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Background: Patients with primary hypertension are always comorbid with 
hyperuricemia. Serum uric acid exhibits a dual role in cognitive function. 
Evidence regarding the relationship between uric acid (SUA) and cognitive 
dysfunction in specific hypertensive patients remains inconsistent.
Objective: To develop a predictive model to evaluate the association between 
serum uric acid level and mild cognitive impairment (MCI) in hypertensive 
populations.
Methods: This cross-sectional study involved 420 middle-aged and elderly 
hypertensive patients. Cognitive function was evaluated using MMSE and MoCA. 
Univariate and multivariate logistic regression, restricted cubic splines (RCS), 
and SHAP analysis were employed.
Results: In MCI group, diabetes prevalence, hyperuricemia prevalence, 
arteriosclerosis prevalence, education level, MMSE score, MoCA score, AD8 
score and HbA1c were higher, while weight, BMI, SUA, TC, LDL, Alb, TT3, TSH, 
and FT3 were lower. After adjusting for confounding factors, it was found that 
the SUA level (OR = 0.754, 95%CI: 0.578–0.985, 0.038) could still be used as 
an independent protective factor for MCI. Subgroup analyses indicated effects 
varied significantly with diabetes history and regular exercise. Shap values 
showed that SUA is the fifth most related factor, with more significant ones 
including age, education level, albumin and thyroxin. A nonlinear association 
was found between SUA and MCI risk, with an inflection point at approximately 
450 μmol/L.
Conclusion: SUA has a certain correlation with MCI in the middle-aged 
and elderly hypertensive populations. Although SUA is considered as a 
neuroprotective agent, its neuroprotective function gradually diminishes and 
may even become detrimental when SUA higher than a threshold. These results 
suggest maintaining SUA within an optimal range may help mitigate MCI risk in 
hypertensive populations.
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1 Introduction

The accelerating pace of aging has become an undeniable social 
trend, accompanied by a significant rise in the incidence of cognitive 
dysfunction disorders. Among these, dementia, particularly 
Alzheimer’s disease (AD), has emerged as a major challenge in the 
global public health domain that remains to be  overcome. 
Epidemiological studies indicate that in developed countries, the 
prevalence of dementia among the elderly population aged 65 and 
above has climbed to 5–10% (1), with AD patients accounting for 
approximately half of these cases. Numerous factors related to 
dementia, including but not limited to genetics, gender differences, 
aging, educational level, lifestyle habits, and hypertension (2). Among 
these, hypertension is considered a significant controllable factor for 
cognitive dysfunction. As a common chronic disease, long-term 
uncontrolled hypertension can induce minor pathological changes in 
cerebrovascular structures and the blood–brain barrier (3, 4) through 
oxidative stress, exacerbating AD pathology and cognitive decline. 
Preventing cognitive dysfunction in hypertensive patients is of great 
significance. Identifying related risk factors for cognitive dysfunction 
and implementing effective prevention and treatment strategies will 
yield substantial clinical benefits.

Hyperuricemia is commonly observed in patients with primary 
hypertension, with relevant data indicating that approximately 38.7% 
of hypertensive patients also have increased serum uric acid (SUA) 
levels (5). Uric acid exhibits antioxidant properties, effectively 
inhibiting oxidative stress in neurons and providing protective effects 
for the brain (6). Some studies have found that subjects with gradually 
increasing SUA experience brain tissue atrophy, impaired 
microstructural integrity, and poorer cognitive function. However, 
decreased SUA levels are also proved associating with brain tissue 
atrophy (7). Nowadays, research on the relationship between uric acid 
and cognitive dysfunction remains limited, and a unified academic 
consensus has yet to be established. Most existing studies primarily 
focus on the general population, while discussions on the relationship 
between serum uric acid levels and cognitive impairment in specific 
groups, such as middle-aged and elderly hypertensive patients, remain 
relatively insufficient.

In this study, we  constructed predictive model to assess the 
relationship between SUA and cognitive impairment using 
multimodal data, including ultrasound, MRI, and pathological 
indicators that are routinely collected in clinical settings.

2 Methods

2.1 Study cohort

This cross-sectional research analyzed clinical data from 434 
middle-aged and elderly hypertension patients who visited the 
Physical Examination Center and Cognitive Clinic of the First 
Affiliated Hospital of Wenzhou Medical University between July 
2023 and December 2024. This study was approved by the Ethics 

Committee of the First Affiliated Hospital of Wenzhou Medical 
University (KY2023-214). Inclusion criteria were as follows: (1) 
Age 45 years or older; (2) Meeting the diagnostic criteria for 
hypertension as defined in the 2024 Guidelines for the Prevention 
and Treatment of Hypertension (8), systolic blood pressure 
≥140 mmHg and/or diastolic blood pressure ≥90 mmHg, use of 
antihypertensive medication, or self-reported history of 
hypertension; (3) fully understood the purpose, procedures, and 
potential risks of this evaluation survey and voluntarily signed an 
informed consent form. Exclusion criteria included: (1) missing 
data over 20%; (2) presence of psychiatric abnormalities or 
neurological dysfunction that would prevent cooperation with 
scale assessments; (3) use of medications that may affect serum 
uric acid levels within the past month; (4) comorbid several 
central nervous system diseases or other systemic conditions 
affecting neurological function. Sample size estimation was 
performed based on the Events Per Variable (EPV) criterion for 
logistic regression (9).

