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Introduction: Parkinson’s disease (PD) is a common neurodegenerative disorder.
Traditional diagnostic methods, relying on clinical assessment and imaging, are
often invasive, costly, and require specialized personnel, posing barriers to early
detection. As approximately 90% of PD patients develop vocal impairments,
vocal analysis emerges as a promising non-invasive diagnostic tool. However,
individual deep learning models are often limited by overfitting and poor
generalizability.
Methods: This study proposes a PD classification method using spectrogram
feature fusion with pre-trained convolutional neural networks (CNNs). Voice
recordings were obtained from 61 PD patients and 70 healthy controls (HC)
at the First Affiliated Hospital of Henan University of Science and Technology.
Preprocessing the raw speech signals yielded 2,476 spectrograms. Three pre-
trained models, DenseNet121, MobileNetV3-Large, and ShuffleNetV2, were used
for feature extraction. The output of MobileNetV3-Large was adjusted using a
1×1 convolutional layer to ensure dimensional alignment before features were
fused via summation.
Results: Evaluation using 5-fold cross-validation demonstrated that models
employing feature fusion consistently outperformed individual models across
all metrics. Specifically, the fusion of MobileNetV3-Large and ShuffleNetV2
achieved the highest accuracy of 95.56% and an AUC of 0.99. Comparative
experiments with existing state-of-the-art methods confirmed the competitive
performance of the proposed approach.
Discussion: The fusion of multi-model features more effectively captures subtle
pathological signatures in PD speech, overcoming the limitations of single
models. This method provides a reliable, low-cost, and non-invasive tool for
auxiliary PD diagnosis, with significant potential for clinical application. The code
is available at https://github.com/lvrongfu/pjs.

KEYWORDS

Parkinson’s detection, deep learning, feature fusion, convolutional neural networks,
transfer learning

1 Introduction

Parkinson’s disease (PD) is a disorder of the central nervous system. It causes
involuntary and uncontrollable body movements such as tremors, stiffness, or difficulties
with balance and control. People with PD may also experience behavioral or mental
changes, such as depression or memory decline. Currently, there is no cure for PD, but
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medications can alleviate symptoms. Regardless, it is preferable to
intervene and prevent the progressive onset of PD rather than treat
it in its most severe state. However, traditional diagnostic methods
often rely on clinical assessments and imaging techniques, which
can be invasive, costly, and require specialized medical expertise.
In recent years, the emergence of artificial intelligence has opened
new opportunities for diagnosis, particularly through voice analysis
(1). Notably, since approximately 90% of PD patients exhibit speech
difficulties or dysphonia, this can distinguish them from healthy
individuals. Consequently, detection based on voice disorders has
become a valuable, non-invasive tool for early screening of PD
(2, 3).

PD affects approximately 10 million people worldwide, making
it the second most common neurodegenerative disorder after
Alzheimer’s disease. The risk of developing PD increases with
age, particularly after the age of 65 (4). Early symptoms such
as loss of smell, constipation, and sleep disturbances often
precede motor symptoms. Timely intervention in the early stages
is crucial for slowing or halting disease progression. However,
diagnosing PD based solely on clinical symptoms remains
challenging and complex. Given that 90% of PD patients experience
speech disorders, utilizing speech data for detection has gained
prominence in recent years (5, 6). Audio signals play a pivotal
role in early PD diagnosis, as speech abnormalities detectable
through voice signal analysis may remain imperceptible to the
human ear during initial stages. Furthermore, since voice samples
can be easily recorded both clinically and non-clinically, voice
changes can also serve as a means to track disease progression
(7). This paper investigates the application of Deep Learning (DL)
techniques in the early diagnosis of PD through the analysis of
vocal characteristics to distinguish between PD patients and healthy
controls (HC).

Machine learning (ML) and DL have revolutionized
medical data analysis and image processing, driving significant
advancements in disease diagnosis, identification, and treatment
planning. Furthermore, ML enables algorithms to learn from data.
As a subfield of ML, DL uses multi-layered neural networks to excel
at simulating complex patterns (8). Within medical image analysis,
DL approaches demonstrate exceptional efficiency in tasks related
to image classification, segmentation, and anomaly detection. A
key advantage of DL models lies in their ability to extract relevant
features and biomarkers from diverse data sources. In voice
recordings, variations in speech patterns—such as changes in pitch,
rhythm, and clarity—serve as valuable biomarkers for detecting PD
(9). DL, particularly convolutional neural networks (CNNs), has
been extensively applied across various computer-aided diagnostic
methods for medical imaging. This is because CNNs can achieve
or even surpass human performance in general object recognition.
Unlike traditional ML algorithms, CNNs can automatically extract
meaningful features from images. Traditional algorithms, such as
support vector machines and backpropagation neural networks,
typically require manual feature engineering. CNNs eliminate this
step, making the process more efficient and less reliant on expert
knowledge. Consequently, the development of CNNs models
has significantly improved the performance of computer-aided
diagnostic systems. Several classification network models have been
extensively applied to medical image classification tasks, including

RegNet (10), ResNet (11), ConvNext (12), Vision Transformer
(13), and Swin Transformer (14).

