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Objective: This study aimed to conduct a systematic review of the expression 
levels of matrix metalloproteinases (MMPs) and tissue inhibitors of metallopro-
teinases (TIMPs) in cerebral amyloid angiopathy (CAA).
Methods: This systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines. The PubMed, Embase, and Web of Science databases were searched 
to identify relevant studies. Two researchers independently screened the litera-
ture, extracted data, and assessed the study quality.
Results: Five studies evaluating a total of 442 participants were included. The 
findings revealed dysregulation of the MMP/TIMP system in the cerebral blood 
vessels of patients with CAA. Specifically, in comparison with patients without 
CAA, those with CAA showed significantly upregulated expression of TIMP-3 and 
TIMP-4 in the cerebral blood vessels, and TIMP-4 levels were positively correlated 
with the severity of CAA. MMP-9 expression in patients with CAA-related intra-
cerebral hemorrhage (CAA-ICH) was significantly higher than in those without 
hemorrhage, while TIMP-3 expression was lower in patients with CAA-ICH; these 
findings suggest that an imbalance between MMP-9 and TIMP-3 may increase 
the risk of hemorrhage. Cerebrospinal fluid (CSF) and serum biomarker studies 
showed that patients with CAA had decreased TIMP-4 levels in the CSF and sig-
nificantly lower serum MMP-2 levels.
Conclusion: The findings of this study indicated an imbalance in the MMP/TIMP 
system in CAA, which may be involved in its vascular pathological mechanism. 
However, the existing evidence is insufficient to support the use of MMPs/TIMPs 
as reliable biomarkers for CAA. Therefore, further evaluation of their diagnostic 
and therapeutic value is required in future studies.
Systematic review registration: This systematic review was registered in 
PROSPERO (Unique Identifier: CRD420251230405). The protocol can be 
accessed at: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251230405, 
CRD420251230405.
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1 Introduction

Cerebral amyloid angiopathy (CAA), an age-related form of cere-
bral small-vessel disorder, is characterized by progressive deposition 
of β-amyloid protein (Aβ) within the walls of small arteries and capil-
laries in the pia mater and cortex (1, 2). CAA is most commonly 
observed in older adults, and its prevalence in patients with 
Alzheimer’s disease (AD) is as high as 80–90% (3, 4). Although both 
CAA and AD share Aβ as a pathological factor, they show differences 
in terms of deposition sites and clinical manifestations, leading to a 
complex pathological relationship that can be summarized as “one 
peptide, two pathways” (5). The key clinical and imaging features of 
CAA are provided in Table 1 (6–8). The diagnosis of CAA is primarily 
based on the Boston criteria 2.0 (9, 10); however, no effective treat-
ments are available for this disease.

Matrix metalloproteinases (MMPs) are a family of zinc-dependent 
endopeptidases capable of degrading almost all components of the 
extracellular matrix (ECM), and they play central roles in various 
physiological and pathological processes, including tissue remodeling, 
angiogenesis, and inflammatory responses (11, 12). MMP activity is 
strictly regulated by tissue inhibitors of metalloproteinases (TIMPs) 
(13, 14). Physiological conditions are characterized by a delicate equi-
librium between MMPs and TIMPs. However, under pathological 
conditions, including cerebral ischemia, carotid atherosclerotic 
plaques, arteriovenous malformations, and aneurysms, this equilib-
rium is disrupted, causing increased MMP expression and proteolytic 
activity and ultimately resulting in excessive ECM degradation, tissue 
structural damage, and functional impairment (15, 16).

In cerebrovascular diseases, excessive MMP activation has been 
linked to blood–brain barrier (BBB) disruption, neuroinflammation, 
and secondary injury following intracerebral hemorrhage (ICH) (17, 
18). Since the core pathology of CAA involves compromised struc-
tural integrity of the vascular wall, an imbalance in the MMP/TIMP 
system may play a crucial role in its pathogenesis (19). For example, 
excessive MMP activity may degrade collagen and laminin in the 
vascular basement membrane, causing thinning of the blood vessel 
wall, decreased elasticity, and rupture and bleeding during blood-
pressure fluctuations (20, 21). These findings were first demonstrated 
in a preclinical study that identified MMP activation as a down-
stream executor of the vascular damage caused by CAA-associated 
pathological factors (such as activated platelets), and showed that 

vascular integrity can be effectively preserved by inhibiting MMP 
activity (22). Several recent studies have also focused on the changes 
in MMP and TIMP expression in CAA and their relationship with 
clinical manifestations. In particular, since Aβ serves as a shared 
pathological factor for CAA and AD, studies are required to deter-
mine whether the observed dysregulation of MMPs/TIMPs can be 
precisely attributed to cerebrovascular Aβ deposition (i.e., CAA 
pathology), parenchymal Aβ plaques (as in AD), or both. Unraveling 
this relationship is key to understanding the specificity of MMP/
TIMP alterations in CAA and developing targeted therapeutic 
strategies.

