024) proposed a novel Quantum Differential
Evolution Algorithm with a quantum adaptive mutation strategy
and a population state evaluation framework, namely
PSEQADE. The results show that PSEQADE exhibits excellent
convergence performance, high convergence accuracy, and
remarkable stability in solving high-dimensional complex problems.
Zhu etal. (2024) proposed a hybrid multi-strategy genetic algorithm
(RPIP-GA) based on opposition-based learning, interval probability
mutation, and engulfment mechanism to address the airport gate
assignment problem. The algorithm effectively improves the
performance of solving high-dimensional complex problems.
Huang et al. (2024) proposed a novel competitive group optimizer
(DMCACSO) that solves large-scale optimization problems (LSOP)
through a dynamic multi-competition mechanism and convergence
accelerator. Experimental results show that DMCACSO has
competitive optimization performance when solving large-scale
benchmark functions and performs well in actual feature selection
problems. Song and Song (2025) proposed a new adaptive
evolutionary multi-task optimization algorithm, MGAD, which
significantly improves the performance of multi-task optimization
through a dynamic knowledge transfer probability strategy, an
improved source task selection mechanism, and an anomaly
detection knowledge transfer strategy. Experimental results
demonstrate that it is highly competitive in terms of convergence
speed and optimization capabilities.

However, existing trajectory prediction research faces three main
challenges: (1) limited ability to model complex relationships among
multi-dimensional features (e.g., longitude, latitude, altitude, speed); (2)
difficulty capturing long-term dependencies in ultra-long sequences with
traditional architectures (e.g., CNN, RNN), leading to information loss;
and (3) error accumulation in multi-step prediction, reducing long-term
accuracy. To address these, this paper proposes the SVMD-DBO-
RCBAM hybrid model, which integrates signal decomposition, intelligent
optimization, and attention mechanisms. First, SVMD separates noise
from valid trajectory signals, producing multi-scale, high signal-to-noise
submodes for cleaner and more informative inputs. Second, DBO
dynamically optimizes RCBAM hyperparameters via a global-local
search, reducing manual tuning and suppressing bias accumulation.
Finally, the RCBAM network combines ResNet’s deep feature extraction
with CBAM’s dual-channel-spatial attention: channel attention weights
feature dimensions (e.g., longitude, latitude, altitude), while spatial
attention focuses on critical time windows, improving multi-factor feature
fusion and long-term dependency modeling. Overall, the architecture
enables fine-grained modeling and dynamic optimization, overcoming
limitations of existing methods.

The rest of the paper is organized as follows. Section 2 describes
the data sources and preprocessing. Section 3 describes SVMD,
ResNet network, CBAM network, DBO, basics. Section 4 describes
the construction of the 4D trajectory model and its steps. Section 5
compares the performance of the main model through ablation
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TABLE 1 Examples of ADS-B raw data.

10.3389/fnbot.2025.1625074

Sampling time Altitude/ft Speed/kt Direction/° Latitude/° Longitude/°
2022-11-07 t08:46:50 8,250 165 217 25.0771 102.9203
2022-11-07 t08:47:05 8,650 167 217 25.0706 102.9143
2022-11-07 t08:47:20 9,050 166 217 25.0641 102.9088
2022-11-07 t08:47:38 9,575 180 216 25.0559 102.9019
2022-11-07 t08:47:50 10,000 194 218 25.0679 102.8949
2022-11-07 t08:48:07 10,400 216 207 25.0378 102.8949
2022-11-07 t08:48:22 10,700 234 203 25.0263 102.8759

experiments and analyzes it in comparison with other mainstream
models. Finally, Section 6 summarizes and outlooks the results.

2 Data collection and pre-processing

2.1 ADS-B data

ADS-B historical trajectory data is the data basis for the 4D trajectory
prediction in this paper. ADS-B is an aircraft operation monitoring
technology. The transmitter of the aircraft onboard equipment sends
aircraft information to the ADS-B ground station or other airplanes
loaded with ADS-B onboard equipment at a certain period. The specific
content includes: sampling time, position, altitude, speed, flight number,
heading, climb or descent rate, etc. The experimental data in this paper
originates from Flight Sense Technology Company', and some data
examples are shown in Table 1. As seen in Table 1: there are problems such
as unequal sampling time intervals between neighboring trajectory
points, and duplication of latitude and longitude data in different sampling
points in the data, which need to be preprocessed.

2.2 Data pre-processing

The preprocessing process includes steps such as outlier
processing, track point interpolation, and normalization of the raw
data, along with data alignment and data construction.

2.2.1 Handling of outliers

Outlier handling includes 3 cases: missing data, data duplication
and abnormal data values. For missing data and data duplication, they
can be directly deleted or de-duplicated. For the case of abnormal data
values, if the abnormal data is less, the trajectory smoothing algorithm
can be used to replace it; if the abnormal data is too much, the track
can be deleted directly.

2.2.2 Trajectory point interpolation and data
alignment

In order to solve the problem of different time intervals in
historical track data, this paper adopts the cubic spline
interpolation method to reconstruct the track features, and sets the
same acquisition frequency for each track, so that each track point

1 http://www.variflight.com/
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has the same time interval between them. The interpolated
trajectory data have the same time interval, but due to the unequal
total time spent on each trajectory, which results in a different
number of trajectory points, i.e., the number of time steps is not
the same in each trajectory data, see Figure la. In order to better
learn the overall trend of the trajectory, this paper uniformly
samples N (number of time steps) trajectory points for each
interpolated whole trajectory, thus realizing the data alignment
and meeting the input requirement of uniform number of steps for
the trajectory prediction model, see Figure 1b.

