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explainability
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Infantile spasms (IS) represent a severe form of epileptic encephalopathy
occurring in early infancy. Timely and accurate detection is critical, as delays or
misdiagnosis are associated with adverse neurodevelopmental outcomes that
can impair perceptual, cognitive, and affective development. Conventional EEG
analysis is often challenged by the complexity, heterogeneity, and large volume
of IS data, rendering manual review both time-intensive and susceptible to
inter-rater variability. To address these challenges, we introduce CMTS-GNN—a
Cross-Modal Temporal—Spectral Graph Neural Network. This model integrates
complementary information from temporal and spectral EEG representations
through bidirectional cross-modal attention and gated fusion mechanisms. It
further incorporates explicit modeling of brain-region connectivity to capture
functional interactions that underlie perceptual processing, cognitive control,
and affective dynamics. By doing so, CMTS-GNN aims to improve both
detection accuracy and interpretability. We evaluated the proposed model
on an in-house infantile spasms dataset and the publicly available CHB-MIT
epilepsy dataset. Evaluation protocols included five-fold cross-validation and
subject-independent schemes (leave-one-subject-out/leave-one-patient-out).
On our in-house dataset, five-fold cross-validation resulted in an accuracy of
99.02%, precision of 98.96%, recall of 97.47%, Fl-score of 98.20%, and AUC
of 99.27%. For the CHB-MIT dataset, the same protocol yielded an accuracy
of 98.54%, precision of 98.31%, recall of 98.71%, Fl-score of 98.47%, and
AUC of 98.87, outperforming several recent approaches across most metrics.
Subject-independent evaluations further confirmed the model's robustness and
generalizability across different patients. Importantly, by modeling connectivity
across brain regions, CMTS-GNN provides clinically meaningful explanations
for its decisions, enhancing interpretability. In summary, CMTS-GNN offers an
accurate, generalizable, and interpretable framework for automated IS detection
from EEG. It holds potential to support earlier clinical intervention, thereby
helping to mitigate long-term perceptual, cognitive, and affective morbidity in
affected infants.

KEYWORDS
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1 Introduction

Infantile spasms (IS) represent a severe form of epileptic encephalopathy
occurring in early infancy, characterized by stereotypical epileptic spasms, a highly
disorganized electroencephalographic pattern known as hypsarrhythmia, and
developmental stagnation or regression that may compromise perception, cognition,
and affective development (1). IS is widely classified within the spectrum of West
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syndrome and exhibits marked clinical heterogeneity (2, 3).
The global incidence is approximately 0.02% to 0.05%, with
no significant sex differences. Most cases present between 4
and 9 months of age, with a peak onset around 6 months (4,
5). This developmental window coincides with critical periods
for sensory-perceptual integration and early cognitive-affective
maturation. The typical spasms present as brief, repetitive
clusters, characterized by flexion or extension of the trunk, often
accompanied by autonomic symptoms such as ocular deviation and
alterations in respiratory rhythm. These events are more frequent
or pronounced during wakefulness or transitional sleep states (6, 7).
Due to the presence of atypical spasm manifestations in some
cases, IS can be easily misdiagnosed as other infantile movement
disorders, leading to delayed diagnosis and potentially irreversible
neurodevelopmental impairment that affects perceptual, cognitive,
and affective trajectories (8).

Electroencephalography (EEG) is a non-invasive technique that
records neuronal electrophysiological activity via scalp electrodes.
It serves as a critical tool in the clinical diagnosis of epilepsy
and related encephalopathies, offering high temporal resolution
and cost-effectiveness (9). In infantile spasms, EEG holds central
diagnostic value. During ictal episodes, characteristic changes
such as voltage attenuation and bursts of fast rhythms can be
observed (10). Current clinical diagnosis relies on prolonged,
synchronized video-EEG monitoring, which requires manual
interpretation by trained clinicians to detect ictal events and
abnormal discharge patterns (11). However, this approach faces
three major challenges. First, EEG patterns associated with
infantile spasms are highly heterogeneous-not only do they vary
significantly between individuals, but they also exhibit dynamic
fluctuations over time within the same patient, reflecting complex
spatiotemporal variability in epileptic discharges (12). Second,
prolonged monitoring generates a large volume of data, making
manual analysis time-consuming and labor-intensive, which results
in low diagnostic efficiency (13). Third, EEG interpretation is
highly dependent on clinician expertise, and inter-rater consistency
among experts is limited, which hinders the standardization of
diagnosis and treatment (14, 15). These challenges highlight the
urgent need for automated detection technologies in the diagnosis
and management of infantile spasms.