2.2 Clinical data collection

General information of the study participants was collected 
through questionnaires, primarily including name, age, gender, 
education level, marital status, place of residence, exercise habits, 
dietary habits, past medical history, medication usage, family history 
of AD, smoking status, and alcohol consumption. Physical 
examination data were obtained during the health check-ups, 
including height, weight, waist circumference, hip circumference, and 
blood pressure. Body Mass Index (BMI) was calculated based on 
height and weight. Fasting venous blood samples were collected from 
all participants in the morning and analyzed by the Department of 
Laboratory Medicine at the First Affiliated Hospital of Wenzhou 
Medical University. Specific laboratory data refers to Table 1. All the 
patients underwent dual-energy X-ray absorptiometry (DXA), head 
magnetic resonance imaging(MRI), carotid artery ultrasound. DXA 
was used to assess bone metabolism status, categorizing patients into 
normal, osteopenia, or osteoporosis. Head MRI was used to rule out 
intracranial organic lesions while simultaneously assessing the 
presence of white matter changes. Carotid artery ultrasound was 
performed to evaluate arterial stiffness and exclude vascular 
malformations and stenosis.

The MMSE scale and the MoCA scale were used to assess the 
cognitive function of the participants. The participants had no prior 
exposure to these scales before the test. All evaluators received 
uniform training, and the testing environment was kept quiet. Both 
scales have a total score of 30 points. Cognitive impairment was 
defined as follows (10): an MMSE or MoCA score ≤17 for illiterate 
individuals, an MMSE or MoCA score ≤20 for those with primary 
school education, and an MMSE or MoCA score ≤24 for those with 
junior high school education or higher. Otherwise, cognitive function 
was considered normal. Meanwhile, AD8 scale and SCD9 scale 
were used.
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TABLE 1  Baseline characteristics.

Characteristics Non-MCI group (N = 139) MCI group (N = 281) Statistic P-value

Gender (male) 66(47.48%) 133(47.33%) 0.001 0.977

History

 � Hypertension 71(51.08%) 124(44.13%) 1.807 0.179

 � Diabetes 92(66.19%) 139(49.47%) 10.505 0.001*

 � Hyperlipemia 83(59.71%) 175(62.28%) 0.258 0.611

Family history of AD 20(14.39%) 27(9.61%) 2.138 0.144

Smoking 64(46.04%) 136(48.4%) 0.207 0.649

Drinking 78(56.12%) 170(60.5%) 0.739 0.390

Regular exercise 69(49.64%) 142(50.53%) 0.030 0.863

Hyperuricemia 103(74.1%) 233(82.92%) 4.519 0.034*

Arteriosclerosis 53(38.13%) 75(26.69%) 5.743 0.017*

SBI 42(30.22%) 97(34.52%) 0.778 0.378

Education 8.776 0.012*

 � Illiterate 42(30.22%) 104(37.01%)

 � Primary school 59(42.45%) 134(47.69%)

 � ≥Middle school 38(27.34%) 43(15.3%)

Preference for

 � Sweet foods 3.987 0.136

 � Occasionally 17(12.23%) 19(6.76%)

 � Rarely 58(41.73%) 115(40.93%)

 � Daily/often 64(46.04%) 147(52.31%)

Beverages 0.889 0.641

 � Occasionally 4(2.88%) 13(4.63%)

 � Rarely 30(21.58%) 55(19.57%)

 � Daily/often 105(75.54%) 213(75.8%)

Coffee 3.753 0.153

 � Occasionally 5(3.6%) 7(2.49%)

 � Rarely 31(22.3%) 43(15.3%)

 � Daily/often 103(74.1%) 231(82.21%)

Tea 0.371 0.831

 � Occasionally 11(7.91%) 27(9.61%)

 � Rarely 31(22.3%) 59(21%)

 � Daily/often 97(69.78%) 195(69.4%)

Sleep duration 2.836 0.242

 � 4–7 h 9(6.47%) 24(8.54%)

 � > = 7 h 30(21.58%) 43(15.3%)

 � ≤4 h 100(71.94%) 214(76.16%)

Exercise frequency 1.033 0.596

 � 2–3 times per month 6(4.32%) 7(2.49%)

 � 1–7 times per week 14(10.07%) 29(10.32%)

 � Never 119(85.61%) 245(87.19%)

DXA 2.673 0.263

 � Normal 54(38.85%) 113(40.21%)

 � Osteopenia 65(46.76%) 112(39.86%)

 � Osteoporosis 20(14.39%) 56(19.93%)

(Continued)
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2.3 Model development and interpretation

Python (Version 3.7) were used for model development, 
evaluation and visualizations. Due to the unbalanced outcomes, the 
research participants were stratified randomly divided into a training 
set and an internal validation set at a ratio of 7:3 to better the models. 
Performance metrics included the area under the receiver operating 
characteristic (ROC) curve (AUC).

