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Can one-step reinforcement 
learning guide optimal timing for 
PEG and tracheostomy in severe 
TBI? Insights from a 2016–2023 
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Background: Acute management of traumatic brain injury (TBI) presents 
several challenges in hospital resource planning. While early tracheostomy 
(trach) and percutaneous endoscopic gastrostomy (PEG) tube placement may 
improve patient outcomes, the optimal timing and selection criteria for these 
interventions remain unclear. This study evaluates the impact of PEG and trach 
timing on key clinical outcomes and applies one-step reinforcement learning 
(RL) to recommend intervention timing.
Methods: This retrospective cohort study included 263 adult intensive care unit 
inpatients (194 men, 69 women, age range 18–87), diagnosed with severe TBI 
requiring trach and/or PEG between 1 January 2016 and 31 December 2023, at 
a single academic institution. Key outcomes included ICU and hospital length 
of stay (LOS), complications, time to oral feeding/decannulation, readmission, 
and mortality. One-step temporal difference (TD) learning and Q-learning were 
used to predict the expected value of interventions and to recommend optimal 
timing based on patient states, respectively.
Results: Early PEG and trach interventions were associated with significantly 
shorter ICU and hospital length of stay (LOS) and fewer complications. Delayed 
PEG placement, however, was associated with a 67% reduction in the odds of 
mortality (OR: 0.33, p = 0.033) compared to early placement, despite having 
more total complications. One-step RL suggested greater cumulative rewards 
with earlier intervention and successfully recommended the optimal day for 
PEG/trach intervention based on initial patient presentation.
Conclusion: Early interventions are associated with improved outcomes; 
however, delaying PEG or trach placement may be  advantageous in select 
situations to reduce mortality. RL techniques, such as TD and Q-learning, can 
aid in decision-making regarding interventions.

KEYWORDS

traumatic brain injury, tracheostomy, PEG, reinforcement learning, clinical decision 
support

OPEN ACCESS

EDITED BY

Michael L. James,  
Duke University, United States

REVIEWED BY

Rick Gill,  
Loyola University Chicago, United States
Ting Zhang,  
Children‘s Hospital of Chongqing Medical 
University, China
Dipesh Tamboli,  
Facebook, United States

*CORRESPONDENCE

Milad Behbahaninia  
 behbahaninia@usf.edu

RECEIVED 05 September 2025
ACCEPTED 21 October 2025
PUBLISHED 13 November 2025

CITATION

Babel S, Vanderpool J, Inkel M and 
Behbahaninia M (2025) Can one-step 
reinforcement learning guide optimal timing 
for PEG and tracheostomy in severe TBI? 
Insights from a 2016–2023 retrospective 
cohort study at a single academic institution.
Front. Neurol. 16:1700064.
doi: 10.3389/fneur.2025.1700064

COPYRIGHT

© 2025 Babel, Vanderpool, Inkel and 
Behbahaninia. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Original Research
PUBLISHED  13 November 2025
DOI  10.3389/fneur.2025.1700064

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2025.1700064&domain=pdf&date_stamp=2025-11-13
https://www.frontiersin.org/articles/10.3389/fneur.2025.1700064/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1700064/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1700064/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1700064/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1700064/full
https://www.frontiersin.org/articles/10.3389/fneur.2025.1700064/full
mailto:behbahaninia@usf.edu
https://doi.org/10.3389/fneur.2025.1700064
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2025.1700064


Babel et al.� 10.3389/fneur.2025.1700064

Frontiers in Neurology 02 frontiersin.org

Introduction

Traumatic brain injury (TBI) is a leading cause of mortality and 
long-term disability globally, with approximately 69 million new cases 
every year (1). An estimated 10–15% of all TBI cases are classified as 
moderate to severe based on the Glasgow Coma Scale (GCS) (2). 
Patients with moderate to severe TBI typically require specialized 
intensive care management, including mechanical ventilation and 
nutritional support (2). This can lead to the placement of percutaneous 
endoscopic gastrostomy (PEG) tubes for enteral feeding or 
tracheostomies (trach) in cases of prolonged mechanical ventilation. 
In severe TBI, indicated by a GCS of 8 or less, timely feeding and 
airway interventions are key issues in improving patient outcomes (3). 
The timing and contexts of these interventions present substantial 
challenges and complexities in their acute management (1).

