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Can one-step reinforcement
learning guide optimal timing for
PEG and tracheostomy in severe
TBI? Insights from a 2016-2023
retrospective cohort study at a
single academic institution

Shrinit Babel’, Jade Vanderpool?, Maurice Inkel? and
Milad Behbahaninial?*

tUniversity of South Florida College of Medicine, Tampa, FL, United States, 2Tampa General Hospital,
Tampa, FL, United States

Background: Acute management of traumatic brain injury (TBI) presents
several challenges in hospital resource planning. While early tracheostomy
(trach) and percutaneous endoscopic gastrostomy (PEG) tube placement may
improve patient outcomes, the optimal timing and selection criteria for these
interventions remain unclear. This study evaluates the impact of PEG and trach
timing on key clinical outcomes and applies one-step reinforcement learning
(RL) to recommend intervention timing.

Methods: This retrospective cohort study included 263 adult intensive care unit
inpatients (194 men, 69 women, age range 18-87), diagnosed with severe TBI
requiring trach and/or PEG between 1 January 2016 and 31 December 2023, at
a single academic institution. Key outcomes included ICU and hospital length
of stay (LOS), complications, time to oral feeding/decannulation, readmission,
and mortality. One-step temporal difference (TD) learning and Q-learning were
used to predict the expected value of interventions and to recommend optimal
timing based on patient states, respectively.

Results: Early PEG and trach interventions were associated with significantly
shorter ICU and hospital length of stay (LOS) and fewer complications. Delayed
PEG placement, however, was associated with a 67% reduction in the odds of
mortality (OR: 0.33, p = 0.033) compared to early placement, despite having
more total complications. One-step RL suggested greater cumulative rewards
with earlier intervention and successfully recommended the optimal day for
PEG/trach intervention based on initial patient presentation.

Conclusion: Early interventions are associated with improved outcomes;
however, delaying PEG or trach placement may be advantageous in select
situations to reduce mortality. RL techniques, such as TD and Q-learning, can
aid in decision-making regarding interventions.
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Introduction

Traumatic brain injury (TBI) is a leading cause of mortality and
long-term disability globally, with approximately 69 million new cases
every year (1). An estimated 10-15% of all TBI cases are classified as
moderate to severe based on the Glasgow Coma Scale (GCS) (2).
Patients with moderate to severe TBI typically require specialized
intensive care management, including mechanical ventilation and
nutritional support (2). This can lead to the placement of percutaneous
endoscopic gastrostomy (PEG) tubes for enteral feeding or
tracheostomies (trach) in cases of prolonged mechanical ventilation.
In severe TBI, indicated by a GCS of 8 or less, timely feeding and
airway interventions are key issues in improving patient outcomes (3).
The timing and contexts of these interventions present substantial
challenges and complexities in their acute management (1).

Timely and effective trach placement and nutrition are
important in the management, but the optimal timing and
assessment of these procedures remain ambiguous. Particularly,
there are no standardized guidelines for the optimal timing of trach
placement in these patients (4). This is compounded by the lack of
consensus and ambiguity in the existing literature, with multiple
studies pointing out that trach timing is often left to the physician’s
discretion (5).

Some studies have demonstrated that early trach initiation does
contribute to better outcomes in terms of the duration of mechanical
ventilation and ICU stay. A meta-analysis by de Franca et al. showed
that early trach can reduce the duration of mechanical ventilation,
ICU LOS, and hospital LOS and lower the risk of ventilator-associated
pneumonia (VAP) (6). Similar correlations with length of stay and
days of mechanical ventilation have been observed in other
studies (7, 8).

Regardless, the association between early trach and overall
hospitalization duration, the incidence of pneumonia, and the
mortality rate remains inconclusive (9). Others have pointed to a
larger risk of complications such as intracranial hypertension or even
hospital mortality, with an early trach (10-12). For example, Kocaeli
et al. found that early trach placement could increase intracranial
pressure and, therefore, complicate patient recovery (11). Contrary to
the study by de Franca et al, some retrospective analyses have
suggested that trach performed within 24 h was not associated with
improved survival but was instead linked to higher rates of pneumonia
and longer ICU stays compared with a trach performed within
48h (13).

