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Effectiveness of VR-based
cognitive training and games on
cognitive rehabilitation in patients
with MCI: a systematic review and
meta-analysis

Peiming Yuan', Jiaxi Chen', Dianhui Peng, Qian Yang, Bin Liu*
and Chunxia Lu

College of Physical Education, Hunan Normal University, Changsha, China

Background: Mild Cognitive Impairment (MCI) represents a prodromal dementia
stage marked by cognitive decline without functional impairment. Given
limited drug efficacy and global aging, non-pharmacological interventions are
urgently needed. Virtual reality (VR) enables immersive cognitive rehabilitation,
yet evidence remains inconsistent due to divergent intervention approaches
(training vs. gaming) and technical parameters like immersion level.

Objective: This systematic review and meta-analysis synthesized evidence
from randomized controlled trials (RCTs) to evaluate the efficacy of VR-based
cognitive training and gaming interventions on cognitive function in older adults
with MClI and to investigate the moderating role of immersion level.

Methods: We systematically searched four electronic databases (PubMed,
Web of Science, Embase, Scopus) from inception to July 20, 2025, for RCTs
investigating VR interventions (cognitive training or games) in individuals aged
> 55 years diagnosed with MCI. Two independent reviewers performed study
selection, data extraction (including intervention characteristics, implementation
details, and behavior change techniques), and risk-of-bias assessment using
the Cochrane Risk of Bias tool (RevMan 54.1). Standardized mean differences
(Hedges's g) with 95% confidence intervals (Cl) were pooled using random-
effects models in Stata 18.0. Heterogeneity was quantified using /2. Publication
bias was assessed via funnel plots and Egger's test. Pre-specified meta-
regression explored immersion level as a potential moderator. The certainty of
evidence was assessed using the Grading of Recommendations Assessment,
Development and Evaluation (GRADE) system.

Results: Of the 2,486 articles retrieved in total, 11 studies were included in the
analysis. VR demonstrated a statistically significant improvement in the efficacy
of cognitive rehabilitation among patients with MCI (Hedges's g = 0.6, 95% CI:
0.29 to 0.90, p < 0.05). Specifically, VR-based games (Hedges's g = 0.68, 95%
Cl: 0.12 to 1.24, p = 0.02) showed greater advantages in improving cognitive
impairments compared to VR-based cognitive training (Hedges's g = 0.52, 95%
Cl: 0.15t0 0.89, p = 0.05). The immersive level of VR interventions emerged as a
significant moderator of heterogeneity across the included studies. Based on the
GRADE criteria, the quality of evidence for the efficacy of VR-based interventions
on cognitive function in individuals with MCl is moderate. A stratified analysis by
intervention type showed that VR cognitive training is supported by moderate-
certainty evidence, while evidence for VR games is of low certainty.
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Conclusion: VR-based interventions, including cognitive training and games,
effectively improve cognitive function in MCI patients, with VR games showing
a trend toward greater efficacy. Immersion level critically influences therapeutic
outcomes, requiring optimized sensory integration while accommodating
individual tolerance. These findings support supervised clinical VR training
alongside engaging home-based protocols to enhance adherence. Future

development of standardized

immersion adjustment and personalized

guidelines will advance utility across care settings.

KEYWORDS

virtual reality, VR cognitive training, mild cognitive impairment, cognitive
rehabilitation, games, meta-analysis

1 Introduction

Mild cognitive impairment (MCI), defined as a level of cognitive
ability that is lower than would be expected for their age and
educational level, occurring between normal aging and dementia (1).
Individuals diagnosed with MCI are at a significantly higher risk of
progressing to dementia, with a mean annual conversion rate of
approximately 10%, compared to the annual incidence of 1-2% in the
general population (2, 3). Treatments can be implemented to slow
down the advancement of dementia during the preclinical phase (4),
making the identification of effective therapeutic strategies to delay or
prevent the progression to dementia of utmost importance.

The increasing prevalence of MCI, driven by the aging global
population, there are few medications or dietary therapy that can
slow MCI
non-pharmacological treatments have received attention (3, 5). One

improve cognitive function or progression,
of the non-pharmacological treatments is the use of virtual reality
(VR) technology, which is currently employed in the control and
treatment of various diseases (6). It helps the user create a real sense
of presence and immersion in the virtual world through multiple
sensory stimuli (visual, auditory, tactile, and olfactory) while also
functioning by distracting them within that virtual and simulated
environment (7, 8). Virtual reality technology demonstrates two
principal manifestations in cognitive rehabilitation: VR-based
cognitive training and VR-based games. This fundamental distinction
reflects divergent methodological approaches to cognitive
enhancement, each characterized by unique mechanisms of
engagement and therapeutic delivery. In cognitive training, VR
serves as a targeted intervention for specific cognitive domains—
such as memory and attention—through repetitive, goal-oriented
tasks (9). These projects may incorporate elements of “serious games”
to increase engagement, but their main focus is on therapeutic
training. For instance, integrating VR technology into routine
training creates immersive experiences for individuals with mild
cognitive impairment (9, 10). In contrast, VR games emphasize
immersive narratives, exploration, and compelling gameplay (11, 12).
Cognitive challenges are naturally embedded within story-driven
objectives—such as solving puzzles or completing simulated missions
(13). This approach prioritizes intrinsic motivation, presence, and
enjoyment, facilitating cognitive exercise within ecologically rich
environments (14). While both paradigms share the ultimate goal of
cognitive enhancement, their differing design philosophies and
engagement paradigms may vyield differential outcomes in