In recent years, deep learning-based end-to-end models have
shown promising performance in the detection of epileptiform
discharges, offering a feasible pathway for the automated
recognition of EEG signals (16-18). Zhou et al. (19) developed
a convolutional neural network (CNN) framework for automatic
seizure detection, which processes raw EEG signals directly in the
frequency domain without the need for manual feature extraction.
Cao et al. (20) proposed a deep transfer learning-based feature
fusion algorithm for multi-state epileptic EEG classification. The
method constructs sub-band mean amplitude spectrum maps to
characterize brain rhythm activity and leverages five ImageNet-
pretrained deep neural networks (AlexNet, VGG19, Inception-
v3, ResNetl52, and Inception-ResNet-v2) to extract and fuse
discriminative EEG features. In the study by Tsiouris et al. (21), a
long short-term memory (LSTM) network was employed to extract
temporal information from EEG segments for seizure detection.
Further advancing this approach, Yao et al. (22) integrated an
attention mechanism into the LSTM framework to enhance the
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model’s ability to detect epileptic seizure. Recent studies have
revealed specific patterns of correlation among neural signals
originating from distinct brain regions (23). Brain networks are
typically modeled as graph structures due to their inherently non-
Euclidean nature. While traditional convolutional neural networks
(CNN) are well-suited for processing regular, Euclidean data such
as images, they are limited in capturing the complex topological
properties of brain connectivity. To more effectively leverage the
spatial and structural information embedded in brain networks,
graph neural networks (GNNs) have been introduced (24). Recent
advances have adopted graph convolutional approaches, modeling
EEG electrode channels as nodes within a topological graph,
where edges denote functional or anatomical connections between
electrodes. This framework mitigates the constraints imposed by
fixed convolutional kernels in conventional CNNs and enables
the retention of more intricate structural characteristics embedded
in EEG data (25-27). Meng et al. (14) proposed a method
based on Graph Convolutional Networks (GCNs) to automatically
identify Electrical Status Epilepticus during Sleep (ESES) from
electroencephalogram (EEG) recordings. Their model preserves the
intrinsic graph structure of EEG signals and leverages both time-
domain and frequency-domain features, achieving higher accuracy
and generalizability compared to traditional approaches such as
template matching and conventional machine learning models.
However, this method has certain limitations, particularly when
dealing with dynamic temporal data. EEG signals exhibit not
only spatial correlations across electrodes but also strong temporal
dependencies. In conventional graph classification tasks, the
topological structure and temporal dynamics of the graph may not
be fully exploited simultaneously. In the context of EEG, the signal
at each electrode is not only correlated with signals from other
electrodes but also shows a clear dependency over time. If a GNN
fails to account for this temporal dependency, critical information
may be lost, potentially degrading classification performance.
Most existing methods primarily focus on a single modality,
with limited consideration of the relationships among temporal,
spatial, and frequency domains. Although current deep learning
approaches are capable of capturing temporal dependencies,
they often lack explicit modeling of interactions across different
modalities. Our work addresses this limitation by introducing
a multimodal attention mechanism to explicitly model the
dependencies between temporal and frequency features, thereby
bridging this gap. In addition, most previous studies only
validated their models on a single dataset, raising concerns
about generalizability. Furthermore, existing explainability analyses
have mainly targeted adult epilepsy datasets, whereas our study
systematically analyzes explainability specifically on infantile spasm
datasets, providing valuable references for clinical translation.To
address these challenges, we propose a novel Cross-Modal
Temporal-Spectral Graph Neural Network (CMTS-GNN) that
integrates both temporal and spectral information for spasm
detection. The proposed model combines multi-scale temporal
feature extraction, spectral-domain modeling, and a cross-modal
attention mechanism to fully leverage the temporal, frequency, and
spatial characteristics of EEG data. CMTS-GNN has been evaluated
on both a proprietary dataset and a public benchmark dataset
to validate its generalization ability. We employ five-fold cross-
validation for comprehensive performance assessment and conduct
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independent validation to ensure complete separation of patient
data between the training and test sets, thereby preventing data
leakage and overfitting.The main contributions of this work are
summarized as follows:

e We proposed CMTS-GNN, a cross-modal temporal-spectral
graph neural network that integrates temporal and spectral
EEG features via bidirectional attention and gated fusion,
enabling comprehensive and robust modeling of spatio-
temporal patterns for infant spasms detection.

e The model explicitly divides EEG channels into five regions—
frontal, central, parietal, occipital, and temporal lobes—based
on the international 10-20 electrode system. Region-wise
attention pooling is then employed to adaptively aggregate
salient features within each brain region. This region-aware
design significantly enhances the model’s spatial specificity
and interpretability in representing brain functional areas.
Using attribution methods, we spatially visualize the basis of
the model’s decisions and observe that its focus closely aligns
with the clinically recognized epileptogenic zones of infantile
spasms. This further strengthens the model’s explainability
and medical credibility, laying a solid foundation for future
clinical translation.

state-of-the-

art accuracy and robustness on the dedicated infantile

e The proposed model not only achieves
spasm dataset but also demonstrates strong generalization
performance in cross-domain transfer experiments on the
public CHB-MIT epilepsy dataset. These results suggest that
the framework presented in this study can efficiently detect
infantile spasms as well as effectively recognize epileptic
seizures, highlighting its significant potential for widespread
clinical application.

The remainder of this paper is organized as follows. Section 2
provides a detailed description of the methods used in this study.
Our experimental results are presented in Section 3. Finally, Section
4 concludes the study.

2 Materials and methods
2.1 Datasets

Datasets A. We evaluated the proposed method on two
electroencephalogram (EEG) datasets. Dataset A was obtained
from Shengjing Hospital of China Medical University and
contains EEG recordings from 40 pediatric patients diagnosed
with infantile spasms. All participants were younger than
two years, and electrodes were positioned following the
international 10-20 system. The cohort comprises 16 females
and 24 males. Table 1 summarizes patient-level demographics and
recording information.

Dataset B (CHB-MIT). The CHB-MIT dataset (28) used in this
study was collected at Boston Children’s Hospital and consists of
pediatric EEG from children with epilepsy. Signals were recorded
with 23 scalp electrodes arranged according to the 10-20 standard,
yielding 844 hours of continuous EEG. The database contains 198
seizure events. Recordings are available for 24 subjects in total,
but patient 24 was excluded here because detailed metadata and
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channel information are missing for that subject, which was added
in a later phase of collection. All EEG was sampled at 256 Hz, and
seizure onset/offset times were manually annotated. Most recording
files are about one hour in duration, although some for particular
patients extend to two or four hours.

2.2 Data processing

Due to variations in the number of recording channels and
sampling frequencies across datasets, a standardized preprocessing
pipeline was applied. Specifically, 16 commonly used EEG channels
(Fpl, Fp2, F3, F4, C3, C4, P3, P4, O1, 02, F7, F8, T3, T4, T5,
T6) were selected, and all signals were resampled to a uniform
frequency of 250 Hz. The EEG recordings for each patient were
then segmented into 5-second epochs, and each segment was
labeled by experienced neurologists. Given that EEG signals are
often contaminated by power line interference, electromyographic
(EMQG) artifacts, and ocular movements during acquisition, a multi-
stage filtering strategy was adopted for signal denoising. A bandpass
filter ranging from 0.7 to 40 Hz was applied to suppress both power
line noise and high-frequency artifacts, while preserving seizure-
related features and minimizing information loss. This approach
helps prevent the loss of critical ictal waveforms due to over-
filtering. To address inter-subject variability in signal amplitude,
a dynamic gain control mechanism was introduced. Specifically,
an average reference was applied during the preprocessing stage
to reduce common-mode interference. Subsequently, Z-score
normalization was performed on each channel, ensuring that the
mean and variance of the signals were standardized to zero and one,
respectively. This normalization strategy not only improves model
convergence during training but also enhances its generalization
ability across heterogeneous datasets.

2.3 Temporal graph construction

To simultaneously capture temporal dynamics and inter-
channel dependencies within the temporal branch of CMTS-GNN,
each 5-s EEG segment is represented as a temporal graph. We
consider segments with C = 16 channels and T sampling points
per segment. In this graph, nodes correspond to electrode channels;
node features are the standardized time series of each channel;
and edge weights quantify the strength of time-varying functional
connectivity. The total number of nodes is 16.

