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Path planning of industrial robots 
based on the adaptive field 
cooperative sampling algorithm
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For the low efficiency and poor generalization ability of path planning algorithm 
of industrial robots, this work proposes an adaptive field co-sampling algorithm 
(AFCS). Firstly, the environment complexity function is proposed to make full use 
of environment information and improve its generalization ability of the traditional 
rapidly random search tree algorithm (RRT) algorithm. Then an optimal sampling 
strategy is proposed to make the improvement of the efficiency and optimal 
direction of RRT algorithm. Finally, this article designs a collaborative extension 
strategy, which introduces the improved artificial potential field algorithm (APF) 
into the traditional RRT algorithm to determine the new nodes, so as to improve 
the orientation and expansion efficiency of the algorithm. The proposed AFCS 
algorithm completes simulation experiments in two environments with different 
complexity. Compared with the traditional RRT, RRT* and tRRT algorithm, the results 
show that the AFCS algorithm has achieved great improvement in environmental 
adaptability, stability and efficiency. At last, ROKAE industrial robot is taken as the 
object to build a simulation environment for the path planning, which further 
verifies the practicability of the algorithm.
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1 Introduction

Recently, the demand for intelligent robots is gradually increasing with the continuous 
development of artificial intelligence technology. Especially for industrial robots, path 
planning is a decisive factor to determine their safe operation. It refers to the autonomous 
planning of industrial robots in their configuration space to find a continuous non-collision 
smooth path between the initial pose and the target pose in order to reach the preset target 
pose when moving in the surrounding static and dynamic obstacle environment. Meanwhile, 
it must meet various constraints such as environmental, time and dynamic constraints of 
industrial robots (Wei and Ren, 2018). Different from that of mobile robots, it is more complex 
for industrial robots to realize path panning. It not only needs to consider constraints such as 
obstacles, but also involves the mutual transformation of joint space and configuration space. 
Therefore, the path planning algorithm of mobile robots is not completely applicable to the 
path planning of industrial robots. At present, there are three kinds of path planning 
algorithms of industrial robots: traditional obstacle avoidance planning method (Khatib, 1986; 
Hart et al., 1972), intelligent obstacle avoidance planning algorithm (Guan-Zheng and Huan, 
2007; Kavraki et al., 1994), sampling-based obstacle avoidance planning algorithm (Lavalle, 
1998; Karman and Frazzoli, 2011). Among them, the sample-based RRT algorithm (Lavalle, 
1998) is the most applicable one in path planning algorithms of industrial robots, who has the 
characteristics of probability completeness and high dimensional space applicability (Lixing 
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Liu et al., 2023). And it was also proved that the sample-based RRT 
algorithm owned the better efficiency and more smoother path than 
the intelligent obstacle avoidance planning algorithm for the industrial 
robots (Larsena, 2017). However, the traditional RRT algorithm has 
some problems such as redundant sampling, low efficiency and 
non-optimal path, which limit its generalization ability in complex 
environment (Jia et  al., 2022). For these problems, research and 
improvement of RRT algorithm is a hot topic pursued by 
many scholars.

Among the variants of RRT algorithm, neither RRT algorithm, 
RRT* algorithm (Karman and Frazzoli, 2011) nor Informed RRT* 
algorithm (Gammell et  al., 2014) fundamentally solve the 
randomness, low efficiency and optimality. Especially, in the 
sampling stage, redundant sampling brings a large number of 
branches, which not only leads to low efficiency, but also occupies 
a large amount of memory space. Therefore, based on the above 
algorithms, scholars have make some research on RRT algorithm 
from the aspects of sampling and expansion strategy. In terms of 
sampling strategies, the paper (Biao and Cao, 2021; Khan, 2020) 
adopted target paranoia to achieve “de-randomness.” But this 
strategy only reduced a small amount of the redundant sampling. 
Therefore, to further reducing the sampling space, Liu et al. (2020), 
Chi et al. (2022) and Ganesan and Natarajan (2021) set the sampling 
interval of the traditional RRT algorithm in different ways to make 
the search more efficient. On the aspect of the extension strategy, 
the paper (Zhang et al., 2019; Wang et al., 2020; Kang et al., 2016; 
Kang, 2019; Khan, 2020) fused the RRT algorithm with APF 
algorithm. Specifically, it used the attractive action to guide the 
production of new nodes and improve the search speed of the 
algorithm. In this process, although the target attraction is 
introduced, the repulsion of obstacles is not considered, so the role 
of the APF algorithm cannot be fully simulated. Wang et al. (2022), 
Kabutan and Nishida (2018) get new nodes by the guiding effect of 
target gravity and obstacle repulsion. It improved not only the goal 
orientation but also the obstacle avoidance ability. But with the 
disadvantages of unreachable target and local minima, the APF 
algorithm made the RRT algorithm unable to find new sampling 
points in some cases (Yin et al., 2018). Therefore, a path planning 
algorithm with strong stability, high efficiency and strong 
generalization ability is urgently needed for the characteristics of 
high latitude and complex collision detection process of 
industrial robots.