However, relying solely on a single model often leads to
overfitting to the training set and poor generalization to the test
set, thereby reducing the model’s performance. To address this
limitation, this paper proposes using model ensemble techniques.
This paper utilizes three pre-trained models, namely DenseNet-
121, MobileNetV3, and ShuffleNetV2, to extract features from
the spectrograms of patients with PD. Subsequently, the extracted
features are fused using a summation method, followed by
classification of the fused features. The main contributions of this
paper are as follows:

• This study proposes a spectrogram-based deep learning
framework for PD classification, leveraging time-frequency
representations of speech signals to capture discriminative
acoustic patterns.

• The proposed novel network model enhances feature
extraction capabilities by fusing features from three
baseline networks.

• In extensive experimental evaluations, the proposed method
has been demonstrated to outperform current techniques.

2 Related work

In recent years, the application of ML in PD research has
advanced significantly, thanks to collaborative efforts between
biomedicine and computer science. However, achieving timely and
accurate diagnosis remains a major challenge. Extensive research
has focused on enhancing classification performance via ML
methods, using speech samples to enable automated detection of
PD-related speech disorders. Typically, sustained vowel production
evaluates phonetic characteristics, while continuous speech assesses
articulation and intonation features (15). Numerous algorithms
have been developed, and researchers have evaluated the
performance metrics of different approaches (16).

Gómez-García et al. investigated the relationship between
pathological voice perception and certain voice characteristics (17).
Typically, in the analysis of vocalization, acoustic features are
manually extracted from recordings of sustained vowels, syllable
repetitions, and the reading of words, sentences, or free monologs.
Selecting the most appropriate features is crucial for obtaining
precise results. For instance, Mekyska et al. introduced 36 novel
speech features in their study, achieving 67.9% accuracy using SVM
and random forest classifiers on PD data solely through/a/vowel
subset analysis (18). The Almeida team evaluated 18 feature
extraction methods and four ML classifiers for PD detection
and classification by analyzing sustained vowel production and
other speech tasks (16). They achieved the highest accuracy of
94.55% by analyzing sustained vowel production. Carron et al.
proposed a mobile-assisted speech status analysis system for PD
detection, based on a server-client architecture (19). On the server
side, feature extraction and ML algorithms were designed and
implemented to distinguish between PD and HC. This Android
application allows patients to submit voice samples, enabling
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physicians to review each patient’s complete record. Saleh et al. (20)
proposed a PD pre-diagnosis system based on Artificial Intelligence
of Things (AIoT) and speech analysis. Through the sequential
forward feature selection method, 10 key features were selected
from 22 speech features, and the K-nearest neighbor algorithm was
used for classification. Cherradi et al. (21) proposed an embedded
medical system based on AIoT, which predicts PD by analyzing
sound signals. This system integrates multiple machine learning
algorithms and achieves an accuracy rate of 95.38%.

The aforementioned studies all employ traditional ML
techniques, characterized by the need for manual feature selection.
Consequently, their results are highly dependent on the quality of
feature selection. To overcome this limitation, new approaches have
emerged. Recent studies explored the use of spectrograms as robust
inputs for deep learning models in PD detection. Spectrograms
provide a time-frequency representation that preserves both
temporal dynamics and spectral details, which are crucial for
capturing subtle vocal impairments. For instance, Iyer et al. (7)
proposed a deep learning method based on spectrograms to identify
PD. The researchers used a pre-trained Inception V3 to analyze
the spectrograms of continuous vowels “/a/” produced by patients
and healthy individuals, achieving high-precision classification.
The Berus team employed multiple neural networks to identify
vocal characteristics in PD patients (22), achieving 86.47% accuracy
by analyzing various speech tasks constrained by linguistic skills
and experimental settings. The Rios-Urrego team utilized a CNNs-
based transfer learning approach to detect PD through Mel-scale
spectrogram analysis of speech data, achieving 82% accuracy (23).
Hireš et al. employed an ensemble model composed of multiple
CNNs to detect PD lesions in spectrogram images of vowel
recordings obtained under controlled conditions (15). Optimal
performance was achieved on sustained/a/vowels, yielding an AUC
value of 0.89. However, most spectrogram-based approaches have
focused on sustained phonations, which may not fully capture the
articulatory variability present in connected speech. In contrast, our
work utilizes connected speech spectrograms, which encompass
a wider range of phonetic and prosodic variations, thereby
offering a more naturalistic and challenging scenario for robust
PD classification.