Let the raw EEG matrix be X € R€*T. We apply per-channel
z-score standardization to obtain Z:

Xip — Wi

Zy = 1
. 1)

where X;; is the amplitude of channel i at time ; Z;; is the
standardized amplitude; 1; and o; denote the mean and standard
deviation of channel ; and ¢ > 0 is a stability constant. The vector
zi = (Zi1, ..

To characterize time-varying inter-channel relations, we

., ZiT) serves as the feature of node i.

compute sliding-window Pearson correlations over Z. With
window length L and step size S, the number of windows is K =
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TABLE 1 Infantile spasms A dataset: participant demographics and recording summary.

Participants 01-20 Participants 21-40
Gender Age Spasms (n) EEG (h) Non-spasm Gender Age Spasms (n) EEG (h) Non-spasm
01 M lylm 8 55 12 21 M 10m 32 12 92
02 F 4m 6 35 27 22 F 7m 8 35 27
03 F 8m 9 6 46 23 F 4m 20 6.5 50
04 M 5m 21 9 69 24 F ly5m 13 4 31
05 M 3m 6 3 23 25 M 1y7m 23 7 53
06 M 6m 10 3 23 26 F 6m 12 55 2
07 M 1y8m 17 45 34 27 M 5m 19 8 61
08 M 5m 9 35 27 28 M 5m 9 3 23
09 M 1y 15 4 31 29 M 4m 24 7.5 57
10 F 7m 13 4 31 30 M 5m 27 9 69
11 M 3m 10 3 23 31 M ly3m 2 6 46
12 F 45m 13 4 31 32 F 53d 11 4 31
13 M 7m 14 45 34 33 M 6m 12 45 34
14 M 1y7m 9 3 23 34 F 10m 16 5 38
15 F 2m 11 3 23 35 F 7m 17 5 38
16 F 3m 15 45 34 36 M 6m 17 6 46
17 F 4m 18 7 53 37 M 9m 18 55 42
18 M 1y8m 14 6 46 38 F 10m 42 12 92
19 M 3m 17 8 61 39 F 4m 37 125 96
20 M 6m 13 6.5 50 40 M 9m 33 12 )

Age reported as years (y), months (m), or days (d). Gender: M (male), F (female).
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(T — L)/S] + 1. For the k-th window, let zgk) and z](-k) denote the
length-L subsequences of channels i and j. Their correlation is

, 2

where cov(:, -) is the sample covariance and (ri(k), (rj(k)

standard deviations of the corresponding subsequences.

are the sample

Based on these dynamic correlations, we construct a fully
connected, undirected, weighted graph without self-loops G =
(V, £, W). For each unordered pair {i, j} with i # j, the edge weight
is defined as the average correlation across windows:

K
1 Ko
wij = X Z t’gj) with wij = wji, wii = 0. (3)
k=1

Equivalently, £ = {{i,j} | 1 < i < j < C} and the adjacency
(weight) matrix W = [wj;] is symmetric.

Through this construction, the graph topology explicitly
encodes cross-channel functional connectivity, while the node
features preserve complete time-domain information. This
representation enables CMTS-GNN to exploit complementary
temporal and spatial cues in subsequent processing.

2.4 Spectral graph construction

The proposed CMTS-GNN integrates temporal and frequency-
domain information within a unified graph-based framework
to comprehensively capture the temporal dynamics, spectral
characteristics, and spatial dependencies of infantile spasms (IS)
EEG signals. In the temporal branch, the raw time series of
each EEG channel x;
encoder composed of three parallel one-dimensional convolutional
branches with kernel sizes k € {100, 50, 25}:

e RT is processed by a multi-scale

hl(,k) = ReLU(BN(x; * Wy)), (4)

where Wy is the convolution kernel for scale k, BN(-) denotes batch
normalization, and * represents the one-dimensional convolution
operator. The outputs from all scales are concatenated along the
channel dimension and passed through global average pooling to
produce compact multi-scale temporal features:
b = GaP(|,b). 5)
Both the temporal graph, constructed from dynamic functional
connectivity, and the frequency-domain graph, constructed from
the weighted phase lag index (wWPLI), are processed using edge-
conditioned graph convolution, in which edge attributes are
transformed into learnable kernels for message passing:

; 1
b= | A 2 W

jeN)

CLAE (6)

where A{i) denotes the neighbor set of node i, e; is the edge
attribute (either a DFC or wPLI weight), ¢(-) is an MLP that maps
edge attributes to convolution kernels, and o is the ReLU activation.
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Anatomical priors are incorporated by grouping EEG channels
into R = 5 brain regions {V,}‘B:1 (frontal, central, parietal, occipital,
and temporal). Within each region, features are aggregated via
attention pooling:

exp(w,Th,-)

> 7
> iy, exp(w/ hy) @

6= T alh o
iV,

where w, is a learnable vector for region r.

Cross-modal interaction is enabled by a bidirectional multi-
head attention mechanism, allowing temporal features to attend to
spectral features and vice versa, based on the scaled dot-product
attention:

: QK'
Attention(Q, K, V) = softmax Vv, (8)
L

where dj, is the per-head dimensionality.
The raw and cross-enhanced features are then fused through a
gated mechanism:

o=0c (Wg[hraw; henh]> , hfused —u0 henh + (1 —u) ©h™Y,
©)

where © denotes element-wise multiplication and o is the
sigmoid function.

Finally, the fused temporal and spectral regional features are
concatenated, flattened, and passed through a fully connected
classifier to produce the final prediction. This end-to-end
architecture allows CMTS-GNN to jointly exploit temporal,
spectral, and spatial cues for robust automated detection of
infantile spasms.

2.5 CMTS-GNN overview

Infantile spasm EEG signals are characterized by substantial
heterogeneity and rapidly shifting spatiotemporal patterns,
making them difficult to model with conventional sequence-
based approaches. Such models often struggle to capture the
non-Euclidean topology inherent to EEG channel arrangements
while also integrating complementary cues from temporal
and spectral domains. To overcome these challenges, the
proposed CMTS-GNN unifies three key operations into a single
pipeline: it first extracts temporal features at multiple scales,
then performs edge-aware graph reasoning enriched with brain-
region-wise pooling, and finally applies bidirectional cross-modal
attention coupled with gated fusion. The resulting architecture
simultaneously models waveform dynamics, frequency rhythms,
and inter-channel connectivity, delivering a cohesive and clinically
relevant framework for EEG analysis.The network architecture of
CMTS-GNN is shown in Figure 1.

