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Path planning of industrial robots
based on the adaptive field
cooperative sampling algorithm
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Wenjuan Bai, Xintao Liu?, Mingyuan Fan® and Lv Wei?

!College of Electromechanical Engineering, Qingdao University of Science and Technology,
Shandong Province, China, 2Shandong Gaomi Technician Institute, Shandong Province, China

For the low efficiency and poor generalization ability of path planning algorithm
of industrial robots, this work proposes an adaptive field co-sampling algorithm
(AFCS). Firstly, the environment complexity function is proposed to make full use
of environment information and improve its generalization ability of the traditional
rapidly random search tree algorithm (RRT) algorithm. Then an optimal sampling
strategy is proposed to make the improvement of the efficiency and optimal
direction of RRT algorithm. Finally, this article designs a collaborative extension
strategy, which introduces the improved artificial potential field algorithm (APF)
into the traditional RRT algorithm to determine the new nodes, so as to improve
the orientation and expansion efficiency of the algorithm. The proposed AFCS
algorithm completes simulation experiments in two environments with different
complexity. Compared with the traditional RRT, RRT* and tRRT algorithm, the results
show that the AFCS algorithm has achieved great improvement in environmental
adaptability, stability and efficiency. At last, ROKAE industrial robot is taken as the
object to build a simulation environment for the path planning, which further
verifies the practicability of the algorithm.

KEYWORDS
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1 Introduction

Recently, the demand for intelligent robots is gradually increasing with the continuous
development of artificial intelligence technology. Especially for industrial robots, path
planning is a decisive factor to determine their safe operation. It refers to the autonomous
planning of industrial robots in their configuration space to find a continuous non-collision
smooth path between the initial pose and the target pose in order to reach the preset target
pose when moving in the surrounding static and dynamic obstacle environment. Meanwhile,
it must meet various constraints such as environmental, time and dynamic constraints of
industrial robots (Wei and Ren, 2018). Different from that of mobile robots, it is more complex
for industrial robots to realize path panning. It not only needs to consider constraints such as
obstacles, but also involves the mutual transformation of joint space and configuration space.
Therefore, the path planning algorithm of mobile robots is not completely applicable to the
path planning of industrial robots. At present, there are three kinds of path planning
algorithms of industrial robots: traditional obstacle avoidance planning method (Khatib, 1986;
Hartetal,, 1972), intelligent obstacle avoidance planning algorithm (Guan-Zheng and Huan,
2007; Kavraki et al., 1994), sampling-based obstacle avoidance planning algorithm (Lavalle,
1998; Karman and Frazzoli, 2011). Among them, the sample-based RRT algorithm (Lavalle,
1998) is the most applicable one in path planning algorithms of industrial robots, who has the
characteristics of probability completeness and high dimensional space applicability (Lixing
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Liu et al,, 2023). And it was also proved that the sample-based RRT
algorithm owned the better efficiency and more smoother path than
the intelligent obstacle avoidance planning algorithm for the industrial
robots (Larsena, 2017). However, the traditional RRT algorithm has
some problems such as redundant sampling, low efficiency and
non-optimal path, which limit its generalization ability in complex
environment (Jia et al., 2022). For these problems, research and
improvement of RRT algorithm is a hot topic pursued by
many scholars.

Among the variants of RRT algorithm, neither RRT algorithm,
RRT* algorithm (Karman and Frazzoli, 2011) nor Informed RRT*
algorithm (Gammell et al., 2014) fundamentally solve the
randomness, low efficiency and optimality. Especially, in the
sampling stage, redundant sampling brings a large number of
branches, which not only leads to low efficiency, but also occupies
a large amount of memory space. Therefore, based on the above
algorithms, scholars have make some research on RRT algorithm
from the aspects of sampling and expansion strategy. In terms of
sampling strategies, the paper (Biao and Cao, 2021; Khan, 2020)
adopted target paranoia to achieve “de-randomness” But this
strategy only reduced a small amount of the redundant sampling.
Therefore, to further reducing the sampling space, Liu et al. (2020),
Chietal. (2022) and Ganesan and Natarajan (2021) set the sampling
interval of the traditional RRT algorithm in different ways to make
the search more efficient. On the aspect of the extension strategy,
the paper (Zhang et al., 2019; Wang et al., 2020; Kang et al., 2016;
Kang, 2019; Khan, 2020) fused the RRT algorithm with APF
algorithm. Specifically, it used the attractive action to guide the
production of new nodes and improve the search speed of the
algorithm. In this process, although the target attraction is
introduced, the repulsion of obstacles is not considered, so the role
of the APF algorithm cannot be fully simulated. Wang et al. (2022),
Kabutan and Nishida (2018) get new nodes by the guiding effect of
target gravity and obstacle repulsion. It improved not only the goal
orientation but also the obstacle avoidance ability. But with the
disadvantages of unreachable target and local minima, the APF
algorithm made the RRT algorithm unable to find new sampling
points in some cases (Yin et al., 2018). Therefore, a path planning
algorithm with strong stability, high efficiency and strong
generalization ability is urgently needed for the characteristics of
high latitude and complex collision detection process of
industrial robots.