Timely and effective trach placement and nutrition are 
important in the management, but the optimal timing and 
assessment of these procedures remain ambiguous. Particularly, 
there are no standardized guidelines for the optimal timing of trach 
placement in these patients (4). This is compounded by the lack of 
consensus and ambiguity in the existing literature, with multiple 
studies pointing out that trach timing is often left to the physician’s 
discretion (5).

Some studies have demonstrated that early trach initiation does 
contribute to better outcomes in terms of the duration of mechanical 
ventilation and ICU stay. A meta-analysis by de Franca et al. showed 
that early trach can reduce the duration of mechanical ventilation, 
ICU LOS, and hospital LOS and lower the risk of ventilator-associated 
pneumonia (VAP) (6). Similar correlations with length of stay and 
days of mechanical ventilation have been observed in other 
studies (7, 8).

Regardless, the association between early trach and overall 
hospitalization duration, the incidence of pneumonia, and the 
mortality rate remains inconclusive (9). Others have pointed to a 
larger risk of complications such as intracranial hypertension or even 
hospital mortality, with an early trach (10–12). For example, Kocaeli 
et al. found that early trach placement could increase intracranial 
pressure and, therefore, complicate patient recovery (11). Contrary to 
the study by de Franca et  al., some retrospective analyses have 
suggested that trach performed within 24 h was not associated with 
improved survival but was instead linked to higher rates of pneumonia 
and longer ICU stays compared with a trach performed within 
48 h (13).

TBI patients who undergo trach often require additional support 
for nutrition and feeding. Percutaneous endoscopic gastrostomy 
(PEG) has emerged as the preferred method for providing long-term 
nutrition, especially in patients with prolonged dependence on enteral 
feeding (14). Indeed, studies have found that early PEG placement 
within 7 days may reduce hospital length of stay and costs, although 
there are concerns about worsened outcomes (15, 16). Studies have 
especially supported simultaneous PEG in neurocritical patients 
requiring trach, pointing to lower intensive care unit (ICU) and 
overall hospital stays (17–19). Meanwhile, Chaudhry et al. found that 
the standard timing for PEG placement (7–14 days) maximized 
patient outcomes, while both early and late PEG placements otherwise 
had higher risks of complications, infection, and mortality (20). 
Delaying PEG placement has also been found to result in fewer 
complications, especially in select populations (16).

The choice to perform a PEG or a trach involves balancing the 
potential benefits of early intervention with the risk of an unnecessary 
procedure. As the literature shows, this decision relies on clinical 
experience and patient-specific factors; determining the ideal timing 
for conducting these procedures when warranted adds another layer 
of complexity. For example, a prospective study by Figueiredo et al. 
described how PEG placement was often requested too late in half of 
the reviewed cases. Despite a trend favoring earlier placement, they 
nevertheless could not decipher a single variable that could reliably 
predict complications or provide insights into placement. These 
procedures are key to the long-term recovery of TBI patients, yet their 
optimal placement is elusive given the complexity and variability of 
each patient’s condition.

A data-driven approach could provide insights into personalizing 
the timing of these interventions toward maximizing patient recovery 
and outcomes. Reinforcement learning (RL) is a branch of machine 
learning that interacts with a dynamic database to learn optimal 
actions (21). Specifically, temporal difference (TD) learning and 
Q-learning—two related RL methods—can be used to estimate the 
long-term expected rewards of clinical interventions based on 
historical data and subsequently recommend them to clinicians. TD 
learning learns from the differences between predicted and actual 
patient outcomes after an intervention to generate a value function 
iteratively. Q-learning is an extension of this by not only estimating 
the expected value of each intervention but also determining the best 
action in a given patient state.

These techniques have been successfully applied previously in 
other medical fields, such as oncology, where Zhao et al. used similar 
techniques to personalize treatment strategies for cancer patients 
based on historical clinical data and in critical care medicine (22, 23). 
Similarly, RL can be used as a clinical decision-support system to 
optimize the timing of critical interventions in the management of 
TBI patients (23).