TBI patients who undergo trach often require additional support
for nutrition and feeding. Percutaneous endoscopic gastrostomy
(PEG) has emerged as the preferred method for providing long-term
nutrition, especially in patients with prolonged dependence on enteral
feeding (14). Indeed, studies have found that early PEG placement
within 7 days may reduce hospital length of stay and costs, although
there are concerns about worsened outcomes (15, 16). Studies have
especially supported simultaneous PEG in neurocritical patients
requiring trach, pointing to lower intensive care unit (ICU) and
overall hospital stays (17-19). Meanwhile, Chaudhry et al. found that
the standard timing for PEG placement (7-14 days) maximized
patient outcomes, while both early and late PEG placements otherwise
had higher risks of complications, infection, and mortality (20).
Delaying PEG placement has also been found to result in fewer
complications, especially in select populations (16).
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The choice to perform a PEG or a trach involves balancing the
potential benefits of early intervention with the risk of an unnecessary
procedure. As the literature shows, this decision relies on clinical
experience and patient-specific factors; determining the ideal timing
for conducting these procedures when warranted adds another layer
of complexity. For example, a prospective study by Figueiredo et al.
described how PEG placement was often requested too late in half of
the reviewed cases. Despite a trend favoring earlier placement, they
nevertheless could not decipher a single variable that could reliably
predict complications or provide insights into placement. These
procedures are key to the long-term recovery of TBI patients, yet their
optimal placement is elusive given the complexity and variability of
each patient’s condition.

A data-driven approach could provide insights into personalizing
the timing of these interventions toward maximizing patient recovery
and outcomes. Reinforcement learning (RL) is a branch of machine
learning that interacts with a dynamic database to learn optimal
actions (21). Specifically, temporal difference (TD) learning and
Q-learning—two related RL methods—can be used to estimate the
long-term expected rewards of clinical interventions based on
historical data and subsequently recommend them to clinicians. TD
learning learns from the differences between predicted and actual
patient outcomes after an intervention to generate a value function
iteratively. Q-learning is an extension of this by not only estimating
the expected value of each intervention but also determining the best
action in a given patient state.

These techniques have been successfully applied previously in
other medical fields, such as oncology, where Zhao et al. used similar
techniques to personalize treatment strategies for cancer patients
based on historical clinical data and in critical care medicine (22, 23).
Similarly, RL can be used as a clinical decision-support system to
optimize the timing of critical interventions in the management of
TBI patients (23).

Therefore, this study aims to evaluate the impact of the PEG or
trach intervention timing on key clinical outcomes in TBI patients.
Subsequently, we will apply RL techniques, such as TD learning and
Q-learning, to identify personalized, data-driven recommendations
for the timing of such interventions that improve outcomes across
length of stay, complications, mortality, and readmission.

Methods

This study involves a retrospective database review of adult
patients who suffered TBI and were admitted to Tampa General
Hospital (TGH) between 1 January 2016 and 31 December 2023. The
objective is to evaluate the outcomes associated with early versus late
initiation of enteral feeding and trach tube placement. The specific
eligibility criteria are tabulated in Table 1.

Data collection

Data were collected by extracting and reviewing electronic
medical records from TGH’s EpicLink system. The retrospective
review included demographic data (age and gender); clinical data such
as admission and discharge GCS scores, Injury Severity Score (ISS),
neutrophil-to-lymphocyte ratio (NLR), and comorbidities; procedural
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TABLE 1 Inclusion and exclusion criteria for the study population.

Inclusion criteria Exclusion criteria

« Patients aged 18 years and older. « Patients with a
o Admitted to TGH with a diagnosis of severe

TBI (admission GCS of 8 or less) due to a

non-surgical feeding tube.
« Patients who are minors
blunt mechanism. (<18 years old),
« Underwent trach and/or feeding tube placement incarcerated, or pregnant.

(percutaneous or surgical) during their stay.

data such as the type of the procedure (PEG, G-tube, and trach),
performing service/team (Acute Care Surgery, Neurosurgery,
Interventional Radiology, and ENT), and time from admission to the
procedure; and outcomes including ICU and hospital length of stay,
time to oral feeding, time to decannulation, complications
(pneumonia, bleeding, dislodgement, stress gastric ulcer, and gastric
perforation), re-hospitalization rates, short- and long-term post-
procedure morbidity and mortality, and disposition at discharge.