To comprehensively evaluate the role of serum uric acid (SUA) in 
dementia and to gain a marginal understanding of its impact, 
we employed SHapley Additive exPlanations (SHAP) values. Mean 
absolute SHAP values enabled precise interpretation by quantifying 
the contribution of individual features to each patient’s risk. Variance 

contribution values quantifies each feature’s role in driving prediction 
variability across different samples. Convergence of these two 
independent metrics enhance clinical transparency and supporting 
personalized decision-making (10). Also, SHAP values were applied 
to rank the importance of input variables and interpret model effect. 
In contrast, SHAP values provide model interpretation with vectorial 
values, considering all possible combination of features.

2.4 Statistical analysis

Python 3.7 software was used for all the statistical analysis. The 
Kolmogorov–Smirnov method was used to test the normal 

TABLE 1  (Continued)

Characteristics Non-MCI group (N = 139) MCI group (N = 281) Statistic P-value

MMSE score 27(26, 28) 22(18, 26) 32388.000 0.000***

MOCA score 25(21, 26.5) 16(12, 20) 34034.500 0.000***

AD8 score 2(0, 3) 3(1, 4) 14108.500 0.000***

SCD9 score 6(4, 7) 6(4, 6.5) −0.038 0.970

Age 55(50, 64) 62(54, 71) 13556.000 0.000***

Height 164(157, 169) 162(157, 169) 0.478 0.633

Weight 63.7(58.1, 72.4) 61(55, 69.3) 23089.000 0.002**

BMI 24.3(22.5, 26.25) 23.4(21.3, 25.3) 23408.500 0.001**

Waist circumference 87(81, 92) 86(79, 91) 1.319 0.188

Hip circumference 96(91.25, 100) 95(90, 99) 1.005 0.316

SHP 131(118, 144.5) 136(122, 150) −1.715 0.087

DHP 78(70, 85.5) 79(72, 87) −1.193 0.234

SUA 341(278, 394.5) 308(266, 375) 21947.000 0.039

VFA 79.3(56.5, 101.7) 75.2(53, 92) 1.165 0.245

HbA1c 5.8(5.6, 6.4) 6.3(5.8, 7.7) 12886.500 0.000***

TC 5.15(4.4, 5.9) 4.79(3.92, 5.7) 22578.500 0.009**

TG 1.36(1.06, 1.995) 1.4(1, 1.93) −0.193 0.847

HDL 1.27(1.09, 1.47) 1.22(0.98, 1.44) 21604.000 0.076

LDL 3.18(2.645, 3.855) 2.91(2.26, 3.61) 22810.500 0.005**

Alb 43.6(41.85, 45.25) 42.1(38.7, 44.2) 25497.000 0.000***

Cr 70(58.5, 82) 65(55, 81) 0.033 0.973

eGFR 96.6(83.25, 104.55) 96.2(83, 105.3) 1.228 0.220

HCY 11(9, 13) 10.2(9, 13) −0.512 0.609

Thyroxin 119.44(104.915, 133.405) 114.55(102.09, 130.75) 1.801 0.072

TT3 1.5(1.275, 1.76) 1.37(1.15, 1.57) 24067.000 0.000***

TSH 1.72(1.15, 2.26) 1.49(1.02, 2.2) 21426.000 0.105

FT 11.36(9.995, 12.245) 11.27(10.04, 12.53) 0.051 0.959

FT3 5.05(4.66, 5.495) 4.7(4.25, 5.27) 24856.000 0.000***

TGA 0.9(0.9, 0.9) 0.9(0.9, 0.9) 1.461 0.145

TPO 0.7(0.3, 1.45) 0.7(0.4, 1.4) 0.214 0.831

Non-HDL-C 3.8(3.1, 4.7) 3.5(2.7, 4.4) 0.527 0.598

LpoAI 1.37(1.255, 1.59) 1.35(1.19, 1.59) 1.382 0.168

LpoB 1.01(0.845, 1.285) 0.99(0.81, 1.27) −0.267 0.790

*p < 0.05, **p < 0.01, ***p < 0.001.

https://doi.org/10.3389/fneur.2025.1708305
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al.� 10.3389/fneur.2025.1708305

Frontiers in Neurology 05 frontiersin.org

distribution of the continuous variables. Then the mean ± sd of the 
measurement data was used for the normal distribution, and the 
student test was used for the comparison between the groups. Metrical 
data that did not conform to normal distribution was expressed as 
median (interquartile range) [M (P25, P75)]; and Mann–Whitney U 
test was used for comparison between groups. The Categorical 
variables were expressed by the number of cases and percentage (%), 
and the comparison between groups was carried out by Chi-square 
test. Statistically significant differences were defined as p < 0.05.