Although deep learning methods avoid the need for manual
feature engineering, current research often relies on a single model
architecture. This limits their ability to comprehensively capture
the multi-scale and subtle pathological patterns in PD speech.
Therefore, in this paper, to address the limitations of relying
solely on a single model, a feature fusion technique is proposed.
Three pre-trained network models are used for feature fusion, and
the fused features are then classified. Experimental results show
that this network achieves the expected performance in the PD
classification task.

3 Methodology

This paper employs three pre-trained models: MobileNetV3-
large, DenseNet121, and ShuffleNetV2. The outputs of these
models are adjusted to ensure consistent data size, followed by
feature fusion from the extracted features. Feature classification
was subsequently performed. To achieve consistent output

TABLE 1 Demographics of participants considered in this study.

Characteristics HC (n = 70) PD (n = 61)

Sex (male/female) 42/28 38/23

Age 60±10 62±9

across all models’ feature extraction modules, MobileNet3’s
feature extraction module was aligned with DenseNet121 and
ShuffleNetV2 by incorporating 1 × 1 convolutional layers.

3.1 Dataset and pre-processing

The dataset used in this study originates from a private
collection gathered by the First Affiliated Hospital of Henan
University of Science and Technology. Table 1 provides
demographics of the participants. All PD patients were diagnosed
in accordance with the Movement Disorder Society (MDS) Clinical
Diagnostic Criteria for PD (24), excluding those with comorbid
neurological disorders or severe hearing/speech impairments.
Participants read a passage aloud, with their voices captured to
form the speech dataset. The passage reads: “On a hot summer
day, we sat together under a tree by the river, enjoying the cool
breeze blowing through. . . ” Each volunteer’s reading session
lasted approximately 1 min and 30 s. All recordings were captured
in stereo mode and saved in WAV format. In the continuous
speech task, the natural pauses and silences that occur when
the subjects read the paragraphs are inherent components of
the speech signal. In this study, these parts were not actively
removed but were retained as part of the original speech signal and
used for subsequent spectrogram generation. Specifically, during
the speech segmentation process, we divided the speech based
on sentence pauses and paragraph endings, ensuring that each
speech segment contains complete speech units and their natural
pauses. Although the silent segments appear as low-frequency
energy regions in the spectrogram, they, together with the speech
segments, constitute the overall expression of the time-frequency
characteristics. The segmentation strategy was inspired by the
approach of Almeida et al. (16) in sustained vowel analysis,
using sentence pauses and paragraph endings as segmentation
points to preserve the naturalness and representativeness of
speech segments.

A spectrogram is a two-dimensional heatmap depicting
the frequency components of a signal over time. In speech
processing, the Short-Time Fourier Transform (STFT) is
commonly applied to time-domain audio signals to capture the
temporal distribution of spectral characteristics. In this paper,
speech segments from the dataset underwent preprocessing.
An acoustic feature extraction method based on the STFT is
employed to convert the raw speech signal into a spectrogram
representing its time-frequency characteristics, as shown in
Figure 1. Spectrograms of HC subjects (Figure 1A) exhibit
clear, regular harmonic stripes, indicating stable vocal fold
vibration and consistent pitch control. Their formant structures
(dark horizontal bands) are equally distinct and continuous,
reflecting normal phonetic precision and breath support during

Frontiers in Neurology 03 frontiersin.org

https://doi.org/10.3389/fneur.2025.1706317
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Chen et al. 10.3389/fneur.2025.1706317

FIGURE 1

Spectrograms derived from raw audio signals. (A) Healthy control group, (B) Parkinson’s disease patients.

sustained, continuous speech. In contrast, the spectrogram
of PD patients (Figure 1B) exhibits reduced regularity in
harmonic structure, accompanied by increased spectral noise and
formant blurring. These features indicate irregular perturbations
in fundamental frequency and amplitude due to impaired
neuromuscular control in PD patients; Incomplete glottic closure
increases non-periodic noise in the high-frequency range,
while imprecise articulation blurs the transition zones between
formants. These visual patterns align with PD pathophysiological
mechanisms, positioning the spectrogram as a non-invasive
surrogate marker for assessing speech function deterioration.
Consequently, the proposed deep learning model can learn these
discriminative time-frequency features to enable automated
PD detection.

Let the discrete-time audio signal be x[n], with each input
file resampled to 8 kHz. Divide x[n] into overlapping frames of
duration Tw and stride Ts. Specifically, each frame contains a fixed
number of samples Nw, and frames are separated by a sliding stride
Ns, as shown in the following formula:

Nw = Tw × fs (1)

NS = TS × fs (2)

Where fs = 8,000 Hz, Tw = 2.0 s, Ts = 1.0 s. This setting
aims to balance the temporal resolution and the integrity of
frequency information. The fixed frame length helps the model
capture speech features on a consistent time scale, while the
STFT retains sufficient details in the frequency dimension to
reflect the acoustic abnormalities commonly seen in PD patients,
such as minor pitch perturbations and amplitude disturbances.