Outcome measures

The data were recorded in a de-identified, aggregate form, with
key comparisons being the early (0-7 days), standard (8-14 days), and
late (>15 days) placement of the PEG tube, and the early (0-7 days),
standard (8-14 days), and late (>15 days) trach. The ICU and hospital
length of stay, complications, and time to oral feeding/decannulation
are considered for stratification.

Ethics statement

The patient care team made decisions regarding the placement of
the PEG tube, the initiation of oral feeding, the placement of the trach,
and the decannulation. This study protocol received approval (IRB ID:
STUDY006995 USF IRB) by the Institutional Review Board (IRB) and
met the criteria for exemption from IRB review. A waiver of HIPAA
authorization was also granted for this retrospective chart review, and
a waiver of consent has been approved, given the study’s
retrospective nature.

Statistical analysis

Baseline characteristics for the PEG and trach intervention groups
were categorized by intervention timing. Means and standard
deviations were used to summarize continuous variables [e.g., age,
BMI, GCS, ISS, NLR, and Charlson Comorbidity Index (CCI)], and
the Kruskal-Wallis test was used to compare their distributions across
the three intervention groups. Categorical variables such as gender
were summarized by counts and percentages and subsequently
analyzed with the chi-squared test.

The Kruskal-Wallis test was performed to determine whether the
distributions of ICU LOS and hospital LOS, total complications, and
days to oral intake/decannulation differed significantly across the
intervention timing groups; this was followed by post-hoc pairwise
comparisons using Dunn’s test with Bonferroni adjustment. Logistic
regression models were used to understand the relationship between
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intervention timing and binary outcomes such as mortality,
readmission, and VAP for trach patients. Each model included
covariates such as age, gender, ISS, GCS, NLR, and CCI. Odds ratios
(ORs) and their 95% confidence intervals (Cls) were reported.
Similarly, ordinary least squares (OLS) regression was used for
continuous outcomes, such as time to oral intake, time to
decannulation, and the change in GCS scores from admission to
discharge (delta GCS). Cox proportional hazards were applied to
assess time-to-event outcomes, including time to readmission and
time to mortality, and were assessed against covariates. Hazard ratios
(HRs) and 95% CI were computed. The statistical analysis was
conducted on SPSS 29 and Python 3.12.

Temporal difference learning

A temporal difference (TD) learning algorithm was applied to
predict the long-term expected value of interventions based on patient
outcomes. This reinforcement learning method updates each
intervention group’s value function, V (St ) , as new outcomes become
available. The value function V (St) for each group was initialized to
zero and iteratively updated by the following:

V(S) < V(S)+a] Rt +7V (Se) -V ()]

where §; is the current intervention group (early, standard,
delayed), & =0.1 is the learning rate, Ry is the computed reward
based on patient outcomes, ¥ =0.9 is the discount factor, and V(SHI)
is the estimated value of the upcoming state within the same
intervention group. The reward function R was designed to reflect the
clinical desirability of select outcomes, such as ICU LOS and hospital
LOS, readmission, mortality, VAP (in trach patients), and days to oral
intake/decannulation. Reward magnitudes were set heuristically and
were expert-defined. To assess the robustness of the TD outputs from
these expert-defined weights, we performed two sensitivity analyses
and recomputed the TD value functions for each setting. First,
we assessed the impact of uniformly scaling all reward magnitudes;
second, we varied a single reward component across plausible bounds
while holding others fixed. For each configuration, we computed the
value-function gap.

A Q-learner was subsequently adapted from the value function to
discover the optimal timing for PEG and trach interventions. The state
space consisted of patient and demographic variables: age, gender,
ethnicity, BMI, ISS, GCS, NLR, and CCI. The action space consisted
of possible days for the PEG/trach procedure, from 0 to 30 days after
admission. The Q-learner, such as value functions, aims to learn the
optimal timing for an intervention by updating Q-values for each
state-action pair:

Q(SpAr )« Q(SbAt)"’a(Rtﬂ +ymaxQ(S1,a) — Q(Sp.A ))>

where Q(St Ay ) represents the Q-value for forming action A; (i.e.,
the day of the procedure) in state S; (i.e., patient characteristics
defined by state space), Ry, is the computed reward based on patient
outcomes, and maxQ(SHl,a) is the maximum Q-value for the
upcoming state, representing the best possible future action. The
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Q-learning algorithm used an epsilon-greedy policy to balance the
exploration of potential intervention timings with the selection of the
best-known timing. The exploration ratev decayed over time to favor
more exploitation as the model gained confidence in determining an
optimal intervention timing.