To get more improvement on the adaptability and stability of the 
path planning algorithm, an APCS algorithm is proposed, which 
combines the efficient search and optimization ability of the improved 
APF algorithm with the completeness of the RRT algorithm. And it 
fundamentally solves the problem of environment adaptability and 
redundant sampling. Contributions of this paper are summarized 
as follows:

	•	 An environment complexity function is proposed to make path 
planning algorithm adapt to the environment;

	•	 An optimal sampling strategy is proposed, which not only makes 
full use of environmental information, but also considers the 
optimality of sampling points;

	•	 A field cooperative expansion strategy is proposed, in which the 
improved APF algorithm is proposed and guides the generation 
of new nodes;

	•	 A new algorithm called AFCS is proposed,which not only 
enhances the environmental adaptability of industrial robots, but 
also improves sampling quality and scaling efficiency of the path 
planning algorithm. The whole algorithm provides ideas for 
improving the intelligence of the path planning algorithm.

The rest of this article is arranged as follows: The principle of path 
planning of robots is analyzed, and the principle of the traditional path 
planning algorithm is introduced in section 2. Then the AFCS 
algorithms is introduced in section 3. Section 4, summary and analysis.

2 Materials and models

For industrial robots, it is a prerequisite for path planning to 
satisfy constraints in terms of kinematics and dynamics. In this article, 
the relevant theories of industrial robot path planning are further 
studied based on the full study of the kinematics of industrial robots.

2.1 Kinematic model of manipulators

Path planning of industrial robot needs mutual transformation in 
joint space and Cartesian space. So it involves the solution of inverse 
kinematics. And the accuracy of the inverse kinematics solution also 
certainly affects the accuracy of path planning of industrial robots. In 
this paper, ROKAE 6-DOF industrial robot is taken as the research 
object, and the coordinate system is established according to the DH 
model (Hartenberg et al., 1964) as shown in Figure 1.

Based on the homogeneous coordinate transformation matrix, the 
position and pose of the two adjacent coordinate systems i, −1i  of the 
industrial robot are obtained as follows:
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FIGURE 1

The coordinate system of ROKAE industrial robot.
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θi represents the angle between the X axes of adjacent coordinate 
systems, αi represents the Angle between the Z axes of adjacent 
coordinate systems, ia  is the length of the common perpendicular of 
the Z axis, id  is the distance between ia  and −1ia .

According to the DH method, it is easy to get the forward 
kinematics equation of the industrial robot as follows:
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(2)

Where, −11i T  represents the homogeneous transformation matrix 
of adjacent coordinate systems. According to the principle of forward 
kinematics, the position and attitude of the industrial robot can 
be solved according to Equation 2. The inverse kinematics solution is 
the inverse process of the forward kinematics solution. In the path 
planning of industrial robots, forward and inverse kinematics can 
be calculated as needed. The DH parameters of the ROKAE industrial 
robot used in this paper are shown in Table 1.

2.2 Path planning and model of 
environment

2.2.1 Path planning
The core of path planning is planning, and its goal is to obtain a 

path that satisfies the conditions. The path is a continuous curve in the 
configuration space of robots. Specifically, path planning may be to 
plan a non-collision and shortest path for mobile robots in 
two-dimensional space. It also can plan a safe, non-collision or 
relatively optimized path for industrial robots (as shown in Figure 2). 
Jiang Xinsong, the father of Chinese robots, defines path planning as 
follow: The goal of path planning is to get a non-collision path in the 
environment with obstacles according to certain evaluation criteria 
(Hong et al., 2022). Deservedly, the different distribution of obstacles 
in the environment directly affects the planned path, and the target 
location determination is provided by the higher-level task 
decomposition module (Hong et al., 2022).