The formula for calculating the total number of frames in each
file is:

Nframes = max
(

1,
⌊

L − Ns

Ns

⌋
+ 1

)
(3)

Here, L denotes the total length of the waveform signal. If the
frame extends beyond the signal’s end, zero padding is applied
to maintain a consistent length. For each frame xi[n] (I = 1,. . . ,
Nframes), the STFT is computed using a Hamming window of
length N� =256 (i.e., 32 ms) and a shift length Nh = 128
(50% overlap), with NFFT = 1,024 Fourier transform points. The
STFT parameter settings were aligned with the recommendations
of Moro-Velázquez et al. (25) for PD speech analysis to ensure
discriminative time-frequency representations. For the i-th audio
segment, the Fourier coefficient (complex number) corresponding
to the k-th frequency point in the m-th frame is given by the
following formula:

Xi
(
k, m

) =
Nh−1∑
n=0

xi [n + mNh] w [n] e−j2πkn/NFFT (4)

Here, w[n] represents the Hamming window, where k = 0,
1,. . . , NFFT-1. n denotes the index of the current sample point
within the window, with a range of 0 < n < N�. The resulting
amplitude spectrum matrix is:

Si
(
k, m

) = ∣∣Xi
(
k, m

)∣∣ (5)
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To enhance the dynamic range and for file normalization, each
spectrogram is converted to the decibel (dB) scale:

Si,dB
(
k, m

) = 10 log10

⎛
⎝ Si

(
k, m

)
max
k,m

Si
(
k, m

) + ε

⎞
⎠ (6)

Here, ε = 10−10 is used to avoid numerical instability.
Each segment’s Si,dB data is rendered as a color image and saved

in JPEG format. This process generates multiple spectrograms per
recording, containing both time-domain and frequency-domain
information for subsequent neural network model training.
Through this procedure, a total of 2,476 spectrograms were
obtained: 1,070 from PD and 1,406 from HC. The images have
dimensions of 224 × 224 pixels. Subsequently, image intensity
values were normalized to the range [0,1]. Finally, the data was
divided into training and test set in an 8:2 ratio. A stratified
sampling strategy was employed to ensure that the proportion of
PD patients to HC in both the training and test set matched that of
the original dataset.

It is worth noting that the speech material used in this
study consists of read passages rather than isolated sustained
vowels. Although read passages contain diverse phonemes and
syllable structures that may introduce variability inherent to speech
content, the purpose of employing a multi-frame sampling strategy
was to capture patients’ overall articulation characteristics within
continuous speech, rather than relying on the acoustic properties
of specific phonemes. This approach offers the advantage of
reflecting the patient’s articulatory capabilities in a more natural
and representative speech task, encompassing aspects such as
pitch control, speech fluency, and syllable transitions—all of
which may be affected by PD. Furthermore, despite inherent
spectral differences among phonemes, deep learning models
possess the ability to learn high-level abstract features from
diverse inputs, enabling them to distinguish pathological from
non-pathological speech patterns rather than relying solely on
the spectral characteristics of specific phonemes. Existing research
also supports the use of continuous speech or read passages for
PD detection. For instance, Almeida et al. (16) employed both
sustained vowels and continuous speech tasks in their study, noting
that continuous speech provides richer articulatory dynamics
information in certain scenarios. Similarly, Vásquez-Correa et al.
(23) incorporated multiple speech tasks, including reading aloud,
into their multimodal PD detection system, demonstrating the
effectiveness of continuous speech in PD identification. Therefore,
while speech content diversity may introduce additional variability,
this variability does not significantly impair the model’s ability
to recognize PD-related speech features when addressed through
appropriate model design and training strategies.

3.2 The architecture of the proposed
method

Transfer learning is a ML technique that leverages knowledge
accumulated while solving one problem to train a model for
another task or domain. This transfer learning approach utilizes
pre-trained network knowledge acquired from vast amounts of

visual data, offering significant advantages in time savings and
improved accuracy compared to training models from scratch
(26). Transfer learning is particularly advantageous when dealing
with limited data, as pre-trained models bring robust feature
representations learned from large-scale datasets that capture
generic visual patterns such as edges, textures, and shapes (27).
These representations can be effectively adapted to domain-specific
tasks, even with a modest number of samples.