therapeutic efficacy, adherence patterns, and cognitive benefit
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profiles (15, 16), thereby directly informing the precision design of
future VR interventions.

Several trials have investigated the impact of VR on older adults
with MCI, but the findings have been inconclusive. For example,
studies by Baldimtsi et al. (17) and Park et al. (10) revealed a significant
effect of VR on general cognitive abilities. However, the findings from
Park et al. (18) showed that a 12-week, culture-based VR training
program did not improve general cognitive abilities and did not show
significant differences in scores on the Mini-Mental Status
Examination (MMSE). Also, it is challenging to make definitive
conclusions about the effectiveness of interventions because of
variations VR intervention content (cognitive training or games). In
a study conducted by Yang et al. (16), daily life-based VR training
games (making juice, shooting crows, finding the number of fireworks,
and memorizing objects in the house) were found to positively affect
general cognitive performance. However, in a study by Kang et al.
(15), while the VR group participants received multidomain and
neuropsychologist-assisted cognitive training, no significant
differences in general cognitive performance were observed when
compared to other groups or baseline measurements. To the best of
our knowledge, although the use of VR technology to improve
cognitive function is increasing (19), the impact of VR-based cognitive
training and games on the cognitive rehabilitation of patients with
MCI remains controversial (10, 14).

In conclusion, while existing studies have demonstrated the
potential value of VR-based cognitive training, current evidence
regarding its efficacy in MCI remains limited by methodological
constraints. Notably, there is a scarcity of systematic reviews or meta-
analyses specifically examining the cognitive rehabilitation effects of
VR-based training and gaming interventions in the MCI population.
To address this gap, this study conducted a comprehensive meta-
analysis to quantitatively synthesize existing evidence and evaluate the
therapeutic potential of VR interventions for cognitive rehabilitation
in individuals with MCL

2 Materials and methods
2.1 Search strategy

Studies were identified by searching web-based databases with
support and consultation provided by institutional librarians. Four

databases were searched (PubMed, Embase, Web of Science, Scopus)
by combining keywords. To include studies reflecting the latest
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advancements in VR technology and methodologies, the focus was on
literature published from January 2013 to July 2025. The year 2013 was
chosen to ensure consistency in the technological sophistication and
usability standards of VR interventions, as VR technology and its
applications in cognitive rehabilitation have rapidly evolved over the
past decade (20). Keywords and search strategies are included:
(“Virtual Reality” OR “VR” OR “virtual environment” OR “Virtual
Reality Training” OR “VR cognitive training” OR “virtual game” OR
“Game” OR “Gaming” OR “video games”) AND (“Mild Cognitive
Impairment” OR “MCI” OR “Cognitive Dysfunction” OR “Cognitive
Disorder” OR “Cognitive Impairment” OR “cognitive decline”) AND
(“treatment” OR “intervention” OR “rehabilitation” OR “therapy” OR
“training”).

2.2 Selection criteria

2.2.1 Inclusion criteria

The inclusion criteria were defined with the PICOS approach: (i)
Studies concerning older adults (aged > 55 years) with a confirmed
diagnosis of MCI by neurologic examination or neuropsychological
assessment were included. The diagnosis was typically operationalized
through standardized cognitive cut-offs, most commonly a Mini-
Mental State Examination (MMSE) score of 24-27 or a Montreal
Cognitive Assessment (MoCA) score of 18-26, to define the presence
of objective cognitive impairment while excluding frank dementia (21,
22); (ii) Intervention: VR-based cognitive training and gaming; (iii)
Controls: Studies with any type of control group were included
(inactive controls include educational programs or no intervention;
active controls include traditional rehabilitation or any other type of
physical activity, physical-cognitive co-training, or video games
without VR components); (iv) Outcome: Overall cognitive function;
(v) Study design: randomized controlled trials (RCTs); (vi) Additional:
Published in English; full-text available.

2.2.2 Exclusion criteria
The exclusion criteria were as follows:

I No specific identification of cognitive impairment: Studies
where VR was not used in the intervention group, or VR was
used in the control group, were excluded.