2.2.3 Normalization

The trajectory data consists of different feature sequences, and
the features have different scales and large differences in data
ranges, which may cause the model to be more sensitive to some
features and less sensitive to other features during training, making
it difficult for the training process to converge. Therefore, in this
section, in order to avoid this situation from affecting the prediction
results, the trajectory data need to be normalized. By using
normalization, the training process can be stabilized, the
convergence speed of the model can be improved, the occurrence
probability of gradient explosion and gradient disappearance can
be reduced, and the generalization ability and prediction accuracy
of the model can be improved. This model uses min-max
normalization in training to map all values between (0, 1), and the
normalization formula is as follows Equation (1):

Normalized(x) = *"¥min (1)
Xmax ~ ¥min

where Normalized is the normalization result, x is the input
value of the independent variable, and max and min are the
maximum and minimum values of the corresponding input
tensor, respectively.

2.2.4 Data construction

In this section, a collection of historical flight trajectory data
of flights = {D1,..., Dm} is constructed and processed, each data
contains Features individual features. The data construction
adopts the sliding window method, starting from the first row of
the trajectory data, the trajectory points of the rows
corresponding to the time_step (time window) are selected in
chronological order as the input data of the model, and one or
more rows of the prediction targets are selected as the label data.
Subsequently, the window is moved to the next window of
trajectory points to generate the next sample. This process is
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FIGURE 1
Data alignment pre-processing comparison example chart. Comparison of data alignment pre-processing for trajectory data. (a) Unaligned data. (b)
Undergone data alignment.

repeated until the window covers the entire trajectory sequence,
and the data construction principle is shown in the construction
schematic diagrams of Figure 2 for single-step prediction and
Figure 3 for multi-step prediction. The number of samples batch_
size individual window combinations are obtained through data
construction, as the model training to provide the required input
data and labeled data, i.e., training data, validation data, and test
data, to construct the 3D tensor of (batch_size, time_step,
Features) dataset.

3 Basic algorithmic principles

3.1 Successive variable modal
decomposition (SVMD) algorithm

SVMD is a highly robust signal decomposition method, which
is able to decompose a non-smooth signal into a number of modal
components with different frequency characteristics step by step
without the need to preset the number of modes. The basic idea of
SVMD is to extract the intrinsic mode function (IMF) of the signal
one by one through an optimization process and retain the residual
terms to ensure the reconstruction integrity. The basic idea is to
extract the intrinsic modal functions (IMFs) in the signal one by one
through an optimization process and retain the residual terms to
ensure the reconstruction integrity. The basic expression of SVMD
is Equation (2):

x(t)=3 w(t)+n(t) &)

Where x(t) is the original input signal, u; (t) denotes the I-th
order modal component extracted, L is the total number of modes
extracted, and r;, (t) is the residual signal, which contains the portion
of the signal that is not explained by all the current modal components.
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In order to extract modes with good frequency domain characteristics
and mutual independence, SVMD constructs a series of constrained
objectives. First, the following optimization objective is constructed to
ensure the frequency concentration of each mode Equation (3):

2

. L
min,, ,, Zl=1

3)

o [5(¢)+ ft . ﬂl(t)}e—jw

TT]

In this equation, £ (t) denotes the [-th modal component, w; is its
corresponding center frequency, & (t) is the unit impulse function, j
denotes the imaginary unit, * denotes the convolution operation, J; is
the derivative operation with respect to time, which denotes the rate
of change of the frequency feature, and the exponential term e /" is
used to move the modes to the baseband. The overall goal of the
equation is to minimize the derivative energy of the FM signal so that
the modes have minimum bandwidth in the frequency domain.

In order to achieve frequency separability between modes, a band-
pass filter is introduced with a frequency response defined as Equation (4):

1
1+(f;_wljzn

In this expression, H; ( f ) is the frequency response function of

H(f)= “

the filter used for the I-th mode, fis the frequency variable, w is the
center frequency of the mode, o is the scale factor that regulates the
bandwidth of the filter, and 7 is the order of the filter, which is used
to control the steepness of the filter response. With this filter,
components in the frequency domain close to w; can be extracted
from the original signal to construct the corresponding time domain
modal components Equation (5):

up(t)=hy(t)*x(t) (5)
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FIGURE 2
Schematic diagram of single-step time series construction.

Where hy (t) is the time-domain impulse response corresponding
to Hj ( f ), x(t) is the original signal, and * denotes the convolution
operation. This expression describes the process of extracting the /-th
mode from the original signal through the filter.

Since there may still be some overlap between the modes, to further
improve the independence between the modes, the SVMD introduces
another set of optimized filters with a frequency response of Equation (6):

2m
1+[f_wlj
Vel

Where f—Ivl ( f ) is the frequency response function of the improved
filter, p is the new bandwidth control factor for adjusting the
frequency band coverage, and m is the order of the filter for adjusting
the shape of the frequency response and suppressing the inter-modal
spectral interference. Its corresponding time domain filtering relation

H/(f)= (6)

is Equation (7):

w (t)=hi(£)*x() @)

Where (t is the time-domain impulse response function of
the filter ITI;( ), and other symbols have the same meaning
as before.