2.5.1 Multi-scale temporal feature extraction
Given a time-domain EEG segment X e RN*T with N
channels and T samples per channel, three parallel 1-D convolution
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Patient 1

Patient K

Frequency domain feature extraction

Frequency domain

FIGURE 1

Brain Region-Wise
Attention Pooling
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The overall architecture of CMTS-GNN. The CMTS-GNN model is designed to classify EEG segments as spasm or non-spasm events by leveraging
both temporal and spectral characteristics of EEG data. Raw EEG signals are processed in parallel through temporal and spectral branches. Within
each branch, attention-based pooling aggregates features across anatomically grouped brain regions, generating region-wise temporal and spectral
feature maps. A bidirectional cross-modal attention module is then applied to enable effective interaction between temporal and spectral
representations, enhancing the features based on the complementary information from both modalities. Subsequently, the attention-refined features
are adaptively integrated with the original representations through gated fusion blocks, where learnable sigmoid gates dynamically control the
contribution of each modality. The resulting fused representation encodes rich and complementary spatiotemporal information, which is ultimately
fed into a classifier for final decision-making between non-spasm and spasm events.

Delta Theta Alpha Beta Gamma
Frequency Bands

branches with kernel sizes {100, 50, 25} are applied to capture long-
range, medium-range, and short-range temporal dependencies.
Each branch consists of a convolution layer, batch normalization,
and ReLU activation:

Hy = ReLU(BN(Conlek(x(”))), k € {100,50,25}.  (10)
Global average pooling over the temporal dimension produces
compact channel-wise descriptors. If the sequence length after

convolution is Ly:

Ly

_ 1

H(G,2) = o ZHk(i, ), i=1,...,N. (11)
t=1

The pooled features from all branches are concatenated and linearly
transformed into a shared hidden space of width D:

H) = ¢([Fhoo || Hso || Hos)),  ¢() = Wy() +by, (1)

where Hr(,?s e RNXP. This step generates scale-robust
temporal embeddings that retain both transient bursts and

contextual information.

2.5.2 Edge-aware graph encoding and
brain-region pooling

In both temporal and spectral streams, EEG channels
are modeled as graph nodes, with edges encoding functional
connectivity derived from DFC or wPLI Node features are
projected to a common width D:

X0 = wPHO + b, X9 =wOx® 1. (13)
(m)

For an edge (i, j) with scalar attribute a; in modality m € {t,s}, an

MLP outputs an edge-specific kernel:

wim — reshape(MLPW)(afj'”))) e RP*D, (14)

y

Frontiersin Neurology

Node features are updated via mean aggregation over neighbors,
followed by ReLU and LayerNorm:

1 (m) (m)
— > WX
ING)| vy

jeNG)

Z\™ = LN | ReLU (15)

Channels are grouped into five anatomical regions (frontal, central,
parietal, occipital, temporal) based on the 10-20 system. Within
each region r, attention pooling computes:

)
ng’r) = (Wsm))-rzl(m)> O[fm’r) = = S(m,r) >

ZjERr e/
4 = o

1

(16)

Stacking R = 5 regions yields U™ ¢ RR*P.

2.5.3 Cross-modal interaction and gated fusion
At the region level, temporal and spectral matrices interact
via bidirectional multi-head cross-attention. For the temporal to

spectral direction:

3 () ()T
U = Concat{f=1 Softmax QT vl we,  (17)
h
with QW = UOWS,k® = vOw, v® = uOwP. The
spectral—time direction is analogous.
Gated fusion  adaptively = combines  original and
enhanced features:
1 =g 0 +(1-¢") o ul?, (18)
19 =" 0 +1-g") oud, (19)
06 frontiersin.org
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where gt(r) and gs(r) are sigmoid gates from concatenated inputs.
Fused features from all regions are concatenated, flattened, and
passed to a two-layer fully connected classifier with dropout:
y = W, Dropout(ReLU(Wf + b1)) + b2, p=oc(y). (20)
This
graph
alignment, and gated fusion-produces robust, interpretable

sequential design-multi-scale temporal encoding,

reasoning  with  anatomical priors, cross-modal

segment-level predictions.

3 Experiments and results

3.1 Experimental environment

Our method is implemented using PyTorch and trained on
an Ubuntu server equipped with an Intel® Xeon® Gold 6133 @
2.50GHz CPU and an NVIDIA 3090Ti GPU. The Adam optimizer
is adopted for training, with the learning rate set to 0.01. The entire
network is trained with a batch size of 32 for a total of 150 epochs.
Due to sample imbalance, a focal loss function is used as the loss
criterion, which is proposed by Lin et al. (29).

3.2 Evaluation metrics

TP+ TN
Accuracy = (21)
TP+ TN + FP 4+ FN
TP
Recall = ——— (22)
TP + FN
N TP
Precision = —— (23)
TP + FP
TN
Specificity = ———— 24
pecificity TN + 7P (24)
P(P+1)
¥ 2D
AUC = IET, r; = rank(s;), (25)

Here, TP, TN, FP, and FN represent True Positive, True Negative,
False Positive, and False Negative, respectively.

3.3 Comparative experiment

To provide a comprehensive evaluation of our proposed
CMTS-GNN model, we reproduced several representative state-of-
the-art methods and conducted a unified performance comparison
on Dataset A using 5-fold cross-validation. While the official
implementations of some models were not publicly available, we
carefully replicated the architectures and training procedures based
on the original papers to ensure high fidelity. The experimental
results are summarized in Table 2 and further illustrated through
the confusion matrices (Figure 2).

