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Background: Gamma knife radiosurgery (GKRS) is an established option for 
cerebral cavernous malformations (CCMs) when microsurgical resection is not 
feasible. Lesion location strongly influences treatment strategy. The biologically 
effective dose (BED), introduced by J. F. Fowler, has been widely discussed in 
radiobiology but not evaluated in CCMs.
Methods: A retrospective cohort study was conducted on 107 patients with 
123 CCMs treated by GKRS at West China Hospital between June 2020 and 
December 2022. Post-GKRS hemorrhage was defined as symptomatic bleeding. 
The annual hemorrhage rate (AHR) quantified bleeding risk, and effective 
volumetric control was defined as ≥ 20% volume reduction. Clinical outcomes 
were categorized as improved, stable or worsened.
Results: The mean age was 41 years, and 59.8% were female. Pre-GKRS 
hemorrhage was most frequent in brainstem (78.6%) and basal ganglia/thalamic 
lesions (73.3%). During follow-up, 13 patients (10.6%) experienced hemorrhage 
and AHR decreased from 13.6 to 4.3% per 100 lesion-years (IRR = 0.314; 
p < 0.001). BED was an independent protective factor against postoperative 
hemorrhage (HR = 0.964, p = 0.044) and significantly associated with volumetric 
and clinical control.
Conclusion: GKRS significantly reduced hemorrhage risk and promoted lesion 
regression in CCMs. BED was identified as a strong independent predictor of 
hemorrhage control, volume response and clinical outcomes, outperforming 
conventional dose metrics. These findings suggest that BED may guide 
personalized radiosurgical dose optimization for CCMs.
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1 Introduction

Cerebral cavernous malformations (CCMs) are increasingly identified through brain 
Magnetic Resonance Imaging (MRI), with an estimated prevalence of 0.2–0.5% (1). 
Symptomatic CCMs commonly present with hemorrhage, focal neurological deficits, seizures 
(2, 3) and headaches (4, 5). Previous studies have underscored the importance of lesion 
location—particularly in the brainstem, basal ganglia, and the thalamus—as a major 
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determinant of both natural hemorrhage risk and surgical accessibility 
(6–9). Indeed, lesion location remains a pivotal factor in determining 
the optimal treatment strategy for patients with CCMs.

Over the past two decades, gamma knife radiosurgery (GKRS) has 
emerged as an effective treatment option for deep-seated or surgically 
high-risk lesions, despite persistent concerns regarding posttreatment 
neurological deficits and rebleeding (10–18).

In 1989, the concept of biologically effective dose (BED) was first 
introduced in radiobiology to describe cell survival, integrating the 
physical dose – a traditional parameter in GKRS treatment planning – 
with treatment duration to account for DNA repair during radiation 
exposure (19). BED has since been considered as a promising 
predictor for radiosurgical efficacy, as it captures the biological impact 
on both the target lesion and surrounding healthy tissues (20). 
Numerous studies have applied the BED framework in the treatment 
of arteriovenous malformations (AVMs), trigeminal neuralgia, 
pituitary adenomas, vestibular schwannomas, and meningiomas, 
yielding clinically significant results (21–27). To date, however, no 
studies have reported the application of BED in CCMs.

In this study, we systematically analyzed clinical and radiological 
outcomes of CCMs treated with GKRS across various anatomical 
locations in a southwestern Chinese population. The primary objective 
was to investigate potential differences in preoperative characteristics, 
treatment parameters, and postoperative outcomes among lesions in 
distinct regions. Specifically, we  compared pre- and post-GKRS 
hemorrhage risk, baseline lesion volume, marginal prescription dose 
(MPD), dose rate, and BED, to determine their associations with 
hemorrhage risk reduction, volumetric changes, and symptom control 
across anatomical subgroups. Our findings provide the first clinical 
evidence supporting BED as a biologically relevant predictor in CCM 
radiosurgery, potentially guiding personalized dose optimization.

2 Materials and methods

2.1 Patient selection

We retrospectively reviewed 107 patients (123 lesions) who 
underwent GKRS for CCMs at West China Hospital during June 2020 
and December 2022. These cases were identified from a cohort of 892 
patients diagnosed with CCMs. Inclusion criteria were as follows: a. 
Diagnosis of CCM confirmed by MRI; b. GKRS performed at the 
Gamma Knife Center of West China Hospital; c. Initial GKRS as the 
primary intervention; d. A minimum of 2 years of clinical follow-up; 
e. Availability of complete medical records and comprehensive 
follow-up data; f. At least one post-GKRS MRI scan during follow-up. 
Exclusion criteria included: a. Prior surgical intervention for CCMs; 

b. Initial GKRS performed at an external institution; c. Loss of 
follow-up or insufficient data for analysis. Familial CCM was 
suspected in patients with multiple lesions and/or a positive family 
history. Genetic testing for CCM-related genes (KRIT1, CCM2, and 
PDCD10) was performed in selected cases according to institutional 
policy. Patients with confirmed familial CCM were not excluded from 
the analysis but were considered in the interpretation of results. The 
institutional review board at West China Hospital of Sichuan 
University approved this study (Approval No. 2023–1,534). Because 
of its retrospective nature, informed consent was not required.