Therefore, this study aims to evaluate the impact of the PEG or 
trach intervention timing on key clinical outcomes in TBI patients. 
Subsequently, we will apply RL techniques, such as TD learning and 
Q-learning, to identify personalized, data-driven recommendations 
for the timing of such interventions that improve outcomes across 
length of stay, complications, mortality, and readmission.

Methods

This study involves a retrospective database review of adult 
patients who suffered TBI and were admitted to Tampa General 
Hospital (TGH) between 1 January 2016 and 31 December 2023. The 
objective is to evaluate the outcomes associated with early versus late 
initiation of enteral feeding and trach tube placement. The specific 
eligibility criteria are tabulated in Table 1.

Data collection

Data were collected by extracting and reviewing electronic 
medical records from TGH’s EpicLink system. The retrospective 
review included demographic data (age and gender); clinical data such 
as admission and discharge GCS scores, Injury Severity Score (ISS), 
neutrophil-to-lymphocyte ratio (NLR), and comorbidities; procedural 
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data such as the type of the procedure (PEG, G-tube, and trach), 
performing service/team (Acute Care Surgery, Neurosurgery, 
Interventional Radiology, and ENT), and time from admission to the 
procedure; and outcomes including ICU and hospital length of stay, 
time to oral feeding, time to decannulation, complications 
(pneumonia, bleeding, dislodgement, stress gastric ulcer, and gastric 
perforation), re-hospitalization rates, short- and long-term post-
procedure morbidity and mortality, and disposition at discharge.

Outcome measures

The data were recorded in a de-identified, aggregate form, with 
key comparisons being the early (0–7 days), standard (8–14 days), and 
late (>15 days) placement of the PEG tube, and the early (0–7 days), 
standard (8–14 days), and late (>15 days) trach. The ICU and hospital 
length of stay, complications, and time to oral feeding/decannulation 
are considered for stratification.

Ethics statement

The patient care team made decisions regarding the placement of 
the PEG tube, the initiation of oral feeding, the placement of the trach, 
and the decannulation. This study protocol received approval (IRB ID: 
STUDY006995 USF IRB) by the Institutional Review Board (IRB) and 
met the criteria for exemption from IRB review. A waiver of HIPAA 
authorization was also granted for this retrospective chart review, and 
a waiver of consent has been approved, given the study’s 
retrospective nature.

Statistical analysis

Baseline characteristics for the PEG and trach intervention groups 
were categorized by intervention timing. Means and standard 
deviations were used to summarize continuous variables [e.g., age, 
BMI, GCS, ISS, NLR, and Charlson Comorbidity Index (CCI)], and 
the Kruskal–Wallis test was used to compare their distributions across 
the three intervention groups. Categorical variables such as gender 
were summarized by counts and percentages and subsequently 
analyzed with the chi-squared test.

The Kruskal–Wallis test was performed to determine whether the 
distributions of ICU LOS and hospital LOS, total complications, and 
days to oral intake/decannulation differed significantly across the 
intervention timing groups; this was followed by post-hoc pairwise 
comparisons using Dunn’s test with Bonferroni adjustment. Logistic 
regression models were used to understand the relationship between 

intervention timing and binary outcomes such as mortality, 
readmission, and VAP for trach patients. Each model included 
covariates such as age, gender, ISS, GCS, NLR, and CCI. Odds ratios 
(ORs) and their 95% confidence intervals (CIs) were reported. 
Similarly, ordinary least squares (OLS) regression was used for 
continuous outcomes, such as time to oral intake, time to 
decannulation, and the change in GCS scores from admission to 
discharge (delta GCS). Cox proportional hazards were applied to 
assess time-to-event outcomes, including time to readmission and 
time to mortality, and were assessed against covariates. Hazard ratios 
(HRs) and 95% CI were computed. The statistical analysis was 
conducted on SPSS 29 and Python 3.12.