Hybrid architectures such as the ConvLSTM-based model
proposed by Md. Nurul Ahad Tawhid et al. (30) and the
CNN-LSTM framework by Xiashuang Wang et al. (31) combine
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convolutional and recurrent layers to capture spatiotemporal
dependencies in EEG signals. When evaluated on our dataset,
the ConvLSTM model achieved an accuracy of 87.84% and
a recall of 80.22%, but showed limited precision at 75.89%,
resulting in an F1-score of 77.86% and an AUC of 89.63%. CNN-
LSTM improved the overall accuracy to 88.78% and precision to
81.44%, though its recall declined to 75.61%, indicating reduced
sensitivity to spasm events. The confusion matrices for both models
reveal a noticeable presence of off-diagonal elements, reflecting
misclassifications likely caused by the domain shift from adult to
infant EEG. Sergi Abadala et al. (32) proposed a Graph Transformer
Network (GTN) designed to model inter-channel dependencies
in EEG data. Although it achieved a precision of 88.38% in
our experiments, the recall was only 73.09%, suggesting under-
detection of spasm episodes. Likewise, the hybrid 3D-Denoising
Convolutional Autoencoder (3D-DCAE) + Bi-LSTM model by
Srinivasan et al. (33) exhibited the weakest performance among
all compared models, with a recall of just 54.70% and an FI-
score of 66.07%, indicating limited generalizability to infantile
EEG patterns.

Models incorporating attention mechanisms and multi-level
feature fusion have shown relatively better adaptability to
our dataset. The 1D-CNN with attention-based feature fusion,
proposed by Wenna Chen et al. (34) , achieved strong performance,
with 95.55% accuracy, 91.65% precision, 92.12% recall, and an
Fl-score of 91.74%, and its confusion matrix showed minimal
off-diagonal misclassifications. Similarly, the multiband 3D-CNN
with attention mechanisms by Hui Huang et al. (35) yielded
competitive performance. The Multi-branch Deep Convolutional
Neural Network (MDCNN) proposed by Weidong Dang et al.
(36) achieved 96.12% accuracy, 93.65% precision, 92.14% recall,
and an Fl-score of 92.77%, highlighting the advantages of deeper
convolutional structures in capturing EEG dynamics.

In comparison, the proposed CMTS-GNN model achieved
state-of-the-art results, with an accuracy of 99.02%, precision
of 98.96%, recall of 97.47%, Fl-score of 98.20%, and AUC of
99.27%.CMTS-GNN encloses the largest area across all metrics,
signifying superior balance between sensitivity and specificity.
Moreover, the confusion matrix of CMTS-GNN shows near-
perfect classification, with negligible false positives and false
negatives, in contrast to the scattered misclassifications observed
in other methods.

These results demonstrate that the integration of multiscale
temporal encoding, edge-aware graph modeling, cross-modal
CMTS-
GNN to effectively capture complex spatiotemporal-frequency

attention, and brain region-wise pooling enables
dependencies in EEG data. Consequently, our method not only
surpasses existing approaches in classification performance but
also sets a new benchmark in achieving a balanced and reliable
detection of infant spasms.

3.4 Ablation experiments
To verify the contribution of each module in our model, we

designed several variant models. First, we use cross-modal fusion
between temporal and frequency domains as the baseline model,
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TABLE 2 Performance comparison between the proposed method and state-of-the-art methods using 5-fold cross-validation on dataset A.

Author Accuracy (%) Pre (%) Recall (%) F1 (%) AUC (%)
Md. Nurul Ahad Tawhid et al. (30) 87.84 75.89 80.22 77.86 89.63
8 (SD) +1.25 +2.10 +2.35 +2.05 +1.50
Xiashuang Wang et al. (31) 88.78 81.44 75.61 78.18 93.38
8 (SD) +1.10 +1.50 +2.20 +1.65 +0.90
Sergi Abadala et al. (32) 90.21 88.38 73.09 79.96 93.75
5 (SD) +0.95 +1.20 +2.10 +1.50 +0.85
Saravanan Srinivasan et al. (33) 84.90 83.63 54.70 66.07 88.10
8 (SD) +1.80 +1.70 +3.50 +2.90 +1.40
Wenna Chen et al. (34) 95.55 91.65 92.12 91.74 99.13
8 (SD) +0.80 +1.00 +0.90 +0.95 +0.30
Hui Huang et al. (35) 90.09 83.57 78.64 81.03 86.47
8 (SD) +0.90 +1.20 +1.50 +1.20 +1.00
Weidong Dang et al. (36) 96.12 93.65 92.14 92.77 94.87
8 (SD) +0.70 +0.90 +1.00 +0.85 +0.80
The proposed method 99.02 98.96 97.47 98.20 99.27
8 (SD) +0.35 +0.40 +0.55 +0.45 +0.25
8 (SD) reports the standard deviation across the five folds for each metric.
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Tawhid et al.
Confusion Matrix 19 Confusion Matrix 1% Confusion Matrix 19 Confusion Matrix %
80 80 80 80
Spasms Spasms Spasms 7.86% Spasms 2.53%
K 60 z 60 z 6 ] 6
3 3 3 3
£ 40 H 40 H 40 z 40
Non-spasms - 3.13% Non-spasms - 6.42% Non-spasms- 2.33% Non-spasms- 0.38%
-20 -20 -20 20
Spasms Non-spasms Syisms Non-spasms Spasms Non-spasms Spasms Non-spasms
Predicted Label Predicted Label Predicted Label i Predicted Label 0
Wenna Chen et al. Hui Huang et al. Weidong Dang etal.  The proposed method
FIGURE 2
Comparison of confusion matrices between the proposed method and state-of-the-art methods on dataset A. The colorbar indicates the
percentage, which is row-normalized.
and then progressively integrate additional modules to form the e Variant B (4+ Multi-Head Attention): Based on
complete model. The specific configurations are as follows: the cross-modal fusion, we add a multi-head

e Variant A (Cross-modal fusion): We use a network that
performs cross-modal fusion between temporal-domain and

frequency-domain graphs as the baseline model.
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attention mechanism.

e Variant C (+ Brain Region-Wise Attention Pooling): We
enhance the cross-modal fusion model by introducing Brain

Region-Wise Attention Pooling.
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TABLE 3 The comparison of experimental results from ablation experiments.

10.3389/fneur.2025.1700161

Model Accuracy (%) Pre (%) Recall (%) F1 (%) Specificity (%)
Cross-modal fusion 76.86 58.66 47.99 52.65 87.48
8 (SD) +2.10 +2.40 +3.20 +2.80 +1.90
Cross-modal fusion + Multi-head 94.37 87.83 91.88 89.72 95.32
attention

8 (SD) +0.95 +1.10 +1.25 +1.05 +0.90
Cross-modal + Brain region-wise 97.76 96.62 95.01 95.83 98.78
attention pooling

8 (SD) +0.70 +0.85 +1.00 +0.90 +0.60
The proposed method 99.02 98.96 97.47 98.20 99.05
8 (SD) +0.35 +0.40 +0.55 +0.45 +0.40

8 (SD) reports the standard deviation across the ablation experiments for each metric.

e Variant D (4+ Multi-Head Attention + Brain Region-
Wise Attention Pooling): We incorporate both Multi-
Head Attention and Brain Region-Wise Attention Pooling
into the cross-modal fusion framework (our proposed
model CMTS-GNN).