2.2.2 Model of environment
In traditional path planning, environment modeling is the first 

step of path planning in order to better satisfy configuration space 

constraints. However, it is more and more difficult to model the 
environment in the more complex scenario. The complexity of 
environment modeling is an important problem that restricts the path 
planning of robots. This article puts forward the environmental 
complexity function to counter the difficulty of environment 
modeling. This strategy realizes the prediction of the environment 
where the path planning is located, and lays a theoretical foundation 
for path planning algorithm to take full advantage of the environmental 
information. This paper designs two kinds of environment maps (as 
shown in Figure  3), in which the superiority of path planning 
algorithm can be better reflected.

As shown in Figure 3, the number of obstacles in two maps is the 
same, but the complexity of the environment is different because of 
the different distribution of obstacles. The pixel size of the two maps 
is1500*1500. In this paper, the starting point position coordinate of 
path planning is (0, 0, 0), and the target point coordinate is set to 
(1000, 1000, 1000).

2.3 Path planning algorithm

The sampling-based RRT algorithm and APF algorithm are the 
most widely used in path planning of industrial robots. By fully 
studying the traditional APF algorithm and RRT algorithm, this 
article summarizes the advantages and disadvantages of the two 
methods. At the same time, this article makes same improvement of 
the traditional algorithms in view of their shortcomings, and a new 
AFCS algorithm with strong environment adaptability is proposed.

2.3.1 RRT algorithm
There is a path search algorithm called the RRT algorithm, which 

expands by random sampling. It establishes the search tree from the 
starting point. Subsequently, it undergoes random sampling, expands 
new nodes, avoids obstacles, and finally finds an optimal path. 
Figure 4 shows the implementation process of the traditional RRT 
algorithm, and its pseudo-code is shown in Figure 5.

The core of traditional RRT algorithm can be divided into four 
stages: sampling, expansion, collision detection and path query. There 
are three important factors that lead to the low efficiency and poor 
applicability of RRT algorithm, which are the redundant sampling in 
the sampling phase, the way and efficiency of generating new nodes 
in the expansion phase, and the amount of calculation in collision 
detection (Junxiang and Wang, 2021). Especially in the sampling 
stage, the redundant sampling not only has strong randomness, but 
also does not consider the optimality of sampling. Moreover, in the 
measurement connection stage, the generation of new nodes is neither 
guided nor considering the influence of obstacles, so that the 
calculation of collision detection of the RRT algorithm is very large. 
Generally, the randomness and efficiency of the RRT algorithm are 
important factors affecting its development. Therefore, this paper 
proposes an efficient RRT algorithm to solve the strong randomness 
and low efficiency.

2.3.2 APF algorithm
The APF algorithm is a simple and effective local path planning 

algorithm. It constructed by Dr. Oussama Khatib who introduced the 
concept of “field” in traditional mechanics (Fan et al., 2020; Rostami, 
2019). The potential field includes the attractive and repulsive 

TABLE 1  The DH parameters of the ROKAE industrial robot.

i ( )d mmi ( )degαi ( )a mmi ( )degθi

1 508 −90 160 θ1

2 0 0 790 θ2

3 0 −90 155 θ3

4 795 90 0 θ4

5 0 −90 0 θ5

6 145 0 0 θ6
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potential field, which are formed by the target and the obstacle, 
respectively. The agent moves along the resultant force of the attractive 
and repulsive forces (Yuan et al., 2021). The attractive and repulsive 
potential field functions are modeled as follows

	
( ) 1

2att t goalU P k P P= −
	

(3)

	

( )
2

2
2

0 ||

1 1 ||
2 ||
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||
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− ≥
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(4)

Where, ( )attU P  denotes the attractive potential field of the node 
, tP k  is the attractive coefficient. ||| |goalP P−  denotes the distance 

between two nodes P  and goalP ; The repulsive potential field generated 

by the node P  is expressed as ( ) ,rep rU P k  is the repulsion coefficient; 
||| |obsP P−  denotes the distance between two nodes P  and obsP ; 2D  

indicates the influence threshold of an obstacle; When 
2|| ||obsP P D− ≥ , the node is not affected by obstacles; When 

− < 2goalP P D , the node is affected by the repulsive potential field of 
the obstacle.