Temporal difference learning

A temporal difference (TD) learning algorithm was applied to 
predict the long-term expected value of interventions based on patient 
outcomes. This reinforcement learning method updates each 
intervention group’s value function, ( )tV S , as new outcomes become 
available. The value function ( )tV S  for each group was initialized to 
zero and iteratively updated by the following:

	 ( ) ( ) ( ) ( )α γ+ + ← + + − 1 1 ,t t t t tV S V S R V S V S

where tS  is the current intervention group (early, standard, 
delayed), α = 0.1 is the learning rate, +1tR  is the computed reward 
based on patient outcomes, γ = 0.9 is the discount factor, and ( )+1tV S  
is the estimated value of the upcoming state within the same 
intervention group. The reward function R was designed to reflect the 
clinical desirability of select outcomes, such as ICU LOS and hospital 
LOS, readmission, mortality, VAP (in trach patients), and days to oral 
intake/decannulation. Reward magnitudes were set heuristically and 
were expert-defined. To assess the robustness of the TD outputs from 
these expert-defined weights, we performed two sensitivity analyses 
and recomputed the TD value functions for each setting. First, 
we assessed the impact of uniformly scaling all reward magnitudes; 
second, we varied a single reward component across plausible bounds 
while holding others fixed. For each configuration, we computed the 
value-function gap.

A Q-learner was subsequently adapted from the value function to 
discover the optimal timing for PEG and trach interventions. The state 
space consisted of patient and demographic variables: age, gender, 
ethnicity, BMI, ISS, GCS, NLR, and CCI. The action space consisted 
of possible days for the PEG/trach procedure, from 0 to 30 days after 
admission. The Q-learner, such as value functions, aims to learn the 
optimal timing for an intervention by updating Q-values for each 
state-action pair:

	
( ) ( ) ( ) ( )α γ+ +

 ← + + − 
 

1 1, , max , , ,t t t t t t t t
a

Q S A Q S A R Q S a Q S A

where ( ),t tQ S A  represents the Q-value for forming action tA  (i.e., 
the day of the procedure) in state tS  (i.e., patient characteristics 
defined by state space), +1tR  is the computed reward based on patient 
outcomes, and ( )+1max ,t

a
Q S a  is the maximum Q-value for the 

upcoming state, representing the best possible future action. The 

TABLE 1  Inclusion and exclusion criteria for the study population.

Inclusion criteria Exclusion criteria

	•	 Patients aged 18 years and older.

	•	 Admitted to TGH with a diagnosis of severe 

TBI (admission GCS of 8 or less) due to a 

blunt mechanism.

	•	 Underwent trach and/or feeding tube placement 

(percutaneous or surgical) during their stay.

	•	 Patients with a 

non-surgical feeding tube.

	•	 Patients who are minors 

(<18 years old), 

incarcerated, or pregnant.
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Q-learning algorithm used an epsilon-greedy policy to balance the 
exploration of potential intervention timings with the selection of the 
best-known timing. The exploration rate ò  decayed over time to favor 
more exploitation as the model gained confidence in determining an 
optimal intervention timing.

Bootstrapping was used to compute the confidence intervals for 
the optimal Q-values for PEG and trach patients. The rigor of the 
Q-learner was visualized by plotting the average reward over time for 
both PEG and trach interventions. The RL algorithms were deployed 
using Python 3.12 and standard packages available on Anaconda.

Results

A total of 263 patients qualified for the retrospective analysis, aged 
18 to 87, with 194 men and 69 women. PEG was performed in 232 
patients (Table 2), and trach was conducted in 214 patients (Table 3).

Figures 1, 2 illustrate the distribution of ICU LOS, hospital LOS, 
total complications, and time to oral feeding/decannulation across the 
intervening timing groups for both PEG and trach patients, 
respectively. Early intervention groups consistently demonstrated 
shorter LOS and total complications compared to the standard and 
delayed groups. Of note, the distribution of ICU LOS was tight in the 
early intervention group for both PEG and trach patients and became 
broader with delayed placement.

The days before oral feeding or decannulation did not show clear 
differences across the groups. Linear regression models confirmed 

these findings but found that GCS at admission was significant in 
predicting days to oral feeding (β = 4.63, p = 0.02). Similarly, ISS was 
a predictor of quicker decannulation (β = 0.65, p = 0.029).