The ongoing development of matrix metalloproteinase inhibitors 
(MMPIs) initially focused on antitumor therapy (23, 24). However, 
with a deeper understanding of the complexity and specificity of the 
function of MMPs, highly selective MMPIs targeting CAA may also 
be developed (25, 26). Tetracycline antibiotics, including doxycycline 
and minocycline, have also been found to act as nonantibiotic-depen-
dent MMPIs (27, 28).

Against this research background, we aimed to systematically 
review and integrate the findings of existing studies on MMPs in CAA 
to gain a deeper understanding of the pathogenesis and assess the 
potential value of MMPs as biomarkers or therapeutic targets.

2 Methods

This systematic review adhered to the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (20, 
29) and was prospectively registered on the PROSPERO platform on 
November 19, 2025 (CRD420251230405). Since this study analyzes 
previously published data, ethical review is not required.

2.1 Search strategy

We systematically searched the PubMed, Embase, and Web of 
Science databases, covering the period from database inception to 
September 2025. The search strategy incorporated both controlled 
vocabulary (e.g., MeSH terms) and free-text terms, including 
“Cerebral Amyloid Angiopathy,” “Matrix Metalloproteinase,” “MMPs,” 
and “Matrixin.” The complete search strategy is provided in 
Supplementary material S1.

2.2 Inclusion and exclusion criteria

After the initial search, studies were systematically screened 
against predefined inclusion criteria by reviewing titles and abstracts. 
The inclusion criteria were as follows: (1) Studies including patients 
with a high probability of CAA who were diagnosed on the basis of 
pathological findings or met the Boston criteria; (2) studies evaluating 
the expression levels of MMPs, TIMPs, and MMPs/TIMPs in brain 
tissue, cerebrospinal fluid (CSF) or serum; and (3) observational stud-
ies (case–control, cohort studies, or cross-sectional studies). Studies 
meeting any of the following criteria were excluded: (1) studies with 
non-CAA study participants (e.g., AD patients alone), (2) animal 
experiments, (3) studies with full text unavailable or incomplete data, 
(4) duplicate publications (the study with the most complete data was 
selected), (5) reviews, case reports, case series, commentaries, confer-
ence abstracts.

TABLE 1  Major clinical and imaging features of cerebral amyloid angiopathy (CAA) (6–8).

Characteristic type Specific manifestations

Clinical features CAA-ICH, progressive cognitive 

impairment, TFNE, headache/

epilepsy

Imaging markers CMBs, cSS, WMH, cSAH

Pathological features Aβ deposition in the vascular wall, 

loss of vascular smooth muscle cells, 

fibrosis of the vascular wall

High-risk factors ApoEε4 allele, advanced age, 

comorbidity of Alzheimer’s disease

CAA, Cerebral amyloid angiopathy; CAA-ICH, Cerebral amyloid angiopathy with 
intracerebral hemorrhage; CMB, Cerebral microbleed; cSAH, Convexity subarachnoid 
hemorrhage; cSS, Cortical superficial siderosis; TFNE, Transient focal neurologic episode; 
WMH, White matter hyperintensity.
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2.3 Study screening and data extraction

Literature management and duplicate removal were performed 
using EndNote 20 software. Records. The study screening process was 
conducted independently by two researchers (HG and XS). Initial 
screening was performed by reading the titles and abstracts to exclude 
studies that clearly did not meet the inclusion criteria. The remaining 
studies were then read in full, and a final screening was conducted on 
the basis of the inclusion and exclusion criteria. Any disagreements 
were resolved through discussion with a third researcher (JZ).

Data extraction was performed using a predefined data-extraction 
form. The extracted data included information regarding first author, 
publication year, country of study, study type, basic information of 
study participants (age, sex, sample size), sample type (brain tissue, 
CSF, blood), detection method, main MMP types, expression results, 
and correlation with clinical/pathological indicators. Data extraction 
was also completed independently by the two researchers (HG and 
XS) and cross-checked to ensure accuracy. Conflicts were resolved 
through discussion with the third researcher (JZ).