Bootstrapping was used to compute the confidence intervals for
the optimal Q-values for PEG and trach patients. The rigor of the
Q-learner was visualized by plotting the average reward over time for
both PEG and trach interventions. The RL algorithms were deployed
using Python 3.12 and standard packages available on Anaconda.

Results

A total of 263 patients qualified for the retrospective analysis, aged
18 to 87, with 194 men and 69 women. PEG was performed in 232
patients (Table 2), and trach was conducted in 214 patients (Table 3).

Figures 1, 2 illustrate the distribution of ICU LOS, hospital LOS,
total complications, and time to oral feeding/decannulation across the
intervening timing groups for both PEG and trach patients,
respectively. Early intervention groups consistently demonstrated
shorter LOS and total complications compared to the standard and
delayed groups. Of note, the distribution of ICU LOS was tight in the
early intervention group for both PEG and trach patients and became
broader with delayed placement.

The days before oral feeding or decannulation did not show clear
differences across the groups. Linear regression models confirmed

10.3389/fneur.2025.1700064

these findings but found that GCS at admission was significant in
predicting days to oral feeding (5 = 4.63, p = 0.02). Similarly, ISS was
a predictor of quicker decannulation (f = 0.65, p = 0.029).

A logistic regression analysis suggested that delayed PEG
placement was associated with a significantly lower risk of mortality
compared to earlier placement (OR =0.33, p =0.033); excluding
patients with the top 10% CCI within the cohort yielded similar
findings (OR = 0.35, p = 0.05). However, there was no significant
relationship found between PEG timing and readmission rates. In the
trach group, intervention timing was not linked with mortality
(p > 0.1 for all groups) or readmission rates. However, older age was
linked to higher mortality (OR: 1.04, p = 0.028), and higher NLR
values were associated with an increase in readmission risk (OR: 1.07,
p =0.025). Delayed trach placement had a significantly increased risk
of developing VAP (OR = 1.05, p = 0.016). Increased ISS was also
associated with slightly higher VAP risk (OR: 1.03, p = 0.046), while
other factors, such as age and GCS, were not significant predictors.

The Cox proportional hazards model for PEG and trach timing
did not find significant associations with the time to readmission
(p>0.05 for all intervention groups), although age emerged as a
significant predictor of earlier readmission in trach patients: older
patients were readmitted quicker (HR: 1.03, p = 0.036). Notably,
delayed PEG placement was associated with a lower risk of earlier
mortality, although with borderline significance (HR: 0.93, CI: 0.87-
1.00, p = 0.05).

The OLS regression implied that the timing of PEG and trach
interventions demonstrated mixed effects on neurological recovery, as

TABLE 2 Baseline characteristics of patients undergoing PEG across early, standard, and delayed intervention groups.

Variable Early Mean (SD) Standard Mean (SD) Delayed Mean (SD) p-value
(n =59) (n=79) (n = 94)
Age 41.27 (16.48) 43.33 (19.52) 47.18 (20.60) 0.253
Male, n (%) 46 (78.0%) 60 (76.0%) 67 (71.28%) 0.614"
BMI 27.25 (9.12) 24.18 (9.30) 24.43 (6.88) 0.149
GCS 6.14 (1.52) 6.38 (1.62) 6.45 (1.71) 0.904
NLR 3.11 (2.45) 3.29 (2.31) 3.17 (2.63) 0.609
Charlson Comorbidity Index 1.46 (0.88) 1.60 (0.97) 1.87 (1.02) 0.091
1SS 31.25(13.12) 31.43 (10.48) 25.94 (11.35) 0.003*
Trach performed, n (%) 49 (83.1%) 70 (88.6%) 64 (68.1%) 0.003"

Values are presented as mean and standard deviation (SD) unless otherwise specified. * denotes significance. "denotes the chi-squared test for categorical variables.

TABLE 3 Baseline characteristics of patients undergoing trach across early, standard, and delayed intervention groups.