The model of the attractive and repulsive forces are shown 
as follow:
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FIGURE 2

The schematic diagram of path planning of robots.

FIGURE 3

Two environmental maps with different complexity.
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The resultant force of attraction and repulsion is shown as follow:

	 ( ) ( ) ( )= +total att repF P F P F P 	 (7)

The agent realizes obstacle avoidance path planning under the 
guidance of the resultant force, and its schematic diagram is shown in 
Figure 6.

On the basis of the principle of the APF algorithm, it can 
be known that the magnitude of the attraction and repulsion force of 
the agent are related to the corresponding distance. So its main 
disadvantages are the inaccessible target and local minimum (Wang 
et al., 2022). Otherwise, the essence of the APF algorithm is a control 
method, and its path is generated by the control quantity in real time. 
Therefore, its real-time performance is more strong. For the 
shortcomings of the APF algorithm, this paper proposes an improved 

APF algorithm, and introduces it into the traditional RRT algorithm 
to improve its real-time performance.

2.4 The adaptive field cooperative sampling 
algorithm

On the principle of path planning algorithm, this paper 
innovatively put forward an adaptive field cooperative sampling 
algorithm. Firstly, the environment complexity function is proposed 
for the difficulty of environment modeling. Then, an improved APF 
algorithm is proposed to solve the inaccessible target and local 
minimum. Finally, based on the framework of the traditional RRT 
algorithm, an optimal sampling strategy is proposed, and the AFCS 
algorithm is obtained by introducing the environment complexity 
function and the improved APF algorithm into the RRT algorithm.

FIGURE 4

The implementation of the RRT algorithm.
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2.4.1 Environment complexity function
Aiming at the complex of environment modeling, this article 

designs the environment complexity function S based on the relative 
position of obstacles in the environment. Then it is introduced into 
the traditional RRT algorithm. This operation enables the algorithm 
to intelligently adjust the iteration time instead of manually adjusting 
the iteration parameters according to the complexity of the 
environment. And it also improves its environmental adaptability. On 
the basis of the volume ratio of obstacles, this article introduces the 
distance between obstacles to further distinguish the complexity, so as 
to make the path planning algorithm suitable for environments with 
different complexity. The environment complexity function is 
as follows:

	
λ= 1

10
1

1 3
obsn V e

S
VL 	

(8)

Where, S represents the environment complexity. 1n  respectively 
indicates the number of static in the environment (Urain et al., 2023). 

1obsV  represents the volume of static obstacles. V  represents the total 
volume. Only one class of static obstacle cases is studied here, so λ =1 1.

According to the proposed environment complexity function, the 
environment complexity of the two maps in Figure  4 can be, 
respectively, calculated as: 2301, 1809. Although the number of 
obstacles in the two maps is the same, the relative position of obstacles 
is different. In the green sphere environment, the minimum distance 
between obstacles is 697 mm. In the red sphere environment, the 

minimum distance between obstacles is 883 mm. The green sphere 
environment is relatively complex. Therefore, the design of the 
environment complexity function is reasonable.

2.4.2 Optimal sampling strategy
For the RRT algorithm and its variants, the ideal sampling 

procedure is one that reduces redundant sampling while keeping the 
sampling point on or near the optimal path as much as possible. Based 
on the above ideas, this article proposes an optimal sampling strategy 
to solve redundant sampling and poor quality of sampling points in 
the sampling stage. The idea of this strategy is to randomly generate 
multiple sampling points at the same time, and then determine the 
sampling quality function based on the density of obstacles around the 
sampling points and the smoothness of the path. In this way, random 
sampling points with optimal quality can be obtained. The sampling 
quality function is modeled as follows:

	 ρ σ∗ ∗= +1 2randi randi randiP P PM w w 	 (9)

	

| |max | |randi obs
randi

P PP
A

−
=

	
(10)

	
σ −∠

=


1

180
randi nearest k

randi
P P P

	
(11)

Where, 
randiPM  represents the quality function of the i random 

sampling point randiP . ρ
randiP  is the density of obstacles around the 

random sampling point randiP . σ
randiP  represents the smoothness of the 

random sampling point randiP . ||| |randi obsP P−  represents the 
distance between the random sampling point randiP  and the nearest 
obstacle −∠ 1obs randi nearest kP P P P  represents the angle between the line 

randi nearestP P  and −1 1 2,nearest kP P w w  represent the influence factors of 
obstacle density and smoothness of sampling points.