To get more improvement on the adaptability and stability of the
path planning algorithm, an APCS algorithm is proposed, which
combines the efficient search and optimization ability of the improved
APF algorithm with the completeness of the RRT algorithm. And it
fundamentally solves the problem of environment adaptability and
redundant sampling. Contributions of this paper are summarized
as follows:

 An environment complexity function is proposed to make path
planning algorithm adapt to the environment;

« An optimal sampling strategy is proposed, which not only makes
full use of environmental information, but also considers the
optimality of sampling points;

« A field cooperative expansion strategy is proposed, in which the
improved APF algorithm is proposed and guides the generation
of new nodes;
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o A new algorithm called AFCS is proposed,which not only
enhances the environmental adaptability of industrial robots, but
also improves sampling quality and scaling efficiency of the path
planning algorithm. The whole algorithm provides ideas for
improving the intelligence of the path planning algorithm.

The rest of this article is arranged as follows: The principle of path
planning of robots is analyzed, and the principle of the traditional path
planning algorithm is introduced in section 2. Then the AFCS
algorithms is introduced in section 3. Section 4, summary and analysis.

2 Materials and models

For industrial robots, it is a prerequisite for path planning to
satisfy constraints in terms of kinematics and dynamics. In this article,
the relevant theories of industrial robot path planning are further
studied based on the full study of the kinematics of industrial robots.

2.1 Kinematic model of manipulators

Path planning of industrial robot needs mutual transformation in
joint space and Cartesian space. So it involves the solution of inverse
kinematics. And the accuracy of the inverse kinematics solution also
certainly affects the accuracy of path planning of industrial robots. In
this paper, ROKAE 6-DOF industrial robot is taken as the research
object, and the coordinate system is established according to the DH
model (Hartenberg et al., 1964) as shown in Figure 1.

Based on the homogeneous coordinate transformation matrix, the
position and pose of the two adjacent coordinate systemsi,i—1 of the
industrial robot are obtained as follows:
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FIGURE 1
The coordinate system of ROKAE industrial robot.
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6, represents the angle between the X axes of adjacent coordinate
systems, ¢; represents the Angle between the Z axes of adjacent
coordinate systems, g; is the length of the common perpendicular of
the Z axis, d; is the distance between a; and a;_;.

According to the DH method, it is easy to get the forward
kinematics equation of the industrial robot as follows:

Ny Ox dx Px

ny, 0, a, p
or=NTar3TiTsTer=| Vo @
hy 0z 4z pz
0 0 0 1

Where, ""\T represents the homogeneous transformation matrix
of adjacent coordinate systems. According to the principle of forward
kinematics, the position and attitude of the industrial robot can
be solved according to Equation 2. The inverse kinematics solution is
the inverse process of the forward kinematics solution. In the path
planning of industrial robots, forward and inverse kinematics can
be calculated as needed. The DH parameters of the ROKAE industrial
robot used in this paper are shown in Table 1.

2.2 Path planning and model of
environment

2.2.1 Path planning

The core of path planning is planning, and its goal is to obtain a
path that satisfies the conditions. The path is a continuous curve in the
configuration space of robots. Specifically, path planning may be to
plan a non-collision and shortest path for mobile robots in
two-dimensional space. It also can plan a safe, non-collision or
relatively optimized path for industrial robots (as shown in Figure 2).
Jiang Xinsong, the father of Chinese robots, defines path planning as
follow: The goal of path planning is to get a non-collision path in the
environment with obstacles according to certain evaluation criteria
(Hong et al,, 2022). Deservedly, the different distribution of obstacles
in the environment directly affects the planned path, and the target
location determination is provided by the higher-level task
decomposition module (Hong et al., 2022).