Variable Early Mean (SD) Standard Mean (SD) Delayed Mean (SD)
(n =76) (n=79) (n =59)

Age 38.81 (16.42) 4191 (17.66) 41.76 (19.24) 0.614
Male, 1 (%) 55 (72.37%) 66 (83.54%) 43 (72.88%) 0.188'
BMI 26.58 (9.05) 25.00 (7.47) 25.64 (9.66) 0.688
GCS 5.96 (1.58) 5,53 (1.57) 6.31 (1.71) 0413
NLR 3.09 (2.30) 3.28(227) 320 (2.57) 0.654
Charlson Comorbidity Index 1.36 (0.81) 1.58 (0.89) 1.67 (0.94) 0.569
1SS 31.61 (11.91) 31.77 (10.45) 28.76 (9.35) 0.309
PEG performed, 7 (%) 63 (82.9%) 69 (87.3%) 51 (86.4%) 071"

Values are presented as mean and standard deviation (SD) unless otherwise specified. * denotes significance. " denotes the chi-squared test for categorical variables.
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Outcomes by PEG Intervention Groups
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FIGURE 1
Outcomes by PEG intervention groups (early, standard, and delayed). *** = p < 0.001, ** = p < 0.01, p < 0.05, ns, not significant.

Qutcomes by Trach Intervention Groups
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FIGURE 2
Outcomes by trach intervention groups (early, standard, delayed). *** = p < 0.001, ** = p < 0.01, p < 0.05, ns, not significant.

TABLE 4 Overview of the reward function metrics for temporal a Slight negative association with GCS improvement (ﬁ =-0.08,
difference and Q-learning. p = 0.040), suggesting that early trach placement may not enable as
Metric Reward function R much neurological recovery compared to delayed placement.
RicuLos -ICULOS Days
RHospitalLOS ~HospitalLOS Days Temporal difference learning
Radmission 10,if Readmission = Yes The reward function R had a specific reward/penalty scheme
+5,if Readmission =No tabulated in Table 4.

. For PEG patients, earlier intervention was associated with better
overall outcomes, with a value function of —295.49; standard and

delayed interventions showed progressively worse outcomes (more

10,if Mortality = Yes
+5,if Mortality = No

RAMortality

{
{
ROral Intake {
{
{

~0.5xDays to Oral Intake, f delay > 1day negative), with value functions of —505.44 and —536.36. Similarly, early

+8ifno delay intervention in trach patients had a higher value function (less negative)

RyaAp _5,if VAP = Yes of —356.41, while standard and delayed had a less pronounced but

+3,if VAP =No worse value of —456.62 and —442.58, respectively. Uniform scaling of

all reward magnitudes by +50% changed absolute value magnitudes but

FDecannulation ~0.5xDays to DZ??””L;'a;‘ion’ if delay > 1day did not alter the timing ranking for either PEG or trach
+3,ifno delay

(Supplementary Figure SIA). In one-at-a-time sensitivity tests
(Supplementary Figure S1B), the oral-intake delay coefficient (for PEG)
produced the largest change in value-function separation between the
measured by the change in GCS from admission to discharge (‘Delta_  top two timings (Agap = 28.7), followed by the survival reward (Agap
GCS’). Each additional day of delayed PEG placement was significantly = 8.1) and the no-readmission reward (Agap =~ 5.7); other weights had
associated with a slight yet significant improvement in neurological =~ minimal impact. For trach, the decannulation-delay coefficient had the
function (f = 0.042, p = 0.039). Meanwhile, early trach placement had ~ largest effect (Agap ~ 43.9), followed by the readmission penalty (Agap
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~11.7) and the no-VAP reward (Agap = 7.6). These sensitivity analyses
suggest that learned recommendations are somewhat robust to
reasonable changes in the clinical value weights.

The average reward per learning episode for both PEG and trach
patients is shown in Figure 3, for over 1,000 episodes. The average
reward for both groups improved as the model learned with each
episode, suggesting the model’s increasing ability to identify optimal
intervention timings. The model was especially able to quickly identify
patterns for PEG timing and had a slower convergence for trach
patients, suggesting that outcomes may be influenced by more factors
or are harder to predict earlier in the learning process.

