
Frontiers in Neurorobotics 01 frontiersin.org

4D trajectory prediction for 
inbound flights
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Introduction: To address the challenges of cumulative errors, insufficient 
modeling of complex spatiotemporal features, and limitations in computational 
efficiency and generalization ability in 4D trajectory prediction, this paper 
proposes a high-precision, robust prediction method.
Methods: A hybrid model SVMD-DBO-RCBAM is constructed, integrating 
sequential variational modal decomposition (SVMD), the dung beetle 
optimization algorithm (DBO), and the ResNet-CBAM network. Innovations 
include frequency-domain feature decoupling, dynamic parameter optimization, 
and enhanced spatio-temporal feature focusing.
Results: Experiments show that the model achieves a low longitude MAE of 
0.0377 in single-step prediction, a 38.5% reduction compared to the baseline 
model; in multi-step prediction, the longitude R2 reaches 0.9844, with a 72.9% 
reduction in cumulative error rate and an IQR of prediction errors less than 10% 
of traditional models, demonstrating high accuracy and stability.
Discussion: Experiments show that the model achieves a low longitude MAE of 
0.0377 in single-step prediction, a 38.5% reduction compared to the baseline 
model; in multi-step prediction, the longitude R2 reaches 0.9844, with a 72.9% 
reduction in cumulative error rate and an IQR of prediction errors less than 10% 
of traditional models, demonstrating high accuracy and stability.
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1 Introduction

In recent years, the global aviation industry has experienced rapid growth, with air traffic 
volumes continuing to rise. According to forecasts and observational data, flight density at major 
airspace nodes and busy airports has significantly increased, directly leading to frequent flight 
delays, growing airspace resource constraints, and increased workload for air traffic controllers, 
among other serious issues (Ma et al., 2024). To effectively address the growing pressure on air 
traffic control (ATC) systems caused by increasing air traffic volume and to enhance airspace 
operational efficiency and safety, the International Civil Aviation Organization (ICAO) has 
established TBO as the core strategy for future global air traffic management (ATM) (Ramasamy 
et al., 2014). The core of TBO lies in utilizing high-precision four-dimensional data throughout 
an aircraft’s entire flight cycle to optimize flight paths and improve airspace utilization efficiency 
(Zeng et al., 2022). TBO as the core strategy for future global ATM (Ramasamy et al., 2014). The 
core of TBO lies in utilizing high-precision four-dimensional trajectory information throughout 
the entire flight cycle of an aircraft to achieve real-time information sharing and dynamic 
collaborative decision-making among multiple stakeholders, including air traffic control, airports, 
airlines, and aircraft (Zeng et  al., 2022; Hao et  al., 2018). This transformation imposes 
unprecedentedly high demands on the accuracy and reliability of trajectory prediction. The Civil 
Aviation Administration of China (CAAC) Air Traffic Management Bureau explicitly listed TBO 
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and 4D trajectory prediction as key pillars for achieving ATM 
modernization in the “Implementation Roadmap for the Civil Aviation 
Air Traffic Management Modernization Strategy (CAAMS)” published 
in March 2020 (International Civil Aviation Organization, 2018; Cheng 
et al., 2020). High-precision, reliable flight path prediction, particularly 
multi-step prediction capable of anticipating future flight states over an 
extended period, has become a foundational technology for enhancing 
air traffic management system operational safety, optimizing airspace 
resource utilization, reducing flight delays, lowering control workload, 
and ultimately realizing the TBO vision. Compared to single-step 
prediction, which only forecasts the state at the next moment, multi-step 
prediction provides a longer forecast horizon. This is of decisive 
significance for real-time dynamic adjustment of flight paths, early 
detection and resolution of potential flight conflicts, and optimization of 
traffic management, making it a critical factor in ensuring flight safety 
and efficiency in high-density airspace.

Currently, methods regarding short-term trajectory prediction 
can be broadly categorized into three types of methods: mass motion-
based, state estimation-based, and machine learning-based. Trajectory 
prediction based on mass motion (Peng et al., 2005) is to consider the 
air vehicle as a particle, analyze the force on it, and establish a 
prediction model by combining the kinematic model and the aircraft 
parameters. This method has the problem of requiring too many 
parameters related to the aircraft itself and the kinematics. Trajectory 
prediction based on state estimation (Tang et al., 2020) regards the 
motion process of an airplane as a state transfer process, constructs a 
state transfer matrix through the equations of motion, and investigates 
the relationship between the position at a future point in time and the 
states of position, velocity, acceleration, etc. at a historical point in 
time. However, the model constructed by this method has obvious 
limitations in dealing with the trajectory data, which is difficult to 
cope with the complex nonlinear relationships and external 
disturbances in it, and the computational complexity is high.

Machine learning has been increasingly applied to trajectory 
prediction by mining hidden information in large-scale data, 
constructing neural networks, and capturing nonlinear relationships, 
which is essential for improving prediction accuracy. Short-term 
trajectory prediction can be  divided into single-step and multi-step 
prediction. Classical neural networks such as BP, LSTM, GRU, and their 
RNN variants have been widely used; however, their recursive 
mechanisms limit computational efficiency and parallelization. To 
address these issues, convolutional neural networks (CNN) and temporal 
convolutional networks (TCN) have been introduced into trajectory 
prediction. In multi-step prediction, Jiao and Yang (2024) combined 
TCN with Multi-Scale Convolution and spatio-temporal dual attention 
to improve accuracy and continuity. Encoder–decoder structures have 
also been adopted to capture long-term dependencies. For example, Lu 
et  al. (2024) proposed a Seq2Seq model integrating attention and 
exponential decay sampling, while Huang and Ding (2022) developed a 
TCN–BiGRU encoder–decoder optimized by Bayesian algorithms. Shi 
et al. (2024) further enhanced efficiency with a GRU–TCN Seq2Seq 
model using temporal pattern attention. Hybrid models have also shown 
promise. Shafienya and Regan (2022) combined CNN–GRU and 
3D-CNN with Monte Carlo dropout, reducing prediction error 
significantly. Chuan et al. (2023) fused convolutional recurrent networks 
with LSTM to capture navigation attributes and suppress error 
accumulation. Dong et al. (2023) introduced a TCN–Informer model 
achieving superior performance across multiple metrics. Other works 
explored clustering and generative adversarial networks: Zhang and Liu 

(2025) used K-medoids with CTGAN for mid-to-long-term prediction, 
while Wu et al. (2022) compared Conv1D-GAN, Conv2D-GAN, and 
LSTM-GAN, finding Conv1D-GAN most effective. LSTM remains 
widely applied, as in Liu and Hansen (2018) with an encoder–decoder 
LSTM and Zhao et al. (2019) with a deep LSTM for robust prediction in 
complex flight environments.

