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Currently, the successfulness of reducing seizures through the selection of
appropriate antiepileptic drugs (AED) in children with drug-resistant epilepsy remains
a challenge due to variability characteristic in patients. This study aims to develop
and evaluate machine learning models to treatment success in pediatric patients
with drug-resistant epilepsy. This study will be conducted with an ambispective
cohort. A total of 215 subjects will be taken from patients in Cipto Mangunkusumo
Referral Hospital and Harapan Kita Child and Mother Hospital Jakarta, Indonesia.
Supporting examinations will be also performed such as electroencephalography
(EEG) and modified HARNESS Magnetic Resonance Imaging (MRI). The collected
data will be analyzed by machine learning with several algorithms including support
vector machine (SVM), decision tree (DT), random forest (RF), gradient boosting
(GB), and their performance will be compared to determine the best model. This
is the first study to utilize machine learning by integrating clinical data, EEG, MR,
and medication history to predict treatment success in pediatric patients with
drug-resistant epilepsy in Indonesia. The developed model is expected to serve
as a clinical decision supporting tool for pediatric neurologists to predict seizure
control in children with DRE and determine appropriate therapeutic adjustments
with more aggressively when uncontrolled seizures are predicted.

KEYWORDS

children, drug-resistant epilepsy, antiepileptic drug, machine learning, preliminary
study

1 Introduction

Epilepsy is one of the most common neurological disorders and is characterized by
recurrent uprovoked seizures (1-3). According to the ILAE 2010 definition, drug-resistant
epilepsy is a condition characterized by seizure control failure with the use of at least two AEDs
at maximum doses (4). About 20-40% of children with epilepsy can develop drug-resistant
seizures despite appropriate AED (5). According to the latest medical records in 2020-2024 at
the child neurology polyclinic of Cipto Mangunkusumo Hospital, the number of epilepsy
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patients visit was 5,760 (40%) of the total outpatient data 14,402
patients. Approximately, there are around 200 children with drug-
resistant epilepsy which also continues to rise (6).

Several important things in selecting AED for children with drug-
resistant epilepsy are seizure type, drug mechanism of action, side
effects, and minimal interactions (7, 8). There are limitations in
selecting appropriate combinations of AED due to the variability
characteristics in patients, so that each individual undergoes a
different response in treatment. Currently in Indonesia, AED is given
to patients based on the type of seizure or epilepsy approach. Precise
and accurate treatment is challenging for patients with drug-resistant
epilepsy. One approach that can be used to predict the successful
treatment is using artificial intelligence (AI).

The use of AT has grown rapidly in medicine, especially in epilepsy
(9-13). Machine learning (ML) is a part of Al which utilizes learning
features to build systems that can learn and improve their performance
based on the provided data (14, 15). The use of ML in the field of
epilepsy has great potential and has been used to predict outcomes in
several studies (9). This approach can integrate various patient’s data
and analysis results into one platform. As of now, in Indonesia, there
is still no use of Al to predict treatment success in pediatric patients
with drug-resistant epilepsy. This study aims to develop machine
learning models to predict treatment success in pediatric drug-
resistant epilepsy, which may assist pediatric neurologists in making
clinical decisions regarding patient’s seizure control status.

2 Methods
2.1 Study design

This protocol will be conducted in ambispective cohort and
multicentre study, involving 215 children patients from Cipto
Mangunkusumo Hospital and Harapan Kita Hospital. Subject data
will be collected from electronic medical records, examinations,
interviews, EEG and brain MRI examination in children with drug-
resistant epilepsy from January 2020 to August 2025. The subjects will
undergo follow-up in an outpatient clinic over 3 months period.

2.2 Predictors

Several features data that will be the outcome predictors in model
analysis are listed in Table 1.