2.2.2 Model of environment
In traditional path planning, environment modeling is the first
step of path planning in order to better satisfy configuration space

TABLE 1 The DH parameters of the ROKAE industrial robot.
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constraints. However, it is more and more difficult to model the
environment in the more complex scenario. The complexity of
environment modeling is an important problem that restricts the path
planning of robots. This article puts forward the environmental
complexity function to counter the difficulty of environment
modeling. This strategy realizes the prediction of the environment
where the path planning is located, and lays a theoretical foundation
for path planning algorithm to take full advantage of the environmental
information. This paper designs two kinds of environment maps (as
shown in Figure 3), in which the superiority of path planning
algorithm can be better reflected.

As shown in Figure 3, the number of obstacles in two maps is the
same, but the complexity of the environment is different because of
the different distribution of obstacles. The pixel size of the two maps
is1500*1500. In this paper, the starting point position coordinate of
path planning is (0, 0, 0), and the target point coordinate is set to
(1000, 1000, 1000).

2.3 Path planning algorithm

The sampling-based RRT algorithm and APF algorithm are the
most widely used in path planning of industrial robots. By fully
studying the traditional APF algorithm and RRT algorithm, this
article summarizes the advantages and disadvantages of the two
methods. At the same time, this article makes same improvement of
the traditional algorithms in view of their shortcomings, and a new
AFCS algorithm with strong environment adaptability is proposed.

2.3.1 RRT algorithm

There is a path search algorithm called the RRT algorithm, which
expands by random sampling. It establishes the search tree from the
starting point. Subsequently, it undergoes random sampling, expands
new nodes, avoids obstacles, and finally finds an optimal path.
Figure 4 shows the implementation process of the traditional RRT
algorithm, and its pseudo-code is shown in Figure 5.

The core of traditional RRT algorithm can be divided into four
stages: sampling, expansion, collision detection and path query. There
are three important factors that lead to the low efficiency and poor
applicability of RRT algorithm, which are the redundant sampling in
the sampling phase, the way and efficiency of generating new nodes
in the expansion phase, and the amount of calculation in collision
detection (Junxiang and Wang, 2021). Especially in the sampling
stage, the redundant sampling not only has strong randomness, but
also does not consider the optimality of sampling. Moreover, in the
measurement connection stage, the generation of new nodes is neither
guided nor considering the influence of obstacles, so that the
calculation of collision detection of the RRT algorithm is very large.
Generally, the randomness and efficiency of the RRT algorithm are
important factors affecting its development. Therefore, this paper
proposes an efficient RRT algorithm to solve the strong randomness
and low efficiency.

2.3.2 APF algorithm

The APF algorithm is a simple and effective local path planning
algorithm. It constructed by Dr. Oussama Khatib who introduced the
concept of “field” in traditional mechanics (Fan et al., 2020; Rostami,
2019). The potential field includes the attractive and repulsive

frontiersin.org
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FIGURE 2
The schematic diagram of path planning of robots.
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FIGURE 3

Two environmental maps with different complexity.

* Goal

potential field, which are formed by the target and the obstacle,
respectively. The agent moves along the resultant force of the attractive
and repulsive forces (Yuan et al., 2021). The attractive and repulsive
potential field functions are modeled as follows

1
Uatt (P):Ekt ||P_Pgoal|| 3)
0 dP”_POhS”ZDZ
Urep (P) = ﬁ( 1 _LJ dP—||By|<D;
2\|IP=Poyps|l D2

Where, U (P) denotes the attractive potential field of the node
P,k; is the attractive coefficient. || P—Pgoq || denotes the distance
between two nodes P and Pyq;; The repulsive potential field generated

Frontiers in Neurorobotics

by the node P is expressed as Uy (P),kr is the repulsion coefficient;
[|P—Pyps || denotes the distance between two nodes P and Py, D,
influence threshold of an obstacle; When
[|P—Pyps ||= D, , the node is not affected by obstacles; When
P = Pgoq1 < D, the node is affected by the repulsive potential field of
the obstacle.