To evaluate the contribution of each component in the
proposed CMTS-GNN model, we conducted a comprehensive
ablation study by designing four variant models with progressive
integration of core modules. As shown in Table 3, the baseline
model utilizing only cross-modal fusion between temporal and
spectral features (Variant A) vyielded the lowest performance
across all metrics, with an accuracy of 76.86% and Fl-score of
52.65%. Introducing the multi-head attention mechanism (Variant
B) significantly enhanced performance, boosting the F1-score to
89.72%, highlighting its effectiveness in modeling inter-modal
dependencies.Further incorporating Brain Region-Wise Attention
Pooling (Variant C) led to substantial improvements across all
evaluation metrics, with a notable increase in precision (96.62%)
and specificity (98.78%), indicating the benefit of anatomical
priors in feature aggregation. Finally, the full model (Variant
D), integrating both multi-head attention and brain-region-wise
pooling, achieved the highest performance with an accuracy of
99.02%, Fl-score of 98.20%, and specificity of 99.05%. These
results demonstrate that each module contributes incrementally
and synergistically to the overall performance, validating the design
of the CMTS-GNN architecture.

3.5 Leave-one-patient-out cross-validation
on dataset A

To rigorously evaluate the generalizability of the proposed
CMTS-GNN model across different subjects, we conducted a
Leave-One-Patient-Out Cross-Validation (LOPO-CV) experiment.
In this setting, the dataset comprising 40 infant patients was
partitioned such that, in each iteration, the EEG recordings from
one patient were held out as the test set, while the remaining 39
patients’ data were used for training. This process was repeated
40 times, ensuring that each patient served exactly once as the

Frontiersin Neurology

test subject. LOPO-CV offers a stringent and subject-independent
evaluation protocol, particularly suitable for medical applications
where inter-subject variability is high. It allows us to assess the
model’s robustness and its ability to generalize to previously unseen
patients, a critical requirement for real-world clinical deployment
in infantile spasm detection. Because Table 4 shows substantial and
heterogeneous class imbalance at the subject level, we explicitly
balanced our cross-validation splits. For 5-fold CV, we used a
grouped, stratified split at the patient level: patients were ordered by
their spasm counts and assigned to folds in a round-robin manner
so that each fold approximated the global spasm/non-spasm ratio
and contained comparable EEG hours; no re-sampling was applied
on the validation fold.

The leave-one-patient-out cross-validation results, as presented
in Table 4, demonstrate the strong generalization and robustness
of the CMTS-GNN model for infantile spasm detection across a
diverse cohort of 40 subjects. Notably, 10 patients, such as numbers
3,5, 10, 16, 17, 23, 30, 32, 35, and 39, exhibited perfect scores for
all metrics, reflecting cases where the model could fully separate
spasm from non-spasm events. The majority of samples were
correctly classified, indicating both high sensitivity and specificity.
Given the pronounced class imbalance, accuracy alone can be
inflated, therefore we interpret performance in light of this balance
and emphasize precision, recall, specificity, F1-score, accuracy so
that each subject contributes equally. In subjects with very few
spasms, precision is expected to be lower because non-spasm
segments dominate, whereas consistently high recall indicates that
true spasm episodes are still captured despite imbalance. False
negatives and false positives were relatively rare, but some patients—
such as number 2 and number 18,displayed lower precision,
resulting in more false positive predictions. For example, in these
instances, the confusion matrix showed an increased number
of non-spasm samples misclassified as spasms, suggesting that
patient-specific signal variability or noise may present challenges
for the model. Despite this, recall remained above 75 percent
for nearly all patients, underscoring the model’s robustness in
capturing true spasm episodes even in less distinct or noisy EEG
segments. The overall distribution of LOPO-CV metrics reveals a
low standard deviation, reflecting consistent model performance
and minimal overfitting to individual subjects. Furthermore, the
confusion matrix did not reveal any subject with systematic
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TABLE 4 Performance of CMTS-GNN using leave-one-patient-out cross-validation on dataset A.

Number Accuracy (%) Pre (%) Recall (%) F1 (%) Specificity (%)
01 93.93 87.49 87.49 87.49 95.99
02 88.46 7143 8330 76.92 90.00
03 100.00 100.00 100.00 100.00 100.00
04 9155 8261 90.48 86.36 92.00
05 100.00 100.00 100.00 100.00 100.00
06 97.49 90.91 100.00 95.24 96.67
07 94.23 88.89 94.12 91.39 94.29
08 9130 7273 88.89 79.68 91.89
09 92.86 8235 9333 87.45 92.68
10 100.00 100.00 100.00 100.00 100.00
11 92.00 75.00 90.00 81.82 9250
12 90.74 78.57 84.62 8125 92.68
13 92.68 85.71 9231 88.89 92.86
14 89.74 7273 88.89 80.00 90.00
15 89.36 75.00 81.82 78.26 91.67
16 100.00 100.00 100.00 100.00 100.00
17 100.00 100.00 100.00 100.00 100.00
18 89.23 73.33 78.57 75.81 92.16
19 98.46 94.44 100.00 97.14 97.92
20 94.00 85.71 9231 88.83 94.59
21 95.54 9091 93.75 9231 96.25
2 92.68 77.78 87.50 8235 93.94
23 100.00 100.00 100.00 100.00 100.00
24 98.11 100.00 9231 95.99 100.00
25 97.14 100.00 91.30 95.45 100.00
26 94.00 84.62 91.67 88.00 94.74
27 95.38 90.00 94.74 92.28 95.65
28 9250 80.00 88.89 8421 9355
29 93.67 9130 87.50 89.32 96.36
30 100.00 100.00 100.00 100.00 100.00
31 90.91 89.47 77.27 83.02 96.36
32 100.00 100.00 100.00 100.00 100.00
33 90.38 76.92 8333 79.96 9250
34 89.39 73.68 87.50 79.69 90.00
35 100.00 100.00 100.00 100.00 100.00
36 97.40 94.12 94.12 94.12 98.33
37 9114 76.19 88.89 82.05 91.80
38 90.98 100.00 73.81 84.93 100.00
39 99.14 100.00 97.29 98.63 100.00
40 9431 87.88 90.63 89.27 96.67
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misclassification of either spasms or non-spasms, supporting
the patient-independence and clinical reliability of CMTS-GNN.
These results validate that CMTS-GNN can effectively generalize
across patients and holds significant potential for real-world
deployment in clinical settings for automated infantile spasm
detection. The overall distribution of LOPO-CV metrics reveals a
low standard deviation, reflecting consistent model performance
and minimal overfitting to individual subjects. Furthermore, the
confusion matrix did not reveal any subject with systematic
misclassification of either spasms or non-spasms, supporting the
patient-independence and clinical reliability of CMTS-GNN. These
results validate that CMTS-GNN can effectively generalize across
patients and holds significant potential for real-world deployment
in clinical settings for automated infantile spasm detection.