2.2 Baseline and follow-up data

Baseline characteristics, dosimetric parameters, and radiographic 
data were collected for all patients. Clinical outcomes were assessed 
over a minimum follow-up period of 2 years after GKRS. Each treated 
lesion was analyzed as an independent observation. The primary 
outcome was the post-GKRS hemorrhage, expressed as the annual 
hemorrhage rate (AHR), calculated as the total number of 
hemorrhagic events by the cumulative follow-up time per lesion. 
Follow-up time was defined from the date of GKRS to the last clinical 
evaluation, death, or any subsequent CCM-related surgery. For clinical 
relevance and consistency with prior studies (11, 28), the pretreatment 
observation period was defined as the interval from the initial imaging 
diagnosis or the first hemorrhagic event to the date of GKRS. To avoid 
overestimation pf the pre-GKRS hemorrhage rate, hemorrhages 
occurring at initial presentation were excluded from the analysis (5, 
29, 30). Thus, the pre-GKRS AHR was defined as the total number of 
bleeding events- excluding diagnostic bleeding- divided by the 
cumulative pretreatment duration (in years). The post-GKRS AHR 
was defined as the total number of post-treatment hemorrhagic events 
divided by the sum of lesion-specific follow-up years after GKRS.

Secondary outcomes included changes in lesion volume and 
neurological status. A volumetric reduction of ≥ 20% compared with 
baseline was considered volumetric control, while clinical control was 
defined as stabilization or improvement of symptoms based on 
patients’ subjective reports.

2.3 Radiosurgical technique

All treatments were performed using the Leksell Gamma Knife 
ICON system (Elekta AB, Stockholm, Sweden) between June 2020 and 
December 2022. After fixation of a stereotactic head frame under local 
anesthesia, high-resolution MRI, including 1-mm T1- and T2- 
weighted sequences, was obtained to precisely localize and 
characterize CCMs. Treatment planning was collaboratively 
performed by neurosurgeons and radiologists using these images. 
After confirmation of target coordinates, the patient was positioned 
within the Gamma Knife unit, and radiosurgery was delivered with 
rigid head fixation to ensure precision throughout the procedure.

2.4 Biological effective dose calculation

The BED for CCMs was calculated based on the simplified model 
proposed by Jones et al. (20, 31), which facilitates optimization and 

Abbreviations: CCM, Cerebral Cavernous Malformation; MRI, Magnetic Resonance 

Imaging; GKRS, Gamma Knife Radiosurgery; BED, Biologically Effective Dose; 

AVM, Arteriovenous Malformation; AHR, Annual Hemorrhage Rate; DVA, 

Developmental Venous Anomaly; SPSS, Statistical Package for the Social Sciences; 

HR, Hazard Ratio; aHR, Adjusted Hazard Ratio; CI, Confidence Interval; ROC, 

Receiver Operating Characteristic; IRR, Incidence Rate Ratio; MPD, Marginal 

Prescription Dose; Gy, Gray (unit of absorbed radiation dose); DVH, Dose–Volume 

Histogram; Co-60, Cobalt-60 (radioactive isotope used in GKRS); SRS, Stereotactic 

Radiosurgery.
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evaluation of treatment time in GKRS. The model was derived from 
the Pop et al. study on sublethal damage repair in the rat spinal cord, 
which follows a biphasic repair process characterized by an α/β ratio 
of 2.47 Gy, repair half-times of 0.19 h and 2.16 h, and a repair 
coefficient (c) of 0.98, yielding μ₁ = 3.65 and μ₂ = 0.32. The BED was 
expressed as Gy2.47, consistent with prior reports involving other 
intracranial benign conditions (32, 33). The entire treatment time was 
defined as the sum of the beam-on time and the between-shot 
intervals, with the latter calculated as 5 min × (n  – 1), where n 
represents the number of shots. BED values were computed using 
the equation.

2.5 Statistical analysis

Statistical analyses were performed using SPSS Statistics version 
25 (IBM Corp.) and R software. Descriptive statistics were used to 
summarize patient and treatment characteristics. Predictors of post-
GKRS outcomes including hemorrhage, volumetric control, and 
clinical status, were evaluated using Cox proportional hazards 
regression. Variables with p < 0.10 in univariate analysis, along with 
clinically relevant factors (lesion location, volume and hemorrhage 
history), were entered into the multivariate Cox model to identify 
independent predictors. Collinear variables were analyzed in separate 
models to avoid confounding. Results are reported as hazard ratios 
(HRs) with 95% confidence intervals (CIs). Continuous dosimetric 
variables were dichotomized according to optimal cut-off values 
determined by the Youden index from ROC curve analysis for each 
outcome (see Supplementary Table S1). As no external control group 
was available, each lesion served as its own control for comparison of 
pre- and post-GKRS hemorrhage rates. Changes in AHR were 
analyzed using Poisson regression, with the logarithm of follow-up 
years as an offset to adjusting for exposure time differences. All 
analyses were two-tailed and p < 0.05 was considered 
statistically significant.