Then, collinearity analysis was performed on indicators that 
collectively influence dementia and showed statistically significant 
differences in univariate analysis, along with SUA. The Pearson 
correlation coefficient <0.7 was considered indicative of no collinearity 
among the independent variables. To evaluate the relationship 
between SUA and dementia, multivariate logistic regression analysis 
was conducted. Subgroup analysis was conducted to investigate the 
impact of the SUA on the risk of dementia across different populations. 
To explore the potential nonlinear relationship between SUA and MCI 
risk in the hypertension population, we  used the restricted cubic 
spline (RCS) regression model to analyze the odds ratio (OR). The 
RCS model was implemented with 4 knots placed at the 5, 35, 65, and 
95th percentiles of the SUA distribution (202, 295, 359.9, and 
496.05 μmol/L, respectively).

3 Results

3.1 Characteristics of participants

A total of 553 middle-aged and elderly hypertensive patients were 
initially screened, of whom 420 met the inclusion criteria. Subjects 
were categorized by cognitive status into a mild cognitive impairment 
(MCI) group (n = 281) and a cognitively normal group (n = 139). Age 
ranged from 45 to 89 years, with a median of 60 (52, 69). In MCI 
group, diabetes prevalence, hyperuricemia prevalence, arteriosclerosis 
prevalence, education level, MMSE score, MoCA score, AD8 score 
and HbA1c were higher, while weight, BMI, SUA, TC, LDL, Alb, TT3, 
TSH, and FT3 were lower (p < 0.05). Table  1 summarizes the 
baseline characteristics.

3.2 Logistic regression analysis of the effect 
of SUA on MCI

Univariate analysis identified several related factors of MCI (p < 0.1), 
including history of diabetes, hyperuricemia, arteriosclerosis, education 
level, age, weight, BMI, SHP, HbA1c, TC, HDL, LDL, Alb, thyroxin, TT3, 
FT3. To avoid overfitting, correlated variables were removed using 
correlation analysis; a heatmap confirmed no strong correlations among 
retained variables (Figure 1). Twelve factors were incorporated into a 
multivariate logistic regression model with continuous variables 
standardized. The heatmap provided intuitive insights that there is no 
clear correlation between any two variables. When SUA was treated as a 
continuous variable, Model 1 (unadjusted) indicated that each standard 
deviation increase in SUA was associated with an 18.8% reduction in 
MCI risk (SUA: OR = 0.812, 95%CI: 0.670–0.985, p  = 0.000). The 
original scale OR value converted from standardized results: SUA: 
OR = 0.99777 (per 1-unit increase). Model 2 (adjusted for confounding 

factors) showed a 24.6% risk reduction per SUA standard deviation 
increase (OR = 0.754, 95%CI: 0.578–0.985, 0.038). The original scale OR 
value converted from standardized results: SUA: OR = 0.99698 (per 
1-unit increase). The results show in Table  2. ROC analysis was 
performed for each of the two models, and the resulting ROC curves are 
shown in Figure 2. The areas under the ROC curve were 0.801 and 0.584, 
respectively. A Hosmer-Lemeshow goodness-of-fit test was conducted 
for Model 2, which indicated good calibration (χ2 = 4.1636, p = 0.8421).

When SUA was categorized by quartiles, the risk of MCI in the Q2, 
Q3, and Q4 group was significantly decreased compared to that in the 
lowest quartile (Q1) in Model 1 (unadjusted). In Model 2 (adjusted), 
compared to Q1, Q2 had significantly elevated MCI risk (OR = 2.150, 
95%CI: 1.069 ~ 4.323, p = 0.032), while the higher quartile (Q3 and 
Q4) showed no significant difference (p > 0.05) (Table 2).

3.3 Subgroup analysis

Subgroup analyses and interaction tests were conducted based on 
the following stratifications: gender (male or female); history of 
diabetes (yes or no); history of hyperlipidemia (yes or no); family 
history of AD (yes or no); smoking history (yes or no); drinking history 
(yes or no); SBI (yes or no); regular exercise(yes or no); arteriosclerosis 
(yes or no); age (< 55 or ≥55); BMI (<23.9 or ≥23.9), SHP (<140 mmHg 
or ≥140 mmHg), DHP(<90 mmHg or ≥90 mmHg). Significant 
differences were observed between SUA and MCI across subgroups 
such as history of diabetes, family history of AD, drinking history, SBI, 
age and SHP (p < 0.05). Moreover, interaction effects were identified 
between SUA and history of diabetes and regular exercise (interaction 
p < 0.05). The results of the subgroup analysis are presented in Table 3.