CNNs have been widely applied to image-related tasks
such as image recognition and image classification. The use
of CNNs has effectively improved the performance of many
image-related tasks (28). This study employs a CNNs based
on feature fusion, thereby enhancing the network’s ability
to extract features. Figure 2 illustrates the framework of the
proposed method. First, PD data undergoes processing, and
images are adjusted. Next, feature extraction from spectrograms
is performed using pre-trained models. Finally, extracted features
are aggregated for feature fusion before classification. Specifically,
DenseNet121, MobileNetV3, and ShuffleNetV2 serve as pre-
trained network models. The output from the feature extraction
layer of MobileNetV3 is reshaped to dimensions (1024, 7,
7). Feature fusion via summation was selected after empirical
comparison with alternatives including concatenation, weighted
averaging, and attention-based fusion. Summation preserves the
spatial dimensions of feature maps while reducing computational
complexity compared to concatenation. It also encourages the
model to integrate complementary information from different
networks without introducing additional parameters, as would
be required by attention mechanisms. After extracting features
from the spectrogram, the features of each model are summed
up pairwise to form a fused feature representation. In this study,
a pairwise model fusion approach was adopted instead of a
three-model fusion approach. The main reason was to avoid a
significant increase in computational burden and potential feature
redundancy. The experiments demonstrated that pairwise fusion
was able to fully capture complementary information and achieve
excellent performance. This fused feature map is then passed to a
linear classifier consisting of a fully connected layer followed by
a softmax activation function, which outputs the final probability
distribution over the two classes. The fusion strategy employed is
thus feature-level summation. This approach allows the model to
leverage complementary information from different architectures
directly in the feature space, enhancing the discriminative power
for PD classification.

3.3 Pre-trained models

In this study, pre-trained refers to CNN models that were
initially trained on large-scale external datasets unrelated to PD or
medical voice data. The three pre-trained models employed in this
study were all pre-trained on the ImageNet dataset. ImageNet is
a large-scale visual recognition dataset comprising over 14 million
annotated images across 1,000 object categories, widely used for
model pre-training in image classification tasks (29).

In typical CNNs, the convolutional layer extracts local features
by sliding a fixed-size convolution kernel over the input tensor
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FIGURE 2

The proposed network model architecture.

and performing element-wise multiplication of the kernel weights
with corresponding input regions. Beyond the kernel parameters,
the stride, padding, and kernel size jointly determine the spatial
transformation of the feature map. The output spatial size of the
convolutional layer is given by the following formula:

Hout = Hin + 2p − k
s

+ 1, Wout = Win + 2p − k
s

+ 1 (7)

Here, Hin and Win represent the height and width of the input
feature map, respectively; p denotes the number of zero-padding
pixels on each side; k indicates the size of the convolutional kernel;
and s signifies the stride of the convolution. When k = 1, s = 1,
and p = 0, the spatial dimensions of the output feature map remain
unchanged, thereby helping to preserve high-resolution details.

The selection of DenseNet121, MobileNetV3-Large, and
ShuffleNetV2 is based on their complementary architectural
strengths for spectrogram analysis. DenseNet121 excels in feature
propagation and reuse, ideal for capturing complex spectral
patterns. MobileNetV3-Large offers a superior balance between
accuracy and computational efficiency via depthwise convolutions
and attention mechanisms. ShuffleNetV2 is a highly efficient
model designed for low-resource environments, using channel
shuffling to maintain representational power. Integrating these
diverse models allows our fusion method to leverage their distinct
advantages, thereby more comprehensively capturing the multi-
scale pathological features in PD speech.

DenseNet was proposed by Huang et al. (30). The core
idea of DenseNet is to introduce dense connections within the
network. This design significantly enhances the capabilities of
feature propagation and reuse, while also effectively mitigating
the vanishing gradient problem. Figure 3 illustrates the basic
framework of the DenseNet121 model. In the DenseNet
architecture, each layer is directly connected to all preceding
layers. Specifically, layer l receives all feature maps from the
previous l−1 layers as input, and its output is also fed to all

subsequent layers. The output dimension of the feature extraction
layer is (1024, 7, 7). This structure can be represented as:

xl = Hl
([

x0, x1, . . . , xl−1
])

(8)

Here, xl denotes the output of layer l; Hl(·) represents
the nonlinear transformation function comprising batch
normalization, the ReLU activation function, and convolution;
[x0,x1,. . . ,xl−1] denotes the concatenation of feature maps.

MobileNetV3 is a lightweight network architecture proposed by
the Google team (31), representing a significant upgrade following
MobileNetV1 and V2. Figure 4 illustrates the fundamental
framework of the MobileNetV3 model. Its design comprehensively
integrates multiple optimization strategies. These include
depthwise separable convolutions, inverted residual structures,
squeeze-and-excitation channel attention mechanisms, and an
efficient network architecture. This architecture compresses
parameters and reduces computational complexity while
preserving strong feature representation capabilities. As one
of the representative models in the current edge computing
field, it achieves a balance between precision and efficiency. The
feature output dimension from the feature extraction layer of the
MobileNetV3 model is (960, 7, 7). To enable feature fusion with
DenseNet121 and ShuffleNetV2, a 1 × 1 convolutional layer with
1,024 convolutional kernels is added to the base model, adjusting
the feature extraction layer output dimension to (1024, 7, 7).