The model of the attractive and repulsive forces are shown

indicates the

as follow:

Fatt(P):_AUaat(P):ktIIP_PgoalH (5)

Frep (P) =AU (P) =

0 d”P_PobSHZDZ
1 1 6
—k{———J d|| P = Pops ||< D2 (©)
|P—Pops|| D2
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The resultant force of attraction and repulsion is shown as follow:

Footat (P) = Eatt (P)+ Frep (P) @)

The agent realizes obstacle avoidance path planning under the
guidance of the resultant force, and its schematic diagram is shown in
Figure 6.

On the basis of the principle of the APF algorithm, it can
be known that the magnitude of the attraction and repulsion force of
the agent are related to the corresponding distance. So its main
disadvantages are the inaccessible target and local minimum (Wang
etal, 2022). Otherwise, the essence of the APF algorithm is a control
method, and its path is generated by the control quantity in real time.
Therefore, its real-time performance is more strong. For the
shortcomings of the APF algorithm, this paper proposes an improved

Frontiers in Neurorobotics

APF algorithm, and introduces it into the traditional RRT algorithm
to improve its real-time performance.

2.4 The adaptive field cooperative sampling
algorithm

On the principle of path planning algorithm, this paper
innovatively put forward an adaptive field cooperative sampling
algorithm. Firstly, the environment complexity function is proposed
for the difficulty of environment modeling. Then, an improved APF
algorithm is proposed to solve the inaccessible target and local
minimum. Finally, based on the framework of the traditional RRT
algorithm, an optimal sampling strategy is proposed, and the AFCS
algorithm is obtained by introducing the environment complexity
function and the improved APF algorithm into the RRT algorithm.

frontiersin.org
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Algorithm 1: Basic RRT

Input:
Initial configuration Py, Peoal Sobs
Number of sampling point K

Step size &
Output:
Search tree T
Vertices of path V
1. Initialize all Parameters ;
2 T =Ppgan s
» fori=1toKdo
n Prana=Sample();
5 Prear ~— Nearest (nodes, prna);

6 Prew <—Steer(pnear. Prand, 8)5
7. if CollisionFree(pyeqr,Prew)then

L T-add(pucw);

L return Advanced;
0. if d ( Puews Peoat) < Error then
1 return Reached;

1. else
1. Lcontinue ;
. final ;

s return T&V;

FIGURE 5
The pseudo-code of the traditional RRT algorithm.

2.4.1 Environment complexity function

Aiming at the complex of environment modeling, this article
designs the environment complexity function S based on the relative
position of obstacles in the environment. Then it is introduced into
the traditional RRT algorithm. This operation enables the algorithm
to intelligently adjust the iteration time instead of manually adjusting
the iteration parameters according to the complexity of the
environment. And it also improves its environmental adaptability. On
the basis of the volume ratio of obstacles, this article introduces the
distance between obstacles to further distinguish the complexity, so as
to make the path planning algorithm suitable for environments with
different complexity. The environment complexity function is
as follows:

10
mVops €

S=4
v

(®)

Where, S represents the environment complexity. #; respectively
indicates the number of static in the environment ( ).
Vops1 represents the volume of static obstacles. V' represents the total
volume. Only one class of static obstacle cases is studied here, so 4; =1L

According to the proposed environment complexity function, the
environment complexity of the two maps in can be,
respectively, calculated as: 2301, 1809. Although the number of
obstacles in the two maps is the same, the relative position of obstacles
is different. In the green sphere environment, the minimum distance

between obstacles is 697 mm. In the red sphere environment, the
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FIGURE 6
The schematic diagram of path planning of the APF algorithm.

minimum distance between obstacles is 883 mm. The green sphere
environment is relatively complex. Therefore, the design of the
environment complexity function is reasonable.

2.4.2 Optimal sampling strategy

For the RRT algorithm and its variants, the ideal sampling
procedure is one that reduces redundant sampling while keeping the
sampling point on or near the optimal path as much as possible. Based
on the above ideas, this article proposes an optimal sampling strategy
to solve redundant sampling and poor quality of sampling points in
the sampling stage. The idea of this strategy is to randomly generate
multiple sampling points at the same time, and then determine the
sampling quality function based on the density of obstacles around the
sampling points and the smoothness of the path. In this way, random
sampling points with optimal quality can be obtained. The sampling
quality function is modeled as follows:

Mp,, =wi"pp,, +w)'op,, ©
max || P, di -P b.