3.4 Non-linear relationships between SUA 
and MCI risk

Multivariate logistic regression model using quartiles SUA 
indicated the relationship between SUA and MCI was influenced by 
multiple confounding factors and did not follow a simple linear 
pattern. To further investigate the potential nonlinear relationship, 
we employed a restricted cubic spline (RCS) model for fitting analysis 
and visualized the relationship. The results demonstrated that the 
association between SUA and MCI risk exhibited significant nonlinear 
characteristics with a critical inflection point observed at 
approximately 450 μmol/L. When SUA levels were below 450 μmol/L, 
higher SUA levels were associated with lower MCI risk. However, 
when SUA levels exceeded this threshold, this protective relationship 
was reduced and reversed, with elevated SUA levels becoming 
significantly associated with increased MCI risk (Figure 3).

3.5 Model interpretation with SHAP

SHAP were used to quantify the contribution of each feature to 
the risk model. Global interpretability was illustrated using SHAP 
summary bar plots (Figure  4A), which ranked features by their 
average importance: age, education, Alb, thyroxin, SUA. SHAP 
summary scatter plots (Figure  4B) further visualized how the 
magnitude and direction of feature values related to outcomes. Mean 
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FIGURE 1

Correlation heatmap showing relationships between variables. The color gradient reflects the correlation coefficients, with darker shades indicating 
stronger correlations.

TABLE 2  Logistic regression model.

Characteristics Model 1 Model 2

OR (95%CI) P-value OR (95%CI) P-value

SUA 0.812 (0.670 ~ 0.985) 0.000 0.754(0.578 ~ 0.985) 0.038*

Quartile

  Q1 – – – –

  Q2 4.684(2.854 ~ 7.687) 0.000 2.150(1.069 ~ 4.323) 0.032*

  Q3 1.946(1.309 ~ 2.893) 0.001 1.069(0.555 ~ 2.059) 0.841

  Q4 1.892(1.270 ~ 2.818) 0.002 0.647(0.318 ~ 1.319) 0.231

*p < 0.05, **p < 0.01, ***p < 0.001.
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Absolute SHAP Values and Variance Contribution showed in Table 4. 
And a strong consistency in the ranking of features between these two 
metrics were observed, indicating that the model could identify 
clinically relevant features stably.

Age exhibits the largest change in SHAP values, indicating it is a 
significant correlation with occurrence of MCI. Its high feature values 
(red points) correspond to positive SHAP values, suggesting a positive 
correlation with the outcome. The feature SUA shows negative SHAP 
values at high feature values (red points) but positive SHAP values at 
lower values (blue points), indicating an overall negative effect of SUA 
on the MCI model. Additionally, two typical examples are provided to 
illustrate the interpretability of the model. One example pertains to 
patients who developed MCI with a higher SHAP score (0.800) 
(Figure 4C), while the other example involves patients who did not 
develop MCI, exhibiting a lower SHAP score (0.299) (Figure 4D).

4 Discussion

In this study, a cross-sectional cohort analysis was conducted 
involving 420 middle-aged and elderly hypertensive patients, among 
whom 281 (66.9%) were assessed as having mild cognitive impairment 
(MCI). Preliminary univariate analysis and logistic regression model 
indicated a significant association between SUA and MCI, and SUA 
levels possess certain predictive value for the risk of MCI occurrence. 

SHAP value analysis revealed it to be the fifth most significant related 
factor. When SUA was treated as a continuous variable, particularly 
after adjusting for all confounding factors, an increase in SUA was 
negatively correlated with the risk of developing MCI (OR = 0.754, 
95% CI: 0.578–0.985, p = 0.038). When constructing a multivariate 
logistic regression model using quartiles, we  found that the 
relationship between SUA and MCI was significantly influenced by 
multiple confounding factors such as age, BMI, and diabetes status; 
and may be nonlinear relationship. Then, SUA was found to have a 
dual effect on MCI risk by the RCS analysis. The closer SUA is to this 
threshold, the stronger its protective effect on brain cognitive function. 
However, when SUA exceeds this threshold, its neuroprotective 
function gradually diminishes and may even become detrimental. 
This study identified SUA as an important independent factor for MCI 
occurrence in middle-aged and elderly hypertensive populations.

Hypertensive patients often comorbid with hyperuricemia. The 
promoting effect of hypertension on cognitive dysfunction may occur 
through oxidative stress, which induces biological changes in 
endothelial cells, disrupts the blood–brain barrier, and consequently 
reduces the clearance of soluble beta-amyloid oligomers from the 
central nervous system (11). This process promotes neuroinflammation 
and neurodegenerative changes, exacerbates Alzheimer’s disease (AD) 
pathology, and accelerates cognitive decline. In this study, only the 
second quartile (Q2) of SUA shows a significant protective association 
against MCI compared to the lowest quartile (Q1), while the Q3 and 

FIGURE 2

ROC curves comparing two models. Model 1 has an AUC of 0.584, and Model 2 has an AUC of 0.801. Cut-off points are marked at 0.74 and 0.80. The 
diagonal line represents random guessing with an AUC of 0.5.
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Q4 do not. Then, we hypothesize that this may indicate a “U-shaped” 
or “J-shaped” relationship between UA and MCI risk. At very low 
levels (Q1), the lack of UA’s antioxidant benefits might increase risk. 