3 Results

3.1 Baseline characteristics and GKSR 
treatment parameters

A total of 107 patients (123 lesions) were included, with a mean 
age of 41 years (range, 8–73 years) and a female predominance 
(59.8%). Six patients harbored multiple lesions; two tested positive 
for CCM gene mutations, one tested negative, and three did not 
undergo genetic testing. Of all cases, 67 (54.5%) were located in the 
supratentorial lobar region, 28 (22.8%) in the brainstem, 13(10.6%) 
in the cerebellum and 15 (12.2%) in the basal ganglia/thalamus. The 
mean interval between diagnosis and GKRS was 9.3 months (range, 
0–121.8 months), and the mean follow-up duration was 38.9 months. 
The most common presenting symptoms were hemorrhage (49.6%) 
and headache (46.7%). Baseline demographics and clinical 
characteristics stratified by lesion location are summarized in 
Table  1. Patient groups were comparable in mean age, sex 
distribution, and pretreatment observation period (all p > 0.05). In 
contrast, treatment- and follow-up-related parameters —including 
dose rate, MPD, prescription isodose line, and total treatment 

time—differed significantly among locations. A significant difference 
was also observed in the initial clinical presentation (p < 0.001), 
whereas post-GKRS symptomatic outcomes were comparable 
(p = 0.184).

Lesion volumes at baseline (p = 0.15), at last follow-up (p = 0.57), 
and the magnitude of volume change (p = 0.106) showed no significant 
differences between groups. However, both the pre- and post-GKRS 
AHRs varied significantly among anatomical groups (p = 0.006 and 
p = 0.004, respectively), with the brainstem and basal ganglia/
thalamus groups exhibiting higher rates in both periods.

3.2 Hemorrhage

GKRS significantly reduced hemorrhage risk and BED emerged 
as an independent predictor. Before GKRS, 61 lesions experienced 74 
hemorrhagic events, including 13 with multiple bleeds. The pre-GKRS 
AHR was 77.30 per 100 CM–years, and after excluding diagnostic 
hemorrhages, the adjusted pre-GKRS AHR was 13.58 (13 events / 95.7 
lesion–years). Following GKRS, during 398.67 lesion–years of 
follow-up, 17 hemorrhages occurred in 13 lesions, yielding a post-
GKRS AHR of 4.26.

When stratified by follow-up duration, 8 hemorrhages occurred 
within 2 years (AHR = 3.25; 8 events / 246 lesion–years), and 9 beyond 
2 years (AHR = 5.90; 9 events / 152.67 lesion–years), showing no 
significant difference between intervals (IRR = 1.81; 95% CI 0.70–
4.70; p = 0.22). Most post-treatment hemorrhages (9/13 lesions) 
occurred in the brainstem. As illustrated in Figure 1, AHR declined 
substantially after GKRS, with Poisson regression confirming a 68% 
reduction in annual bleeding risk (IRR = 0.32; 95% CI, 0.19–0.54; 
p < 0.001).

Univariable and multivariable Cox regression results for predictors 
of post-GKRS hemorrhage are presented in Table 2. In univariable 
analysis, MPD, BED, lesion location and BED > 54.224 Gy2.47 were 
significant predictors. Due to multicollinearity, separate multivariable 
models were built. In the BED model, continuous BED remained a 
protective factor (aHR = 0.964; 95% CI, 0.93–0.999; p = 0.044). 
Compared with brainstem lesions, supratentorial lobar lesions had 
significantly lower post-GKRS hemorrhage risk (aHR = 0.083; 95% 
CI, 0.015–0.445; p = 0.004), while cerebellar and basal ganglia/
thalamic lesions did not differ significantly. In an alternative model 
substituting MPD, only supratentorial location remained significant 
(aHR = 0.10; 95% CI, 0.017–0.572; p = 0.01).

3.3 Radiological outcomes

Higher BED and MPD were independently predicted 
volumetric control. Among123 lesions with radiological follow-up, 
105 (85.4%) decreased in volume and 18 (14.6%) increased. 
Volumetric control (≥ 20% reduction) was achieved in 74% of 
lesions. Predictors identified in univariable and multivariable Cox 
regression are summarized in Table 3. In both models – Model 1 
(BED included) and Model 2 (MPD included)  –the primary 
covariate remained significant after adjustment for lesion volume, 
location and hemorrhage history (all p < 0.05). The proportional 
hazards assumption was confirmed (BED: p = 0.53; MPD: 
p = 0.26; global test: p = 0.52; Figure 2). MPD was significance was 
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TABLE 1  Baseline characteristics of 107 patients with CCMs collected stratified by anatomical location.

Variable Overall 
(n = 107)

Supratentorial 
lobar area 

(n = 59)

Brainstem 
(n = 28)

Cerebellum 
(n = 12)

Basal ganglia/
Thalamus 

(n = 15)

p value

Demographics 

(n, %)

No. of lesions 123 (100%) 67 (54.5%) 28 (22.8%) 13 (10.6%) 15 (12.2%) –

Patients 107 (100%) 59 (55.1%) 28 (26.2%) 12 (11.2%) 15 (14.0%) –

Age at GKRS, years 

(mean ± SD)
41.0 ± 1.4 40.4 ± 1.9 37.8 ± 2.5 51.6 ± 5.05 40.4 ± 3.5 0.077

Sex, n (%) 0.704

Female 64 (59.8%) 31 (52.5%) 17 (60.7%) 6 (50%) 10 (66.7%) –

Male 43 (40.2%) 28 (47.5%) 11 (39.3%) 6 (50%) 5 (33.3%) –

Treatment 

parameters 

(mean ± SD)