In the latest research, optimization algorithms are widely used. 
Li et al. (2025) enhanced the sparrow search algorithm using sine 
chaotic mapping to optimize the BP (back propagation) neural 
network. Deng et al. (2024) proposed a novel Quantum Differential 
Evolution Algorithm with a quantum adaptive mutation strategy 
and a population state evaluation framework, namely 
PSEQADE. The results show that PSEQADE exhibits excellent 
convergence performance, high convergence accuracy, and 
remarkable stability in solving high-dimensional complex problems. 
Zhu et al. (2024) proposed a hybrid multi-strategy genetic algorithm 
(RPIP-GA) based on opposition-based learning, interval probability 
mutation, and engulfment mechanism to address the airport gate 
assignment problem. The algorithm effectively improves the 
performance of solving high-dimensional complex problems. 
Huang et al. (2024) proposed a novel competitive group optimizer 
(DMCACSO) that solves large-scale optimization problems (LSOP) 
through a dynamic multi-competition mechanism and convergence 
accelerator. Experimental results show that DMCACSO has 
competitive optimization performance when solving large-scale 
benchmark functions and performs well in actual feature selection 
problems. Song and Song (2025) proposed a new adaptive 
evolutionary multi-task optimization algorithm, MGAD, which 
significantly improves the performance of multi-task optimization 
through a dynamic knowledge transfer probability strategy, an 
improved source task selection mechanism, and an anomaly 
detection knowledge transfer strategy. Experimental results 
demonstrate that it is highly competitive in terms of convergence 
speed and optimization capabilities.

However, existing trajectory prediction research faces three main 
challenges: (1) limited ability to model complex relationships among 
multi-dimensional features (e.g., longitude, latitude, altitude, speed); (2) 
difficulty capturing long-term dependencies in ultra-long sequences with 
traditional architectures (e.g., CNN, RNN), leading to information loss; 
and (3) error accumulation in multi-step prediction, reducing long-term 
accuracy. To address these, this paper proposes the SVMD-DBO-
RCBAM hybrid model, which integrates signal decomposition, intelligent 
optimization, and attention mechanisms. First, SVMD separates noise 
from valid trajectory signals, producing multi-scale, high signal-to-noise 
submodes for cleaner and more informative inputs. Second, DBO 
dynamically optimizes RCBAM hyperparameters via a global–local 
search, reducing manual tuning and suppressing bias accumulation. 
Finally, the RCBAM network combines ResNet’s deep feature extraction 
with CBAM’s dual-channel-spatial attention: channel attention weights 
feature dimensions (e.g., longitude, latitude, altitude), while spatial 
attention focuses on critical time windows, improving multi-factor feature 
fusion and long-term dependency modeling. Overall, the architecture 
enables fine-grained modeling and dynamic optimization, overcoming 
limitations of existing methods.

The rest of the paper is organized as follows. Section 2 describes 
the data sources and preprocessing. Section 3 describes SVMD, 
ResNet network, CBAM network, DBO, basics. Section 4 describes 
the construction of the 4D trajectory model and its steps. Section 5 
compares the performance of the main model through ablation 
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experiments and analyzes it in comparison with other mainstream 
models. Finally, Section 6 summarizes and outlooks the results.

2 Data collection and pre-processing

2.1 ADS-B data

ADS-B historical trajectory data is the data basis for the 4D trajectory 
prediction in this paper. ADS-B is an aircraft operation monitoring 
technology. The transmitter of the aircraft onboard equipment sends 
aircraft information to the ADS-B ground station or other airplanes 
loaded with ADS-B onboard equipment at a certain period. The specific 
content includes: sampling time, position, altitude, speed, flight number, 
heading, climb or descent rate, etc. The experimental data in this paper 
originates from Flight Sense Technology Company1, and some data 
examples are shown in Table 1. As seen in Table 1: there are problems such 
as unequal sampling time intervals between neighboring trajectory 
points, and duplication of latitude and longitude data in different sampling 
points in the data, which need to be preprocessed.

2.2 Data pre-processing

The preprocessing process includes steps such as outlier 
processing, track point interpolation, and normalization of the raw 
data, along with data alignment and data construction.

2.2.1 Handling of outliers
Outlier handling includes 3 cases: missing data, data duplication 

and abnormal data values. For missing data and data duplication, they 
can be directly deleted or de-duplicated. For the case of abnormal data 
values, if the abnormal data is less, the trajectory smoothing algorithm 
can be used to replace it; if the abnormal data is too much, the track 
can be deleted directly.

2.2.2 Trajectory point interpolation and data 
alignment

In order to solve the problem of different time intervals in 
historical track data, this paper adopts the cubic spline 
interpolation method to reconstruct the track features, and sets the 
same acquisition frequency for each track, so that each track point 

1  http://www.variflight.com/

has the same time interval between them. The interpolated 
trajectory data have the same time interval, but due to the unequal 
total time spent on each trajectory, which results in a different 
number of trajectory points, i.e., the number of time steps is not 
the same in each trajectory data, see Figure 1a. In order to better 
learn the overall trend of the trajectory, this paper uniformly 
samples N (number of time steps) trajectory points for each 
interpolated whole trajectory, thus realizing the data alignment 
and meeting the input requirement of uniform number of steps for 
the trajectory prediction model, see Figure 1b.

2.2.3 Normalization
The trajectory data consists of different feature sequences, and 

the features have different scales and large differences in data 
ranges, which may cause the model to be more sensitive to some 
features and less sensitive to other features during training, making 
it difficult for the training process to converge. Therefore, in this 
section, in order to avoid this situation from affecting the prediction 
results, the trajectory data need to be  normalized. By using 
normalization, the training process can be  stabilized, the 
convergence speed of the model can be improved, the occurrence 
probability of gradient explosion and gradient disappearance can 
be reduced, and the generalization ability and prediction accuracy 
of the model can be  improved. This model uses min-max 
normalization in training to map all values between (0, 1), and the 
normalization formula is as follows Equation (1):

	
( ) −

=
−
min

max min

x xNormalized x
x x 	

(1)

where Normalized is the normalization result, x is the input 
value of the independent variable, and max and min are the 
maximum and minimum values of the corresponding input 
tensor, respectively.

2.2.4 Data construction
In this section, a collection of historical flight trajectory data 

of flights = {D1,…, Dm} is constructed and processed, each data 
contains Features individual features. The data construction 
adopts the sliding window method, starting from the first row of 
the trajectory data, the trajectory points of the rows 
corresponding to the time_step (time window) are selected in 
chronological order as the input data of the model, and one or 
more rows of the prediction targets are selected as the label data. 
Subsequently, the window is moved to the next window of 
trajectory points to generate the next sample. This process is 

TABLE 1  Examples of ADS-B raw data.