At moderate levels (Q2), the neuroprotective antioxidant effects may 
be  optimal. However, at higher levels (Q3, Q4), the potential 
pro-oxidant, pro-inflammatory, or vascular risks of hyperuricemia 
might counteract and eventually negate its protective benefits.

Previous findings on the relationship between serum uric acid 
(SUA) levels and dementia, especially AD are often inconsistent. 
However, understanding the effect of SUA on MCI is critically 
important for preventing cognitive dysfunction. These divergent 
results imply a potential non-linear relationship between SUA and 
MCI (12), necessitating the application of more explainable and 
visually interpretable analytical methods to address this question. 
Nonetheless, standard logistic regression typically only reveals the 
global and average effects of variables. To overcome this limitation and 
comprehensively elucidate the complex relationship between SUA and 
MCI, this study innovatively integrates two advanced techniques — 
SHapley Additive exPlanations (SHAP) values and Restricted Cubic 
Splines (RCS), which are using widely in dementia risk researches (13, 
14). This combined approach aims to provide the most thorough and 
in-depth interpretation of SUA’s role from both global importance and 
local relationship morphology.

Then, uric acid is considered a double-edged sword, with studies 
suggesting a U-shaped relationship between SUA levels and 
neurological disorders (15). On one hand, SUA acts as a 
neuroprotective agent. It suppresses the neuroinflammatory cascade 
by modulating immune cell activity and inhibiting the release of 
inflammatory factors, thereby reducing neuronal damage. As an 
endogenous antioxidant, SUA scavenges oxygen free radicals and 
other reactive radicals in plasma, blocking oxidative chain reactions 
that confer neuroprotective properties (16). On the other hand, when 
SUA concentrations exceed physiological ranges, abnormally elevated 
uric acid transforms into a pro-oxidant within cells, exacerbating 
oxidative stress-induced cellular damage. Simultaneously, 
inflammation factors induced by high SUA levels promote increased 
deposition of Amyloid β-protein (Aβ) in the hippocampus through 
multiple molecular pathways (17), accelerating central 
neurodegenerative changes that ultimately adversely affect cognitive 
function. Furthermore, elevated SUA often accompanies metabolic 
syndrome, subsequently leading to issues such as vascular endothelial 
dysfunction (18). Recent research has shown that in populations with 
metabolic syndrome and SUA levels >400 μmol/L, the risk of all-cause 
dementia also increases (19). A Mendelian randomization study 
demonstrated that per standard deviation increase in SUA levels 
(1.33 mg/dL), the risk of Alzheimer’s disease increases by 0.09 (OR: 
1.09, 95% CI: 1.01–1.18) (20). However, considering the antioxidant 
properties of uric acid, excessively low serum uric acid levels may 
reduce the body’s resistance to oxidative stress and damage. When 
SUA levels are too low, the UA antioxidant and iron scavenger features 
diminish (21), potentially exacerbating cognitive impairment. A 
prospective cohort study (22) enrolled 17,707 participants across 28 
provinces in China and investigated the longitudinal association 
between baseline serum uric acid levels and cognitive function over 
the 7-year follow-up. Their results showed that higher baseline SUA 
levels were negatively associated with cognitive decline (indicating a 
protective effect), but this protective effect disappeared when SUA 
levels became excessively high. They also found that the protective 
effect of SUA disappeared in females, when they were complicated by 
cardiometabolic disease. Although we  find that gender had no 
interaction effect in the relationship between SUA and MCI, females 
have been found have more superior plasmatic antioxidant defenses 

TABLE 3  Interaction effect.

Subgroup 
variable

P-value OR (95%CI) Interaction P

Gender 0.909

 � Male 0.0714 0.545(0.282 ~ 1.054)

 � Female 0.0930 0.513(0.236 ~ 1.117)

History of 

diabetes
0.000***

 � Yes 0.086 2.969(0.858 ~ 10.267)

 � No 0.000* 0.268(0.141 ~ 0.510)

History of 

hyperlipemia
0.982

 � Yes 0.114 0.535(0.246 ~ 1.162)

 � No 0.059 0.528(0.273 ~ 1.024)

Family history 

of AD
0.977

 � Yes 0.363 0.520(0.127 ~ 2.128)

 � No 0.022* 0.532(0.310 ~ 0.913)

Smoking 0.707

 � Yes 0.088 0.576(0.305 ~ 1.086)

 � No 0.078 0.471(0.204 ~ 1.090)

Drinking 0.486

 � Yes 0.035* 0.477(0.240 ~ 0.950)

 � No 0.345 0.689(0.318 ~ 1.494)

SBI 0.993

 � Yes 0.041* 0.530(0.288 ~ 0.975)

 � No 0.160 0.528(0.216 ~ 1.288)

Regular exercise 0.033*

 � Yes 0.001* 0.300(0.146 ~ 0.615)