In addition, to ensure that all extracted modal components and
residuals can completely reconstruct the original signal, the following

reconstruction constraints need to be satisfied Equation (8):

x(t)=3 0 w(t)+n(t) ®)
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Ultimately, the SVMD solution problem is transformed into a
weighted minimization problem that combines multiple objectives of
the form Equation (9):

miny, ,, {0!-]1+ﬂ~]2+}/-]3} 9)

Among them, J; is the frequency concentration objective function of
the modes, J, and J3 are used to portray the frequency separateness and
independence of the modes, respectively, and &, 3, ¥ are hyperparameters
used to adjust the importance weights of the three to ensure that the
modes meet the physical significance and have good mathematical
properties at the same time.

3.2 Dung beetle optimization algorithm
(DBO)

Dung Beetle Optimizer (DBO) (Xue and Shen, 2023) is an
intelligent optimization algorithm that simulates the natural behaviors
of dung beetles, featuring high population diversity and excellent
search capability. DBO constructs a search mechanism that combines
global and local search by simulating the behaviors of pushing balls,
dancing, laying eggs, foraging and stealing. The algorithm divides the
population into different behavioral roles, and each type of dung
beetle has a unique update strategy.

In the push-ball behavior, the dung beetle moves in a straight line
along the direction of sunlight with the following position
update expression:

Xf“ =x!+ k-sgn(mnd —0.5)-b-e_/u-(Xf —met) (10)
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FIGURE 3
Schematic diagram of multi-step time series construction.

Where X! denotes the position vector of the ith dung beetle in the
t-th iteration, and X, is the position of the least adapted individual
in the current population; k€(0, 0.2] is the directional offset
coeflicient, which is used to control the amplitude of the movement
perturbation; b&(0, 1) is the adjustment parameter of the movement
step size; 4 is the coeflicient of the sunlight intensity decay over time;
rande(0, 1) is the uniformly distributed random number; and sgn is
a symbolic function, whose value is 1 or —1, used to randomly control
the offset direction.

When the dung beetle encounters an obstacle during its
movement, its behavioral pattern changes to “dancing,” exploring new
paths by changing the direction of movement, and its position update
expression is:

Xf+1:Xf+€-mnd (11)

Here, 0 € [0, 7] denotes the angular magnitude of the dancing
direction, which is a random angle from 0 to x, and rand € (0, 1)
is the random step factor. Whether to perform the dancing
behavior is controlled by another random variable r, € (0, 1),
when 7, exceeds a certain set threshold, the dung beetle will change
its direction, otherwise it continues to push the ball in a
straight line.

In the spawning behavior, the dung beetle performs a local search
around a locally optimal position with the following position
update strategy:

X,-t+1:X*+rand-(Ub—Lb)~[1—tj (12)

max
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Where X denotes the location of the locally optimal individual, Ub
and Lb are the upper and lower bounds of the problem definition domain,
respectively, Tray is the maximum number of iterations, ¢ is the current
number of iterations, and rand € (0, 1) is a random variable used to
control the degree of perturbation. The strategy realizes adaptive control
with the local search range shrinking over time.

The foraging behavior simulates the dung beetle’s jumping search
toward the global optimal solution with the update formula:

Xt =X1mt+rand-(Ub—Lb)-[l—tj (13)

max

In this equation, Xp.s denotes the position of the optimal
individual of the population in the current iteration, and the meaning
of the rest of the parameters is the same as that in Equation (12). This
update strategy ensures that the population searches around the
optimal solution with appropriate stochastic perturbations,
maintaining the global exploration capability.

Finally, the stealing behavior performs individual position
updating by combining the global optimal position with a noise-
bearing perturbation, which is expressed as:

Xit+1 :Xbest+s'g (14)

where S is a step factor to control the magnitude of the
perturbation and g is a random vector obeying a standard normal
distribution to introduce randomness to jump out of the local
optimum. This mechanism strengthens the algorithm’s ability to
explore in the later stages of convergence.
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3.3 ResNet network

Residual Network (ResNet) is a deep convolutional neural
network architecture that solves the problem of training difficulties as
the depth of the network increases, and in particular solves the
gradient vanishing and gradient explosion problems (Wei, 2024). The
core idea of ResNet is the introduction of Residual Learning (RL).
Conventional neural network layers are directly fitted with a mapping
relationship between the bottom input x and the top output F(x), i.e.,
y = F(x). Such a mapping can lead to the introduction of errors,
especially if the number of network layers is large and the network is
deep. In contrast, ResNet lets each layer of the network learn the
residual mapping, i.e., the difference between the input and the output.
If the input is x, the residual learning part is F(x), and y is the output,
when F(x) learns a residual close to zero, then y is close to x. The basic
blocks of ResNet can be expressed as follows:

y:F(x)+x (15)

The basic building blocks of ResNet are residual blocks. Each
residual block contains two or three convolutional layers, as well as a skip
connection that skips over these layers. This connection is made by
simply adding the inputs of the block to its outputs, allowing the gradient
of the deep network to also pass directly through these skip connections.
During training, the gradient is propagated back through both F(x) and
x paths by the backpropagation algorithm. If F(x) learns a residual close
to zero, then this residual will have a small effect on the gradient
propagation, thus avoiding the gradient vanishing problem. In summary,
ResNet, by introducing the residual learning mechanism, makes the
network able to maintain convergence even if more levels are added,
effectively solves the gradient vanishing and gradient explosion problems
in deep neural network training, and thus realizes the construction of
deeper network structures and the extraction of deeper features.