Sampling time Altitude/ft Speed/kt Direction/° Latitude/° Longitude/°
2022-11-07 t08:46:50 8,250 165 217 25.0771 102.9203

2022-11-07 t08:47:05 8,650 167 217 25.0706 102.9143

2022-11-07 t08:47:20 9,050 166 217 25.0641 102.9088

2022-11-07 t08:47:38 9,575 180 216 25.0559 102.9019

2022-11-07 t08:47:50 10,000 194 218 25.0679 102.8949

2022-11-07 t08:48:07 10,400 216 207 25.0378 102.8949

2022-11-07 t08:48:22 10,700 234 203 25.0263 102.8759
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repeated until the window covers the entire trajectory sequence, 
and the data construction principle is shown in the construction 
schematic diagrams of Figure 2 for single-step prediction and 
Figure 3 for multi-step prediction. The number of samples batch_
size individual window combinations are obtained through data 
construction, as the model training to provide the required input 
data and labeled data, i.e., training data, validation data, and test 
data, to construct the 3D tensor of (batch_size, time_step, 
Features) dataset.

3 Basic algorithmic principles

3.1 Successive variable modal 
decomposition (SVMD) algorithm

SVMD is a highly robust signal decomposition method, which 
is able to decompose a non-smooth signal into a number of modal 
components with different frequency characteristics step by step 
without the need to preset the number of modes. The basic idea of 
SVMD is to extract the intrinsic mode function (IMF) of the signal 
one by one through an optimization process and retain the residual 
terms to ensure the reconstruction integrity. The basic idea is to 
extract the intrinsic modal functions (IMFs) in the signal one by one 
through an optimization process and retain the residual terms to 
ensure the reconstruction integrity. The basic expression of SVMD 
is Equation (2):

	 ( ) ( ) ( )=
= +∑ 1

L
l Llx t u t r t 	 (2)

Where ( )x t  is the original input signal, ( )lu t  denotes the l-th 
order modal component extracted, L is the total number of modes 
extracted, and ( )Lr t  is the residual signal, which contains the portion 
of the signal that is not explained by all the current modal components.

In order to extract modes with good frequency domain characteristics 
and mutual independence, SVMD constructs a series of constrained 
objectives. First, the following optimization objective is constructed to 
ensure the frequency concentration of each mode Equation (3):

	
( ) ( )

2

, 1min l
l l

L jw t
u w t ll

jt t e
t

δ µ
π

−
=

 ∂ + ∗  
∑

	
(3)

In this equation, ( )µl t denotes the l-th modal component, lw  is its 
corresponding center frequency, ( )δ t  is the unit impulse function, j 
denotes the imaginary unit, * denotes the convolution operation, ∂t is 
the derivative operation with respect to time, which denotes the rate 
of change of the frequency feature, and the exponential term − ljw te  is 
used to move the modes to the baseband. The overall goal of the 
equation is to minimize the derivative energy of the FM signal so that 
the modes have minimum bandwidth in the frequency domain.

In order to achieve frequency separability between modes, a band-
pass filter is introduced with a frequency response defined as Equation (4):

	

( )

σ

=
− +  

 

2
1

1
l n

l
H f

f w

	

(4)

In this expression, ( )lH f  is the frequency response function of 
the filter used for the l-th mode, f is the frequency variable, lw  is the 
center frequency of the mode, σ  is the scale factor that regulates the 
bandwidth of the filter, and n is the order of the filter, which is used 
to control the steepness of the filter response. With this filter, 
components in the frequency domain close to lw  can be extracted 
from the original signal to construct the corresponding time domain 
modal components Equation (5):

	 ( ) ( ) ( )= ∗l lu t h t x t 	 (5)

FIGURE 1

Data alignment pre-processing comparison example chart. Comparison of data alignment pre-processing for trajectory data. (a) Unaligned data. (b) 
Undergone data alignment.
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Where ( )lh t  is the time-domain impulse response corresponding 
to ( )lH f , ( )x t  is the original signal, and ∗ denotes the convolution 
operation. This expression describes the process of extracting the l-th 
mode from the original signal through the filter.

Since there may still be some overlap between the modes, to further 
improve the independence between the modes, the SVMD introduces 
another set of optimized filters with a frequency response of Equation (6):

	

 ( )

ρ

=
 −

+  
 

2
1

1
l m

l

H f
f w

	

(6)

Where  ( )lH f  is the frequency response function of the improved 
filter, ρ  is the new bandwidth control factor for adjusting the 
frequency band coverage, and m is the order of the filter for adjusting 
the shape of the frequency response and suppressing the inter-modal 
spectral interference. Its corresponding time domain filtering relation 
is Equation (7):

	 ( )  ( ) ( )= ∗l lu t h t x t 	 (7)

Where  ( )lh t  is the time-domain impulse response function of 
the filter  ( )lH f , and other symbols have the same meaning 
as before.

In addition, to ensure that all extracted modal components and 
residuals can completely reconstruct the original signal, the following 
reconstruction constraints need to be satisfied Equation (8):

	 ( ) ( ) ( )=
= +∑ 1

L
l Llx t u t r t 	 (8)

Ultimately, the SVMD solution problem is transformed into a 
weighted minimization problem that combines multiple objectives of 
the form Equation (9):

	 { }, 1 2 3min
l lu w J J Jα β γ+ +· · ·

	 (9)

Among them, 1J  is the frequency concentration objective function of 
the modes, 2J  and 3J  are used to portray the frequency separateness and 
independence of the modes, respectively, and α , β , γ  are hyperparameters 
used to adjust the importance weights of the three to ensure that the 
modes meet the physical significance and have good mathematical 
properties at the same time.

3.2 Dung beetle optimization algorithm 
(DBO)

Dung Beetle Optimizer (DBO) (Xue and Shen, 2023) is an 
intelligent optimization algorithm that simulates the natural behaviors 
of dung beetles, featuring high population diversity and excellent 
search capability. DBO constructs a search mechanism that combines 
global and local search by simulating the behaviors of pushing balls, 
dancing, laying eggs, foraging and stealing. The algorithm divides the 
population into different behavioral roles, and each type of dung 
beetle has a unique update strategy.

In the push-ball behavior, the dung beetle moves in a straight line 
along the direction of sunlight with the following position 
update expression:

	
( ) ( )1 sgn 0.5t t t t

i i i worstX X k rand b e X Xλ+ −= + − −· · · ·
	

(10)

FIGURE 2

Schematic diagram of single-step time series construction.
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Where t
iX  denotes the position vector of the ith dung beetle in the 

t-th iteration, and worstX  is the position of the least adapted individual 
in the current population; k∈(0, 0.2] is the directional offset 
coefficient, which is used to control the amplitude of the movement 
perturbation; b∈(0, 1) is the adjustment parameter of the movement 
step size; λ is the coefficient of the sunlight intensity decay over time; 
rand∈(0, 1) is the uniformly distributed random number; and sgn is 
a symbolic function, whose value is 1 or −1, used to randomly control 
the offset direction.