2.4 Quality assessment

The methodological quality of the included studies was assessed, 
and relevant data and information were compiled and extracted. This 
study was completed independently by the two researchers (HG and 
XS) in accordance with the inclusion and exclusion criteria for the 
literature. Disagreements were discussed and resolved by consensus 
or by a third researcher (JZ). The quality of the included studies was 
assessed using the Newcastle Ottawa Scale (NOS). Since all the litera-
ture included in this study was observational, the NOS scale was used 
for scoring (NOS). Since all the literature included in this study was 
observational, the NOS scale was used for scoring (30). The total NOS 
score was 9 points, with 1 point for studies marked with “*,” 4 points 
for the choice of study participants, 2 points for intergroup compara-
bility, and 3 points for outcome measurement. A score of 7–9 was 
defined as high quality, 4–6 as moderate quality, and 0–3 as low 
quality.

2.5 Data analysis

Given the anticipated substantial clinical and methodological het-
erogeneity regarding design, population, intervention, and outcome 
measurement in the included studies, we planned to conduct a quali-
tative narrative synthesis rather than a quantitative meta-analysis. We 
categorized and summarized the results on the basis of the research 
themes, mainly covering two aspects: (1) the expression and role of 
MMPs/TIMPs in CAA brain tissue; and (2) the potential of MMPs/
TIMPs as humoral biomarkers for CAA.

3 Results

3.1 Study screening

The initial database searches identified 122 potentially relevant 
records. After removing duplicates, 95 articles remained. After title 
and abstract screening, 87 clearly irrelevant records were excluded. 
The remaining eight articles underwent full-text evaluation. Two 

studies were excluded since they included non-CAA study popula-
tions, and one was excluded due to incomplete information. 
Ultimately, five studies met the inclusion criteria and were included in 
this systematic review for qualitative analysis. Figure 1 shows the 
PRISMA flow diagram of study selection.

3.2 Characteristics and quality assessment 
of the included studies

All five included studies were observational in design, encompass-
ing a total of 442 participants. The detailed summary characteristics 
of the included studies are shown in Table 2 (31–35).

3.3 Quality assessment results

Five clinical observational studies were assessed using the NOS 
scale. The assessment indicated that four studies were of high quality 
and one was of moderate quality. In summary, the quality scores of the 
included studies were above 6, and the overall quality was medium to 
high (Supplementary Table S3). The main potential sources of bias in 
these studies were the generally small sample sizes and the heteroge-
neity of research methodologies (such as sample source and MMP 
detection technology).

3.4 Relationship between MMP expression 
and CAA

3.4.1 Changes in the expression levels of MMPs/
TIMPs in the brain tissue in patients with CAA

Four studies used immunohistochemical analyses to detect the 
expression of MMPs/TIMPs in the brain tissue of CAA patients. 
Tanskanen et al. first documented that MMP-19 and MMP-26 were 
expressed in the brain tissue of patients with CAA. MMP-19 expres-
sion was associated with CAA and hemorrhage, while MMP-26 
expression was associated only with CAA (35). Using proteomics 
approaches, Manousopoulou et al. demonstrated that TIMP-3 was 
significantly upregulated in the vascular wall of CAA and co-localized 
with Aβ deposition (34). Jäkel et al. further established that TIMP-3 
expression in the blood vessels of patients with CAA was higher than 
that in the control group, regardless of whether they had cerebral 
hemorrhage; MMP-9 expression in the blood vessels of patients with 
CAA-related ICH (CAA-ICH) was significantly higher than that in 
patients with CAA without ICH (CAA-NH), while TIMP-3 expression 
was relatively reduced, suggesting that MMP-9/TIMP-3 imbalance 
promotes cerebral hemorrhage (33). Jäkel et al. also found that 
TIMP-4 expression in the cerebral blood vessels of CAA was upregu-
lated and positively correlated with the severity of CAA; the TIMP-4 
level in patients with CAA-ICH was higher than that in patients with 
CAA-NH, suggesting that TIMP-4 participates in vascular remodeling 
and reflects lesion severity (Table 3) (31).