3.6 Explainability of model decisions

To provide insight into the decision-making process of our
deep learning model, we employed the gradient multiplied by
input attribution method. This approach, originally described by
Karen Simonyan et al. (37) in 2013 in the context of saliency
maps, quantifies feature importance by computing the element-
wise product of the input and the gradient of the output with
respect to that input. This method has since been widely adopted
in the field of neural network interpretability, and was further
developed by Mukund Sundararajan et al. (38) in 2017 through
the introduction of Integrated Gradients. The resulting relevance
scores reflect the direct contribution of each input feature to
the model’s prediction, offering an intuitive and computationally
efficient means of interpreting complex models. In the context of
electroencephalogram (EEG) analysis, the application of gradient

10.3389/fneur.2025.1700161

multiplied by input attribution is particularly important (16, 37,
39). EEG signals are high-dimensional and spatially distributed,
with substantial variability across both subjects and brain regions.
Traditional deep learning models, while powerful in capturing
nonlinear spatiotemporal dependencies, often lack transparency,
making it difficult to assess which channels or temporal segments
drive the networK’s predictions. By employing gradient multiplied
by input attribution, we can generate channel-wise or region-
wise relevance maps, enabling neuroscientific interpretation and
clinical validation of model behavior. This not only enhances trust
in automated EEG classification systems, but also helps uncover
physiologically meaningful patterns that may underlie epileptic
activity or other neurological events.

Given that the proposed cross-modal fusion architecture is
capable of simultaneously integrating temporal and spectral graph
features, we further designed a weighted fusion mechanism for
the attribution scores, combining the channel contributions from
both modalities in a weighted manner. The fusion coefficient was
set to 0.5 to ensure equal representation of temporal and spectral
information. Specifically, we applied the gradient multiplied by
input method to compute the attribution scores for each channel
in both the temporal and spectral domains, and then aggregated
these scores using the weighted scheme to obtain the final channel
relevance scores. To facilitate spatial pattern comparison across
different samples, we averaged the channel scores along the
temporal dimension for each sample to obtain a single spatial
vector. Finally, based on the international standard 10-20 electrode
system, we visualized the model’s decision basis by plotting EEG
topographic maps.

As shown in Figure 3, by visualizing the topographic maps
of attribution scores for several infant spasm samples, it can
be observed that when the model identifies spasm events, it
notably focuses on neural activity in the frontal, central, and
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FIGURE 3

Topographic maps of attribution scores are shown for samples from five infants with spasms. Higher normalized attribution scores indicate features
that are more relevant for the model's classification decision, whereas lower scores represent less relevant or irrelevant inputs. (A) displays attribution

maps for spasm samples, while (B) corresponds to non-spasm samples.
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temporal regions. These areas consistently display higher positive
attribution scores in most spasm samples, indicating their critical
discriminative value in the model’s classification decisions. In
contrast, channels in the occipital region tend to exhibit negative
or low contributions, suggesting that this region is not important
for spasm recognition. The spatial activation pattern remains
highly consistent across different samples, and also demonstrates
individualized lateralization of epileptogenic zones, reflecting the
model’s sensitivity to the potential distribution of epileptic foci.
Importantly, these attribution results are highly consistent with
findings from clinical EEG research, which indicate that infantile
spasms most frequently originate from the frontal lobe, central
motor cortex, and temporal pole regions, as documented by Lux et
al. (40) and Watanabe et al. (41). This correspondence confirms the
neurophysiological validity and medical relevance of the model’s
interpretability, further supporting the value of deep models in
spasm prediction.

In contrast, analysis of the attribution topographic maps
for non-spasm samples shows that when the model identifies
non-spasm states, the overall distribution of channel relevance
scores becomes more diffuse, with no concentrated activation
regions. Most channels present attribution scores close to zero
or mildly negative, especially in the occipital and central areas,
which consistently show a suppressive contribution in multiple
samples. This suggests that the model derives non-spasm evidence
from these regions. Compared to the prominent frontal and
temporal activation observed in spasm samples, the spatial
discriminability and activation magnitude in non-spasm samples
are substantially reduced. This trend demonstrates that the model
can effectively distinguish spatial features under different clinical
states, providing visual evidence for its stability and reliability in
practical clinical applications.

From a cognitive network perspective, CMTS-GNN yields
explanations at the level of large-scale functional systems rather
than isolated channels. The brain-region-wise attention pooling in
Equation (16) produces region embeddings that serve as proxies
for canonical systems. Bidirectional cross-modal attention together
with the gated fusion in Equations 18-19 then quantifies how
evidential support flows between these systems across temporal and
spectral representations. Aggregating gradientxinput attributions
within each anatomically defined region provides a decomposable
“network evidence” profile per segment, revealing that spasm
decisions are primarily driven by fronto-central and anterior
temporal systems, with consistent suppression or low evidence
in occipital cortex . This network-level pattern accords with
circuits subserving early sensorimotor control, cognitive control,
and affective reactivity, and thus offers a cognitively meaningful

10.3389/fneur.2025.1700161

account of why the model classifies a segment as spasm vs. non-
spasm. Practically, per-region evidence can be surfaced alongside
predictions to support clinical review and to track patient-specific
lateralization over time, linking model outputs to interpretable
cognitive networks and facilitating biomarker development for
downstream mental-health modeling.