ShuffleNetV2 is an efficient, lightweight CNNs proposed by
Megvii Technology team (32), designed to achieve faster inference
speeds and lower resource consumption on mobile and embedded
devices. Its core concept lies in breaking communication barriers
between different groups through channel grouping and feature
channel shuffling operations, thereby enhancing feature flow
efficiency and network expressiveness. Structurally, the basic unit
of ShuffleNetV2 comprises two branches. The outputs from both
branches undergo channel concatenation and are combined with
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FIGURE 3

Structure of the DenseNet121 model.
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FIGURE 4

Structure of the MobileNetV3-Large model.
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FIGURE 5

Structure of the ShuffleNetV2 model.

channel shuffle operations to facilitate information exchange,
achieving parameter efficiency and computational friendliness.
Figure 5 illustrates the basic framework of the ShuffleNetV2 model.
This structure is stacked repeatedly to build the complete network,
offering excellent scalability. The output dimension of the feature
extraction layer is (1024, 7, 7).

4 Results

The experimental environment in this study utilized a
Windows 10 operating system with 64GB of random access
memory, Python 3.10.15, and PyTorch 2.1.0. Employing a cosine
annealing scheduling strategy. Hyperparameters were primarily
selected based on established defaults for the Adamw optimizer and

TABLE 2 Hardware configuration and model parameters.

Types Configuration Types Value

GPU RTX 4070 Init-lr 5e-4

CPU I5-13400F Weight_decay 5e-2

CUDA 12.0 Epoch 100

Pytorch 2.1.0 optimizer Adamw

Regularization Dropout Batch size 16

adjusted through manual trial and error guided by performance on
a held-out test set. Detailed information regarding the hardware
configuration and model parameters is provided in Table 2.
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4.1 Evaluation metric

To comprehensively evaluate the model’s effectiveness, this
paper employs evaluation metrics including accuracy, precision,
recall, F1-score, and specificity. The expressions for these
evaluation metrics are shown in Equations 9–13.

Accuracy = TP + TN
TP + TN + FP + FN

(9)

Precision = TP
TP + FP

(10)

Recall = TP
TP + FN

(11)

F1 − score = 2 × Precision × Recall
Precision + Recall

(12)

Specificity = TN
TN + FP

(13)

Among these, TP (True Positives) represents the number
of correctly predicted positives; TN (True Negatives) represents
the number of correctly predicted negatives; FP (False Positives)
represents the number of incorrectly predicted positives; and
FN (False Negatives) represents the number of incorrectly
predicted negatives.

4.2 Experimental results

This section presents the classification results obtained by the
proposed method through 5-fold cross-validation, and conducts a
comparative analysis between the use and non-use of the feature
fusion method.

4.2.1 The classification results of a single model
To more intuitively reflect the overall classification

performance of the models, the confusion matrices of the three
pre-trained models on the dataset are plotted as shown in Figure 6.
Additionally, Table 3 lists the specific values of accuracy, precision,
recall, F1-score, and specificity calculated using Formulas 9–13.
Table 3 indicates that DenseNet121 demonstrates the best PD
classification performance, achieving an accuracy of 92.73%.

4.2.2 The classification results after feature fusion
Figure 7 displays the confusion matrix for PD classification

results achieved through feature fusion. The diagonal region
representing correctly classified cases exhibits distinct dark
clustering characteristics, with numerical values highly
concentrated along the diagonal. Additionally, Table 4 provides
detailed metric values evaluated on the dataset. It can be observed
that MobileNetV3+ShuffleNetV2 achieved the best classification
results on the dataset with an accuracy of 95.56% and an Area
Under Curve of 99%. This validates the effectiveness and reliability
of this model for PD classification tasks.

In order to more intuitively demonstrate the advantages
of the fusion model, Figure 8 shows the average evaluation
metrics for PD classification across each model. It can be
observed that the combination of MobileNetV3 and ShuffleNetV2

(MobileNetV3+ShuffleNetV2) achieves the best classification
accuracy, precision, recall, and F1-score, at 95.56%, 95.42%,
95.52%, and 95.47%, respectively. Additionally, among individual
models, DenseNet121 demonstrated the best classification results
for PD. All performance metrics of the feature-fused hybrid
models outperformed the respective metrics of the individual
models. The experimental results validate the effectiveness of
combining features from different models through feature fusion.
This provides a more reliable approach for PD classification than
relying on a single model.

