
Frontiers in Neurology 01 frontiersin.org

Validating wearable step counts 
in multiple sclerosis research: a 
replication study
Myla D. Goldman 1, Shanshan Chen 2, Bhavana Kunisetty 3, 
Jeffrey M. Gelfand 3, Bruce A. C. Cree 3 and Valerie J. Block 3,4*
1 Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, VA, 
United States, 2 Department of Biostatistics, School of Public Health, Virginia Commonwealth 
University, Richmond, VA, United States, 3 Division of Neuroimmunology and Glial Biology, 
Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, 
San Francisco, CA, United States, 4 Department of Physical Therapy and Rehabilitation Science, 
University of California, San Francisco, San Francisco, CA, United States

Introduction: For people with multiple sclerosis (MS), mobility impairment is common 
and a significant contributor to reduced quality of life. With advancements in wearable 
technology, step count data has emerged as a promising method to track mobility 
and monitor functional decline. However, studies comparing the replicability of 
wearable mobility data using varying devices remain limited in MS populations.
Methods: This study investigates the reliability of step count data and its 
associations with clinical outcomes in MS patients using two independent 
cohorts with different wearable devices: California (CA) (n = 97 Fitbit wrist 
sensor, 4-week wear) and Virginia (VA) (n = 61; ActiGraph hip sensor, 7-day wear). 
We analyzed correlations between average daily step counts and common MS 
clinical measures [disability: Expanded Disability Status Scale (EDSS); walking 
speed: Timed 25-Foot Walk (T25FW)] as well as patient-reported outcomes (12-
item MS walking scale, MSWS-12, Modified Fatigue Impact score, MFIS).
Results: Analysis of the VA cohort revealed similar average daily step counts to 
those seen in the CA cohort (6,010 vs. 5,478 steps/day). Step count variability 
(standard deviation) decreased with increasing EDSS in both cohorts. Step counts 
in the VA cohort were significantly correlated with EDSS (r = −0.34), T25FW 
(r = −0.58), MSWS-12 (r = −0.57), and MFIS (r = −0.45), similar to findings from 
the CA cohort. Additionally, within-subject reliability over 7 days was moderate 
(ICC = 0.599), with high correlations between 4-day and 7-day averages (r ≥ 0.98).
Discussion: The step count analyses from two different wearable devices show 
replicable associations with clinical and patient-reported outcomes in MS, 
highlighting their promise as digital biomarkers for clinical monitoring and care, 
rehabilitation, and patient self-management.
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Introduction

Multiple Sclerosis (MS) is an autoimmune disorder of the central nervous system that results 
in multi-faceted neurologic impairment and loss of function (1). Although many domains are 
impacted by MS, among the most common and significant for patients are limitations in mobility 
(2). These mobility changes can significantly impact a person with MS’s quality of life, independence, 
and ability to participate in daily activities (3). Improved understanding and validation of outcome 
measures focused on mobility in MS are crucial for optimization of clinical management, targeted 
interventions, and supporting patient self-management and education. Validated in-clinic outcome 
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measures are commonly applied in clinical research, but there has been 
growing interest in and application of wearable technology as a tool to 
understand the real-world impact of walking impairment in MS beyond 
in-clinic assessments (4–7). These forms of data provide information 
beyond the structured clinical environment and enhance our 
understanding of the day-to-day impact of MS, and have the potential to 
serve as early indicators of change in a patient’s disability status. Despite 
their growing use, validation of wearable devices in people with MS 
(pwMS) remains limited, particularly in examining whether findings are 
replicable across different devices and geographically separate cohorts.

In MS, and other neurological disorders, research has established 
that the step count metrics from remote wearable activity monitoring 
devices are associated with disability levels [as measured by the 
Expanded Disability Status Scale (EDSS)], walking speed [via the Timed 
25-Foot Walk (T25FW)] and patient-reported disease impact outcomes 
[e.g., Multiple Sclerosis Walking Scale (MSWS-12)] (8–10). These 
objective measurements offer potential early indicators of functional 
decline, enabling more timely and personalized interventions. In 2019, 
we published a foundational study to demonstrate the utility of wearable 
metrics in a California-based cohort [CA], using data from wrist-worn 
Fitbit devices to characterize step count patterns in MS patients (11, 12). 
The findings showed that daily step counts were significantly correlated 
with EDSS, T25FW, MSWS-12, and fatigue severity. However, 
independent replication of these findings in different patient populations 
and with a broader range of devices remained a research gap.