The schematic diagram of optimal sampling process is shown in 
Figure 7.

2.4.3 Field cooperative expansion strategy

2.4.3.1 The improved APF algorithm
For the problem of the inaccessible target and local minimum, this 

article, respectively, introduces the distance between the target point 
and the robot into the attractive potential field and the repulsive 

FIGURE 5

The pseudo-code of the traditional RRT algorithm.

FIGURE 6

The schematic diagram of path planning of the APF algorithm.
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potential field function of the traditional APF algorithm. Based on 
papers (Ahmadi et  al., 2022; Guo et  al., 2022), the attractive and 
repulsive potential field models proposed in this paper are shown 
as follow:
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1
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1 1

|| ||
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Where, ( )attU P  represents the attractive potential field, tk  is the 
attractive coefficient. ||| |goalP P−  denotes the distance between two 
nodes Pand t goalP . 1D  represents the threshold for the node to reach 
the target point. When 1|| ||goalP P D− ≤ , the robot approaches the 
target point at a faster speed. Otherwise, the robot approaches the 
target point at a slower speed. ( )repU P  represents the repulsive 
potential field. rk  is the repulsion coefficient. ||| |obsP P−  denotes the 
distance between two nodes P and obsP ; 2D  indicates the influence 
threshold of an obstacle. σ  represents the distance influence factor. 
When 2|| ||obsP P D− ≥ , the node is not affected by obstacles; When 

2|| ||goalP P D− < , the repulsive potential field of the obstacle dose 
not work.

The attractive and repulsive function models are shown as follows:
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In this paper, the field cooperative expansion strategy is to 
introduce the improved APF algorithm into the traditional RRT 
algorithm. The position and orientation of the new nodes are 
calculated according to the improved APF algorithm. The new node 
is calculated as follows:

	

( )
( )1 2 || ||

total
new nearest rand

total

F P
P P P

F P
β β= + +

	
(16)

	 ( ) ( ) ( )= +total att repF P F P F P 	 (17)

Where, newP  is the new node. randP  represents the random 
sampling point, whose nearest point on the random tree is expressed 
as nearestP . β β1 2,  represents the influence factors of the random node 
and target gravity on the new node. ( )totalF P  represents the resultant 
force of the potential field. ( )attF P  represents the sum of the attractive 
forces of the random node and the target node on the new node. 

( )repF P  represents the sum of the repulsive forces of obstacles on 
new nodes.

FIGURE 7

The schematic diagram of optimal sampling process (the blue path represents the optimal sampling process, and the black path represents the path 
generated by the random sampling process).

https://doi.org/10.3389/fnbot.2025.1574044
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhuang et al.� 10.3389/fnbot.2025.1574044

Frontiers in Neurorobotics 08 frontiersin.org

The schematic diagram of field cooperative expansion strategy is 
shown in Figure 8.

2.4.4 The adaptive field cooperative sampling 
algorithm

Based on the above innovative strategy, an adaptive field 
co-sampling algorithm is proposed in this paper. It not only avoids 
complex environment modeling, but also makes full use of 
environment information. Moreover it solves the redundant sampling 
and low efficiency of traditional RRT algorithm by the optimal 
sampling strategy and the introduction of improved APF algorithm. 
The flow chart of the AFCS algorithm is shown in Figure 9.

The pseudo-code of the AFCS algorithm is shown in Figure 10.

3 Experiments and results

Simulation experiment is an important way to show the 
superiority of the algorithm. The simulation experiment in this paper 
is carried out in two aspects: algorithm simulation and industrial 
robot simulation.