Prondi = ” ra:;z obs || (10)

Crandi = ZBrandiPrearest -1 (11)

180°

Where, Mp  represents the quality function of the i random
sampling point Pgpng;. pp_, is the density of obstacles around the
random sampling point Py, 4;. op_ represents the smoothness of the
random sampling point Ppgi- || Brandi —Povs || represents the
distance between the random sampling point P,,,,4; and the nearest
obstacle Pyys £ PrgndiPrearest Pe—1 represents the angle between the line
Prandi Prearest a0d Poegrest Pe—1 w1, W7 represent the influence factors of
obstacle density and smoothness of sampling points.

The schematic diagram of optimal sampling process is shown in

2.4.3 Field cooperative expansion strategy

2.4.3.1 The improved APF algorithm

For the problem of the inaccessible target and local minimum, this
article, respectively, introduces the distance between the target point
and the robot into the attractive potential field and the repulsive
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potential field function of the traditional APF algorithm. Based on
papers (Ahmadi et al., 2022; Guo et al,, 2022), the attractive and
repulsive potential field models proposed in this paper are shown
as follow:

ki ||P—P,
M d|| P = Pyoqall|< Dy
Ug (P)= D2 (12)
letHP*PgoalH* t21 dllpfpgoal||>Dl
Urep (P)=
0 d|| P=Pyps||2 Dy
k, 1 1 1 (13)
—| —————— |——0o||P-P, d||P-P, <D
2[||Ppobs|| DZJ 5 ” goal” || ohs“ 2

Where, U (P) represents the attractive potential field, k; is the
attractive coefficient. || P— Poal || denotes the distance between two
nodes Pand t Pgoq) Dy represents the threshold for the node to reach
the target point. When || P = Pyoq || < Dy , the robot approaches the
target point at a faster speed. Otherwise, the robot approaches the
target point at a slower speed. Uy (P) represents the repulsive
potential field. k; is the repulsion coefficient. || P — Pyys || denotes the
distance between two nodes P and P, D, indicates the influence
threshold of an obstacle. o represents the distance influence factor.
When || P—Pyps || 2 D, | the node is not affected by obstacles; When
|| P = Pgogt ||< Dy , the repulsive potential field of the obstacle dose
not work.
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The attractive and repulsive function models are shown as follows:

ktHP_Pgoal” d“P_Pgoal”SDl

Fatt(P)= k k d 14)
D t'”P_Pgoal”_ ¢ Dy ”P_Pgoal”>Dl

Erp (P)=

0 d||P_Pobs||2D2

1 1 (15)
—k,| ———-—|+0||P-P, d||P—Pys ||< D
r[”P_Pohs” Dz] I goal” | obs 1< D2

In this paper, the field cooperative expansion strategy is to
introduce the improved APF algorithm into the traditional RRT
algorithm. The position and orientation of the new nodes are
calculated according to the improved APF algorithm. The new node
is calculated as follows:

K P
Piew = Pucarest + ﬂlpmnd + ﬂZ ”me;EP;” (16)
tota
Ftotal(P):Fatt(P)+Frep(P) (17)

Where, P, is the new node. P,  represents the random
sampling point, whose nearest point on the random tree is expressed
as Pyearest- P1» P2 represents the influence factors of the random node
and target gravity on the new node. F; (P ) represents the resultant
force of the potential field. Fyy; (P) represents the sum of the attractive
forces of the random node and the target node on the new node.
E

rep
new nodes.

(P) represents the sum of the repulsive forces of obstacles on

frontiersin.org
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The schematic diagram of field cooperative expansion strategy is
shown in Figure 8.

2.4.4 The adaptive field cooperative sampling
algorithm

Based on the above innovative strategy, an adaptive field
co-sampling algorithm is proposed in this paper. It not only avoids
complex environment modeling, but also makes full use of
environment information. Moreover it solves the redundant sampling
and low efficiency of traditional RRT algorithm by the optimal
sampling strategy and the introduction of improved APF algorithm.
The flow chart of the AFCS algorithm is shown in Figure 9.

The pseudo-code of the AFCS algorithm is shown in Figure 10.

3 Experiments and results

Simulation experiment is an important way to show the
superiority of the algorithm. The simulation experiment in this paper
is carried out in two aspects: algorithm simulation and industrial
robot simulation.