 � No 0.833 0.924(0.440 ~ 1.939)

Arteriosclerosis 0.226

 � Yes 0.051 0.587(0.343 ~ 1.003)

 � No 0.054 0.207(0.042 ~ 1.026)

Age 0.451

 � <55 0.028* 0.393(0.171 ~ 0.907)

 � ≥55 0.149 0.598(0.298 ~ 1.201)

BMI 0.871

 � <23.9 0.269 0.621(0.266 ~ 1.445)

 � ≥23.9 0.087 0.568(0.297 ~ 1.085)

SHP 0.600

 � <140 mmHg 0.021 0.469(0.247 ~ 0.891)

 � ≥140 mmHg 0.256 0.620(0.272 ~ 1.414)

DHP 0.353

 � <90 mmHg 0.084 0.603(0.340 ~ 1.070)

 � ≥90 mmHg 0.051 0.336(0.113 ~ 1.003)

*p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3

A restricted cubic spline showing a non-linear relationship between SUA and MCI risk. The curve dips initially, fluctuates with multiple peaks and 
troughs, and then rises sharply. Vertical dotted lines mark specific points on the SUA axis.

FIGURE 4

SHAP interpret the model. (A) Attributes of characteristics in SHAP. Each line represents a feature and the abscissa is the SHAP value. Red dots represent 
higher eigenvalues and blue dots represent lower eigenvalues. (B) Feature importance ranking as indicated by SHAP, showing the importance of each 
covariate in the development of the final predictive model. (C) Individual efforts by patients with MCI and (D) without MCI. The SHAp value represents 
the predicted characteristics of an individual patient and the contribution of each characteristic to the MCI. The number in bold is the probability 
forecast value [f(x)], while the base value is the predicted value without providing input to the model. F(x) is the logarithmic ratio of each observation. 
Red features indicate an increased risk of MCI and blue features indicate a reduced risk of MCI. The length of the arrows helps visualize the extent to 
which the prediction is affected. The longer the arrow, the greater the effect.
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than males (23). Another study in Asian population also showed that 
female MCI patients may have higher serum uric acid, alleviating 
longitudinal metabolic changes and cognitive decline (24). Previous 
research indicates that race does not significantly affect CSF metabolite 
levels within the purine pathways (25). This suggests that the biological 
relationship identified in our study might be consistent across different 
racial backgrounds. However, as our study cohort was predominantly 
of Han Chinese ethnicity, the generalizability of our specific predictive 
model to other populations should be interpreted with caution and 
requires further validation. Our finding is consistent with most 
investigation and further focus on a specific hypertension population. 
Among hypertensive patients, SUA also exerts complex non-linear 
effects on cognitive function, demonstrating both protective and 
detrimental impacts depending on concentration levels.

Specifically, we  employed the SHAP value model to enhance 
model interpretability. Unlike other machine learning methods often 
criticized for their “black-box” nature, logistic regression is inherently 
interpretable. The integration with SHAP further equips it with dual 
explanatory power—both global and local (10). This not only 
demonstrates the average contribution of SUA to the occurrence of 
MCI but also elucidates how individualized input variables related to 
the outcomes for specific patients. This capability for individual case 
explanation is crucial for clinical decision support, allowing physicians 
to understand the rationale behind the model’s predictions for specific 
cases, thereby increasing their trust in the model’s outcomes. While 
SHAP can answer whether SUA is important, it is less suited for 
precisely delineating how it is important. RCS perfectly addresses this 
gap. By fitting smooth curves, it visually reveals the non-linear 
relationship morphology between SUA and MCI risk and can 
accurately identify critical inflection points (26). The specific inflection 
points values provided by RCS offer a concrete, data-driven target for 
potential clinical interventions. According to our RCS results, a 
‘U-shape’ relationship between SUA and MCI implied that it may 
be beneficial to maintain a hypertensive and hyperuricemia patient’s 
SUA levels in a high-normal range for dementia prevention.

Additionally, this study found that there is an interaction between 
uric acid and a history of diabetes and regular exercise. A survey 

report found that older adults with diabetes and HbA1c ≥ 7.0% had a 
38% increased risk of cognitive impairment (27). In individuals with 
diabetes, who often have underlying endothelial dysfunction and 
elevated oxidative stress (28), the antioxidant properties of UA might 
be particularly crucial. Therefore, the protective effect of moderate UA 
could be  more pronounced in this high-risk subgroup. Regular 
exercise is known to improve cerebrovascular health, insulin 
sensitivity, and reduce oxidative stress. Implementing a scientifically 
informed fitness diet in conjunction with appropriate exercise may 
decrease SUA (29). In sedentary individuals, who lack these exercise-
induced benefits, UA’s antioxidant role might become a more critical 
modifiable protective factor. Also, age, education level, albumin and 
thyroxin were found to be  more important factors related to the 
occurrence of MCI than uric acid. Age is the most significant and 
irreversible risk factor for MCI. Aging is the most well-established and 
strongest risk factor for cognitive impairment and Alzheimer’s disease. 
All major global studies consistently show that the prevalence and 
incidence of cognitive impairment increase exponentially with age 
(30). After the age of 65, the risk of developing the disease nearly 
doubles every 5 years (31). Advanced age itself leads to known 
associations with the biological hallmarks, such as genomic instability, 
telomere attrition, epigenetic alterations, abnormal proteinosis, 
mitochondrial dysfunction and cellular senescence, leading to brain 
atrophy and function decline (32). Combined with factors such as 
hypertension, middle-aged and elderly populations should be key 
targets for cognitive impairment screening and prevention. Although 
age itself cannot be changed, understanding this risk can encourage 
individuals and healthcare systems to pay earlier attention to other 
modifiable risk factors and actively intervene to delay or mitigate the 
risks associated with aging.