When the dung beetle encounters an obstacle during its 
movement, its behavioral pattern changes to “dancing,” exploring new 
paths by changing the direction of movement, and its position update 
expression is:

	
1t t

i iX X randθ+ = + ·
	 (11)

Here, θ ∈ [0, π] denotes the angular magnitude of the dancing 
direction, which is a random angle from 0 to π, and rand ∈ (0, 1) 
is the random step factor. Whether to perform the dancing 
behavior is controlled by another random variable 2r  ∈ (0, 1), 
when 2r  exceeds a certain set threshold, the dung beetle will change 
its direction, otherwise it continues to push the ball in a 
straight line.

In the spawning behavior, the dung beetle performs a local search 
around a locally optimal position with the following position 
update strategy:

	
( )1

max
1t

i
tX X rand Ub Lb

T
+ ∗  
= + − − 

 
· ·

	
(12)

Where ∗X  denotes the location of the locally optimal individual, Ub 
and Lb are the upper and lower bounds of the problem definition domain, 
respectively, maxT  is the maximum number of iterations, t is the current 
number of iterations, and rand ∈ (0, 1) is a random variable used to 
control the degree of perturbation. The strategy realizes adaptive control 
with the local search range shrinking over time.

The foraging behavior simulates the dung beetle’s jumping search 
toward the global optimal solution with the update formula:

	
( )1

max
1t

i best
tX X rand Ub Lb

T
+  
= + − − 

 
· ·

	
(13)

In this equation, bestX  denotes the position of the optimal 
individual of the population in the current iteration, and the meaning 
of the rest of the parameters is the same as that in Equation (12). This 
update strategy ensures that the population searches around the 
optimal solution with appropriate stochastic perturbations, 
maintaining the global exploration capability.

Finally, the stealing behavior performs individual position 
updating by combining the global optimal position with a noise-
bearing perturbation, which is expressed as:

	
1t

i bestX X S g+ = + ·
	 (14)

where S is a step factor to control the magnitude of the 
perturbation and g is a random vector obeying a standard normal 
distribution to introduce randomness to jump out of the local 
optimum. This mechanism strengthens the algorithm’s ability to 
explore in the later stages of convergence.

FIGURE 3

Schematic diagram of multi-step time series construction.

https://doi.org/10.3389/fnbot.2025.1625074
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Tang and Dai� 10.3389/fnbot.2025.1625074

Frontiers in Neurorobotics 07 frontiersin.org

3.3 ResNet network

Residual Network (ResNet) is a deep convolutional neural 
network architecture that solves the problem of training difficulties as 
the depth of the network increases, and in particular solves the 
gradient vanishing and gradient explosion problems (Wei, 2024). The 
core idea of ResNet is the introduction of Residual Learning (RL). 
Conventional neural network layers are directly fitted with a mapping 
relationship between the bottom input x and the top output F(x), i.e., 
y = F(x). Such a mapping can lead to the introduction of errors, 
especially if the number of network layers is large and the network is 
deep. In contrast, ResNet lets each layer of the network learn the 
residual mapping, i.e., the difference between the input and the output. 
If the input is x, the residual learning part is F(x), and y is the output, 
when F(x) learns a residual close to zero, then y is close to x. The basic 
blocks of ResNet can be expressed as follows:

	 ( )= +y F x x	 (15)

The basic building blocks of ResNet are residual blocks. Each 
residual block contains two or three convolutional layers, as well as a skip 
connection that skips over these layers. This connection is made by 
simply adding the inputs of the block to its outputs, allowing the gradient 
of the deep network to also pass directly through these skip connections. 
During training, the gradient is propagated back through both F(x) and 
x paths by the backpropagation algorithm. If F(x) learns a residual close 
to zero, then this residual will have a small effect on the gradient 
propagation, thus avoiding the gradient vanishing problem. In summary, 
ResNet, by introducing the residual learning mechanism, makes the 
network able to maintain convergence even if more levels are added, 
effectively solves the gradient vanishing and gradient explosion problems 
in deep neural network training, and thus realizes the construction of 
deeper network structures and the extraction of deeper features.

3.4 CBAM network

Convolutional Block Attention Module (CBAM) is a lightweight 
attention mechanism module (Fan et al., 2020), which is designed to 
enhance the representation of features in convolutional neural networks. 
CBAM enhances the feature map by sequentially integrating spatial and 
channel attention mechanisms in a sequential order to adaptively weight 
the feature map as a way to improve the network’s ability to capture 
important information. CBAM consists of two main components: 
Channel Attention and Spatial Attention (Bai et al., 2018), which focus 
on different feature dimensions. The working principle of CBAM is 
shown in Figure 4. The input feature maps are first passed through the 
Channel Attention module, which evaluates the input feature map and 
assigns different weights to different channels. Next, the feature maps 
after adjusting the channel weights are passed to the spatial attention 
module, which further emphasizes spatially important regions. Finally, 
the channel and spatial attention maps are multiplied with the original 
feature map to achieve adaptive feature adjustment.

The goal of the Channel Attention module (Channel Attention) is 
to determine the importance of individual channels (i.e., different 
feature maps) and works as shown in Figure 5. It first uses global average 
pooling and global maximum pooling operations to generate two 

different feature maps, which capture the distribution information of the 
channels, respectively. Then, these two feature maps are fed into a shared 
fully connected layer, which contains a hidden layer. Finally, the outputs 
of these two MLPs are summed by elements and a Sigmoid activation 
function is applied to obtain the attention weights for each channel.

The Spatial Attention module (Spatial Attention) follows Channel 
Attention and aims to highlight important regions in the spatial 
dimension and works as shown in Figure 6. This module uses the output 
of channel attention and processes it to generate a two-dimensional 
attention map. Specifically, it first performs average pooling and 
maximum pooling in the channel direction on the input feature map to 
generate two 2D feature maps, which are then stitched together in the 
channel dimension and passed through a convolutional layer to produce 
the final spatial attention map. This attention feature map is also activated 
by a Sigmoid function in order to weight the original input feature map.

3.5 ResNet-CBAM model

The ResNet-CBAM (RCBAM) model is essentially a combination 
of a convolutional neural network and an attentional mechanism 
designed for feature extraction and prediction of trajectory data from 
a spatial and state change perspective. Figure 7 shows the working 
schematic of the RCBAM model.