A logistic regression analysis suggested that delayed PEG 
placement was associated with a significantly lower risk of mortality 
compared to earlier placement (OR = 0.33, p = 0.033); excluding 
patients with the top  10% CCI within the cohort yielded similar 
findings (OR = 0.35, p = 0.05). However, there was no significant 
relationship found between PEG timing and readmission rates. In the 
trach group, intervention timing was not linked with mortality 
(p > 0.1 for all groups) or readmission rates. However, older age was 
linked to higher mortality (OR: 1.04, p = 0.028), and higher NLR 
values were associated with an increase in readmission risk (OR: 1.07, 
p = 0.025). Delayed trach placement had a significantly increased risk 
of developing VAP (OR = 1.05, p = 0.016). Increased ISS was also 
associated with slightly higher VAP risk (OR: 1.03, p = 0.046), while 
other factors, such as age and GCS, were not significant predictors.

The Cox proportional hazards model for PEG and trach timing 
did not find significant associations with the time to readmission 
(p > 0.05 for all intervention groups), although age emerged as a 
significant predictor of earlier readmission in trach patients: older 
patients were readmitted quicker (HR: 1.03, p = 0.036). Notably, 
delayed PEG placement was associated with a lower risk of earlier 
mortality, although with borderline significance (HR: 0.93, CI: 0.87–
1.00, p = 0.05).

The OLS regression implied that the timing of PEG and trach 
interventions demonstrated mixed effects on neurological recovery, as 

TABLE 2  Baseline characteristics of patients undergoing PEG across early, standard, and delayed intervention groups.

Variable Early Mean (SD)
(n = 59)

Standard Mean (SD)
(n = 79)

Delayed Mean (SD)
(n = 94)

p-value

Age 41.27 (16.48) 43.33 (19.52) 47.18 (20.60) 0.253

Male, n (%) 46 (78.0%) 60 (76.0%) 67 (71.28%) 0.614†

BMI 27.25 (9.12) 24.18 (9.30) 24.43 (6.88) 0.149

GCS 6.14 (1.52) 6.38 (1.62) 6.45 (1.71) 0.904

NLR 3.11 (2.45) 3.29 (2.31) 3.17 (2.63) 0.609

Charlson Comorbidity Index 1.46 (0.88) 1.60 (0.97) 1.87 (1.02) 0.091

ISS 31.25 (13.12) 31.43 (10.48) 25.94 (11.35) 0.003*

Trach performed, n (%) 49 (83.1%) 70 (88.6%) 64 (68.1%) 0.003†

Values are presented as mean and standard deviation (SD) unless otherwise specified. * denotes significance. †denotes the chi-squared test for categorical variables.

TABLE 3  Baseline characteristics of patients undergoing trach across early, standard, and delayed intervention groups.

Variable Early Mean (SD)
(n = 76)

Standard Mean (SD)
(n = 79)

Delayed Mean (SD)
(n = 59)

p-value

Age 38.81 (16.42) 41.91 (17.66) 41.76 (19.24) 0.614

Male, n (%) 55 (72.37%) 66 (83.54%) 43 (72.88%) 0.188†

BMI 26.58 (9.05) 25.00 (7.47) 25.64 (9.66) 0.688

GCS 5.96 (1.58) 5.53 (1.57) 6.31 (1.71) 0.413

NLR 3.09 (2.30) 3.28 (2.27) 3.20 (2.57) 0.654

Charlson Comorbidity Index 1.36 (0.81) 1.58 (0.89) 1.67 (0.94) 0.569

ISS 31.61 (11.91) 31.77 (10.45) 28.76 (9.35) 0.309

PEG performed, n (%) 63 (82.9%) 69 (87.3%) 51 (86.4%) 0.71†

Values are presented as mean and standard deviation (SD) unless otherwise specified. * denotes significance. † denotes the chi-squared test for categorical variables.
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measured by the change in GCS from admission to discharge (‘Delta_
GCS’). Each additional day of delayed PEG placement was significantly 
associated with a slight yet significant improvement in neurological 
function (β = 0.042, p = 0.039). Meanwhile, early trach placement had 

a slight negative association with GCS improvement (β = −0.08, 
p = 0.040), suggesting that early trach placement may not enable as 
much neurological recovery compared to delayed placement.