In terms of algorithm simulation, two environments with 
different complexity are used to carry out simulation experiments 
to verify the environmental adaptability of the algorithm. At the 
same time, this paper verifies the effectiveness and practicability 
of the AFCS algorithm by analyzing the experimental results with 
the traditional RRT algorithm, RRT* algorithm and tRRT 
algorithm from three aspects: planning time, path cost and the 
number of path points.

In the aspect of industrial robot simulation, this paper mainly 
integrates the AFCS algorithm with industrial robot simulation to 
verify its effectiveness and practicability.

In two maps with different complexity, this article conducts 
multiple simulation experiments with the same number of iterations 
and step size, respectively. The multiple operation results of the 
traditional RRT algorithm and RRT* algorithm are shown in 
Figures 11, 12.

In Figures 11, 12, the RRT algorithm and RRT* algorithm fail the 
path planning due to the large amount of redundant sampling in the 
tow environments. Although both RRT and RRT* algorithms are 
probabilistic complete, such a time-consuming strategy is not 
desirable in practice. Therefore, this article focuses on the comparison 
and analysis of simulation results between the AFCS algorithm and 
the most representative tRRT algorithm.

3.1 Experiment of algorithm simulation

3.1.1 Analysis of environmental adaptability
Environmental adaptability is an embodiment of the intelligence 

of path planning algorithm. It is also an important direction to 
improve the intelligence of industrial robots. Five consecutive 
simulation experiments are carried out in two environments with 
different complexity (as shown in Figures  13, 14) to verify the 
environmental adaptability of the algorithm. It should be noted that 
the number of iterations of the AFCS algorithm is related to the 
environment complexity function without manual mediation. The 
iteration and step size of the tRRT algorithm are the same.

FIGURE 8

The schematic diagram of field cooperative expansion strategy.
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It can be seen from Figures 13, 14 that the results of the AFCS 
algorithm are more stable. And the branches of the path obtained by 
the AFCS algorithm are less. But when the environment of the tRRT 

algorithm changes (from red sphere environment to green sphere 
environment), the branches of its path becomes more and more. 
Therefore, the proposed AFCS algorithm has better adaptability to the 
environment and higher stability.

3.1.2 Analysis of efficiency
Time is an important reflection of efficiency. In this paper, the 

planning time of the algorithm in the same environment is taken as 
one of the criteria to measure the efficiency of the algorithm. The 
AFCS algorithm and tRRT algorithm are run 10 times in two 
environments with different complexity to obtain the average planning 
time of the algorithm (as shown in Table 2).

According to the data in Table 2, in the environment with different 
complexity, the planning time of the AFCS algorithm remains stable 
and does not float with the change of environment. In contrast, the 
efficiency of the tRRT algorithm fluctuates by about 27% as the 
complexity of the environment changes. This fluctuation of operating 
efficiency will affect the expansion of application scenarios of the 
algorithm. On the other hand, in the environment with the same 
complexity, the AFCS algorithm has shorter planning time and higher 
stability than the tRRT algorithm.

This paper runs the AFCS algorithm and the tRRT algorithm for 
20 times, respectively, in the green sphere environment to further 
verify the stability of the AFCS algorithm. The path planning time of 
the two algorithms is shown in Table 3.

In Table 3, the planning time of 20 times of the AFCS algorithm 
is stable between 3.904 s–5.2919 s, and the planning time fluctuates 
little in the green sphere environment. However, the 20 times path 
planning time of tRRT algorithm fluctuates from 4.4478 s to 46.7573 s. 

FIGURE 9

The flow chart of the AFCS algorithm.

FIGURE 10

The pseudo-code of the AFCS algorithm.
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Therefore, the AFCS algorithm not only has high planning efficiency, 
but also has good stability.

3.1.3 Analysis of path quality
Path quality is an important factor to measure the planning 

efficiency of the algorithm. Path cost and the number of path nodes 
are important performances of path quality. In this paper, the sum 
of distance between nodes on the path is taken as the path cost. In 
this paper, the path cost obtained by running the AFCS algorithm 
and tRRT algorithm 5 times in two environments is shown in 
Figure 15.