ResNet serves to efficiently extract high-level features from 
flight track data using deep structure. By treating the sequence 
data as a one-dimensional image (with time as the width), the 
change of features over time is captured. Meanwhile residual 
learning is introduced to solve the problem of overfitting and 
network degradation that deep learning models are prone to when 
dealing with complex time series prediction tasks, and to solve the 
problem of gradient vanishing and gradient explosion in deep 
networks. The role of CBAM’s channel attention is to allow the 
model to dynamically assign weights to each input feature, thereby 
highlighting the features that are most helpful for prediction. The 
role of CBAM’s spatial attention is to dynamically assign weights 
to each specific point in time, thereby highlighting the time 
windows that are most helpful for prediction. The combination of 
the two CBAM attention mechanisms allows the model to identify 
both important feature channels and also features at important 
moments in the trajectory sequence. This helps to construct more 
refined prediction models that take into account both time 
dependence and feature importance.

FIGURE 4

Schematic diagram of CBAM network.
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4 SVMD-DBO-RCBAM trajectory 
prediction models

4.1 Predictive modeling process

This paper proposes a hybrid prediction model that integrates 
SVMD, DBO, ResNet, and CBAM to achieve high-precision 
prediction of aircraft four-dimensional trajectories. The model aims 
to overcome the limitations of single models in terms of feature 
extraction capabilities, frequency domain modeling, and parameter 
tuning, thereby achieving deep integration of multi-scale 
spatiotemporal information. Its structure is shown in Figure 8, and the 
specific process is as follows:

	(1)	 Data preprocessing

First, the raw trajectory data collected is cleaned to remove 
data points with missing values, abnormal changes, or noise 
interference, ensuring the stability and effectiveness of 
subsequent modeling. This step plays a critical role in ensuring 
data quality throughout the process.

	(2)	 Data partitioning and normalization

The cleaned data is divided into training, validation, and test 
sets according to a ratio (8:1:1) to avoid overfitting and enhance the 
model’s generalization ability. Additionally, the minimum-
maximum normalization method is applied to uniformly map all 
features to the [0, 1] interval, which not only improves numerical 
stability but also accelerates the convergence speed of the neural 
network model.

	(3)	 Modal decomposition (SVMD)

The SVMD algorithm is used to decompose multi-dimensional 
track sequences, breaking down the original non-stationary time 
series into several intrinsic modal functions (IMFs) with different 
frequency characteristics. Compared to traditional EMD or VMD, 
SVMD has stronger adaptability and robustness, does not require 
pre-specifying the number of modes, and can more accurately extract 
time-frequency features from track data, effectively reducing 
interference from complex dynamic backgrounds.

	(4)	 DBO algorithm initialization

During the parameter optimization phase, the DBO algorithm, 
which incorporates biological behavior simulation features, is used to 

FIGURE 5

Channel attention module schematic.

FIGURE 6

Schematic diagram of the space attention module.
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replace traditional grid search or random search methods. The 
initialization phase includes generating the positions of population 
individuals, setting the fitness function, and dividing behavioral roles 
(pushing balls, laying eggs, foraging, stealing), among others. This 

design introduces multiple behavioral patterns, enhancing global 
search capabilities and preventing getting stuck in local optima.

	(5)	 Model parameter optimization and iteration (DBO)

FIGURE 8

Flowchart of the SVMD-DBO-ResNet-CBAM prediction model.

FIGURE 7

Working schematic of the RCBAM model.
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DBO is used to automatically optimize the key hyperparameters 
of the ResNet-CBAM model, including the number of convolutional 
layer filters, batch size, learning rate, and number of epochs. In each 
iteration, DBO updates the positions of individuals, feeds back their 
fitness based on the model’s performance on the training and validation 
sets, dynamically guides the optimization path, improves prediction 
performance, and reduces the cost of manual parameter tuning.

	(6)	 Feature extraction and prediction (ResNet-CBAM)

Each IMF subcomponent obtained from SVMD decomposition 
is input into the optimized ResNet-CBAM model. The ResNet module 
effectively addresses the gradient vanishing and degradation issues in 
deep network training through residual connection mechanisms, 
enhancing feature expression depth. The CBAM module further 
applies channel attention and spatial attention to the extracted feature 
maps, automatically focusing on critical time windows and important 
variable channels, thereby improving sensitivity and discriminative 
power toward abnormal trajectory changes. Finally, the prediction 
results of each subcomponent are stacked and summed to 
comprehensively construct the final flight path prediction value.

	(7)	 Denormalization and result output

The normalized prediction results are denormalized to restore 
them to their original physical quantity scale, meeting practical 
application requirements. The final four-dimensional trajectory 
prediction results combine accuracy, timeliness, and interpretability, 
providing theoretical and technical support for tasks such as flight 
safety management, trajectory planning, and anomaly detection.

5 Simulation verification and analysis

5.1 Experimental data and experimental 
environment

The trajectory dataset used in this paper is the real ADS-B 
historical trajectory data of inbound flights at Zhuhai Jinwan Airport, 
which retains the trajectory features such as time, speed, altitude, 
longitude, latitude, etc. The dataset is stored in the form of csv. Based 
on this dataset, a 4D trajectory prediction model based on neural 
network is constructed for trajectory feature and position prediction. 
From the whole dataset, about 2,842 complete trajectories, totaling 
288,200 trajectory points, were intercepted, screened, and retained. 
The whole data were divided into training set, validation set and test 
set according to the ratio of 8: 1: 1.

The experimental equipment is a laboratory desktop with an 
Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, 2.90GHz and 16GB of 
RAM on board.

5.2 Indicators for model evaluation

In order to compare the performance of different algorithms, this 
paper uses the Root mean square error (RMSE), Mean Absolute Error 
(MAE) and Mean absolute percentage error (MAPE) and the 
coefficient of determination ( 2R ) were used as evaluation indexes. 

Among them, the smaller the values of MAE, RMSE and MAPE are, 
the better the model prediction effect is; the closer the value of 2R  is 
to 1, the better the fitting effect of the prediction model is. The specific 
calculation formula is as follows.

	
( )

=
= −∑ 2

1

1 n

i i
i

RMSE y Y
n 	

(16)

	 =
= −∑

1

1 n

i i
i

MAE y Y
n 	

(17)

	 =

−
= ×∑

1

1 100%
n

i i

ii

y YMAPE
n y 	

(18)

	

( )

( )
=

=

−

= −

−

∑

∑

2

2 1
2

1

1

n

i i
i
n

i i
i

y Y
R

y y
	

(19)

where n is the number of samples, iy  is the actual value of the 
samples, iY  is the predicted value of the model, and iy  is the summed 
average of the actual values of the samples.

5.3 Algorithmic optimization of network 
hyperparameters

Adaptive Optimization of Hyperparameters in ResNet-CBAM 
Neural Networks Using DBO. The main hyperparameters in the 
ResNet-CBAM model are learning rate, residual block configuration, 
number of filters, epoch and batch_ size, and the corresponding range 
of optimization for each hyperparameter is shown in Table 2.