Observation period 

(mo)
9.3 ± 1.9 10.5 ± 3.3 9.2 ± 2.3 10.8 ± 3.9 4.3 ± 1.2 0.348

Follow-up (mo) 38.9 ± 1.5 36.4 ± 1.1 38.0 ± 5.9 37.9 ± 2.7 43.8 ± 4.2 0.014*

Radiologic follow-up 

(mo)
21.8 ± 1.9 18.7 ± 1.5 22.2 ± 6.9 19.9 ± 3.5 24.0 ± 5.1 0.287

Dose rate (Gy/min) 2.588 ± 0.027 2.574 ± 0.038 2.569 ± 0.050 2.555 ± 0.107 2.714 ± 0.060 0.046*

Number of isocenters 

mean (range)
3 (2 ~ 6) 3 (2 ~ 6) 3.5 (2 ~ 5) 5 (2.5 ~ 6) 2 (1 ~ 6) 0.429

MPD (Gy) 13.21 ± 0.16 13.61 ± 0.15 11.79 ± 0.46 14.08 ± 0.31 13.33 ± 0.21 0.001*

Prescription isodose 

line
0.519 ± 0.004 0.517 ± 0.006 0.533 ± 0.008 0.515 ± 0.007 0.503 ± 0.003 0.040*

Treatment time 

(min)
30.4 ± 1.4 32.5 ± 2.0 23.9 ± 2.1 38.5 ± 4.1 26.1 ± 4.2 0.003*

BED (Gy2.47) 67.790 ± 0.966 68.786 ± 1.324 67.015 ± 2.658 64.709 ± 1.298 67.457 ± 1.446 0.378

Clinical 

presentation 

before GKRS (n, 

%)

< 0.001*

Hemorrhage 61 (49.59%) 23 (34.33%) 22 (78.57%) 5 (38.46%) 11 (73.33%) –

Paresthesia 10 (9.30%) 3 (5.08%) 6 (21.43%) 1 (8.33%) 1 (6.67%) –

Paresis 15 (14.02%) 4 (6.78%) 7 (25.00%) 4 (33.33%) 2 (13.33%) –

Cranial nerve deficits 19 (17.76%) 2 (3.39%) 17 (60.71%) 1 (8.33%) 1 (6.67%) –

Headache 50 (46.70%) 27 (45.76%) 15 (53.57%) 3 (25.00%) 8 (53.33%) –

Loss of consciousness 14 (13.08%) 11 (18.64%) 1 (3.57%) 1 (8.33%) 1 (6.67%) –

Epilepsy 12 (11.20%) 10 (16.95%) 1 (3.57%) 0 1 (6.67%) –

Asymptomatic 20 (18.69%) 12 (20.34%) 4 (14.29%) 2 (16.67%) 2 (13.33%) –

Clinical 

outcomes (n, %)
0.184

Improved 56 (52.3%) 35 (59.3%) 14 (50.0%) 5 (41.7%) 6 (40.0%) –

Stable 40 (37.4%) 22 (37.3%) 8 (28.6%) 5 (41.7%) 7 (46.7%) –

New or worsening 

neurological deficits
11 (10.3%) 2 (3.4%) 6 (21.4%) 2 (16.7%) 2 (13.3%)

–

(Continued)
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TABLE 1  (Continued)

Variable Overall 
(n = 107)

Supratentorial 
lobar area 

(n = 59)

Brainstem 
(n = 28)

Cerebellum 
(n = 12)

Basal ganglia/
Thalamus 

(n = 15)

p value

Volumetric 

analysis (mean 

± SD)

Pre-GKRS volume 

(cm3)
0.628 ± 0.069 0.698 ± 0.097 0.431 ± 0.122 0.445 ± 0.091 0.845 ± 0.261 0.150

Final follow-up 

volume (cm3)
0.331 ± 0.046 0.341 ± 0.066 0.322 ± 0.104 0.383 ± 0.131 0.262 ± 0.087 0.570

Volume change 

(n, %)
0.106

Enlargement 18 (14.6%) 6 (9.0%) 8 (28.6%) 2 (15.4%) 2 (13.3%) –

Reduction 105 (85.4%) 61 (91.0%) 20 (71.4%) 11 (84.6%) 13 (86.7%) –

Effective volumetric 

control

91 (74.0%) 53 (77.9%) 16 (57.1%) 10 (76.9%) 12 (80.0%) 0.136

Hemorrhage 

and AHR (n, %)

Hemorrhage after 

GKRS

Hemorrhage within 

2 years

7 (5.69%) 1 (1.49%) 5 (17.85%) 1 (7.69%) 0 NA

Hemorrhage beyond 

2 years

13 (10.57%) 1 (1.49%) 9 (32.14%) 1 (7.69%) 2 (13.33%) NA

AHR, per 100 

lesion-years

Pre-GKRS AHR 13.6 (13/95.7) 5.1 (3/58.7) 35.0 (7/20) 8.6 (1/11.47) 37.0 (2/5.4) 0.006*

AHR within 2 years 3.3 (8/246) 0.8 (1/134) 10.7 (6/56) 3.9 (1/26) 0 0.220

AHR beyond 2 years 5.9 (9/152.7) 0 13.7 (6/43.8) 0 12.1 (3/24.7) < 0.001*

Post-GKRS AHR 4.3 (17/398.7) 0.5 (1/203.1) 12.0 (12/99.8) 2.4 (1/41.1) 5.5 (3/54.7) 0.004*

CCM, cerebral cavernous malformation; GKRS, Gamma Knife radiosurgery; MPD, marginal prescription dose; BED, biologically effective dose; AHR, annual hemorrhage rate; mo, months; 
SD, Standard deviation. Continuous variables are presented as mean ± SD; categorical variables as number (percentage). AHR is expressed per 100 lesion-years. *p < 0.05 was considered 
statistically significant. p values were calculated using one-way ANOVA for continuous variables and χ2 tests for categorical variables.