2.3 Outcomes

The outcome of this study is to develop an initial supervised
learning ML model for predicting treatment success in pediatric
patients with drug-resistant epilepsy based on patient
characteristics. This study used a 3 months interval after the
maximum dose of AED was administered to predict treatment
success and >75% seizure reduction as a major response (16, 17).
Treatment success in patients is categorised as controlled if there
is a reduction in seizure frequency >75% compared to baseline

after 3 months of treatment and uncontrolled if there is a
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TABLE 1 Predictors features.

Predictors features Categories

Age of epilepsy diagnosis <1 years

1-< 5 years

5-< 10 years

10-< 15 years

15-18 years

Type of epilepsy Focal

Generalized

Focal to Generalized

Epilepsy syndrome

EEG results Normal

Abnormal without epileptiform wave

Abnormal with epileptiform wave

Epilepsy syndrome

MRI results Normal

Abnormal epileptogenic

Abnormal non-epileptogenic

AED combination Valproic acid and levetiracetam

Valproic acid and topiramate

Valproic acid and carbamazepine or

oxcarbazepine

Valproic acid and levetiracetam and topiramate

Valproic acid and levetiracetam and clobazam

reduction in seizure frequency <75% compared to baseline after
3 months of treatment. This machine learning model is expected
to help paediatric neurologists predict treatment success in
patients with drug-resistant epilepsy and used in a resource-
limited setting.

2.4 Participants

This protocol will be used in children who are regular patients
from pediatric neurology clinics of Cipto Mangunkusumo Referral
Hospital and Harapan Kita Child and Mother Hospital Jakarta,
Indonesia with diagnosis drug-resistant epilepsy based on the
established guideline (4). Patients who are eligible for this study must
fill in an informed consent form before the study begins.

2.4.1 Eligibility criteria

Inclusion criteria include children aged 1 month to 18 years with
confirmed diagnosis of drug-resistant epilepsy, subject currently
receiving two or more of the following AED combinations:

a Valproic acid and levetiracetam

b Valproic acid and topiramate

¢ Valproic acid and carbamazepine or oxcarbazepine
d Valproic acid and levetiracetam and topiramate

e Valproic acid and levetiracetam and clobazam
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Exclusion criteria are subjects with drug-resistant epilepsy
etiology due to structural factors such as tumours, vascular disorders,
and metabolic abnormalities. Subjects with uncontrolled seizures
caused by AED pseudoresistance factors are also excluded, such as
AED dosage is not optimal, not taking AED regularly as prescribed,
and sleep deprivation.

2.5 Sample size estimation

The sample estimation use the rule of thumb method. According
to the rule of thumb method, sample is considered sufficient if the
number of outcome cases is approximately 10 times the number of
predictors being studied, and prevalence of the cases. In this study, five
variables are used as predictors. The prevalence of uncontrolled
seizures in drug-resistant epilepsy patients is 67% (12). The proportion
of uncontrolled seizure status during the 3-month monitoring period
in drug-resistant epilepsy patients currently still lacks of studies. Based
on this, the required minimum sample size is 10 x 5/0.67 = 74 patients.

2.6 Study procedure

2.6.1 Data collection

Data will be collected through parents or caregivers interview,
electronic medical record, EEG and MRI results. The subject will also be
scheduled for EEG and brain MRI examinations with modified HARNESS
MRI. Subject’s characteristic data will then be displayed in Table 2.

After collecting all the subject’s data, the dataset will undergo
pre-processing and processing for developing the machine learning
models. This procedure will be clearly explained in Figure 1.

2.6.2 EEG examination

EEG examination is performed at the EEG Unit of Cipto
Mangunkusumo Referral Hospital and Harapan Kita Child and
Mother Hospital Jakarta, Indonesia with standard pediatric EEG
procedure using Caldwell and Neosoft machines. If the subject has
undergone EEG examination in the last 3 months, repetition is not
required. The EEG result will be interpreted by two paediatric
neurologists who are certified in international EEG and will be
assessed by kappa test. EEG results are categorized into normal,
abnormal non-epileptiform, abnormal with epileptiform or epilepsy
syndrome (see Tables 3, 4).