Temporal difference learning

The reward function R had a specific reward/penalty scheme 
tabulated in Table 4.

For PEG patients, earlier intervention was associated with better 
overall outcomes, with a value function of −295.49; standard and 
delayed interventions showed progressively worse outcomes (more 
negative), with value functions of −505.44 and −536.36. Similarly, early 
intervention in trach patients had a higher value function (less negative) 
of −356.41, while standard and delayed had a less pronounced but 
worse value of −456.62 and −442.58, respectively. Uniform scaling of 
all reward magnitudes by ±50% changed absolute value magnitudes but 
did not alter the timing ranking for either PEG or trach 
(Supplementary Figure S1A). In one-at-a-time sensitivity tests 
(Supplementary Figure S1B), the oral-intake delay coefficient (for PEG) 
produced the largest change in value-function separation between the 
top two timings (Δgap ≈ 28.7), followed by the survival reward (Δgap 
≈ 8.1) and the no-readmission reward (Δgap ≈ 5.7); other weights had 
minimal impact. For trach, the decannulation-delay coefficient had the 
largest effect (Δgap ≈ 43.9), followed by the readmission penalty (Δgap 

FIGURE 1

Outcomes by PEG intervention groups (early, standard, and delayed). *** = p < 0.001, ** = p < 0.01, p < 0.05, ns, not significant.

FIGURE 2

Outcomes by trach intervention groups (early, standard, delayed). *** = p < 0.001, ** = p < 0.01, p < 0.05, ns, not significant.

TABLE 4  Overview of the reward function metrics for temporal 
difference and Q-learning.

Metric Reward function R

ICULOSR −ICULOSDays

HospitalLOSR −HospitalLOSDays

AdmissionR − =
 + =

10,if Readmission Yes

5,if Readmission No

MortalityR − =
 + =

10,if Mortality Yes

5,if Mortality No

Oral IntakeR − × ≥
 +

0.5 Days to Oral Intake,if delay 1day

3,if no delay

VAPR − =
 + =

5,if VAP Yes

3,if VAP No

DecannulationR − × ≥
 +

0.5 Days to Decannulation,if delay 1day

3,if no delay
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≈ 11.7) and the no-VAP reward (Δgap ≈ 7.6). These sensitivity analyses 
suggest that learned recommendations are somewhat robust to 
reasonable changes in the clinical value weights.

The average reward per learning episode for both PEG and trach 
patients is shown in Figure 3, for over 1,000 episodes. The average 
reward for both groups improved as the model learned with each 
episode, suggesting the model’s increasing ability to identify optimal 
intervention timings. The model was especially able to quickly identify 
patterns for PEG timing and had a slower convergence for trach 
patients, suggesting that outcomes may be influenced by more factors 
or are harder to predict earlier in the learning process.

A visualization of the Q-values (expected rewards) for different 
intervention days (0–30 days) for both PEG and trach is in Figure 4. The 
tracheostomy curve showed higher Q-values in the early period (days 
3-7), while PEG exhibited a flatter, more nuanced trend across time. 
There were inconsistent confidence levels in the standard range of 
intervention timing for both PEG and trach. There were high Q-values 
in trach patients on days 20–30, indicating that delaying trach 
procedures in some cases may yield better cumulative rewards. On the 
other hand, PEG interventions had lower Q-values overall in the 
late period.

The Q-value confidence interval ranged from 5.90 to 8.23 for PEG 
patients and from 8.58 to 11.76 for trach patients. High-confidence 
policies recommended early PEG intervention for those with higher 
admission GCS scores and fewer comorbidities and often had a higher 
cumulative reward, with Q-values often exceeding 100. For trach 
patients, high-confidence policies similarly recommended early 
placement, particularly for patients with moderate ISS and younger 
age. Low-confidence policies were generally used for patients with a 
complex presentation, such as those with high comorbidity scores, 
lower GCS at admission, higher NLR values, or older age. Q-values for 
these patients were often close to 0, suggesting that the decision 
between earlier or late intervention may have been less impactful or 
more ambiguous.