In terms of algorithm simulation, two environments with
different complexity are used to carry out simulation experiments
to verify the environmental adaptability of the algorithm. At the
same time, this paper verifies the effectiveness and practicability
of the AFCS algorithm by analyzing the experimental results with
the traditional RRT algorithm, RRT* algorithm and tRRT
algorithm from three aspects: planning time, path cost and the
number of path points.

10.3389/fnbot.2025.1574044

In the aspect of industrial robot simulation, this paper mainly
integrates the AFCS algorithm with industrial robot simulation to
verify its effectiveness and practicability.

In two maps with different complexity, this article conducts
multiple simulation experiments with the same number of iterations
and step size, respectively. The multiple operation results of the
traditional RRT algorithm and RRT* algorithm are shown in
Figures 11, 12.

In Figures 11, 12, the RRT algorithm and RRT* algorithm fail the
path planning due to the large amount of redundant sampling in the
tow environments. Although both RRT and RRT* algorithms are
probabilistic complete, such a time-consuming strategy is not
desirable in practice. Therefore, this article focuses on the comparison
and analysis of simulation results between the AFCS algorithm and
the most representative tRRT algorithm.

3.1 Experiment of algorithm simulation

3.1.1 Analysis of environmental adaptability

Environmental adaptability is an embodiment of the intelligence
of path planning algorithm. It is also an important direction to
improve the intelligence of industrial robots. Five consecutive
simulation experiments are carried out in two environments with
different complexity (as shown in Figures 13, 14) to verify the
environmental adaptability of the algorithm. It should be noted that
the number of iterations of the AFCS algorithm is related to the
environment complexity function without manual mediation. The
iteration and step size of the tRRT algorithm are the same.
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FIGURE 8
The schematic diagram of field cooperative expansion strategy.
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The flow chart of the AFCS algorithm.

Algorithm: AFCS

Input:

Initial configuration P, P .. Seps

Output:

Search tree T
Vertices of path V

Calculate the difficulty factor of the map K

K=2*n*V p *el/(V,.p *L3)

Create and initialize an N, 3-dimensional swarm;

Jforeach Iteration M,

Optimal sampling based on obstacle density

and path smoothing ( Eq.6-Eq.8)

P neark Near (pg) y
P,..~— APFP,..);
Ladd(P o0, P o)

if APy, Pooa)<Error then

return Reached;
else continue;

end

end

final;

FIGURE 10
The pseudo-code of the AFCS algorithm.

It can be seen from Figures 13, 14 that the results of the AFCS
algorithm are more stable. And the branches of the path obtained by
the AFCS algorithm are less. But when the environment of the tRRT
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algorithm changes (from red sphere environment to green sphere
environment), the branches of its path becomes more and more.
Therefore, the proposed AFCS algorithm has better adaptability to the
environment and higher stability.

3.1.2 Analysis of efficiency

Time is an important reflection of efficiency. In this paper, the
planning time of the algorithm in the same environment is taken as
one of the criteria to measure the efficiency of the algorithm. The
AFCS algorithm and tRRT algorithm are run 10 times in two
environments with different complexity to obtain the average planning
time of the algorithm (as shown in Table 2).

According to the data in Table 2, in the environment with different
complexity, the planning time of the AFCS algorithm remains stable
and does not float with the change of environment. In contrast, the
efficiency of the tRRT algorithm fluctuates by about 27% as the
complexity of the environment changes. This fluctuation of operating
efficiency will affect the expansion of application scenarios of the
algorithm. On the other hand, in the environment with the same
complexity, the AFCS algorithm has shorter planning time and higher
stability than the tRRT algorithm.

This paper runs the AFCS algorithm and the tRRT algorithm for
20 times, respectively, in the green sphere environment to further
verify the stability of the AFCS algorithm. The path planning time of
the two algorithms is shown in Table 3.

In Table 3, the planning time of 20 times of the AFCS algorithm
is stable between 3.904 s-5.2919 s, and the planning time fluctuates
little in the green sphere environment. However, the 20 times path
planning time of tRRT algorithm fluctuates from 4.4478 s to 46.7573 s.

frontiersin.org


https://doi.org/10.3389/fnbot.2025.1574044
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhuang et al.

10.3389/fnbot.2025.1574044

FIGURE 12
The simulation results of the RRT* algorithm in two environments.