FIGURE 1

Annual hemorrhage rate and Poisson regression analysis of post-GKRS hemorrhage. (A) Comparison of AHRs before GKRS, within 2 years after GKRS 
(“Early”), beyond 2 years after GKRS (“Late”), and overall post-treatment. (B) Incidence rate ratios (IRRs) derived from Poisson regression comparing 
post-GKRS intervals with the pre-GKRS period. “Early (< 2 years)” and “Late (≥ 2 years)” refer to hemorrhagic events occurring within or beyond 2 years 
after GKRS, respectively. AHR, Annual hemorrhage rate; GKRS, Gamma knife radiosurgery.
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retained when continuous but lost after dichotomization (see 
Supplementary Table S1).

Lesion location was not a univariable predictor (p = 0.177), but 
brainstem lesions required a longer time to achieve volumetric control 
than non-brainstem ones (p = 0.015; Figure 3).

3.4 Clinical outcomes

BED was the only consistent predictor of clinical control. Over a 
mean clinical follow-up of 38.9 months, 56 patients (52.3%) 
experienced clinically, 40 (37.4%) remained stable, and 11 (10.3%) 
developed new or progressive neurological deficits, predominantly in 
brainstem lesions (54.5%). Six patients (5.6%) underwent surgical 
intervention and no treatment-related deaths occurred.

Results of the Cox regression analysis for clinical outcome 
predictors are shown in Table 4. In univariate Cox analysis, higher 
BED (HR = 1.060; 95% CI, 1.038–1.083; p < 0.001), greater number of 
isocenters (HR = 1.007; 95% CI, 1.001–1.144; p = 0.048), and higher 
dose rate (HR = 0.512; 95% CI, 0.341–0.768; p = 0.001) were 
significantly associated with favorable clinical outcome. In the 
multivariate model included BED, it remained an independent 
predictor (aHR = 1.07; 95% CI, 1.04–1.09; p < 0.001), while lesion 
volume showed only a marginal trend (aHR = 1.21; 95% CI, 0.97–1.51; 
p = 0.091). No significant associations were observed for age, sex, 

observation period, MPD, pre-SRS hemorrhage status, or lesion 
location (all p > 0.05). However, significant correlations were observed 
in high BED, large volume, high MPD and high dose rate (see 
Supplementary Table S1).

4 Discussion

This retrospective single-center study provided the first clinical 
evidence that BED served as a biologically relevant predictor of 
treatment response in CCMs treated with GKRS. Our results 
demonstrated that a higher BED was independently associated with 
reduced post-GKRS hemorrhage risk, effective volumetric control, 
and better clinical outcomes. These findings suggest that incorporating 
BED into GKRS planning could enhance the biological precision of 
treatment, complementing traditional physical dose metrics such as 
MPD and dose rate.

4.1 Natural history of cerebral cavernous 
malformations

Several studies have reported potential risk factors associated with 
rebleeding in conservatively managed CCMs, including age (34–36), 
lesion size or diameter (35), the presence of developmental venous 

TABLE 2  Univariate and multivariate Cox regression analysis identifying of predictors of post-GKRS hemorrhage in all CCMs.

Variables Univariable Multivariable (MPD) Multivariable (BED)

HR (95%CI) p value HR (95%CI) p value HR (95%CI) p value

Demographics

Age 0.985 (0.951, 1.020) 0.405 – –

Sex 0.679 (0.222, 2.077) 0.497 – –

Observation period 

(mo)_
0.982 (0.933, 1.035) 0.502

– –

Radiosurgical 

parameters

– –

Dose rate (Gy/min) 0.416 (0.122, 1.412) 0.106 – –

Number of isocenters 0.956 (0.772, 1.183) 0.679 – –

MPD (Gy) 0.751 (0.610, 0.925) 0.007* 0.898(0.7, 1.15) 0.396 – –

Prescription isodose line
0.079 (0.000, 

64197.048)
0.715 – –

BED (Gy2.47) 0.939 (0.897, 0.984) 0.008* 0.964 (0.93,0.999) 0.044*

Pre-GKRS volume (cm3) 0.354 (0.085, 1.483) 0.155 0.726 (0.289,1.82) 0.495 0.637 (0.246, 1.65) 0.353

Pre-GKRS hemorrhage 

(yes, n)
0.419 (0.116, 1.361) 0.148 1.22 (0.376, 3.95) 0.742

Location 0.012*

Supratentorial lobar area 

vs. Brainstem
0.042 (0.005, 0.330) 0.003 0.1 (0.017, 0.572) 0.01* 0.083 (0.015, 0.445) 0.004*

Cerebellum vs. Brainstem 0.349 (0.075, 1.622) 0.179 0.566 (0.09, 3.55) 0.543 0.402 (0.072, 2.24) 0.298