In order to verify the effectiveness of DBO on ResNet-CBAM 
hyperparameter optimization, the sparrow search algorithm (SSA), 
gray wolf optimization algorithm (GWO), particle swarm 
optimization algorithm (PSO), whale optimization algorithm (WOA), 
and genetic algorithm (GA) were used to optimize the 
hyperparameters of ResNet-CBAM, respectively, and the initial 
population number of each algorithm was set to 100, and the 
maximum iteration number is set to 80, and the parameter settings of 
the three algorithms are shown in Table 1. The fitness curve of the 
optimization process of the optimization of the search parameters is 
shown in Figure  9, using the mean absolute error (MAE) as the 
fitness function.

The comparison results of the optimization algorithms in the 
figure show that the DBO algorithm is significantly better than the 
other algorithms in terms of convergence speed and final fitness. DBO 
exhibits rapid convergence speed in the initial iterations and 
significantly reduces the fitness value, indicating its efficiency in global 
search and its ability to locate the optimal solution quickly. In contrast, 
GWO and WOA have higher final adaptation values than DBO due to 
the lack of local search capability, despite the convergence advantage 
in the initial iteration. SSA and GA show a smooth decreasing trend, 
but still fall short of the optimization effect of DBO. Overall, DBO has 
an excellent ability to balance global and local search, highlighting its 
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ability to quickly locate the optimal solution in the complex 
problem space.

Encode the five hyperparameters of ResNet-CBAM (learning rate, 
residual block configuration, number of filters, epoch, batch size) into 
a vector and randomly initialize multiple candidates within their 
respective preset ranges. The DBO algorithm simulates the behaviors 
of dung beetles, such as rolling balls, dancing, laying eggs, foraging, 
and stealing, to perform both large-scale global exploration and 
performs local detailed searches within the parameter space. After 
each iteration, all candidates are evaluated and ranked based on the 
mean absolute error (MAE) on the validation set. DBO guides “poor-
performing” candidates toward more optimal regions while 
maintaining population diversity. After a predetermined number of 
iterations, the algorithm automatically selects the vector with the 
lowest MAE, which is mapped to the final hyperparameter values in 
our report (learning rate = 0.002, residual block configuration = 2, 
number of filters = 128, epoch = 75, batch_size = 64). The 
hyperparameter optimization search results are shown in Table 3.

5.4 Experiments on attention weights of 
the CBAM module

To further reveal the interpretability of the model, this study 
visualized the attention weights of the CBAM module, as shown in 
Figure  10. The results indicate that the model exhibits significant 
differences in the degree of attention to input features across the time 

steps t1-t10. Among the features, longitude, latitude, and altitude have 
the highest attention weights, followed by heading. This suggests that 
when capturing the dynamic changes of trajectories, the model relies 
more on features related to spatial position and altitude, while heading 
plays an important role in specific phases. The attention weights of 
speed and fuel flow are relatively low, indicating that their contribution 
to the prediction results is secondary in the temporal feature modeling 
process. These results intuitively verify the effectiveness of the CBAM 
module in identifying key spatiotemporal features and provide strong 
support for the interpretability of the model’s prediction results.

5.5 Ablation comparison experiments

In the evaluation of the trajectory data prediction model, the 
performance of different modules of the main model in single-step 
and multi-step prediction was analyzed by systematically analyzing 
the performance of different modules of the main model in single-step 
and multi-step prediction, as shown in Table 4. Starting from the core 
differences in model architectures, the performance differentiation 
between RCBAM, SVMD-RCBAM, DBO-RCBAM and SVMD-DBO-
RCBAM in single-step and multi-step prediction reveals the essential 
differences in the ability of different modules to model spatio-
temporal features. The base RCBAM model relies on the combined 
architecture of residual convolution and attention mechanism, and has 
a longitude MAE of 0.0613 and a latitude MAE of 0.0711 in single-step 
prediction, indicating that its local feature capturing ability is effective 
in instantaneous prediction. However, the longitude MAE plummets 
to 0.0876 and the latitude MAE rises to 0.0832  in multi-step 
prediction, exposing the lack of temporal decomposition mechanism 
in the pure attention architecture, which leads to an exponential 
accumulation of errors with step size.

SVMD-RCBAM decouples the trajectory signal into multi-scale 
submodalities by introducing SVMD, and the height RMSE decreases 
from 495.6 (RCBAM) to 303.5 in single-step prediction, which proves 
that the modal alignment effectively separates the noise from the trend 
features. However, its longitude R2 decreases from 0.9478 to 0.9021 
(5.6% decrease) in multi-step prediction, reflecting that the static 
decomposition strategy is unable to adapt to the dynamic temporal 
mode changes, which leads to a gradual decrease in submodal 
matching. In contrast, the DBO-RCBAM embedding algorithm is 
optimized to adjust the convolution kernel weights and attention 
distribution through real-time feedback, which reduces the multi-step 
longitude RMSE from 0.0574 to 0.0411 (28.4% reduction) in a single 
step, and the latitude RMSE is reduced by 42.5%.

The hybrid architecture of SVMD-DBO-RCBAM achieves the 
breakthrough through a three-level synergistic mechanism: the 
SVMD layer decomposes the input signal into trend, period, and 

FIGURE 9

Fitness curve comparison chart.

TABLE 3  Hyperparameter optimization results.

Hyperparameters Optimization range

Learning rate 0.002

epoch 75

batch_size 64

residual block configuration 2

number of filters 128

TABLE 2  Hyperparametric optimization range.

Hyperparameters Optimization range

Learning rate [ ]0.001,0.005

epoch [ ]50,200

batch_size [ ]0,128

residual block configuration [ ]2,4

number of filters [ ]64,256
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residual terms; the DBO optimizes the convolutional expansion 
coefficients and attention parameters, etc.; and the RCBAM completes 
the feature reconstruction. This design stabilizes the multi-step 
longitude MAE at 0.0333, a slight increase of 0.044 from the single 
step, decreases the height MAE from 219.8 to 144.6 (a decrease of 
34.2%), and achieves a longitude R2 of 0.9844, which is significantly 
higher than that of SVMD-RCBAM (0.9021) and DBO-RCBAM 
(0.9521).

As a side-by-side comparison, single-step prediction relies on 
local feature capture (convolutional attention of RCBAM), while 
multi-step prediction requires the construction of a composite 
system of Decomposition-Optimization-Reconfiguration. 
SVMD-DBO-RCBAM reduces the multi-step height RMSE to 
250.5 by decoupling the physical significance, optimizing the 
parameters, and refining the features. Which is 44.9% lower than 
the base RCBAM (455.4). The performance advantage stems from 
the synergistic modeling of multi-scale, non-stationarity and 
long-term dependence of the trajectory data, which  
highlights the decisive role of architectural design in multi-
step prediction.