1500 1500
* Goal G
oal
1000 1000 *
500 . . 500
24 0
R 1500 !
1000 3 - 2 - 1500
~ - 1000
B : Stalt ¥ ‘Sm 1000
y *O' .
FIGURE 11
The simulation results of the RRT algorithm in two environments.
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Therefore, the AFCS algorithm not only has high planning efficiency,
but also has good stability.

3.1.3 Analysis of path quality

Path quality is an important factor to measure the planning
efficiency of the algorithm. Path cost and the number of path nodes
are important performances of path quality. In this paper, the sum
of distance between nodes on the path is taken as the path cost. In
this paper, the path cost obtained by running the AFCS algorithm
and tRRT algorithm 5 times in two environments is shown in
Figure 15.

In Figure 15, the path cost of the AFCS algorithm is about 20%
smaller than that of the tRRT algorithm in the red sphere environment.
In a more complex environment (green sphere environment), the path
cost of the adaptive field co-sampling algorithm is about 50% less than
that of the tRRT algorithm, which indicates that the path of the

Frontiers in Neurorobotics

adaptive field co-sampling algorithm is shorter. After running the
algorithm 5 times, the path cost float of the AFCS algorithm is smaller
than that of the tRRT algorithm, which indicates that the AFCS
algorithm has better stability.

In this paper, the AFCS algorithm and tRRT algorithm were run
five times, respectively, in two environments, and the number of path
nodes was obtained, as shown in Figure 16.

In Figure 16, the number of path nodes planned by the AFCS
algorithm for five times is also smaller than that of the tRRT algorithm
in the red sphere environment, and the number of nodes decreases
within a range of 2-5%. In the green sphere environment, the
advantage of the adaptive field co-sampling algorithm is more obvious,
and the reduction interval of the number of path nodes for 5 times is
21.1-50%. For different complex environments, the number of path
nodes of the AFCS algorithm fluctuates little, ranging from 1.4
to 5.4%.
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FIGURE 14
Five consecutive simulation results of the AFCS algorithm.
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FIGURE 13
Five consecutive simulation results of the tRRT algorithm.
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TABLE 2 The planning time of the AFCS algorithm and tRRT algorithm.

Green Ball Red Ball
AFCS tRRT AFCS tRRT
1 4.8414 7.4142 4.7543 4.4731
2 4.5426 5.9894 43211 4.9958
3 45295 52871 44687 43985
4 3.8931 6.4891 43451 4.6828
5 4.6952 53633 4.2883 4.1987
AVE 4.5004 6.1086 44355 45498

3.2 Experiment of industrial robot

In order to verify the practicability of the algorithm, the path
planning simulation experiment is carried out combining the AFCS
algorithm with ROAKE industrial robot XB20 in the green sphere

Frontiers in Neurorobotics

environment. The whole system of the path planning experiment is
composed of computer, ROKAE industrial robot XB20 and ZED2
depth camera. Among them, the communication and logical
relationship of the three hardware devices are shown in Figure 17.

Based on the above hardware devices, the experimental flow is
shown in Figure 18. The whole process of the experiment consisted of
three parts (as shown in Figure 18). The first one is obstacle
recognition based on ZED2 depth camera, which mainly obtains the
position of obstacles for path planning of industrial robots. The
second is path planning based on adaptive field cooperation, which
mainly obtains collision-free paths of industrial robots. The third is to
control the operation of industrial robots based on collision-free paths
(Table 4).

Specifically, the experimental steps and the results of key steps are
as follows:

1 The information of the experiment scene can be obtained by
the depth camera. And the 3D coordinates of obstacles in the
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TABLE 3 The running time of the AFCS algorithm and tRRT algorithm.