3.4 CBAM network

Convolutional Block Attention Module (CBAM) is a lightweight
attention mechanism module (Fan et al., 2020), which is designed to
enhance the representation of features in convolutional neural networks.
CBAM enhances the feature map by sequentially integrating spatial and
channel attention mechanisms in a sequential order to adaptively weight
the feature map as a way to improve the network’s ability to capture
important information. CBAM consists of two main components:
Channel Attention and Spatial Attention (Bai et al., 2018), which focus
on different feature dimensions. The working principle of CBAM is
shown in Figure 4. The input feature maps are first passed through the
Channel Attention module, which evaluates the input feature map and
assigns different weights to different channels. Next, the feature maps
after adjusting the channel weights are passed to the spatial attention
module, which further emphasizes spatially important regions. Finally,
the channel and spatial attention maps are multiplied with the original
feature map to achieve adaptive feature adjustment.

The goal of the Channel Attention module (Channel Attention) is
to determine the importance of individual channels (i.e., different
feature maps) and works as shown in Figure 5. It first uses global average
pooling and global maximum pooling operations to generate two
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different feature maps, which capture the distribution information of the
channels, respectively. Then, these two feature maps are fed into a shared
fully connected layer, which contains a hidden layer. Finally, the outputs
of these two MLPs are summed by elements and a Sigmoid activation
function is applied to obtain the attention weights for each channel.
The Spatial Attention module (Spatial Attention) follows Channel
Attention and aims to highlight important regions in the spatial
dimension and works as shown in Figure 6. This module uses the output
of channel attention and processes it to generate a two-dimensional
attention map. Specifically, it first performs average pooling and
maximum pooling in the channel direction on the input feature map to
generate two 2D feature maps, which are then stitched together in the
channel dimension and passed through a convolutional layer to produce
the final spatial attention map. This attention feature map is also activated
by a Sigmoid function in order to weight the original input feature map.

3.5 ResNet-CBAM model

The ResNet-CBAM (RCBAM) model is essentially a combination
of a convolutional neural network and an attentional mechanism
designed for feature extraction and prediction of trajectory data from
a spatial and state change perspective. Figure 7 shows the working
schematic of the RCBAM model.

ResNet serves to efficiently extract high-level features from
flight track data using deep structure. By treating the sequence
data as a one-dimensional image (with time as the width), the
change of features over time is captured. Meanwhile residual
learning is introduced to solve the problem of overfitting and
network degradation that deep learning models are prone to when
dealing with complex time series prediction tasks, and to solve the
problem of gradient vanishing and gradient explosion in deep
networks. The role of CBAM’s channel attention is to allow the
model to dynamically assign weights to each input feature, thereby
highlighting the features that are most helpful for prediction. The
role of CBAM’s spatial attention is to dynamically assign weights
to each specific point in time, thereby highlighting the time
windows that are most helpful for prediction. The combination of
the two CBAM attention mechanisms allows the model to identify
both important feature channels and also features at important
moments in the trajectory sequence. This helps to construct more
refined prediction models that take into account both time
dependence and feature importance.

Channel
attention

I ® Feature
nput | o

FIGURE 4
Schematic diagram of CBAM network

Spatial
attention
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4 SVMD-DBO-RCBAM trajectory
prediction models

4.1 Predictive modeling process

This paper proposes a hybrid prediction model that integrates
SVMD, DBO, ResNet, and CBAM to achieve high-precision
prediction of aircraft four-dimensional trajectories. The model aims
to overcome the limitations of single models in terms of feature
extraction capabilities, frequency domain modeling, and parameter
tuning, thereby achieving deep integration of multi-scale
spatiotemporal information. Its structure is shown in Figure 8, and the

specific process is as follows:
(1) Data preprocessing
First, the raw trajectory data collected is cleaned to remove
data points with missing values, abnormal changes, or noise
interference, ensuring the stability and effectiveness of
subsequent modeling. This step plays a critical role in ensuring

data quality throughout the process.

(2) Data partitioning and normalization
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The cleaned data is divided into training, validation, and test
sets according to a ratio (8:1:1) to avoid overfitting and enhance the
model’s generalization ability. Additionally, the minimum-
maximum normalization method is applied to uniformly map all
features to the [0, 1] interval, which not only improves numerical
stability but also accelerates the convergence speed of the neural
network model.

(3) Modal decomposition (SVMD)

The SVMD algorithm is used to decompose multi-dimensional
track sequences, breaking down the original non-stationary time
series into several intrinsic modal functions (IMFs) with different
frequency characteristics. Compared to traditional EMD or VMD,
SVMD has stronger adaptability and robustness, does not require
pre-specifying the number of modes, and can more accurately extract
time-frequency features from track data, effectively reducing
interference from complex dynamic backgrounds.

(4) DBO algorithm initialization

During the parameter optimization phase, the DBO algorithm,
which incorporates biological behavior simulation features, is used to

frontiersin.org


https://doi.org/10.3389/fnbot.2025.1625074
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Tang and Dai

replace traditional grid search or random search methods. The
initialization phase includes generating the positions of population
individuals, setting the fitness function, and dividing behavioral roles
(pushing balls, laying eggs, foraging, stealing), among others. This

10.3389/fnbot.2025.1625074

design introduces multiple behavioral patterns, enhancing global
search capabilities and preventing getting stuck in local optima.

(5) Model parameter optimization and iteration (DBO)
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FIGURE 7
Working schematic of the RCBAM model.
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DBO is used to automatically optimize the key hyperparameters
of the ResNet-CBAM model, including the number of convolutional
layer filters, batch size, learning rate, and number of epochs. In each
iteration, DBO updates the positions of individuals, feeds back their
fitness based on the model’s performance on the training and validation
sets, dynamically guides the optimization path, improves prediction
performance, and reduces the cost of manual parameter tuning.