To address this gap, we  aimed to replicate and validate these 
findings through secondary analysis of an independent cohort from a 
different geographic location, employing a different wearable device 
(ActiGraph GT3-X accelerometer) in a Virginia-based cohort [VA] 
(13). In comparing step count metrics and their relationship to clinical 
and patient-reported outcome measures across cohorts with differing 
characteristics, devices, and data collection protocols, this study aimed 
to assess the generalizability and robustness of step count data as a 
valuable tool for supporting clinical management, rehabilitation, and 
education/self-management in MS.

Methods

We obtained the original activity data from the CA (11, 12) and 
VA (13) cohorts, harmonized overlapping variables collected in both 
studies, and conducted secondary data analyses to replicate analyses 
in the CA cohort using the VA dataset (13). For detailed descriptions 
of data collection procedures, see the CA (11, 12) and VA (13) 
published studies. Below, we provide a brief overview of the two study 
protocols and variables analyzed.

California (CA) cohort

A year-long study that recruited 99 relapsing or progressive MS 
patients from the University of California, San Francisco (UCSF) MS 
Center between July 2015 and April 2016. Recruitment was stratified 
by EDSS had a target range of EDSS 0–6.5. Clinical and patient-
reported outcome (PRO) measures included EDSS, the MSWS-12, the 
T25FW, and the 5-item Modified Fatigue Impact Scale (MFIS-5). At 
study entry, participants were instructed to wear a Fitbit flex 
accelerometer on their nondominant wrist as much as possible for 

4 weeks except while swimming. Participants were trained on set-up 
and management (recharging the device every 5–8 days) of the devices.

Virginia (VA) cohort

A 2-year longitudinal study that recruited 62 MS and 40 healthy 
controls at the University of Virginia (2010–2015). MS participants 
were recruited from the Neurology outpatient clinic and had a 
confirmed diagnosis of either relapsing or progressive MS (13). Each 
subject completed five visits, at which clinical, PRO and physical 
activity data were collected. Overlapping measures with CA cohort, 
included EDSS, MSWS-12, T25FW, and MFIS. At each visit, 
participants wore the ActiGraph GT3X accelerometer; (ActiGraph, 
FL, United States) on their non-dominant hip for 7 consecutive days 
while awake (excluding swimming or bathing). Compliance was 
defined as ≥10 h/day for ≥3 valid days of weartime. Daily step counts 
were calculated by actigraphy data using ActiLife. For replication 
purposes, only baseline visit data of MS participants were included; 
data from healthy controls and follow-up visit were excluded.

Statistical analysis

First, we compared demographic and EDSS distributions across 
cohorts using descriptive statistics. Next, we analyzed the step counts 
from the VA’s ActiGraph dataset. Daily activity counts <100 were 
considered unreliable (e.g., due to non-wear) and excluded from 
analysis. Following analyses from the CA cohort, we visualized:

	(1)	 Step counts by EDSS category,
	(2)	 Average daily step counts across all subjects,
	(3)	 Pearson correlations between the average daily step counts of 

n consecutive days (n = 1,2,3,…,6) and the 7-day averages.

We also estimated the intraclass correlation coefficients (ICC) 
with a 95% confidence interval (CI) to determine within-subject test–
retest reliability of the repeated measures during the 7-day in-home 
data collection. Lastly, Spearman correlations were calculated among 
pairs of the following variables: age, body-mass index (BMI), disease 
duration since symptom onset, disease duration since diagnosis, 
EDSS, Paced Auditory Serial Addition Test (PASAT), T25FW, 
Modified Fatigue Impact Scale Total (MFIS Total), MSWS-12 Total, 
and daily step counts. Unlike the CA cohort, which assessed step 
counts using both Fitbit and ActiGraph devices, the VA cohort used 
only ActiGraph. Therefore, Bland–Altman analyses comparing the 
agreement of two devices were not analyzed. All analyses were 
conducted in R Studio (R version 4.4.3; R Studio Inc., Boston, 
Massachusetts).