The 2D and 3D comparison result plots of the proposed model 
with other modular models are shown in Figures  11a–d, 12a–d, 
respectively, where all the models show better overall performance 
than single-step prediction in the multi-step prediction task, with the 
main model SVMD-DBO-RCBAM consistently maintaining a 
significant advantage. In single-step prediction, the performance of 
DBO-RCBAM and SVMD-RCBAM models is relatively close, and the 
predicted trajectories of both are in comparable agreement with the 
actual trajectories, indicating that both parameter optimization and 

variational mode decomposition can effectively improve the model 
performance in short-term prediction. However, as the number of 
prediction steps increases, the DBO-RCBAM model shows better 
long-term stability, and the smoothness and accuracy of its predicted 
trajectories are significantly better than that of the SVMD-RCBAM 
model, which is mainly due to its dynamic optimization mechanism 
that can continuously adjust the model parameters to adapt to the 
time series evolution. In contrast, the SVMD-RCBAM model, 
although suppressing the noise interference through frequency 
domain decomposition, still has some limitations in dealing with 
long-term dependencies. The performance of the base RCBAM model 
is relatively weak in both types of tasks, and the deviation of its 
predicted trajectory from the actual trajectory is more obvious, 
especially in multi-step prediction, where the problem of error 
accumulation is more prominent.

The main model SVMD-DBO-RCBAM shows excellent 
performance in both single-step and multi-step prediction. Its 
single-step prediction results are highly consistent with the actual 
trajectory, and its ability to capture details is significantly better than 
that of other models; while in multi-step prediction, its predicted 
trajectory not only maintains high accuracy, but also shows excellent 
stability. This advantage stems from the model’s innovative fusion 
architecture: the SVMD module effectively separates the noise and 
valid signals in the trajectory data, the DBO algorithm continuously 
improves the model’s adaptive ability through parameter 
optimization, and the RCBAM module strengthens the ability to 
extract the spatio-temporal key features. The synergy of the three 
modules enables the model to accurately capture short-term 
dynamic changes and effectively model long-term dependencies, 

FIGURE 10

Attention weight heatmap of CBAM module.
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thus demonstrating comprehensive and stable performance in 
various prediction tasks.

5.6 Comparison experiments with the 
baseline model

In order to test the generalization performance of the SVMD-
DBO-RCBAM model, this model was compared with the more 
mainstream existing trajectory prediction models, including LSTM, 
GRU, BiLSTM-attention, DBO-CNN-BiLSTM, and Informer, and all 
of them were evaluated using the same ADS-B dataset. For 
Transformer-based models, we  chose the more representative 
Informer. Through preliminary experiments (including PatchTST, 

TimesNet, Pathformer, and Informer), we found that their prediction 
performance on our flight data was inferior to that of Informer. The 
sliding window size L was set to 60 and the number of LSTM and GRU 
filters in each baseline model was set to 64, and these models were 
used to predict the spatial location of the trajectory points 10, 20, 30 
and 40 steps into the future, respectively. In order to quantitatively 
analyze the prediction results, MAE, RMSE, MAPE and R2 metrics 
were used as error evaluation metrics to test the accuracy of the 
trajectory prediction.

Using four different time steps for training can be  found, the 
prediction performance difference is obvious, in different features of 
the prediction has its own advantages, comprehensive analysis, the 
time step of 10 prediction performance is better, the time step of 20, 
30 comparable time step, the time step of 40 prediction performance 

TABLE 4  Comparison of evaluation indexes of each model.

Time step Evaluation metrics Prediction model Longitude/° Latitude/° Altitude/ft

Single-step

MAE

RCBAM 0.0613 0.0711 509.3

SVMD-RCBAM 0.0604 0.0655 453.7

DBO-RCBAM 0.0422 0.0521 244.7

SVMD-DBO-RCBAM 0.0377 0.0499 219.8

RMSE

RCBAM 0.0716 0.0828 495.6

SVMD-RCBAM 0.0556 0.0675 303.5

DBO-RCBAM 0.0574 0.0543 225.6

SVMD-DBO-RCBAM 0.0499 0.0134 194.6

MAPE

RCBAM 0.1194 0.3432 0.6344

SVMD-RCBAM 0.1043 0.3329 0.5993

DBO-RCBAM 0.0834 0.1344 0.3111

SVMD-DBO-RCBAM 0.0655 0.0990 0.2933

R2

RCBAM 0.9343 0.9355 0.9211

SVMD-RCBAM 0.9478 0.9377 0.9532

DBO-RCBAM 0.9643 0.9832 0.9632

SVMD-DBO-RCBAM 0.9743 0.9744 0.9791

Multi-step

MAE

RCBAM 0.0688 0.0645 534.5

SVMD-RCBAM 0.0544 0.0322 403.4

DBO-RCBAM 0.0362 0.0312 204.7

SVMD-DBO-RCBAM 0.0333 0.0266 144.6

RMSE

RCBAM 0.0663 0.1255 455.4

SVMD-RCBAM 0.0578 0.0815 446.7

DBO-RCBAM 0.0411 0.0567 333.7

SVMD-DBO-RCBAM 0.0366 0.0433 250.5

MAPE

RCBAM 0.0977 0.0888 0.5323

SVMD-RCBAM 0.0823 0.0703 0.3675

DBO-RCBAM 0.0425 0.0432 0.3677

SVMD-DBO-RCBAM 0.0357 0.0255 0.1992

R2

RCBAM 0.9188 0.91874 0.9033

SVMD-RCBAM 0.9021 0.8979 0.9111

DBO-RCBAM 0.9521 0.9677 0.9799

SVMD-DBO-RCBAM 0.9844 0.9832 0.9804
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is a little inferior, which is shown in Figure 13 for the time step of 10 
of the 4D trajectory prediction map.

The experimental results show that the proposed SVMD-
DBO-RCBAM model outperforms all baseline models, whether 
predicting trajectories at 10 or 40 steps. The SVMD-DBO-
RCBAM model has a smaller error when using the data from the 
first 60 time steps to predict the spatial location of the trajectory 
points after the next 10 steps. Specifically, its MAEs for latitude, 
longitude, and altitude are 0.0442, 0.0666, and 124.4, respectively, 
RMSEs are 0.0244, 0.0291, and 146.1, respectively, and MAPEs 
are, respectively, 0.0265, 0.0477, and 0.3555, with R2of, 
respectively, 0.9892, 0.9889, and 0.9990. Compared to the LSTM, 
the baseline model with larger error, the improvement of MAE 
reaches 92.44, 77.78, 79.41%, the improvement of RMSE reaches 
88.17, 87.05, 83.34%, the improvement of MAPE reaches 84.11, 
79.06, 79.33%, and the improvement of R2reaches 23.56, 24.2, and 
30.3%. When using the data from the first 60 time steps to predict 
the spatial location of the track point after the next 40 steps, the 
MAEs of latitude, longitude, and altitude of the SVMD-DBO-
RCBAM model are 0.0552, 0.0935, and 143.4, respectively, the 

RMSEs are 0.0367, 0.0337, and 194.4, and the MAPEs are 0.0857, 
0.0878, 0.9413, R20.9221, 0.9778, 0.9398 respectively, Compared 
with the baseline model LSTM with larger error, the improvement 
rate of MAE reaches 65.67, 76.48, 89.94%, RMSE 76.38, 70.98, 
89.33%, MAPE of improvement reached 88.29, 76.89, 89.33%, 
and R2reached 14.09, 13.88, 28.79%, respectively.