(6) Feature extraction and prediction (ResNet-CBAM)

Each IMF subcomponent obtained from SVMD decomposition
is input into the optimized ResNet-CBAM model. The ResNet module
effectively addresses the gradient vanishing and degradation issues in
deep network training through residual connection mechanisms,
enhancing feature expression depth. The CBAM module further
applies channel attention and spatial attention to the extracted feature
maps, automatically focusing on critical time windows and important
variable channels, thereby improving sensitivity and discriminative
power toward abnormal trajectory changes. Finally, the prediction
results of each subcomponent are stacked and summed to
comprehensively construct the final flight path prediction value.

(7) Denormalization and result output

The normalized prediction results are denormalized to restore
them to their original physical quantity scale, meeting practical
application requirements. The final four-dimensional trajectory
prediction results combine accuracy, timeliness, and interpretability,
providing theoretical and technical support for tasks such as flight
safety management, trajectory planning, and anomaly detection.

5 Simulation verification and analysis

5.1 Experimental data and experimental
environment

The trajectory dataset used in this paper is the real ADS-B
historical trajectory data of inbound flights at Zhuhai Jinwan Airport,
which retains the trajectory features such as time, speed, altitude,
longitude, latitude, etc. The dataset is stored in the form of csv. Based
on this dataset, a 4D trajectory prediction model based on neural
network is constructed for trajectory feature and position prediction.
From the whole dataset, about 2,842 complete trajectories, totaling
288,200 trajectory points, were intercepted, screened, and retained.
The whole data were divided into training set, validation set and test
set according to the ratio of 8: 1: 1.

The experimental equipment is a laboratory desktop with an
Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, 2.90GHz and 16GB of
RAM on board.

5.2 Indicators for model evaluation

In order to compare the performance of different algorithms, this
paper uses the Root mean square error (RMSE), Mean Absolute Error
(MAE) and Mean absolute percentage error (MAPE) and the
coefficient of determination (R2) were used as evaluation indexes.
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Among them, the smaller the values of MAE, RMSE and MAPE are,
the better the model prediction effect is; the closer the value of R%is
to 1, the better the fitting effect of the prediction model is. The specific
calculation formula is as follows.

n
RMSE = %Z(y,-—Yi)z (16)
i=1
1 n
MAE:;Z|)/,~—Y,'| 17)
i=1
n
MAPE:lZ 2i =Yl 1000 (18)
”izl Yi
1 2
Z(}’i_Yi)
R?=1-1=L (19)

where 7 is the number of samples, y; is the actual value of the
samples, Y; is the predicted value of the model, and y; is the summed
average of the actual values of the samples.

5.3 Algorithmic optimization of network
hyperparameters

Adaptive Optimization of Hyperparameters in ResNet-CBAM
Neural Networks Using DBO. The main hyperparameters in the
ResNet-CBAM model are learning rate, residual block configuration,
number of filters, epoch and batch_size, and the corresponding range
of optimization for each hyperparameter is shown in Table 2.

In order to verify the effectiveness of DBO on ResNet-CBAM
hyperparameter optimization, the sparrow search algorithm (SSA),
gray wolf optimization algorithm (GWO), particle swarm
optimization algorithm (PSO), whale optimization algorithm (WOA),
and genetic algorithm (GA) were used to optimize the
hyperparameters of ResNet-CBAM, respectively, and the initial
population number of each algorithm was set to 100, and the
maximum iteration number is set to 80, and the parameter settings of
the three algorithms are shown in Table 1. The fitness curve of the
optimization process of the optimization of the search parameters is
shown in Figure 9, using the mean absolute error (MAE) as the
fitness function.

The comparison results of the optimization algorithms in the
figure show that the DBO algorithm is significantly better than the
other algorithms in terms of convergence speed and final fitness. DBO
exhibits rapid convergence speed in the initial iterations and
significantly reduces the fitness value, indicating its efficiency in global
search and its ability to locate the optimal solution quickly. In contrast,
GWO and WOA have higher final adaptation values than DBO due to
the lack of local search capability, despite the convergence advantage
in the initial iteration. SSA and GA show a smooth decreasing trend,
but still fall short of the optimization effect of DBO. Overall, DBO has
an excellent ability to balance global and local search, highlighting its
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TABLE 2 Hyperparametric optimization range.

Hyperparameters Optimization range

10.3389/fnbot.2025.1625074

TABLE 3 Hyperparameter optimization results.

Hyperparameters Optimization range

ability to quickly locate the optimal solution in the complex
problem space.

Encode the five hyperparameters of ResNet-CBAM (learning rate,
residual block configuration, number of filters, epoch, batch size) into
a vector and randomly initialize multiple candidates within their
respective preset ranges. The DBO algorithm simulates the behaviors
of dung beetles, such as rolling balls, dancing, laying eggs, foraging,
and stealing, to perform both large-scale global exploration and
performs local detailed searches within the parameter space. After
each iteration, all candidates are evaluated and ranked based on the
mean absolute error (MAE) on the validation set. DBO guides “poor-
performing” candidates toward more optimal regions while
maintaining population diversity. After a predetermined number of
iterations, the algorithm automatically selects the vector with the
lowest MAE, which is mapped to the final hyperparameter values in
our report (learning rate = 0.002, residual block configuration = 2,
of filters =128, batch_size = 64). The
hyperparameter optimization search results are shown in Table 3.