2.6.2.1 Brain MRI examination

Brain MRI examination is performed at the radiology unit of Cipto
Mangunkusumo Referral Hospital and Harapan Kita Child and Mother
Hospital Jakarta, Indonesia using Philips, GE and Siemens machines.
This brain MRI examination will use a modified Harmonized
Neuroimaging of Epilepsy Structural Sequences (HARNESS-MRI)
epilepsy protocol for children including: T1-weighted 3D, T2-weighted
coronal, T2-weighted coronal hippocampus, T2-weighted axial
hippocampus, Diffusion-weighted Imaging (DWI), Derived apparent
diffusion coefficient (dADC), Susceptibility-weighted imaging (SWI),
Venous spin weighted imaging (VSWI), Fluid attenuation inversion
recovery (FLAIR) coronal hippocampus, Fluid attenuation inversion
recovery (FLAIR) axial hippocampus, Short tau inversion recovery
(STIR) coronal hippocampus, and Short tau inversion recovery (STIR)
axial hippocampus. The aim of using modified HARNESS-MRI is to see
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TABLE 2 Dummy table subject’s characteristics.

Subject’s characteristics n (%)

Gender

Male

Female

Age

<1 years

1- < 5 years

5- <10 years

10- < 15 years

15-18 years

Age of epilepsy diagnosis

<1 years

1- < 5 years

5- < 10 years

10- < 15 years

15-18 years

Number of AED used

2 AED

3 AED

AED combination

Valproic acid + Levetiracetam

Valproic acid + Topiramat

Valproic acid + Carbamazepin/Okscarbazepin

Valproic acid + Levetiracetam + Topiramat

Valproic acid + Levetiracetam + Clobazam

Type of epilepsy

Focal

Generalized

Focal to generalized

Epilepsy syndrome

EEG results

Normal

Abnormal without epileptiform wave

Abnormal with epileptiform wave

Epilepsy syndrome

MRI results

Normal

Abnormal epileptogenic

Abnormal non-epileptogenic

Seizure control status in 3 months

Controlled

Uncontrolled

a better lesion with several additional sequences apart from the major
HARNESS sequences. If the subject has previously undergone brain MRI
examination in the last 6 months, repetition is not required. This result
will be interpreted by one consultant neuroradiologist. Brain MRI results
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FIGURE 1
Study procedure.
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TABLE 3 Dummy table for machine learning evaluation in data training.

Algorithm ACC AUC

Support vector machine (SVM)

10.3389/fneur.2025.1701755

Precision (PPV) Fl-score Recall (sensitivity)

Decision tree (DT)

Random forest (RF)

Extreme gradient boosting (XGB)

TABLE 4 Dummy table for machine learning evaluation in data testing.

Algorithm ACC AUC

Support vector machine (SVM)

Precision (PPV) Fl1-score Recall (sensitivity)

Decision tree (DT)

Random forest (RF)

Extreme gradient boosting (XGB)

are categorized into normal, abnormal non-epileptogenic, or abnormal
with epileptogenic.

2.7 Machine learning development

The initial dataset is first collected using Microsoft Excel and then
later imported into the Yavai program which use Python language
program. The dataset will then undergo data cleaning, which includes
removing data entries with empty values and duplication. Afterwards,
the data will be encoded into numerical form to make it readable by
machine learning programs. Feature selection will not be performed in
this study; as the researcher intends to use all available data features. The
data will be randomly divided into 80% training and 20% testing data.
Hyperparameter tuning on training data will be conducted using the
grid search method with a 5-fold cross-validation procedure on each
model. The data will be divided into five subsets in this procedure, with
four subsets used as the training set and one subset used for validation.
This process will be repeated five times to assess the performance of
each model during training and determine the best parameters. Several
algorithms will be applied in this study, including support vector
machine (SVM), decision tree (DT), random forest (RF), gradient
boosting (GB), and extreme gradient boosting (XGBoost). Each
machine learning model performance will be evaluated using a
classification report, confusion matrix, and AUC-ROC value. The
classification report evaluation includes precision, recall, and F1-score.
Meanwhile, the confusion matrix will be presented in table figure,
including TP (True Positive), TN (True Negative), FP (False Positive),
and FN (False Negative) between the predicted values in machine
learning and the actual values. The AUC-ROC curve evaluation is used
to measure the discriminatory ability of a model.