The box-and-line plots in Figure 14 demonstrate the error 
distribution characteristics of the models in different multistep 
predictions, in which the SVMD-DBO-RCBAM model shows 
significant advantages in the longitude, latitude, and elevation 
dimensions. In terms of median error, the median longitude 
prediction of SVMD-DBO-RCBAM (0.0274) is only 43.2% of 
BiLSTM-attention (0.0634), the latitude error (0.0244) is 54.2% 
lower than that of DBO-CNN-BiLSTM (0.0533), and the 
elevation error (114.2) is even higher than that of the Informer 
(203.4) by 43.8%, verifying its overall superiority in cross-
dimensional prediction. It is worth noting that the core metrics 
of BiLSTM-attention, DBO-CNN-BiLSTM and Informer models 
are close to each other: the median longitude RMSE of the three 
models are 0.0599, 0.0588, and 0.0534, respectively, and the 

FIGURE 11

Single-step forecasting. Comparison of single-step prediction among different models. (a) Three-dimensional trajectories. (b) Latitude-time plot. (c) 
Longitude-time plot. (d) Altitude-time plot.
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latitude MAPE is 0.0633, 0.0632, and 0.0544, respectively, and the 
errors are not more than 15%, suggesting that the difference 
between the three models is not more than 15%. The differences 
are not more than 15%, indicating that there is a diminishing 
marginal benefit between the attention mechanism and the 
hybrid architecture in the basic performance improvement.

The main model SVMD-DBO-RCBAM achieves a 
performance breakthrough through multi-module synergy: its 
longitude R2 value (0.9882) is improved by 1.5% compared to the 
next best model Informer (0.9731), the latitude quartile range 
(IQR = 0.010) is reduced to 33% of that of BiLSTM-attention 
(IQR = 0.030), and the elevation of the MAPE (0.3432) is only 
6.8% of the conventional model. The model’s excellent 
performance stems from a triple innovation-the SVMD module 
strips the trajectory noise from the frequency domain level, 
which reduces the outlier ratio of longitude prediction by 82%; 
the DBO algorithm optimizes the feature parameters, which 
suppresses the error accumulation rate of latitude long term 

prediction to 0.8%/step; and the spatiotemporal-attention 
mechanism of the RCBAM accurately locates the key trajectory 
nodes, which results in a stable (standard deviation of 0.12%) and 
stable (standard deviation of 0.4%/step) elevation prediction. 
Stability (standard deviation 0.12) to 34% of the Informer model 
(standard deviation 0.35). In contrast, BiLSTM-attention results 
in high upper bound error (0.1033) for longitude prediction due 
to insufficient local feature capture, DBO-CNN-BiLSTM shows 
periodic fluctuation in elevation dimension (IQR = 62.1), and 
although Informer is robust in short-term prediction, its global 
attention mechanism results in a kurtosis value of latitude 
prediction of 133% compared to the main model increases 133%, 
highlighting the limitations of complex spatio-temporal 
correlation modeling. SVMD-DBO-RCBAM achieves a double 
breakthrough in error distribution convergence and prediction 
robustness through structural fusion, and provides a high-
precision, low-fluctuation, full-cycle solution for 4D trajectory 
prediction in the airspace.

FIGURE 12

Multi-step forecasting. Comparison of Multi-step prediction among different models. (a) Three-dimensional trajectories. (b) Latitude-time plot. (c) 
Longitude-time plot. (d) Altitude-time plot.

https://doi.org/10.3389/fnbot.2025.1625074
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Tang and Dai� 10.3389/fnbot.2025.1625074

Frontiers in Neurorobotics 16 frontiersin.org

6 Discussion and outlook

Aiming to tackle multi-step error accumulation and 
spatiotemporal feature coupling in 4D trajectory prediction, 

we  propose the SVMD-DBO-RCBAM hybrid model: SVMD 
performs noise reduction in the frequency domain, DBO 
adaptively tunes hyperparameters, and RCBAM uses double 
attention to enhance key features. Experiments on Zhuhai Jinwan 

FIGURE 13

3D comparison of SVMD-DBO-RCBAM with the baseline model. 3D comparison of SVMD-DBO-RCBAM with the baseline model. (a) LSTM model. (b) 
GRU model. (c) BiLSTM-attention model. (d) DBO-CNN-BiLSTM model. (e) Informer model. (f) SVMD-DBO-RCBAM model.
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ADS-B data show MAE reductions of 32.1, 46.2, and 34.2% in 
longitude, latitude, and altitude predictions, respectively, with an 
R2 close to 1 and error fluctuations less than 10% of the baseline, 
demonstrating notable noise suppression, feature decoupling, and 
stability enhancement.

Nevertheless, the model integrates multiple complex modules, 
leading to a significant increase in the number of parameters and 
computational overhead, which may become a bottleneck in 
scenarios with extremely high real-time requirements. The 
proposed hybrid model inevitably introduces additional 
computational costs, primarily from three sources: (i) SVMD 
decomposition, which requires iterative optimization for each 
data segment; (ii) DBO, used only during training for 
hyperparameter tuning and thus does not affect online latency; 
and (iii) the ResNet backbone with CBAM modules, where 

convolution and attention operations dominate the inference 
overhead. Experiments conducted on a CPU platform (Intel 
i7-10700, 16 GB RAM) demonstrate that the model can 
be  executed without high-end GPUs, providing a practical 
baseline for real-time applications.

To enhance deployment efficiency, several optimization 
strategies will be considered in the future. Structured pruning 
can reduce redundant channels and filters, while quantization 
(INT8/FP16) further decreases memory and computational 
demands. Additionally, knowledge distillation can be employed 
to train lightweight student models with comparable accuracy to 
the original model. For SVMD, a sliding-window incremental 
scheme with selective reconstruction will be  introduced to 
minimize decomposition overhead. Together, these techniques 
significantly reduce model size and latency, ensuring that the 

FIGURE 14

Box plots of prediction errors for various models.
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proposed architecture maintains high prediction accuracy while 
achieving the computational efficiency required for real-
time deployment.
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