number epoch =75,

5.4 Experiments on attention weights of
the CBAM module

To further reveal the interpretability of the model, this study
visualized the attention weights of the CBAM module, as shown in
Figure 10. The results indicate that the model exhibits significant
differences in the degree of attention to input features across the time
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Learning rate [0.001‘0005] Learning rate 0.002
epoch 75
epoch
[50200] batch_size 64
batch_size [0128] residual block configuration 2
residual block configuration [24] number of filters 128
number of filters [64,256]
steps t1-t10. Among the features, longitude, latitude, and altitude have
the highest attention weights, followed by heading. This suggests that
when capturing the dynamic changes of trajectories, the model relies
i more on features related to spatial position and altitude, while heading
500 oWo plays an important role in specific phases. The attention weights of
oA speed and fuel flow are relatively low, indicating that their contribution
450 —DBO to the prediction results is secondary in the temporal feature modeling
400 process. These results intuitively verify the effectiveness of the CBAM
é module in identifying key spatiotemporal features and provide strong
= 350 support for the interpretability of the model’s prediction results.
300
- ] 5.5 Ablation comparison experiments
—
20— 20 30 0 50 6 70 80 In the evaluation of the trajectory data prediction model, the
lteration performance of different modules of the main model in single-step
HIGURE 9 and multi-step prediction was analyzed by systematically analyzing
Fitness curve comparison chart. the performance of different modules of the main model in single-step
and multi-step prediction, as shown in Table 4. Starting from the core

differences in model architectures, the performance differentiation
between RCBAM, SVMD-RCBAM, DBO-RCBAM and SVMD-DBO-
RCBAM in single-step and multi-step prediction reveals the essential
differences in the ability of different modules to model spatio-
temporal features. The base RCBAM model relies on the combined
architecture of residual convolution and attention mechanism, and has
alongitude MAE of 0.0613 and a latitude MAE of 0.0711 in single-step
prediction, indicating that its local feature capturing ability is effective
in instantaneous prediction. However, the longitude MAE plummets
to 0.0876 and the latitude MAE rises to 0.0832 in multi-step
prediction, exposing the lack of temporal decomposition mechanism
in the pure attention architecture, which leads to an exponential
accumulation of errors with step size.

SVMD-RCBAM decouples the trajectory signal into multi-scale
submodalities by introducing SVMD, and the height RMSE decreases
from 495.6 (RCBAM) to 303.5 in single-step prediction, which proves
that the modal alignment effectively separates the noise from the trend
features. However, its longitude R* decreases from 0.9478 to 0.9021
(5.6% decrease) in multi-step prediction, reflecting that the static
decomposition strategy is unable to adapt to the dynamic temporal
mode changes, which leads to a gradual decrease in submodal
matching. In contrast, the DBO-RCBAM embedding algorithm is
optimized to adjust the convolution kernel weights and attention
distribution through real-time feedback, which reduces the multi-step
longitude RMSE from 0.0574 to 0.0411 (28.4% reduction) in a single
step, and the latitude RMSE is reduced by 42.5%.

The hybrid architecture of SVMD-DBO-RCBAM achieves the
breakthrough through a three-level synergistic mechanism: the
SVMD layer decomposes the input signal into trend, period, and
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FIGURE 10

Attention weight heatmap of CBAM module.

residual terms; the DBO optimizes the convolutional expansion
coefficients and attention parameters, etc.; and the RCBAM completes
the feature reconstruction. This design stabilizes the multi-step
longitude MAE at 0.0333, a slight increase of 0.044 from the single
step, decreases the height MAE from 219.8 to 144.6 (a decrease of
34.2%), and achieves a longitude R? of 0.9844, which is significantly
higher than that of SVMD-RCBAM (0.9021) and DBO-RCBAM
(0.9521).

As a side-by-side comparison, single-step prediction relies on
local feature capture (convolutional attention of RCBAM), while
multi-step prediction requires the construction of a composite
system of Decomposition-Optimization-Reconfiguration.
SVMD-DBO-RCBAM reduces the multi-step height RMSE to
250.5 by decoupling the physical significance, optimizing the
parameters, and refining the features. Which is 44.9% lower than
the base RCBAM (455.4). The performance advantage stems from
the synergistic modeling of multi-scale, non-stationarity and
of the which
highlights the decisive role of architectural design in multi-

long-term dependence trajectory data,
step prediction.

The 2D and 3D comparison result plots of the proposed model
with other modular models are shown in Figures 1la-d, 12a-d,
respectively, where all the models show better overall performance
than single-step prediction in the multi-step prediction task, with the
main model SVMD-DBO-RCBAM consistently maintaining a
significant advantage. In single-step prediction, the performance of
DBO-RCBAM and SVMD-RCBAM models is relatively close, and the
predicted trajectories of both are in comparable agreement with the
actual trajectories, indicating that both parameter optimization and
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variational mode decomposition can effectively improve the model
performance in short-term prediction. However, as the number of
prediction steps increases, the DBO-RCBAM model shows better
long-term stability, and the smoothness and accuracy of its predicted
trajectories are significantly better than that of the SVMD-RCBAM
model, which is mainly due to its dynamic optimization mechanism
that can continuously adjust the model parameters to adapt to the
time series evolution. In contrast, the SVMD-RCBAM model,
although suppressing the noise interference through frequency
domain decomposition, still has some limitations in dealing with
long-term dependencies. The performance of the base RCBAM model
is relatively weak in both types of tasks, and the deviation of its
predicted trajectory from the actual trajectory is more obvious,
especially in multi-step prediction, where the problem of error
accumulation is more prominent.