3.4.2 Potential of MMPs/TIMPs as fluid biomarkers 
in CAA

Two studies examined the levels of MMPs/TIMPs in the CSF and 
serum of patients with CAA. Xia et al. reported that serum MMP-2 levels 
declined and MMP-9 levels increased in patients with CAA-ICH, and the 
MMP-3 level was associated with the number of cerebral microbleeds 
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(32). Jäkel et al. reported that CSF TIMP-4 levels declined and serum 
TIMP-4 levels increased in patients with CAA, indicating that TIMP-4 
regulation is complex and that reduced TIMP-4 levels in the CSF may 
have diagnostic value (Table 3) (31). Furthermore, Vervuurt et al. reported 
that the MMP-2/TIMP-2 and MMP-14/TIMP-2 ratios in the CSF of 
patients with sporadic CAA and hereditary CAA were reduced, implying 
that ratio indices can indicate the pathological state more efficiently than 
the levels of a single molecule (19). Sakai et al. reported that TIMP-2 levels 
were elevated in the CSF of patients with CAA-related inflammation 
(CAA-ri) in the acute phase and remained high after treatment. Moreover, 
TIMP-1 levels were elevated after treatment, implying that the TIMP 
system was activated in the inflammatory subtype (23).

4 Discussion

This systematic review synthesized evidence supporting the con-
clusion that MMP/TIMP system imbalances are the mechanism 
underlying CAA vascular lesions, and that targeting this system may 

provide new directions for effective diagnosis and treatment of 
CAA. Multiple studies have provided evidence that the MMP/TIMP 
balance is disrupted in the cerebral blood vessels of patients with 
CAA. Although upregulation of TIMP-3 and TIMP-4 may represent 
a compensatory response to increased MMP activity, it cannot com-
pletely inhibit the destructive effects of MMPs (31, 34). In CAA-ICH, 
upregulation of MMP-9 expression and relative downregulation of 
TIMP-3 expression may cause the degradation rate of the vascular 
basement membrane to exceed its repair capacity, thereby accelerating 
the risk of hemorrhage (33). This imbalance is not limited to brain 
tissue and manifests in alterations of humoral biomarkers. Moreover, 
in comparison with changes in the levels of individual molecules, 
reductions in the MMP/TIMP ratios (e.g., the MMP-2/TIMP-2 and 
MMP-14/TIMP-2 ratios) in CSF may more reliably reflect the patho-
logical status of CAA. Therefore, reduced MMP/TIMP ratios (such as 
the MMP-2/TIMP-2 and MMP-14/TIMP-2 ratios) could serve as 
more dependable diagnostic biomarkers (19). Notably, TIMP-4 
expression is upregulated in the brain tissue of patients with CAA but 
is downregulated in CSF and elevated in serum, indicating a complex 
regulatory mechanism. The decline in TIMP-4 expression in CSF may 

FIGURE 1

Flow diagram of the selection process.
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TABLE 2  Characteristics of the included studies.

Author/Year Country Study design Intervention/control (n) Sample Outcome Result

Jäkel et al. (2024) (31) Nederland Cross-sectional study CAA (n = 57/38) vs. controls (n = 42/37) Brain tissue, CSF, and serum TIMP-4 In comparison with the findings in the control group, 

TIMP-4 expression in the cerebral blood vessels of 

CAA patients increased and was correlated with the 

severity of CAA; TIMP-4 levels in the CSF decreased 

and TIMP-4 levels in the serum increased.

Xia et al. (2021) (32) China Case–control study CAA-ICH (n = 68) vs. healthy controls (n = 69) Serum MMP-2, MMP-3, and MMP-9 In comparison with the findings in the control group, 

the levels of MMP-2 in CAA-ICH patients decreased 

significantly, while those of MMP-9 significantly 

increased. MMP-3 levels showed no significant 

differences between the two groups.

Jäkel et al. (2020) (33) Nederland Case–control study CAA-ICH (n = 11) vs. CAA-NH (n = 18) vs. 

Controls (n = 11)

Brain tissue MMP-9, TIMP-3 In comparison with the findings in the control group, 

the MMP-2 level in patients with CAA-ICH 

significantly decreased, while the MMP-9 level in 

patients with CAA was significantly higher than that 

in patients without CAA. In comparison with patients 

showing CAA-NH, those showing CAA-ICH showed 

higher MMP-9 expression in the cerebral vessels and 

lower expression of TIMP-3.

Manousopoulou et al. 

(2017) (34)

UK Cohort study CAA (n = 7) vs. Controls (n = 7/5) Brain tissue TIMP-3 TIMP-3 expression and localization in brain tissue 

were significantly upregulated in the vascular walls of 

patients with CAA in comparison with young and 

elderly controls, and were co-localized with Aβ 

deposition.

Tanskanen et al. (2011) 

(35)

Finland Cohort study CAAH (15/36) vs. Controls (2/19) Brain tissue MMP-19, MMP-26 The correlation between MMP-19 and cerebral 

hemorrhage depended on the presence of CAA, while 

MMP-26 was associated with CAA but not with 

cerebral hemorrhage.