Basal ganglia/Thalamus 

vs. Brainstem
0.218 (0.028, 1.724) 0.149 0.609 (0.141, 2.63) 0.507 0.597 (0.147, 2.43) 0.471

HR, hazard ratio; CI, confidence interval; BED, biologically effective dose; MPD, marginal prescription dose; GKRS, gamma knife radiosurgery; CCMs, cerebral cavernous malformations. 
Because of multicollinearity among dose-related parameters, two multivariate models were developed—one with MPD and another with BED—to avoid redundancy. *p < 0.05 was considered 
statistically significant.
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anomalies (DVAs) (37, 38), lesion location (7, 39–42), and prior 
hemorrhage history (37–39, 43, 44). However, many of these 
associations remain under debate. Due to the heterogeneous 
distribution of critical neural nuclei and eloquent structures within 

the brain, CCMs in different anatomical regions present with distinct 
clinical profiles (39). In our cohort, lesions located in the brainstem 
and basal ganglia/thalamus were more likely to present with 
hemorrhage and neurological deficits. AHR serves as a key metric for 

TABLE 3  Univariate and multivariate Cox regression analysis identifying predictors of post-GKRS volumetric control in All CCMs.

Variables Univariable Multivariable (MPD) Multivariable (BED)

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Demographics

Age 1.003 (0.988, 1.017) 0.718 – – – –

Sex 0.978 (0.645, 1.484) 0.918 – – – –

Observation period (mo) 0.996 (0.983, 1.009) 0.527 – – – –

Radiosurgical 

parameters

Dose rate (Gy/min) 1.367 (0.736, 2.540) 0.057 – – – –

Number of isocenters 1.032 (0.955, 1.116) 0.420 – – – –

MPD (Gy) 1.298 (1.130, 1.492) 0.016* 1.170 (1.010, 1.340) 0.030* – –

Prescription isodose line
0.215 (0.004, 

11.830)
0.452

– – – –

BED (Gy2.47) 1.051 (1.029, 1.074) < 0.001* – – 1.050 (1.030, 1.080) <0.001*

Pre-GKRS volume (cm3) 1.161 (0.910, 1.481) 0.230 1.050 (0.793, 1.380) 0.745 1.100 (0.820, 1.470) 0.534

Pre-GKRS hemorrhage 

(yes, n)
0.934 (0.615, 1.420) 0.751 1.330 (0.826, 2.130) 0.242 1.080 (0.664, 1.750) 0.760

Location
0.864 (0.699, 

1.068)
0.177

Supratentorial lobar area 

vs. Brainstem

– –
1.27 (0.675, 2.41) 0.745 1.57 (0.869, 2.84) 0.135

Cerebellum vs. Brainstem – – 1.01 (0.404, 2.52) 0.984 1.56 (0.654, 3.71) 0.317

Basal ganglia/Thalamus vs. 

Brainstem

– –
0.726(0.334, 1.58) 0.419 0.857 (0.397, 1.85) 0.695

HR, hazard ratio; CI, confidence interval; BED, biologically effective dose; MPD, marginal prescription dose; GKRS, gamma knife radiosurgery; CCMs, cerebral cavernous malformations. 
Because of multicollinearity among dose-related parameters, two multivariate models were developed—one with MPD and another with BED—to avoid redundancy. *p < 0.05 was considered 
statistically significant.

FIGURE 2

Schoenfeld residual plot for BED (A) and MPD (B) in the volumetric control model. Schoenfeld residual plots for BED (A) and MPD (B) against follow-up 
time, used to assess the proportional hazards assumption in the Cox model for volumetric control. The solid lines represent LOWSS smooth fits, and 
the dashed lines indicate the zero reference. The residuals are randomly distributed around zero without systematic trends, suggesting that the 
proportional hazards assumption holds for both BED and MPD. BED, biologically effective dose; MPD, margin prescription dose; LOWESS, Locally 
weighted scatterplot smoothing.
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quantifying bleeding risk before and after treatment, but its calculation 
has varied substantially across studies– particularly in low-frequency 
hemorrhagic events and observation period are defined. Common 
approaches include: A. Considering CMs as congenital lesions, with 
AHR calculated as the total number of pre-treatment hemorrhages 
divided by patient age in years (45); B. Excluding the initial diagnostic 
hemorrhage, where AHR equals the number of subsequent 
hemorrhages divided by lesion-years from diagnosis (13); C. Including 
all pre-treatment hemorrhages, divided by lesion-years from diagnosis 
(16). Among these, excluding the initial diagnostic hemorrhage 
provides a more accurate reflection of post-diagnosis risk, facilitates 
consistent comparison with post-treatment hemorrhage rates, and 
prevents overestimation of baseline hemorrhagic risk. Consistent with 
this rationale, our study adopted the approach of excluding the initial 
presenting hemorrhage when calculating AHR. Besides, the presence 
of familial CCM cases may represent a potential source of bias, as 
these patients are more prone to recurrent hemorrhage compared with 
sporadic cases. However, genetic findings were considered during data 
interpretation, and the limited number of familial cases is unlikely to 
have significantly influenced the overall results.

4.2 Radiosurgical management of cerebral 
cavernous malformations

CCMs are benign vascular malformations of the central nervous 
system. Unlike AVMs, they are angiographically occult. A defining 
pathological feature—the absence of tight junctions between 
endothelial cells—confers distinct radiobiological behavior. In 
contrast to AVMs, CCM lumens rarely achieve complete obliteration 
following irradiation, partly due to the relative paucity of radiation-
sensitive endothelial components (46).