The main model SVMD-DBO-RCBAM
performance in both single-step and multi-step prediction. Its

shows excellent

single-step prediction results are highly consistent with the actual
trajectory, and its ability to capture details is significantly better than
that of other models; while in multi-step prediction, its predicted
trajectory not only maintains high accuracy, but also shows excellent
stability. This advantage stems from the model’s innovative fusion
architecture: the SVMD module effectively separates the noise and
valid signals in the trajectory data, the DBO algorithm continuously
improves the model's adaptive ability through parameter
optimization, and the RCBAM module strengthens the ability to
extract the spatio-temporal key features. The synergy of the three
modules enables the model to accurately capture short-term
dynamic changes and effectively model long-term dependencies,
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TABLE 4 Comparison of evaluation indexes of each model.

10.3389/fnbot.2025.1625074

Time step  Evaluation metrics = Prediction model Longitude/° Latitude/° Altitude/ft
RCBAM 0.0613 0.0711 509.3
SVMD-RCBAM 0.0604 0.0655 453.7
MAE
DBO-RCBAM 0.0422 0.0521 2447
SVMD-DBO-RCBAM 0.0377 0.0499 219.8
RCBAM 0.0716 0.0828 495.6
SVMD-RCBAM 0.0556 0.0675 3035
RMSE
DBO-RCBAM 0.0574 0.0543 2256
SVMD-DBO-RCBAM 0.0499 0.0134 194.6
Single-step
RCBAM 0.1194 0.3432 0.6344
SVMD-RCBAM 0.1043 0.3329 0.5993
MAPE
DBO-RCBAM 0.0834 0.1344 03111
SVMD-DBO-RCBAM 0.0655 0.0990 02933
RCBAM 0.9343 0.9355 0.9211
SVMD-RCBAM 0.9478 0.9377 0.9532
RZ
DBO-RCBAM 0.9643 0.9832 0.9632
SVMD-DBO-RCBAM 0.9743 0.9744 0.9791
RCBAM 0.0688 0.0645 534.5
SVMD-RCBAM 0.0544 0.0322 403.4
MAE
DBO-RCBAM 0.0362 0.0312 204.7
SVMD-DBO-RCBAM 0.0333 0.0266 144.6
RCBAM 0.0663 0.1255 455.4
SVMD-RCBAM 0.0578 0.0815 446.7
RMSE
DBO-RCBAM 0.0411 0.0567 3337
SVMD-DBO-RCBAM 0.0366 0.0433 2505
Multi-step
RCBAM 0.0977 0.0888 0.5323
SVMD-RCBAM 0.0823 0.0703 0.3675
MAPE
DBO-RCBAM 0.0425 0.0432 03677
SVMD-DBO-RCBAM 0.0357 0.0255 0.1992
RCBAM 09188 0.91874 0.9033
SVMD-RCBAM 0.9021 0.8979 09111
RZ
DBO-RCBAM 09521 0.9677 0.9799
SVMD-DBO-RCBAM 0.9844 0.9832 0.9804

thus demonstrating comprehensive and stable performance in
various prediction tasks.

5.6 Comparison experiments with the
baseline model

In order to test the generalization performance of the SVMD-
DBO-RCBAM model, this model was compared with the more
mainstream existing trajectory prediction models, including LSTM,
GRU, BiLSTM-attention, DBO-CNN-BiLSTM, and Informer, and all
of them were evaluated using the same ADS-B dataset. For
Transformer-based models, we chose the more representative
Informer. Through preliminary experiments (including PatchTST,

Frontiers in Neurorobotics

TimesNet, Pathformer, and Informer), we found that their prediction
performance on our flight data was inferior to that of Informer. The
sliding window size L was set to 60 and the number of LSTM and GRU
filters in each baseline model was set to 64, and these models were
used to predict the spatial location of the trajectory points 10, 20, 30
and 40 steps into the future, respectively. In order to quantitatively
analyze the prediction results, MAE, RMSE, MAPE and R* metrics
were used as error evaluation metrics to test the accuracy of the
trajectory prediction.

Using four different time steps for training can be found, the
prediction performance difference is obvious, in different features of
the prediction has its own advantages, comprehensive analysis, the
time step of 10 prediction performance is better, the time step of 20,
30 comparable time step, the time step of 40 prediction performance
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FIGURE 11
Single-step forecasting. Comparison of single-step prediction among different models. (a) Three-dimensional trajectories. (b) Latitude-time plot. (c)
Longitude-time plot. (d) Altitude-time plot.

is a little inferior, which is shown in Figure 13 for the time step of 10
of the 4D trajectory prediction map.

The experimental results show that the proposed SVMD-
DBO-RCBAM model outperforms all baseline models, whether
predicting trajectories at 10 or 40 steps. The SVMD-DBO-
RCBAM model has a smaller error when using the data from the
first 60 time steps to predict the spatial location of the trajectory
points after the next 10 steps. Specifically, its MAEs for latitude,
longitude, and altitude are 0.0442, 0.0666, and 124.4, respectively,
RMSEs are 0.0244, 0.0291, and 146.1, respectively, and MAPEs
are, respectively, 0.0265, 0.0477, and 0.3555, with RZf,
respectively, 0.9892, 0.9889, and 0.9990. Compared to the LSTM,
the baseline model with larger error, the improvement of MAE
reaches 92.44, 77.78, 79.41%, the improvement of RMSE reaches
88.17, 87.05, 83.34%, the improvement of MAPE reaches 84.11,
79.06, 79.33%, and the improvement of R’reaches 23.56, 24.2, and
30.3%. When using the data from the first 60 time steps to predict
the spatial location of the track point after the next 40 steps, the
MAEs of latitude, longitude, and altitude of the SVMD-DBO-
RCBAM model are 0.0552, 0.0935, and 143.4, respectively, the
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RMSEs are 0.0367, 0.0337, and 194.4, and the MAPEs are 0.0857,
0.0878, 0.9413, R?0.9221, 0.9778, 0.9398 respectively, Compared
with the baseline model LSTM with larger error, the improvement
rate of MAE reaches 65.67, 76.48, 89.94%, RMSE 76.38, 70.98,
89.33%, MAPE of improvement reached 88.29, 76.89, 89.33%,
and R’reached 14.09, 13.88, 28.79%, respectively.