Figure 5 visualizes the flow from state (patient characteristics) to 
action (intervention timing) by the Q-learner for PEG and 
trach patients.

Discussion

A primary goal of this study was to assess whether early 
intervention leads to better clinical outcomes. Early PEG and trach 
placement consistently resulted in shorter ICU and hospital stays, 
aligning with prior findings that suggest that early intervention in TBI 
management is often beneficial in terms of resource utilization and 
patient recovery (6, 7). As intervention timing shifted from early to 
standard or delayed, the distribution of the ICU LOS broadened, 
reflecting that delayed interventions could either result from 
worsening clinical conditions or contribute to more complications. 
Furthermore, early intervention groups for both PEG and trach 
consistently had lower total complication rates, especially VAP in 
trach patients. In agreement with de Franca et  al.’s meta-analysis, 
delayed trach placement was found to increase the risk of developing 
VAP, which is not unexpected, as prolonged mechanical ventilation 
would increase the likelihood of lung infection (6).

Interestingly, delayed PEG placement was associated with a 67% 
reduction in the odds of mortality compared to early placement 

despite increased total complication rates (OR = 0.33, p = 0.033); the 
relationship marginally persisted after excluding the top  10% of 
patients with the highest comorbidity index. The finding is moderately 
robust, although residual confounding from unmeasured severity, 
treatment-limitation decisions, and timing biases cannot be excluded. 
For example, the low ISS within the same group may contribute; 
however, the trend was consistent with patterns learned by the 
reinforcement learning (RL) model, which incorporated ISS within its 
state space and similarly suggested delayed PEG as beneficial in 
specific patients. This finding contrasts with the findings by Figueiredo 
et al. and is rather much more consistent with concerns raised by 
Chaudhry et al. (20, 24). Their population-based study, which had 
similar time categorizations as our study, found that late PEG 
placement (after 2 weeks) was indeed linked with a higher incidence 
of complications, such as sepsis, urinary tract infections, or acute 
respiratory distress syndrome (ARDS), but had a decreased mortality 
risk in high-risk groups. On the other hand, early PEG placement, 
despite being performed on patients with fewer comorbidities, was 
paradoxically associated with higher in-hospital mortality. Standard 
PEG timing (7–14 days) was the most appropriate to mitigate 
mortality and complications in low- and moderate-risk groups.

These findings could be explained by the fact that late PEG may 
often be  performed in patients with higher comorbidity burdens: 
clinicians are likely to delay the procedure until patients are clinically 
stable to mitigate the mortality risk. In some cases, early intervention 
may still be  premature and result in unforeseen complications in 
patients who appear to be initially stable. For example, each additional 
day of delayed PEG placement was linked with a slight yet significant 
improvement in neurological function, reinforcing that delaying PEG 
in some cases may allow patients to stabilize. This finding was also 
observed in our findings with trach placement, where early 
intervention was linked to slower neurological recovery, as seen with 
the slight negative association with GCS improvement.

The trends in our study, when understood in the context of prior 
literature, collectively imply the need to personalize the timing of both 
PEG and trach procedures in TBI patients. The general benefits of early 
intervention may not be visualized across all patients, and the decision to 
perform early, standard, or delayed interventions should still consider 

FIGURE 3

Average reward over 1,000 episodes for PEG and trach interventions 
by Q-learner.
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individual patient factors that could significantly influence their 
trajectories, as seen in our covariate analyses. For example, patients who 
were older or had an increased NLR at admission were more vulnerable 
to readmission or mortality after intervention. Notably, NLR has gained 
attention as a biomarker to provide insight into the recovery of TBI 
patients (25). The NLR describes the balance between neutrophil and 
lymphocyte counts and has been considered an indicator of systemic 
inflammation. Elevated NLR is supposedly linked to a heightened 
inflammatory response, which can increase secondary brain injury in TBI 
patients. For example, TBI patients with higher NLR values at admission 
were more likely to experience complications that could require prolonged 
mechanical ventilation or delayed recovery (25).