Furthermore, education level is an important protective factor 
against cognitive impairment. This may be because higher education 
levels are believed to build cognitive reserve, thereby enhancing the 
brain’s resistance to pathological damage. Numerous studies have 
shown that low education level is a clear risk factor for cognitive 
impairment (33). Individuals with higher education may exhibit 
milder clinical symptoms or a later onset of symptoms even when 
some degree of Alzheimer’s pathology is present in the brain.

This study also found that albumin is a potentially modifiable 
risk indicator for cognitive impairment. Low albumin levels are 
associated with an increased risk of cognitive impairment (34). 
Albumin level is a key indicator of an individual’s overall nutritional 
status. Moreover, we found that weight, BMI and lipid metabolism 
are lower in MCI group, indicating nutritional status may relate to 
cognitive impairment. Malnutrition leads to insufficient albumin 
synthesis, and the brain requires continuous adequate nutrition and 
energy supply to maintain normal function (35). Malnutrition itself 
can directly impair cognitive function. Additionally, albumin has 
antioxidant and anti-inflammatory effects (36), which may 
counteract the significant oxidative stress and neuroinflammation 
accompanying neurodegenerative diseases. Low albumin levels 
imply a reduced ability of the body to resist these destructive 
processes, making neurons more vulnerable to damage. Albumin is 
able to bind to the precursor agent of the AD, amyloid-beta (Aβ) in 
the blood (34, 37), preventing its deposition in the brain and 
potentially slowing the pathological progression of Alzheimer’s 
disease. The link between albumin and MCI found in this study 

TABLE 4  SHAP analysis.

Feature Variance 
contribution (%)

Mean absolute 
SHAP value (%)

Age 36.34 23.65

Education 24.04 17.42

Alb 16.61 16.83

Thyroxin 6.64 9.39

SUA 5.01 8.00

HbA1c 3.60 2.33

BMI 3.51 6.84

Diabetes 2.67 7.53

SHP 1.09 3.91

TC 0.35 2.17

TT3 0.13 1.39

Arteriosclerosis 0.03 0.52
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highlights the importance of nutritional screening and intervention 
for middle-aged and elderly hypertensive populations.

Several limitations of this study should be acknowledged. First, 
the relatively small sample size combined with the high incidence of 
MCI may introduce potential biases and affect the stability of the 
estimates. Future studies with larger cohorts are needed for validation. 
Second, the retrospective design and imbalanced distribution of 
samples may compromise the robustness of the findings. Additionally, 
the reliability of the data could have been influenced using self-
reported health information. And the lack of detailed data on specific 
medications that may influence serum uric acid levels and cognitive 
function is a limitation. Future studies incorporating comprehensive 
medication data are needed to clarify these potential effects. 
Furthermore, the single-center origin of the data may limit the 
external validity and general applicability of our model. As Wenzhou 
is a coastal city, populations involved in this study may intake more 
high purine foods, which may influence the inflection point. Future 
prospective, multi-center studies with larger cohorts, balanced 
samples and more medication details are warranted to validate and 
extend our findings. Despite these limitations, this study provides an 
interpretable analytical approach to assess the role of uric acid in 
cognitive protection and help neurologists make more evidence-based 
clinical decisions.

5 Conclusion

In summary, by combining traditional logistic regression with 
both SHAP and RCS, this study demonstrates that serum uric acid 
(SUA) possesses a significant predictive value for mild cognitive 
impairment (MCI) among middle-aged and elderly hypertensive 
populations. The integration of SUA with other readily accessible 
clinical parameters—such as age, education level, and albumin—
further enhances the accuracy of MCI risk assessment. Moreover, the 
results imply that maintaining SUA levels within an optimal range 
could serve as a feasible strategy to mitigate the risk of MCI in 
hypertensive patients. This insight opens avenues for future 
interventions aimed at modulating SUA concentrations, potentially 
through dietary or pharmacological means, to support cognitive 
health in vulnerable populations. Further prospective studies and 
randomized controlled trials are warranted to validate these 
observations and to elucidate the underlying mechanisms linking 
SUA, vascular health, and cognitive function.
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