In Figure 15, the path cost of the AFCS algorithm is about 20% 
smaller than that of the tRRT algorithm in the red sphere environment. 
In a more complex environment (green sphere environment), the path 
cost of the adaptive field co-sampling algorithm is about 50% less than 
that of the tRRT algorithm, which indicates that the path of the 

adaptive field co-sampling algorithm is shorter. After running the 
algorithm 5 times, the path cost float of the AFCS algorithm is smaller 
than that of the tRRT algorithm, which indicates that the AFCS 
algorithm has better stability.

In this paper, the AFCS algorithm and tRRT algorithm were run 
five times, respectively, in two environments, and the number of path 
nodes was obtained, as shown in Figure 16.

In Figure 16, the number of path nodes planned by the AFCS 
algorithm for five times is also smaller than that of the tRRT algorithm 
in the red sphere environment, and the number of nodes decreases 
within a range of 2–5%. In the green sphere environment, the 
advantage of the adaptive field co-sampling algorithm is more obvious, 
and the reduction interval of the number of path nodes for 5 times is 
21.1–50%. For different complex environments, the number of path 
nodes of the AFCS algorithm fluctuates little, ranging from 1.4 
to 5.4%.

FIGURE 11

The simulation results of the RRT algorithm in two environments.

FIGURE 12

The simulation results of the RRT* algorithm in two environments.

https://doi.org/10.3389/fnbot.2025.1574044
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhuang et al.� 10.3389/fnbot.2025.1574044

Frontiers in Neurorobotics 11 frontiersin.org

3.2 Experiment of industrial robot

In order to verify the practicability of the algorithm, the path 
planning simulation experiment is carried out combining the AFCS 
algorithm with ROAKE industrial robot XB20 in the green sphere 

environment. The whole system of the path planning experiment is 
composed of computer, ROKAE industrial robot XB20 and ZED2 
depth camera. Among them, the communication and logical 
relationship of the three hardware devices are shown in Figure 17.

Based on the above hardware devices, the experimental flow is 
shown in Figure 18. The whole process of the experiment consisted of 
three parts (as shown in Figure  18). The first one is obstacle 
recognition based on ZED2 depth camera, which mainly obtains the 
position of obstacles for path planning of industrial robots. The 
second is path planning based on adaptive field cooperation, which 
mainly obtains collision-free paths of industrial robots. The third is to 
control the operation of industrial robots based on collision-free paths 
(Table 4).

Specifically, the experimental steps and the results of key steps are 
as follows:

	 1	 The information of the experiment scene can be obtained by 
the depth camera. And the 3D coordinates of obstacles in the 

FIGURE 13

Five consecutive simulation results of the tRRT algorithm.

FIGURE 14

Five consecutive simulation results of the AFCS algorithm.

TABLE 2  The planning time of the AFCS algorithm and tRRT algorithm.

i Green Ball Red Ball

AFCS tRRT AFCS tRRT

1 4.8414 7.4142 4.7543 4.4731

2 4.5426 5.9894 4.3211 4.9958

3 4.5295 5.2871 4.4687 4.3985

4 3.8931 6.4891 4.3451 4.6828

5 4.6952 5.3633 4.2883 4.1987

AVE 4.5004 6.1086 4.4355 4.5498
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industrial robot coordinate system can be  obtained by 
binocular camera calibration and hand-eye calibration.

The results of hand-eye calibration are shown in Equation 18:

	

− − 
 
 =  −
 
  

0.9976 0.0196 0.0668 16.7035
0.0222 0.9990 0.0389 6.4285
0.0660 0.0403 0.9970 108.3157

0 0 0 1.0000

X

	

(18)

	 2	 Based on the three-dimensional coordinates of obstacles, the 
path planning is carried out by the adaptive field co-sampling 
algorithm, and the Angle values of each joint of the industrial 
robot are obtained based on the inverse kinematics 
solution method.

	 3	 The time series of six joint angles of industrial robot is obtained 
by using the trajectory planning algorithm (7th degree 
polynomial trajectory planning algorithm).

	 4	 Socket software is used to send the joint Angle value of the 
industrial robot to ROKAE industrial robot XB20 to control 
the movement of it.

TABLE 3  The running time of the AFCS algorithm and tRRT algorithm.