Results

EDSS and Step Counts

A total of 61 of the MS participants in the VA cohort had an EDSS 
score and step count data and the distribution is shown in Table 1. 
Overall, this cohort had relatively lower disability measured by EDSS 

https://doi.org/10.3389/fneur.2025.1709389
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Goldman et al.� 10.3389/fneur.2025.1709389

Frontiers in Neurology 03 frontiersin.org

(aligned with the inclusion criteria), with one participant having the 
highest EDSS of 4.5. This is different from the CA cohort (97 
participants with MS had both EDSS and step count data), where 48% 
of the cohort had an EDSS no less than 4.5, indicating that they had 
more MS related neurologic disability.

The average daily step count in the VA cohort was 6,010 steps per 
day, which is similar to the average daily step count in the CA cohort 
(∼5,478 steps per day), and is consistent with previous studies in MS 
overall (14–16).

In the VA cohort, step count variability was greatest in the lower 
EDSS range (0–1.5; SD 2,900 steps, range 4,910–15,000) and lowest in 
the EDSS 3.5–4.5 group (SD 1,650 steps, range 1,830–6,110). This 
pattern is consistent with the findings from CA cohort, which observed 
a wider step count range among participants with lower disability (EDSS: 
0–1.5; 2,286–18,648 steps per day) and decreasing variability with higher 
EDSS scores. However, the VA cohort included only 5 participants in the 
higher EDSS range (4.0–4.5), limiting interpretation of variability in the 
higher disability (EDSS) groups (see Figure 1; Table 2).

The association between EDSS and Daily Steps
The spearman correlation between average daily steps and EDSS 

was lower in VA, (r = −0.34, p = 0.005; Figure 2) compared with CA 
(r = −0.71, p < 0.001).

Reliability of 7-day Step Counts

In VA study, the within-subject ICC of daily steps was 0.60 (95% 
CI: 0.48 ~ 0.69). Similar to the CA study, we did not observe trends of 
reactivity within the 7-day data collection (Figure  3a). We  also 
computed Pearson correlations of the average daily step count of n 
consecutive days and the average step count of 7 days (Figure 3b). 
Average step counts from 4 days correlated strongly with 7-day data 
(r ≈ 0.98), increasing to >0.99 with 5 days. Thus, while 7-day 
actigraphy remains standard, ≥4 days of data seem to provide reliable 
estimates in MS.

Spearman correlations

Spearman correlations between MSFC, EDSS and steps in VA cohort 
are shown in Figure 2, with blank cells indicating the correlations are not 
significant (p > 0.05). Steps are significantly associated with walking 
outcomes with strongest correlation with T25FW (r = −0.58, p < 0.0001), 
followed by MSWS (r = −0.57, p < 0.0001), and MFIS (r = −0.45, 
p < 0.0001). This is comparable to the CA cohort findings: using 
Spearman’s correlations, wherein average daily step counts were strongly 

associated with T25FW (r = −0.65, p < 0.001), MSWS scores (r = −0.65, 
p < 0.001) and MFIS (r = −0.41, p < 0.01).

Discussion

We investigated the replicability of step count measures across two 
geographically distinct MS cohorts using different activity monitoring 
devices. Mirroring the approach used in the CA cohort (11, 12) study 
of 97 participants with MS using wrist-worn Fitbit activity monitors, 
we replicated key findings in the VA cohort (13) of 61 participants 
with MS with less severe disability, assessed using the hip-worn 
ActiGraph sensors. Despite the differences in device type, wear 
location, and data collection site, both cohorts showed comparable 
mean step counts and variability across the comparable EDSS groups. 
We  also demonstrated step counts demonstrated consistent and 
significant correlations to traditional clinic-based (i.e., EDSS, T25FW) 
and patient-reported (i.e., MSWS-12, MFIS) outcome measures.

Both studies demonstrated that at lower EDSS levels, the range 
and between-subject variance of step counts are larger than those at 
higher EDSS levels, suggesting the impact of MS on real-world 
mobility varies more among those with less mobility impairment 
due to MS. This is likely related to the disassociation between 

TABLE 1  Step count by cohort and disability.