3.7 Leave-one-patient-out cross-validation
on dataset B

To further evaluate the generalization capability of the
proposed CMTS-GNN model across different epilepsy types
and EEG backgrounds, we conducted transfer testing on the
public CHB-MIT epilepsy dataset. The CHB-MIT dataset consists
of long-term EEG recordings from multiple epilepsy patients,
encompassing a wide spectrum of seizure types and exhibiting
background activity and ictal patterns that differ substantially from
those observed in infantile spasms. Employing this dataset as
an independent test set not only imposes stricter requirements
on model robustness and cross-domain adaptability, but also
more accurately simulates real-world clinical scenarios.For data
preprocessing, all EEG recordings-both seizure and non-seizure
segments—were uniformly segmented into five-second epochs to
standardize input length and enhance temporal resolution for
model analysis. In addition, to ensure consistency across samples
and facilitate robust cross-subject evaluation, we retained only the
18 EEG channels that were common to all recordings: FP2-F4, C4-
P4, T8-P8, F7-T7, FP1-F3, FP1-F7, P7-O1, F4-C4, T7-P7, P8-02,
P3-01, F8-T8, FZ-CZ, FP2-F8, CZ-PZ, F3-C3, C3-P3 and P4-02.

To avoid class imbalance and to provide a fair evaluation
of the model’s discriminative ability, we adopted a balanced
scheme with equal proportions of positive and negative samples.
Several representative and state-of-the-art methods were selected
for unified performance comparison on Dataset B using five-fold
cross-validation. In addition, we employed a leave-one-subject-
out (LOSO) cross-validation strategy, where the EEG data of
each patient was sequentially used as the test set, while the data
from the remaining patients served as the training set. This
approach provides a comprehensive assessment of the model’s
generalization ability and robustness across different individuals.
Detailed experimental results are presented in Tables 5, 6.

The proposed method demonstrated outstanding overall
performance in the five-fold cross-validation experiments
conducted on the CHB-MIT public dataset. Specifically, this
method outperformed other comparative approaches in all
evaluation metrics, including accuracy (98.54%), precision

TABLE 5 Performance comparison between the proposed method and state-of-the-art methods using 5-fold cross-validation on dataset B.

Author Accuracy (%) Pre (%) Recall (%) F1 (%) AUC (%)
Md. Nurul Ahad Tawhid et al. (30) 98.27 97.52 98.96 98.23 98.69
Xiashuang Wang et al. (31) 97.92 97.71 98.04 97.88 98.15
Wenna Chen et al. (34) 98.30 97.98 98.56 98.27 99.04
The proposed method 98.54 98.31 98.71 98.47 98.87
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TABLE 6 Performance of CMTS-GNN using leave-one-patient-out cross-validation on dataset B.

Number Accuracy (%) Pre (%) Recall (%) F1 (%) Specificity (%)
01 98.31 98.83 97.70 98.27 98.89
02 89.66 86.67 92.86 89.66 86.67
03 100.00 100.00 100.00 100.00 100.00
04 81.91 88.57 70.45 78.48 91.99
05 100.00 100.00 100.00 100.00 100.00
06 91.80 83.87 100.00 91.15 85.71
07 93.88 95.24 90.91 93.02 96.30
08 89.82 87.29 92.79 89.94 86.96
09 96.17 96.42 97.25 96.81 94.46
10 100.00 100.00 100.00 100.00 100.00
11 96.26 96.63 95.56 96.09 96.91
12 93.42 91.66 94.74 93.16 92.22
13 85.16 87.14 81.33 84.14 88.75
14 87.88 100.00 74.19 85.19 100.00
15 94.64 94.78 90.83 92.71 96.95
16 83.33 74.99 85.71 79.99 81.82
17 89.33 96.43 79.41 87.01 97.56
18 89.36 92.31 83.72 87.74 94.12
19 88.24 100.00 71.43 83.33 100.00
20 88.79 83.33 96.15 89.29 81.82
21 87.72 95.00 76.00 84.33 96.88
22 98.39 100.00 96.55 98.25 100.00
23 96.82 97.33 96.05 96.62 97.53
All values are percentages (%). Pre denotes precision.
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FIGURE 4
Comparison of confusion matrices between the proposed method and state-of-the-art methods on dataset A. The colorbar indicates the
percentage, which is row-normalized.

(98.31%), recall (98.71%), and F1-score (98.47%). In comparison,
the method by Wenna Chen et al. achieved the highest AUC
(99.04%), but its other metrics—such as accuracy and Fl-score-
were slightly lower than those of the proposed method. The related
metrics of Tawhid et al. (30) and Wang (31) were all inferior
to those of our method, with particularly noticeable gaps in

Frontiersin Neurology

recall and precision. As shown in Figure 4, the confusion matrix
provides an intuitive reflection of the classification performance
on both positive and negative samples. It can be observed
that the proposed method achieves higher true positive rate
(98.71%) and true negative rate (98.38%) than the comparative
methods, indicating fewer missed detections and false alarms in
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practical detection. While other methods also perform well, some
exhibit higher error rates in negative sample discrimination; for
example, the true negative rate of the Tawhid et al. (30) method
is 97.61%, slightly lower than that of the proposed method.
In summary, the proposed method consistently outperforms
several state-of-the-art algorithms in the five-fold cross-validation
experiments on the CHB-MIT public dataset. Not only does
it achieve optimal results in accuracy, precision, recall, and
F1-score, but its AUC value is also close to the highest, indicating
strong potential for application in the automatic detection of
infantile spasms.

4 Conclusion

We proposed CMTS-GNN, a cross-modal temporal-spectral
graph neural network for automated infantile spasm detection
from EEG, and demonstrated state-of-the-art performance with
strong generalizability and interpretability. On the dedicated infant
spasm dataset, CMTS-GNN reached 99.02% accuracy, 98.96%
precision, 97.47% recall, 98.20% F1, and 99.27% AUC under
five-fold evaluation, and exhibited robust patient-independent
generalization in leave-one-patient-out testing with multiple
subjects achieving perfect scores. Cross-domain transfer to
CHB-MIT confirmed robustness under distribution shift, yielding
98.54% accuracy, 98.31% precision, 98.71% recall, 98.47% F1, and
98.87% AUC in five-fold evaluation, while most patients surpassed
90%
analysis highlighted frontal, central, and temporal regions during

accuracy in leave-one-subject-out testing. Attribution

spasm detections in line with clinical knowledge. These results
establish CMTS-GNN as an accurate, generalizable, and clinically
interpretable solution for infantile spasm detection and motivate
future work on larger and more diverse cohorts, integration of
additional physiological signals, and refined interpretability to
support clinical deployment.
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