Our analysis confirmed that GKRS serves as a significant 
protective factor against recurrent hemorrhage (IRR = 0.316; 95% CI: 
0.185–0.537; p  < 0.001), corresponding to a 68.4% reduction in 

annualized hemorrhage risk. Thes findings align with previous studies 
demonstrating reduced post-GKRS hemorrhage rates (Table 5) (13, 
14, 28, 47–54). The difference in AHR beyond 2 years post-GKRS was 
not statistically significant in our cohort, consistent with one 

FIGURE 3

Cumulative hazard curves for achieving volumetric control after 
GKRS in CCMs. Cumulative hazard curves illustrate the time-
dependent probability of achieving ≥20% lesion volume reduction 
following GKRS. Lesions located in the brainstem (blue) showed a 
significantly lower likelihood of volumetric control compared with 
non-brainstem lesions (red) (p = 0.015, log-rank test). AHR, Annual 
hemorrhage rate; GKRS, Gamma knife radiosurgery.

TABLE 4  Univariate and multivariable Cox regression analysis identifying 
predictors of post-GKRS clinical control in All CCMs.

Variables Univariable Multivariable 
(BED)

HR (95% 
CI)

p value HR 
(95% 
CI)

p value

Demographics

Age
0.998 (0.986, 

1.011)
0.807

– –

Sex
1.043 (0.295, 

3.685)
0.948

– –

Observation 

period (mo)

0.999 (0.989, 

1.009)
0.844

– –

Radiosurgical 

parameters

Dose Rate (Gy/

min)

1.470 (0.909, 

2.378)
0.116

– –

Number of 

isocenters

1.007 (1.001, 

1.144)
0.048*

– –

MPD (Gy)
1.149 

(0.785,1.683)
0.475

– –

Prescription 

isodose line

14.448 (0.358, 

583.323)
0.157

– –

BED (Gy2.47)
1.060 (1.038, 

1.083)
< 0.001*

1.070 

(1.040, 

1.090)

< 0.001*

Pre-GKRS volume 

(cm3)

1.059 (0.854, 

1.314)
0.600

1.210 

(0.970, 

1.510)

0.091

Pre-GKRS 

hemorrhage (yes, 

n)

0.976 (0.671, 

1.420)
0.899

0.855 

(0.566, 

1.290)

0.457

Location

1.351 

(0.824, 

2.217)

0.233

– –

Supratentorial 

lobar area vs. 

Brainstem

– – 1.23 (0.743, 

2.050)

0.417

Cerebellum vs. 

Brainstem

– – 1.600 

(0.756, 

3.400)

0.219

Basal ganglia/

Thalamus vs. 

Brainstem

– – 0.576 

(0.279, 

1.190)

0.137

HR, hazard ratio; CI, confidence interval; BED, biologically effective dose; MPD, marginal 
prescription dose; GKRS, gamma knife radiosurgery; CCMs, cerebral cavernous 
malformations. Because of multicollinearity among the dosimetric parameters (dose rate, 
number of isocenters, MPD, and BED), only BED was included in the final multivariate 
model. *p < 0.05 was considered statistically significant.
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meta-analysis (11) but different from another (55). Collectively, 
current evidence supports a decline in AHR following 
radiosurgical intervention.

The radiobiological mechanism is thought to involve endothelial 
injury and inflammation, leading to fibrinoid necrosis with or without 
thrombosis, followed by fibrotic scarring that progressively narrows 
or occludes the vascular lumen. This process provides a mechanistic 
basis for the gradual reduction in hemorrhage risk as lesional blood 
flow becomes remodeled or sealed off (56, 57). In our cohort, 
hemorrhage rates within 2 years after GKRS and beyond 2 years did 
not differ significantly, suggesting a sustained treatment effect. This 
contrasts with the natural history of untreated CCMs, which often 
exhibits temporal clustering of hemorrhages (34, 43). Therefore, to 
more convincingly establish the therapeutic effect of radiation, post-
treatment hemorrhage data should ideally be  compared between 
radiosurgically treated and conservatively managed cohorts.

Nagy et  al. identified younger age, deep lesion location, and 
multiple pre-treatment hemorrhages as predictors of post-GKRS 
bleeding (58). In our study, BED and lesion location emerged as stable 
predictors of hemorrhage risk in both univariable and multivariable 
Cox analyses. Lesions located in brainstem exhibited the highest risk 
and those in supratentorial lobar the lowest. Notably, a history of prior 
hemorrhage did not significantly predict post-tradiosurgical bleeding, 
possibly because radiation-induced structural remodeling alters the 
natural risk of bleeding.

Radiologically, 85.4% of lesions decreased in size after GKRS, and 
74% achieved volumetric control, consistent with previous reports (16, 
55). These findings further support the efficacy of GKRS in promoting 
CCM regression. Higher BED and MPD (as continuous variables) 
were independently associated with faster and more likely achievement 
of volumetric control. The significant correlation of MPD as a 

continuous variable, but not after dichotomization, suggests a 
potential dose–response association between MPD and post-GKRS 
volumetric control. However, categorizing the variable reduced 
statistical power due to uneven group distribution.