3 Discussion

Drug-resistant epilepsy is caused by multifactorial etiology,
including type of seizure, onset of seizure, family history of seizure,
abnormal result of EEG and MRI, abnormal neurology examination
and history of NICU admission (5, 18-22). Pharmacokinetic and
pharmacodynamic mechanisms are related to the pathophysiology of
drug-resistant epilepsy. The pharmacokinetic mechanisms involved in
drug resistance, including limitations in achieving optimal

Frontiers in Neurology

antiepileptic drug (AED) concentrations at the site of action which is
influenced by several factors such as solubility in blood, absorption,
metabolism, and drug elimination. Meanwhile, pharmacodynamic
mechanisms relate to factors that change AEDs effects at their site of
action, such as at synapses, ion channels, and receptors (23, 24).

In 2019, ILAE recommended the HARNESS-MRI protocol as the
optimal imaging protocol for epilepsy (25). The use of the epilepsy
protocol in MRI can improve the lesion confirmation success rate
from 49 to 72% (26). HARNESS-MRI protocol consists of three basic
sequences that can be applied to both adult and pediatric patients (25).
Therefore, this study will also perform a similar protocol with the
HARNESS-MRI protocol, which is expected to be more sensitive and
specific in identifying epilepsy focus with some additional sequences.

The treatment goal for drug-resistant epilepsy is to achieve reduction
in seizure frequency and to improve patient’s quality of life with minimal
side effects from AED (27). Treatment for drug-resistant epilepsy still
faces numerous challenges, particularly in optimizing medication
strategies (28). In administering AED for drug-resistant epilepsy, several
aspects need to be considered, including ensuring the absence of pseudo-
resistance, selecting appropriate AED combination, and considering
non-pharmacological treatment options (29). The selection of AED
combination therapy should be based on the diagnosis, mechanisms of
action and potential side effects. Currently, AED combinations are
generally chosen based on clinical experience using a “trial and error”
approach (30, 31). Several studies have summarized the use of AED
combinations that have proven effective in controlling epilepsy (32, 33).
In this study, OAE combination regimens were also included as one of the
varjables, which consist of the five most commonly used OAE
combination regimens. These combinations are selected based on the
types of first-line and second-line drugs and are also generally covered
under Indonesia’s national health insurance (34).

ML has been used in several tasks, including diagnosis, treatment,
detection, and outcome prediction in healthcare, especially in
epilepsy (9). Several studies on epilepsy in children have used
machine learning to predict the success of therapy. Some of the
algorithms that are commonly used are decision tree, random forest,
support vector machine, gradient boosting, and others which are
similar to those used in this study (10-12). The study by Wu et al.
(11) in predicting the success of AED treatment in patients with
familial genetic generalized epilepsy (GGE) showed that random
forest was the best model compared to 13 other models. Another
study by Devinsky et al. (35) used random forest algorithm to predict
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the success of therapy in epilepsy patients, while Zhang et al. (13)
used SVM algorithm to predict the success of levetiracetam therapy
in epilepsy patients.

This study has limitations in terms of its relatively small sample
size and therefore further studies are expected to have larger sample
sizes. Prior to this time, there have been no studies in Indonesia that
have used machine learning to predict the success of AED therapy by
integrating patient data, including clinical data, EEG, MRI, and
medication history. This model is expected to serve as a prototype that
can later be developed and assist pediatric neurologists in predicting
the success of therapy and determining the therapy or intervention to
be done further for the patient.
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