The complexity of determining the optimal timing of intervention 
positions RL to offer a unique approach that can integrate patient-
specific factors and support the clinician’s decisions. Our study used TD 
learning and a Q-learner to estimate the net cumulative benefit of these 
interventions based on the historical patient data and subsequently 
learn optimal intervention strategies. The value function derived from 
TD learning agreed with the general trend of how earlier interventions 
resulted in greater rewards. In PEG patients, younger individuals and 
those with fewer comorbidities, as quantified by the Charlson 
Comorbidity Index, had the best overall value with early intervention. 
For trach patients, although the value function pointed to earlier 

intervention to maximize outcomes, there was no observable pattern in 
relation to specific patient characteristics, suggesting a much more 
nuanced pattern.

The Q-learner was able to successfully explore the data and 
develop decision-making capability, as demonstrated by the reward 
over time curve (Figure 3). The model was able to quickly identify 
patterns for PEG timing and had a slower convergence for trach 
patients, suggesting that outcomes may be influenced by more factors 
or are harder to predict earlier in the learning process. The Q-learner 
reflected some established trends while offering novel insights, such 
as how early interventions were generally preferred, especially among 
younger patients. Meanwhile, older patients, especially those over 71, 
received a mix of early, standard, and delayed intervention 
recommendations, mirroring the cautious approach to older 
populations, as they may be more vulnerable to risks. Patients with a 
BMI above 25 or presenting with a severe/critical ISS were more likely 
to be directed to a delayed recommendation. Those with moderate ISS 
were more likely to receive earlier intervention recommendations. The 
Q-learner also implied that patients presenting with severe GCS 
tended to receive delayed intervention recommendations, while those 
with mild to moderate GCS scores exhibited a more varied pattern. 
Patients with a higher NLR were often recommended a later date for 
intervention compared to those with a lower NLR.

FIGURE 4

Visual representation of the Q-values for different intervention days for both PEG (blue) and trach (green) interventions. Bubble size corresponds to the 
sample; bars refer to the confidence interval/level of those Q-values; the y-axis represents the mean Q-value or the expected cumulative reward for 
intervening on a particular day.
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While the application of Q-learning in our study is the first of its 
kind in developing clinical decision support systems for TBI 
management, there are some scalability issues to consider. The model 
was trained on historical data from a single institution, which may 
limit its generalizability. Practices at a single academic institution, 
such as ICU protocols and surgeon experience, may limit the external 
validity of our model. Q-learning’s constraint as an offline learner 
restricts the model from freely exploring a decision space in the real-
world setting; it is unethical to test interventions on actual patients to 
learn the best action (23). At the same time, this makes the model 
vulnerable to extrapolation bias as it learns from static, retrospective 
datasets; ethical deployment would require human-in-the-loop 
validation. Although exploration enables the model to experiment 
with different actions, as seen in Figure 3 with the occasional dips in 
reward, this aspect could nonetheless result in extrapolation error. 
Striking the balance in the exploration-exploitation tradeoff as an 
epsilon-greedy policy can be challenging, which is why it is essential 
to continue the model training on diverse, up-to-date, and prospective 
datasets to improve the model and better assess its performance before 
a full-scale deployment. Adding more features to the state space or 
updating the reward function for long-term outcomes may also 
expand the depth of the study. Future research can evaluate novel 
off-policy RL approaches or simulations to limit extrapolation error 
in optimizing TBI management (26).

Conclusion

In conclusion, the association between the timing of intervention 
and improved outcomes in TBI patients is a question of precision 

medicine. Early PEG and trach interventions in TBI patients generally 
optimize resource allocation and some outcomes, including shorter 
ICU/hospital stays and fewer complications such as VAP. However, the 
link between intervention timing and mortality or neurological 
recovery is likely more nuanced, with delayed PEG placement linked 
to improved survival in select cases. Applying RL techniques may 
show promise in optimizing intervention timing based on patient 
characteristics, and further validation and refinement are needed in 
this novel strategy. Future studies should build upon the work in this 
study with larger datasets and stronger RL algorithms to improve 
decision-making in TBI management.
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