Lesions located in the brainstem required a longer duration to 
achieve volumetric control, likely due to receiving lower MPD during 
radiosurgery. Overall, volume changes appear to be primarily driven 
by radiation-induced pathological remodeling and are closely related 
to GKRS dosimetric parameters.

4.3 Biologically effective dose

The concept of BED and its formulation was first introduced by 
J. F. Fowler in the British Journal of Radiology in 1989 (19). This 
metric highlights the impact of treatment time in stereotactic 
radiosurgery. Our baseline data reveal considerable variation in 
treatment time, primarily attributable to differences in the Co-60 
source dose rate and the degree of automation of the 
radiosurgical device.

Currently, GKRS treatment planning relies on physical radiation 
doses parameters- MPD, dose distribution map, dose-volume 
histogram, and target-specific irradiation dose and duration in 
GammaPlan- as the clinical gold standard (20). In contrast, BED offers 
additional insight by incorporating biological effects into 
the evaluation.

BED has been extensively investigated in central nervous system 
diseases treated with GKRS, yielding encouraging results and 
establishing it as a promising metric for radiotherapy planning and 
outcome assessment. For instance, BED accurately predicts AVM 
obliteration rates (21, 59, 60). In trigeminal neuralgia, BED—
specifically within a range of 1820–1962.5 Gy2.47—has emerged as the 
critical predictor of efficacy, outperforming MPD and achieving an 
optimal balance between therapeutic effect and toxicity (22, 61, 62). 
Similarly, BED correlates with biochemical remission in acromegaly, 
Cushion disease and Hypopituitarism (25, 32, 63–65); shows a 
significant association with tumor volume reduction in vestibular 
schwannomas (23, 24, 66, 67); and predicts treatment failure in 
meningiomas, where MPD alone lacks statistical significance (27, 68).

Despite these broad applications, no published data have yet 
addressed the role of BED in CCMs. The present study fills this gap by 
establishing BED as a strong and independent predictor of treatment 
outcome in patients with CCMs. Given these novel findings, further 
multicenter studies are warranted to validate the predictive role of 
BED and to refine its clinical practice.

4.4 Limitations

This study has several limitations. First, its monocentric origin 
may limit the external validity of the findings. As highlighted in the 
CARE trial, multicentre recruitment would be  desirable to better 
define the burden and clinical characteristics of this rare entity. In 
addition, the relatively short follow-up period restricts assessment of 
long-term outcomes. Besides, its retrospective design introduces 
inherent selection bias, and the absence of a natural-history control 
group limits causal inference. Treatment parameters (e.g., MPD) were 
not randomized but chosen at physicians’ discretion, creating 

TABLE 5  Annual hemorrhage rates before and after stereotactic 
radiosurgery: summary of data extracted from 11 included studies.

Paper 
number

Pre-
SRS 
AHR

After-SRS 
within 
2 years 

AHR

After-SRS 
beyond 
2 years 

AHR

After-
SRS 
AHR

Kefeli et al. (47) 8.6% 1.22% 0.56% 0.87%

Liu et al. (48) 25% 3.92% 1.85% 3.07%

Kida et al. (49) 21.48% 7.4% 2.80% 4.36%

Kim et al. (50) 7.26% 2.63% 0.61% 1.26%

Frischer et al. 

(51)
33.56% 8.14% 2.37% 4.80%

Park and 

Hwang (52)
39.57% 8.20% 0% 1.54%

Lee et al. (28) 31.32% 4.29% 3.64% 3.94%

Monaco et al. 

(53)
32.38% 8.22% 1.37% 3.87%

Choudhri et al. 

(54)
33.90% 12.32% 0.76% 4.75%

Karaaslan et al. 

(13)
15.3% 2.6% 1.4% –

Li et al. (14) 23.6% 9.02% 7.52% –

SRS, Stereotactic surgery; AHR, Annual hemorrhage rate; dashes (—) indicate variables not 
included in articles.
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confounding by indication and the inclusion of patients with unbled 
sporadic cavernomas was based on our institutional treatment policy, 
which considers surgical or radiosurgical intervention in selected 
cases depending on lesion location, size, and symptomatic 
presentation. Symptom burden was not quantified using standardized 
scales such as the modified Rankin Scale, reducing comparability. 
Patients lost to follow-up were mainly asymptomatic or without 
recurrent hemorrhage, potentially inflating the observed rebleeding 
rate, while the extent of loss was not systematically recorded. Given 
the uncertain onset of GKRS treatment effects in CCMs, the causal 
strength of our conclusions is limited.

These results should therefore be interpreted with caution, and 
larger, prospective studies with standardized outcome assessment and 
extended follow-up are needed to confirm durability and refine 
dose optimization.

5 Conclusion

This study demonstrates that GKRS was associated with a reduced 
hemorrhage rate. Beyond confirming the protective role of 
radiosurgery, our analysis identified BED as a powerful and 
independent predictor of treatment outcomes, surpassing traditional 
dosimetric parameters such as MPD. The incorporation of BED into 
treatment planning may allow clinicians to better individualize GKRS 
strategies, balancing efficacy with safety, and thereby improving long-
term patient outcomes. As no prior data have addressed the role of BED 
in CCMs, our findings establish a new framework for integrating 
radiobiological principles into clinical decision-making. Prospective 
multicenter studies are needed to validate these results and to translate 
BED-guided radiosurgery into routine practice for optimal patient care.
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