4.2.3 Robustness validation
Based on the foregoing, it is evident that the feature fusion

model yields superior classification results across the private
dataset. This section aims to evaluate the model’s robustness by
validating it on the publicly available PD speech dataset from
Figshare (33). Using the same data processing methodology, a
total of 1,034 spectrograms were obtained. Among these, 536 were
from PD patients and 498 from HC. Results from 5-fold cross-
validation are presented in Table 5. The findings indicate that high
accuracy is maintained even on the public dataset, demonstrating
the model’s robustness.

4.3 Comparison with other state-of-the-art
methods

To further validate the effectiveness of the proposed method,
this study conducted comprehensive comparative experiments
between the proposed network and a series of state-of-the-art
models. In order to conduct fair and direct comparisons under
the same conditions, we implemented the core algorithms and
architectural frameworks from each literature, and applied them
to our own dataset for training and evaluation. The experimental
results are shown in Table 6. The results demonstrate that the
proposed model exhibits outstanding performance, achieving an
accuracy of 95.56%, precision of 95.42%, recall of 95.52%, F1-
score of 95.47%, and specificity of 95.52%, outperforming all other
models. The comparative results presented in Table 5 indicate
that our research achieves competitive classification performance
compared to the state-of-the-art methods in the current literature.

5 Discussion

This study investigates the effectiveness of pre-trained CNNs
and feature fusion strategies in PD classification based on
spectrograms, yielding several important findings worthy of
further exploration.

The superior performance of the DenseNet121 model,
which achieved a peak accuracy of 92.73%, is attributable to
its densely connected architecture. As detailed in Section 3.3.1,
this design enhances feature propagation and reuse, effectively
mitigates the vanishing gradient problem, and promotes robust
feature integration. These properties likely explain its efficacy
in capturing the subtle acoustic patterns indicative of PD
voice impairment. In contrast, the lightweight architectures
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FIGURE 6

Confusion matrix of predicted results for a single model on the test set. (A) DenseNet121 (B) MobileNetV3, and (C) ShuffleNetV2.

TABLE 3 Indicators for the classification of a single model.

Model Type Precision (%) Recall (%) F1-score (%) Specificity (%) Accuracy (%)

DenseNet121 HC 93.59 93.59 93.59 91.59

PD 91.59 91.59 91.59 93.59

Average 92.59 (±0.02) 92.59 (±0.02) 92.59 (±0.04) 92.59 (±0.01) 92.73 (±0.03)

MobileNetV3 HC 92.53 93.19 92.86 90.28

PD 91.12 90.28 90.70 93.19

Average 91.83 (±0.01) 91.74 (±0.02) 91.78 (±0.03) 91.74 (±0.02) 91.92 (±0.02)

ShuffleNetV2 HC 93.24 92.25 92.74 91.00

PD 89.72 91.00 90.35 92.25

Average 91.48 (±0.02) 91.63 (±0.04) 91.55 (±0.03) 91.63 (±0.01) 91.72 (±0.02)

FIGURE 7

Classification results of PD on the test set. (A) DenseNet121+ShuffleNetV2 (B) DenseNet121+MobileNetV3, and (C) MobileNetV3+ShuffleNetV2.

of MobileNetV3-Large and ShuffleNetV2—optimized for
computational efficiency on edge devices—achieved slightly lower
accuracies of 91.92% and 91.72%, respectively. This performance

discrepancy illustrates a fundamental trade-off between model
efficiency and representational capacity. While MobileNet3’s
squeeze-and-excite modules and ShuffleNet2’s channel shuffling
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TABLE 4 The classification results of feature fusion methods.

Model Type Precision (%) Recall (%) F1-score (%) Specificity (%) Accuracy (%) AUC (%)

DenseNet121+
ShuffleNetV2

HC 95.02 95.36 95.19 93.49 98

PD 93.93 93.49 93.71 95.36

Average 94.48 (±0.01) 94.43 (±0.02) 94.45 (±0.04) 94.43 (±0.02) 94.55 (±0.03)

DenseNet121+
MobileNetV3

HC 96.09 95.41 95.74 94.81 99

PD 93.93 94.81 94.37 95.41

Average 95.01 (±0.02) 95.11 (±0.03) 95.06 (±0.05) 95.11 (±0.02) 95.15 (±0.04)

MobileNetV3+
ShuffleNetV2

HC 96.44 95.76 96.10 95.28 99

PD 94.39 95.28 94.84 95.76

Average 95.42 (±0.01) 95.52 (±0.02) 95.47 (±0.03) 95.52 (±0.02) 95.56 (±0.02)

FIGURE 8

Visualization of PD classification metrics.