EDSS / 1 1.5 2 2.5 3 3.5 4 4.5 / / / /

VA cohort No. of subjects / 2 8 22 5 11 8 4 1 / / / /

No. of subjects 10 46 5

EDSS 0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

CA cohort No. of subjects 8 4 2 9 6 3 6 14 4 4 4 19 14

No. of subjects 14 24 14 12 19 14

FIGURE 1

Average daily step counts for each EDSS group in the VA cohort.
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capacity and behavior, where behavior becomes a more relevant 
factor among those with greater capacity (17). This higher variance 
in step counts among participants with lower EDSS likely 
contributed to the weaker correlation between EDSS and step counts 
observed in VA cohort (r = −0.34) compared with the CA cohort 
(r = 0.56). As the VA cohort included a greater proportion of 
participants with less severe disability, step counts were more 
heterogeneous, reducing the strength of the association. Similarly, 
the lower within-subject reliability in VA cohort (ICC = 0.59, vs. 
0.74 in CA cohort) may also stem from this step count variability at 
lower EDSS levels.

In both studies, step count correlated significantly with T25FW, 
MSWS-12, and MFIS at comparable levels (0.4–0.6). Among these, 
the strongest association was with T25FW (r = −0.58 in VA cohort, 

r = −0.65 in CA cohort), indicating that clinic-based walking speed 
reflects real-world mobility. Step counts were also strongly 
correlated with patient-reported walking ability (MSWS-12), 
though the correlation was slightly weaker in VA cohort (r = −0.57 
vs. –0.65). Patient reported fatigue as measured by the MFIS, was 
comparably associated with step counts (r = −0.45 in VA cohort, 
and r = −0.44 in CA cohort), suggesting that fatigue experienced 
by pwMS impacts real-world mobility. From a clinical perspective, 
the results highlight the potential to establish thresholds of 
meaningful change in daily activity, facilitating interpretation of 
longitudinal changes and guiding individualized 
rehabilitation strategies.

This study had several limitations. First, as a secondary data 
analysis, the VA cohort did not match the CA cohort in terms of 

FIGURE 2

Spearman correlations between demographics, clinical outcomes (EDSS and T25FW), patient-reported outcomes (MFIS and MSWS-12) and daily 
step counts.

TABLE 2  Average step count by disability group; VA cohort.

Steps EDSS 0.0–1.5 (N = 10) EDSS 2.0–3.5 (N = 46) EDSS 4.0–4.5 (N = 5) Overall (N = 61)

Mean (SD) 8,070 (2,900) 5,770 (2,690) 3,920 (1,650) 6,010 (2,830)

Median [Min, Max] 7,370 [4,910, 15,000] 5,480 [1,670, 16,100] 3,510 [1,830, 6,110] 5,540 [1,670, 16,100]

Missing 0 (0%) 3 (6.5%) 0 (0%) 3 (4.9%)
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disability range (EDSS levels). The higher proportion of participants 
with lower EDSS in the VA cohort increased variability in step counts. 
Such heterogeneity across cohorts may introduce bias, influencing 

generalizability of the study. In addition, a few analyses could not 
be tested for replication due to unavailable variables, i.e., only the VA 
collected 9-Hole peg test, Symbol Digit Modalities Test, and only CA 

FIGURE 3

(a) Average daily step counts per day across all subjects. (b) Pearson correlations between the average daily step count of successive days and the 
average step count of the 7-day period.
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cohort collected patient reported bladder, bowel disability surveys 
and the Timed-Up and Go; mobility and balance test. Future studies 
should ensure that such measures (i.e., upper extremity function) are 
harmonized across cohorts so that replication of findings, including 
those observed here, can be evaluated across the full spectrum of 
disability, strengthening generalizability. Second, activity monitoring 
in the VA cohort followed the standard 7-day protocol, rather than 
the 4-week collection used by the CA cohort, potentially limiting the 
ability to capture longer-term activity patterns contributing to the 
lower observed ICC. Still, the CA cohort observed no reactivity and 
found that monitoring durations of about 2 weeks yielded stable 
results, suggesting limited impact of the shorter protocol. Thirdly, 
device placement differed (Fitbit wrist, ActiGraph waist), which may 
influence results; however, the CA cohort’s comparison over a 2-min 
walk and 7-day home monitoring showed no systematic bias between 
devices (Bland–Altman analysis). Despite these limitations, 
we believe comparison of these different cohorts provides valuable 
information regarding the replicability and application of wearable 
devices in MS populations.

In summary, this study demonstrates that step count measures are 
replicable across two geographically distinct MS cohorts despite 
differences in device type, wear location, and study design. By 
confirming consistent associations with both clinical and patient-
reported outcomes, our findings strengthen the validity of wearable-
derived mobility metrics in MS. These results support the use of digital 
mobility data as a practical tool for monitoring disease impact and 
advancing patient-centered care.
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