10.3389/fnbot.2025.1574044

No 1 2 5 4 5 6 7 8 9 10
Time (s) 5.593 47.252 5.336 26.35 5.739 19.945 6.995 40.209.506 12.134 19.228
AFCS
No 11 12 13 14 15 16 17 18 19 20
Time (s) 16.58 18.991 7.135 23.16 4.899 32.178 36.55 15.46 18.733 4.976
No 1 2 5 4 5 6 7 8 9 10
Time (s) 3.804 3.9724 4.1898 4.753 4.298 4.2431 4.4561 4.5607 4.569 4.145
tRRT
No 11 12 13 14 15 16 17 18 19 20
Time (s) 4235 4.1579 4.3760 4.409 4.3345 4.4708 4.4809 4.3547 4.6079 5.1245
Path Cost in the Green ball Path Cost in the Red ball
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50000
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FIGURE 15
The path cost obtained of the AFCS algorithm and tRRT algorithm in two environments.
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FIGURE 16
The number of path nodes of the AFCS algorithm and tRRT algorithm.
industrial robot coordinate system can be obtained by 2 Based on the three-dimensional coordinates of obstacles, the
binocular camera calibration and hand-eye calibration. path planning is carried out by the adaptive field co-sampling
algorithm, and the Angle values of each joint of the industrial
The results of hand-eye calibration are shown in Equation 18: robot are obtained based on the inverse kinematics
solution method.
3 The time series of six joint angles of industrial robot is obtained
0.9976 —0.0196 —0.0668 16.7035 by using the trajectory planning algorithm (7th degree
00222 09990 00389  6.4285 polynomial trajectory planning algorithm).
_ 18 . .y
0.0660 —0.0403 0.9970 108.3157 (18) 4 Socket .software is used to Sfend the. joint Angle value of the
industrial robot to ROKAE industrial robot XB20 to control
0 0 0 1.0000 .
the movement of it.
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FIGURE 17
The communication and logical relationship of the three hardware devices.
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FIGURE 18
The flow chart of the whole experiment.

During the planning process, the Angle changes of the six joints
of ROKAE industrial robot XB20 are shown in Figure 19.

The joint Angle velocity curve of 6 joints of path planning based
on adaptive field cooperative sampling path planning algorithm is
shown in the Figure 20.

It can be seen from the change curve of joint Angle value of
industrial robots in Figure 20, the adaptive field cooperative sampling

Frontiers in Neurorobotics 13

TABLE 4 The result of calibration of binocular camera.

Category of parameters Parameters

Intrinsic parameter of left camera
fx=21.853, fy:20.206, Cx=22.023,Cy

=612.37

Radial distortion parameters of the left 4= — 0.0108, kp= 0.3905, k3

camera =—0.9366

Tangential distortion parameters of the Dpi= — 0.0257, po=0.0113

left camera

Intrinsic parameter of right camera
fy=21.234, fy=21.379, Cx=21.666, Cy

=609.82

Radial distortion parameters of the left 1= 0.0149, ko= 0.0693, k3= — 0.1083

camera

Tangential distortion parameters of the D= — 0.0210, po= 0.0135

right camera

External parameters of binocular R=[0.9906 0.0053 0.0121
—0.0055 0.9889 0.0002
—0.0131 -0.0103 0.9809]

T=[-191.2268-6.7915 -31.7064]

camera

path planning algorithm can drive industrial robots to obtain a
collision-free smooth path. The process of path planning of industrial
robots based on adaptive field cooperative sampling algorithm is
shown in Figure 21.

4 Conclusion

This article studies the path planning of industrial robots from the
unique perspective of improving the intelligence of path planning
algorithm. And an AFCS algorithm with strong environmental
adaptability is proposed. It uses the traditional RRT algorithm as the
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The angle changes of the six joints of ROKAE industrial robot XB20.
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The joint Angle velocity curve of 6 joints of path planning based on adaptive field cooperative sampling path planning algorithm.

main framework to realize path planning. For the disadvantages of
redundant sampling and low efficiency of the traditional RRT
algorithm, this paper designs an optimal sampling strategy and
improves the node expansion stage. The optimal sampling strategy not
only solves the problem of redundant sampling, but also improves the
quality of sampling points. The optimal sampling strategy is also
beneficial to improve the path optimality. In the expansion stage, this
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paper firstly improves the traditional APF algorithm, and then
introduces it to the node expansion stage of the traditional RRT
algorithm. This approach provides a theoretical basis for the
generation of new nodes and improves the overall efficiency of the
algorithm. More importantly, compared with other algorithms, the
efficiency and practicability of the AFCS algorithm are improved, and
the adaptability to the environment is significantly improved in the

frontiersin.org


https://doi.org/10.3389/fnbot.2025.1574044
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

Zhuang et al.

10.3389/fnbot.2025.1574044

Avoiding obstacles 3

FIGURE 21

Avoiding obstacles 4

The process of path planning of industrial robots based on adaptive field cooperative sampling algorithm.

Grasp the target

path planning of industrial robots. This approach not only provides
ideas for the intelligent development of path planning algorithms, but
also provides guarantees for the intelligent development of
industrial robots.
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