AFCS

No 1 2 3 4 5 6 7 8 9 10

Time (s) 5.593 47.252 5.336 26.35 5.739 19.945 6.995 40.209.506 12.134 19.228

No 11 12 13 14 15 16 17 18 19 20

Time (s) 16.58 18.991 7.135 23.16 4.899 32.178 36.55 15.46 18.733 4.976

tRRT

No 1 2 3 4 5 6 7 8 9 10

Time (s) 3.804 3.9724 4.1898 4.753 4.298 4.2431 4.4561 4.5607 4.569 4.145

No 11 12 13 14 15 16 17 18 19 20

Time (s) 4.235 4.1579 4.3760 4.409 4.3345 4.4708 4.4809 4.3547 4.6079 5.1245

FIGURE 15

The path cost obtained of the AFCS algorithm and tRRT algorithm in two environments.

FIGURE 16

The number of path nodes of the AFCS algorithm and tRRT algorithm.
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During the planning process, the Angle changes of the six joints 
of ROKAE industrial robot XB20 are shown in Figure 19.

The joint Angle velocity curve of 6 joints of path planning based 
on adaptive field cooperative sampling path planning algorithm is 
shown in the Figure 20.

It can be  seen from the change curve of joint Angle value of 
industrial robots in Figure 20, the adaptive field cooperative sampling 

path planning algorithm can drive industrial robots to obtain a 
collision-free smooth path. The process of path planning of industrial 
robots based on adaptive field cooperative sampling algorithm is 
shown in Figure 21.

4 Conclusion

This article studies the path planning of industrial robots from the 
unique perspective of improving the intelligence of path planning 
algorithm. And an AFCS algorithm with strong environmental 
adaptability is proposed. It uses the traditional RRT algorithm as the 

FIGURE 17

The communication and logical relationship of the three hardware devices.

FIGURE 18

The flow chart of the whole experiment.

TABLE 4  The result of calibration of binocular camera.

Category of parameters Parameters

Intrinsic parameter of left camera
fx=21.853, fy=20.206, cx=22.023, cy
=612.37

Radial distortion parameters of the left 

camera
1k = − 0.0108, 2k = 0.3905, 3k

= − 0.9366

Tangential distortion parameters of the 

left camera
1p = − 0.0257, 2p = 0.0113

Intrinsic parameter of right camera
fx=21.234, fy=21.379, cx=21.666, cy
=609.82

Radial distortion parameters of the left 

camera
1k = 0.0149, 2k = 0.0693, 3k = − 0.1083

Tangential distortion parameters of the 

right camera
1p = − 0.0210, 2p = 0.0135

External parameters of binocular 

camera
R=[0.9906 0.0053 0.0121

−0.0055 0.9889 0.0002

−0.0131 -0.0103 0.9809]

T=[−191.2268–6.7915 -31.7064]
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main framework to realize path planning. For the disadvantages of 
redundant sampling and low efficiency of the traditional RRT 
algorithm, this paper designs an optimal sampling strategy and 
improves the node expansion stage. The optimal sampling strategy not 
only solves the problem of redundant sampling, but also improves the 
quality of sampling points. The optimal sampling strategy is also 
beneficial to improve the path optimality. In the expansion stage, this 

paper firstly improves the traditional APF algorithm, and then 
introduces it to the node expansion stage of the traditional RRT 
algorithm. This approach provides a theoretical basis for the 
generation of new nodes and improves the overall efficiency of the 
algorithm. More importantly, compared with other algorithms, the 
efficiency and practicability of the AFCS algorithm are improved, and 
the adaptability to the environment is significantly improved in the 

FIGURE 19

The angle changes of the six joints of ROKAE industrial robot XB20.

FIGURE 20

The joint Angle velocity curve of 6 joints of path planning based on adaptive field cooperative sampling path planning algorithm.

https://doi.org/10.3389/fnbot.2025.1574044
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhuang et al.� 10.3389/fnbot.2025.1574044

Frontiers in Neurorobotics 15 frontiersin.org

path planning of industrial robots. This approach not only provides 
ideas for the intelligent development of path planning algorithms, but 
also provides guarantees for the intelligent development of 
industrial robots.
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FIGURE 21

The process of path planning of industrial robots based on adaptive field cooperative sampling algorithm.
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