A visualization of the Q-values (expected rewards) for different
intervention days (0-30 days) for both PEG and trach is in Figure 4. The
tracheostomy curve showed higher Q-values in the early period (days
3-7), while PEG exhibited a flatter, more nuanced trend across time.
There were inconsistent confidence levels in the standard range of
intervention timing for both PEG and trach. There were high Q-values
in trach patients on days 20-30, indicating that delaying trach
procedures in some cases may yield better cuamulative rewards. On the
other hand, PEG interventions had lower Q-values overall in the
late period.

The Q-value confidence interval ranged from 5.90 to 8.23 for PEG
patients and from 8.58 to 11.76 for trach patients. High-confidence
policies recommended early PEG intervention for those with higher
admission GCS scores and fewer comorbidities and often had a higher
cumulative reward, with Q-values often exceeding 100. For trach
patients, high-confidence policies similarly recommended early
placement, particularly for patients with moderate ISS and younger
age. Low-confidence policies were generally used for patients with a
complex presentation, such as those with high comorbidity scores,
lower GCS at admission, higher NLR values, or older age. Q-values for
these patients were often close to 0, suggesting that the decision
between earlier or late intervention may have been less impactful or
more ambiguous.

Figure 5 visualizes the flow from state (patient characteristics) to
action (intervention timing) by the Q-learner for PEG and
trach patients.

Discussion

A primary goal of this study was to assess whether early
intervention leads to better clinical outcomes. Early PEG and trach
placement consistently resulted in shorter ICU and hospital stays,
aligning with prior findings that suggest that early intervention in TBI
management is often beneficial in terms of resource utilization and
patient recovery (6, 7). As intervention timing shifted from early to
standard or delayed, the distribution of the ICU LOS broadened,
reflecting that delayed interventions could either result from
worsening clinical conditions or contribute to more complications.
Furthermore, early intervention groups for both PEG and trach
consistently had lower total complication rates, especially VAP in
trach patients. In agreement with de Franca et al’s meta-analysis,
delayed trach placement was found to increase the risk of developing
VAP, which is not unexpected, as prolonged mechanical ventilation
would increase the likelihood of lung infection (6).

Interestingly, delayed PEG placement was associated with a 67%
reduction in the odds of mortality compared to early placement
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Learning Curve over Episodes for PEG and TRACH
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FIGURE 3

Average reward over 1,000 episodes for PEG and trach interventions
by Q-learner.

despite increased total complication rates (OR = 0.33, p = 0.033); the
relationship marginally persisted after excluding the top 10% of
patients with the highest comorbidity index. The finding is moderately
robust, although residual confounding from unmeasured severity,
treatment-limitation decisions, and timing biases cannot be excluded.
For example, the low ISS within the same group may contribute;
however, the trend was consistent with patterns learned by the
reinforcement learning (RL) model, which incorporated ISS within its
state space and similarly suggested delayed PEG as beneficial in
specific patients. This finding contrasts with the findings by Figueiredo
et al. and is rather much more consistent with concerns raised by
Chaudhry et al. (20, 24). Their population-based study, which had
similar time categorizations as our study, found that late PEG
placement (after 2 weeks) was indeed linked with a higher incidence
of complications, such as sepsis, urinary tract infections, or acute
respiratory distress syndrome (ARDS), but had a decreased mortality
risk in high-risk groups. On the other hand, early PEG placement,
despite being performed on patients with fewer comorbidities, was
paradoxically associated with higher in-hospital mortality. Standard
PEG timing (7-14 days) was the most appropriate to mitigate
mortality and complications in low- and moderate-risk groups.

These findings could be explained by the fact that late PEG may
often be performed in patients with higher comorbidity burdens:
clinicians are likely to delay the procedure until patients are clinically
stable to mitigate the mortality risk. In some cases, early intervention
may still be premature and result in unforeseen complications in
patients who appear to be initially stable. For example, each additional
day of delayed PEG placement was linked with a slight yet significant
improvement in neurological function, reinforcing that delaying PEG
in some cases may allow patients to stabilize. This finding was also
observed in our findings with trach placement, where early
intervention was linked to slower neurological recovery, as seen with
the slight negative association with GCS improvement.