The box-and-line plots in Figure 14 demonstrate the error
distribution characteristics of the models in different multistep
predictions, in which the SVMD-DBO-RCBAM model shows
significant advantages in the longitude, latitude, and elevation
dimensions. In terms of median error, the median longitude
prediction of SVMD-DBO-RCBAM (0.0274) is only 43.2% of
BiLSTM-attention (0.0634), the latitude error (0.0244) is 54.2%
lower than that of DBO-CNN-BiLSTM (0.0533), and the
elevation error (114.2) is even higher than that of the Informer
(203.4) by 43.8%, verifying its overall superiority in cross-
dimensional prediction. It is worth noting that the core metrics
of BiLSTM-attention, DBO-CNN-BiLSTM and Informer models
are close to each other: the median longitude RMSE of the three
models are 0.0599, 0.0588, and 0.0534, respectively, and the
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FIGURE 12
Multi-step forecasting. Comparison of Multi-step prediction among different models. (a) Three-dimensional trajectories. (b) Latitude-time plot. (c)
Longitude-time plot. (d) Altitude-time plot.

latitude MAPE is 0.0633, 0.0632, and 0.0544, respectively, and the
errors are not more than 15%, suggesting that the difference
between the three models is not more than 15%. The differences
are not more than 15%, indicating that there is a diminishing
marginal benefit between the attention mechanism and the
hybrid architecture in the basic performance improvement.

The SVMD-DBO-RCBAM
performance breakthrough through multi-module synergy: its

main model achieves a
longitude R* value (0.9882) is improved by 1.5% compared to the
next best model Informer (0.9731), the latitude quartile range
(IQR = 0.010) is reduced to 33% of that of BiLSTM-attention
(IQR = 0.030), and the elevation of the MAPE (0.3432) is only
6.8% The model’s

performance stems from a triple innovation-the SVMD module

of the conventional model. excellent
strips the trajectory noise from the frequency domain level,
which reduces the outlier ratio of longitude prediction by 82%;
the DBO algorithm optimizes the feature parameters, which
suppresses the error accumulation rate of latitude long term
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prediction to 0.8%/step; and the spatiotemporal-attention
mechanism of the RCBAM accurately locates the key trajectory
nodes, which results in a stable (standard deviation of 0.12%) and
stable (standard deviation of 0.4%/step) elevation prediction.
Stability (standard deviation 0.12) to 34% of the Informer model
(standard deviation 0.35). In contrast, BILSTM-attention results
in high upper bound error (0.1033) for longitude prediction due
to insufficient local feature capture, DBO-CNN-BiLSTM shows
periodic fluctuation in elevation dimension (IQR = 62.1), and
although Informer is robust in short-term prediction, its global
attention mechanism results in a kurtosis value of latitude
prediction of 133% compared to the main model increases 133%,
highlighting the limitations of complex spatio-temporal
correlation modeling. SVMD-DBO-RCBAM achieves a double
breakthrough in error distribution convergence and prediction
robustness through structural fusion, and provides a high-
precision, low-fluctuation, full-cycle solution for 4D trajectory
prediction in the airspace.
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6 Discussion and outlook

Aiming to tackle multi-step error accumulation and
spatiotemporal feature coupling in 4D trajectory prediction,
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we propose the SVMD-DBO-RCBAM hybrid model: SVMD
performs noise reduction in the frequency domain, DBO
adaptively tunes hyperparameters, and RCBAM uses double
attention to enhance key features. Experiments on Zhuhai Jinwan
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Box plots of prediction errors for various models

ADS-B data show MAE reductions of 32.1, 46.2, and 34.2% in
longitude, latitude, and altitude predictions, respectively, with an
R? close to 1 and error fluctuations less than 10% of the baseline,
demonstrating notable noise suppression, feature decoupling, and
stability enhancement.

Nevertheless, the model integrates multiple complex modules,
leading to a significant increase in the number of parameters and
computational overhead, which may become a bottleneck in
scenarios with extremely high real-time requirements. The
proposed hybrid model inevitably introduces additional
computational costs, primarily from three sources: (i) SVMD
decomposition, which requires iterative optimization for each
data segment; (ii) DBO, used only during training for
hyperparameter tuning and thus does not affect online latency;
and (iii) the ResNet backbone with CBAM modules, where
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convolution and attention operations dominate the inference
overhead. Experiments conducted on a CPU platform (Intel
i7-10700, 16 GB RAM) demonstrate that the model can
be executed without high-end GPUs, providing a practical
baseline for real-time applications.

To enhance deployment efficiency, several optimization
strategies will be considered in the future. Structured pruning
can reduce redundant channels and filters, while quantization
(INT8/FP16) further decreases memory and computational
demands. Additionally, knowledge distillation can be employed
to train lightweight student models with comparable accuracy to
the original model. For SVMD, a sliding-window incremental
scheme with selective reconstruction will be introduced to
minimize decomposition overhead. Together, these techniques
significantly reduce model size and latency, ensuring that the
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proposed architecture maintains high prediction accuracy while
achieving the computational efficiency required for real-
time deployment.
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