TABLE 5 Classification results of feature fusion methods on public datasets.

Model Precision (%) Recall (%) F1-score (%) Accuracy (%) AUC (%)

DenseNet121+ShuffleNetV2 90.11 (±0.01) 91.74 (±0.02) 90.86 (±0.04) 92.43 (±0.04) 94.78

DenseNet121+MobileNetV3 91.45 (±0.02) 89.60 (±0.01) 90.46 (±0.03) 92.43 (±0.03) 93.63

MobileNetV3+ShuffleNetV2 90.46 (±0.02) 89.75 (±0.03) 90.09 (±0.02) 92.03 (±0.02) 93.62

operation prioritize inference speed, DenseNet11’s structure favors
comprehensive feature extraction.

The experimental results demonstrate an improvement in
the performance of the feature fusion model. This enhancement
indicates that integrating features from models based on distinct
design philosophies can strengthen discriminative capabilities. The
fusion model consistently outperforms results from individual
models, highlighting the limitations of relying on features
extracted from a single model architecture for PD classification.
Pathological voice characteristics in PD may manifest across a

range of spectral bands (e.g., low-frequency harmonics, high-
frequency noise components) and temporal segments (e.g., vowel
pronunciation, transitional speech segments), which are not equally
captured by all models.

Despite the aforementioned strengths of this study, limitations
remain. The dataset originates from a single institution, comprising
61 PD patients and 70 HC, with speech recordings confined to a
single text. This may limit the study’s generalizability, as speech
patterns can vary across dialects, age groups, and task complexity.
Future research should focus on expanding datasets to incorporate
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TABLE 6 Comparison with other state-of-the-art models.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

Han et al. (36) 88.69 88.76 88.39 88.54 88.39

Radosavovic et al. (37) 88.08 87.28 88.46 87.69 88.46

Sunkara et al. (38) 82.63 82.24 82.28 82.34 82.28

Yu et al. (39) 93.33 93.24 93.19 93.22 93.19

Woo et al. (40) 89.09 88.72 89.01 88.85 89.01

Ma et al. (41) 90.51 90.52 90.24 90.37 90.24

Huo et al. (42) 91.72 91.54 91.43 91.56 91.43

Huo et al. (43) 80.81 81.26 80.70 80.70 80.70

Yu et al. (44) 91.11 91.11 90.87 90.98 90.87

Ding et al. (45) 89.90 90.10 89.61 89.79 89.61

Li et al. (46) 90.51 90.36 90.32 90.33 90.32

Proposed 95.56 95.42 95.52 95.47 95.52

diverse linguistic materials and populations, exploring cross-lingual
transfer learning, and integrating additional modalities (such as gait
or handwriting.) to achieve multimodal PD diagnosis (34, 35).

In conclusion, this study demonstrates that the feature
fusion of pre-trained CNNs can improve the performance of
PD classification based on spectrograms, providing a promising
approach for auxiliary diagnosis. The research results emphasize
the importance of multi-model integration in capturing complex
pathological biomarkers and also lay the foundation for the
development of deployable PD screening tools.

6 Conclusion

This study aims to overcome the limitations of traditional
PD diagnostic methods, including their invasiveness, high cost,
and dependence on specialist expertise. Additionally, it addresses
the drawbacks of single DL models in voice-based diagnosis to
pursue a non-invasive and reliable auxiliary diagnostic solution.
To this end, this study utilized the dataset comprising 61 PD
patients and 70 HC. The raw speech signals were preprocessed
using STFT to generate 2,476 spectrograms. Three pre-trained
CNNs—DenseNet121, MobileNetV3-Large, and ShuffleNetV2—
were selected for feature extraction. To ensure consistent output
dimensions with the other two models, the output dimension
of MobileNetV3-Large was adjusted to (1024, 7, 7) via a 1
× 1 convolutional layer, followed by feature fusion through
summation. Experimental results demonstrated that all feature
fusion models outperformed single models. Among the single
models, DenseNet121 achieved the highest accuracy at 92.73%. The
fusion model combining MobileNetV3-Large and ShuffleNetV2
achieved optimal classification performance with an accuracy of
95.56% and an AUC value of 0.99, outperforming existing state-
of-the-art methods reported in the literature. This result confirms
that integrating CNNs models with distinct architectural strengths
enables more comprehensive capture of subtle pathological speech
patterns in PD patients, thereby enhancing diagnostic accuracy.

Although this study contributes to providing a non-invasive PD
diagnostic aid, limitations exist. For instance, speech recordings
were restricted to a single language, potentially affecting the study’s
generalizability. Future work will focus on expanding datasets
to include diverse populations and linguistic materials. Cross-
lingual transfer learning and integrating multimodal data will be
explored to further improve the model’s diagnostic performance
and clinical applicability.
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