CAA, Cerebral amyloid angiopathy; CAA-ICH, Cerebral amyloid angiopathy with intracerebral hemorrhage; CAA-NH, Cerebral amyloid angiopathy without intracerebral hemorrhage; CSF, Cerebrospinal fluid; MMP, Matrix metalloproteinase; TIMP, Tissue inhibitor of 
metalloproteinase.
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TABLE 3  Summary of MMP and TIMP expression in cerebrovascular and body fluid biomarkers 

in patients with CAA and CAA-ICH included in the study.

Source of 
the sample

CAA vs. non-CAA CAA-ICH vs. 
CAA-NH

Brain 
tissue

CSF/
Serum

Brain 
tissue

Serum

MMPs

MMP-2 N. A. N. A. N. A. ↓

MMP-3 N. A. N. A. N. A. N. A.

MMP-9 ↑ N. A. N. A. ↑

TIMPs
TIMP-3 ↑ N. A. ↓ N. A.

TIMP-3 ↑ ↓/↑ N. A. N. A.

CAA, Cerebral amyloid angiopathy; CAA-ICH, Cerebral amyloid angiopathy with 
intracerebral hemorrhage; CAA-NH, Cerebral amyloid angiopathy without hemorrhage; 
CSF, Cerebrospinal fluid; MMPs, Matrix metalloproteinases; N. A., Not assessed; TIMPs, 
Tissue inhibitors of metalloproteinases.

have diagnostic value; however, its exact significance and the underly-
ing reasons for the difference in expression between brain tissue and 
CSF warrant further elucidation in future studies (31). By showing 
that MMP inhibition confers cerebrovascular protection against CAA-
associated damage (22), the preclinical evidence provided a theoretical 
basis for exploring MMPIs as potential therapeutic agents for 
CAA. Future efforts should focus on developing highly selective inhib-
itors of key MMPs, such as MMP-9, and on evaluating the efficacy of 
existing drugs, including tetracyclines, in CAA models (27).

This systematic review had several limitations. First, an important 
consideration arising from this review was whether the observed 
MMP/TIMP dysregulation is a direct consequence of cerebrovascular 
Aβ deposition (CAA pathology) or if it is also influenced by concur-
rent parenchymal Aβ pathology, as commonly observed in AD. Most 
of the included studies focused on cohorts defined by the CAA crite-
ria; however, given the high co-occurrence of CAA and AD, complete 
dissociation of vascular and parenchymal Aβ effects remains challeng-
ing. Second, a major limitation of this review was the small sample size 
of the included original studies, which diminished the statistical 
power of individual findings and weakened the robustness of the exist-
ing qualitative evidence base. Third, the large variations in the clinical 
manifestations and pathological backgrounds of the patients included 
in the study resulted in substantial heterogeneity, limiting the scope to 
perform quantitative pooled analysis. Finally, inconsistencies in CSF 
sample-collection methods and times may have influenced the results 
for measurement of protease expression levels.

On the basis of these findings, the following directions are recom-
mended for future research. First, investigations using designs that 
explicitly compare pure CAA, pure AD, and mixed-pathology cases, 
together with spatially resolved molecular analyses, are required to 
elucidate the specific contribution of vascular Aβ to MMP/TIMP 
imbalances. This distinction is crucial for assigning biomarker changes 
and therapeutic targets specifically to CAA. Second, to develop highly 
selective inhibitors, future studies should aim to identify the MMP 
types that play key roles in CAA (36). Third, the optimal timing of 
early intervention requires exploration, and biomarkers should be used 
to guide treatment (16). Reliable biomarkers, including CSF and imag-
ing techniques, may play an important role in this process (19, 31). 
Fourth, studies should focus on improving the permeability of drugs 
to the BBB by, for example, using delivery systems that target transfer-
rin receptors (37). Finally, randomized double-blind 

placebo-controlled trials with long-term follow-up data are essential 
for assessing the effects of MMPIs on disease recurrence and long-term 
prognosis.

5 Conclusion

The studies reviewed in this paper indicate dysregulation of 
MMPs/TIMPs in CAA. Although MMP/TIMP levels in brain tissue 
and CSF show potential as biomarkers, the existing evidence is inad-
equate to support the clinical use of these parameters. Future studies 
with more refined designs, larger sample sizes, and clearer pathologi-
cal stratification are required to clarify the underlying mechanisms 
and determine whether MMPs/TIMPs can serve as reliable diagnostic 
tools or therapeutic targets for CAA.
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