The trends in our study, when understood in the context of prior
literature, collectively imply the need to personalize the timing of both
PEG and trach procedures in TBI patients. The general benefits of early
intervention may not be visualized across all patients, and the decision to
perform early, standard, or delayed interventions should still consider
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individual patient factors that could significantly influence their
trajectories, as seen in our covariate analyses. For example, patients who
were older or had an increased NLR at admission were more vulnerable
to readmission or mortality after intervention. Notably, NLR has gained
attention as a biomarker to provide insight into the recovery of TBI
patients (25). The NLR describes the balance between neutrophil and
lymphocyte counts and has been considered an indicator of systemic
inflammation. Elevated NLR is supposedly linked to a heightened
inflammatory response, which can increase secondary brain injury in TBI
patients. For example, TBI patients with higher NLR values at admission
were more likely to experience complications that could require prolonged
mechanical ventilation or delayed recovery (25).

The complexity of determining the optimal timing of intervention
positions RL to offer a unique approach that can integrate patient-
specific factors and support the clinician’s decisions. Our study used TD
learning and a Q-learner to estimate the net cumulative benefit of these
interventions based on the historical patient data and subsequently
learn optimal intervention strategies. The value function derived from
TD learning agreed with the general trend of how earlier interventions
resulted in greater rewards. In PEG patients, younger individuals and
those with fewer comorbidities, as quantified by the Charlson
Comorbidity Index, had the best overall value with early intervention.
For trach patients, although the value function pointed to earlier
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intervention to maximize outcomes, there was no observable pattern in
relation to specific patient characteristics, suggesting a much more
nuanced pattern.

The Q-learner was able to successfully explore the data and
develop decision-making capability, as demonstrated by the reward
over time curve (Figure 3). The model was able to quickly identify
patterns for PEG timing and had a slower convergence for trach
patients, suggesting that outcomes may be influenced by more factors
or are harder to predict earlier in the learning process. The Q-learner
reflected some established trends while offering novel insights, such
as how early interventions were generally preferred, especially among
younger patients. Meanwhile, older patients, especially those over 71,
received a mix of early, standard, and delayed intervention
recommendations, mirroring the cautious approach to older
populations, as they may be more vulnerable to risks. Patients with a
BMI above 25 or presenting with a severe/critical ISS were more likely
to be directed to a delayed recommendation. Those with moderate ISS
were more likely to receive earlier intervention recommendations. The
Q-learner also implied that patients presenting with severe GCS
tended to receive delayed intervention recommendations, while those
with mild to moderate GCS scores exhibited a more varied pattern.
Patients with a higher NLR were often recommended a later date for
intervention compared to those with a lower NLR.
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While the application of Q-learning in our study is the first of its
kind in developing clinical decision support systems for TBI
management, there are some scalability issues to consider. The model
was trained on historical data from a single institution, which may
limit its generalizability. Practices at a single academic institution,
such as ICU protocols and surgeon experience, may limit the external
validity of our model. Q-learning’s constraint as an offline learner
restricts the model from freely exploring a decision space in the real-
world setting; it is unethical to test interventions on actual patients to
learn the best action (23). At the same time, this makes the model
vulnerable to extrapolation bias as it learns from static, retrospective
datasets; ethical deployment would require human-in-the-loop
validation. Although exploration enables the model to experiment
with different actions, as seen in Figure 3 with the occasional dips in
reward, this aspect could nonetheless result in extrapolation error.
Striking the balance in the exploration-exploitation tradeoff as an
epsilon-greedy policy can be challenging, which is why it is essential
to continue the model training on diverse, up-to-date, and prospective
datasets to improve the model and better assess its performance before
a full-scale deployment. Adding more features to the state space or
updating the reward function for long-term outcomes may also
expand the depth of the study. Future research can evaluate novel
off-policy RL approaches or simulations to limit extrapolation error
in optimizing TBI management (26).

Conclusion

In conclusion, the association between the timing of intervention
and improved outcomes in TBI patients is a question of precision
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medicine. Early PEG and trach interventions in TBI patients generally
optimize resource allocation and some outcomes, including shorter
ICU/hospital stays and fewer complications such as VAP. However, the
link between intervention timing and mortality or neurological
recovery is likely more nuanced, with delayed PEG placement linked
to improved survival in select cases. Applying RL techniques may
show promise in optimizing intervention timing based on patient
characteristics, and further validation and refinement are needed in
this novel strategy. Future studies should build upon the work in this
study with larger datasets and stronger RL algorithms to improve
decision-making in TBI management.
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