II Cognitive impairment caused by other conditions: Studies
where cognitive impairment was attributed to other medical
conditions, such as stroke, cerebral infarction, traumatic brain
injury, or other neurological disorders, were excluded. This
ensures that the cognitive impairment under study is
specifically related to MCI and not secondary to other
health issues.

III Materials such as books, book chapters, letters to the editor,
and conference abstracts were excluded from the analysis.

2.3 Study selection and data extraction

The article search and selection process were reviewed through
the title and abstract of searched articles after the primary database
search and, in the full review, two authors finally selected the articles
by considering the eligibility criteria. This process was performed
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using a preferred reporting items for systematic reviews and meta-
analysis (PRISMA) flow chart (23). Data were extracted by 2
researchers (PY and DP) and cross-checked by a third researcher (JC).
The data extraction form encompassed various fields, including the
author, published year, country, study design, sample size (male/
female), mean age, intervention in treatment group, intervention in
control group, duration of the session and the follow-up period and
outcome characteristics was extracted.

2.4 Classification of immersion level

Based on specific technical specifications—including stereoscopy,
3/6-DOF tracking, natural interaction paradigms, and advanced
features such as haptic feedback—we established operational criteria
to classify immersion into three distinct levels: Low, Moderate, and
High (24, 25). Details in Table 1.

2.5 Risk of bias and GRADE assessment

The risk of bias assessment was conducted using the risk of bias
tool from Rev. Man 5.4.1 (26). This tool evaluates seven aspects:
random sequence generation, allocation concealment, blinding of
participants and personnel, blinding of outcome assessment,
incomplete outcome data, selective reporting, and other biases. Each
aspect was rated by the researchers as high risk (—), low risk (+), or
uncertain risk (?). In cases of disagreement on the ratings, a
consultation process was implemented to reach a consensus. The
certainty of evidence for each outcome was rated using the GRADE
approach, which evaluates five key domains: risk of bias, inconsistency,
indirectness, imprecision, and publication bias (27, 28). The evaluation
process also incorporated an assessment of factors that could
potentially upgrade the certainty of the evidence, such as a large
magnitude of the effect estimate or evidence of a dose-response
gradient. Following this comprehensive appraisal, the overall certainty
of evidence for each outcome was categorized as high, moderate, low,
or very low.

2.6 Statistical analysis

The included studies were synthesized and analyzed using Stata
version 18.0 software. Statistical heterogeneity, effect size, meta-
regression, and publication bias were analyzed. Hedge’s g was used to
calculate and interpret the effect size. For calculation and analysis of
results, mean, standard deviation, and number of subjects were used
as values. The heterogeneity was quantitatively determined by 12,
where 12 values of < 25, 26-74, and > 75% represented small,
moderate, and large levels of heterogeneity, respectively. Fixed-effects
models were applied when heterogeneity was graded as small, whereas
random-effects models were utilized for moderate or large
heterogeneity (29). Publication bias refers to an error in which
research results are published or not published depending on the
characteristics or direction of research results. If a distorted sample of
studies is included in a meta-analysis, the overall size of the analysis
result can be said to be a distorted result (30). To confirm this
tendency, it was reviewed and presented through a funnel plot and
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TABLE 1 Operational criteria for VR immersion levels.

Low immersion

10.3389/fneur.2025.1691344

Medium immersion

High immersion

Non-immersive systems rely on standard 2D displays—

including desktop monitors, television screens, or
Core systems
tablets—that lack stereoscopic vision and multi-sensory

Semi-immersive systems utilize head-

mounted displays (HMDs) to deliver

Fully immersive systems employ advanced

head-mounted displays that deliver high-

and display resolution, wide-field-of-view stereoscopic 3D

depth cues. These configurations offer limited stereoscopic 3D visuals while isolating users
devices vision, creating profound visual

perceptual engagement and a restricted field of view, from their physical environment.
encapsulation.
preventing a truly immersive user experience.
These systems support full 6-DOF tracking,
Tracking These systems provide 3-DOF tracking, enabling simultaneous monitoring of
These systems provide no spatial tracking or only offer
degrees of capturing only rotational head movements positional movements (forward/backward,
basic controller-based input tracking.

freedom (pitch, yaw, and roll). left/right, up/down) and rotational orientation

for both the head and controllers.

Interaction These systems employ abstract, symbolic interaction

These systems incorporate basic motion

controllers that translate hand gestures—

These systems implement natural interaction
paradigms—such as 6-DOF motion

controllers, hand tracking, or full-body

such as controller vibration—may also

modality and through conventional input devices such as mice, such as pointing and clicking—into virtual
tracking—enabling intuitive object
naturalness keyboards, touchscreens, or standard game controllers. interactions, though with constrained
manipulation that closely replicates real-world
precision and limited naturalism.
interactions with high fidelity.
These systems achieve moderate sensory
These systems deliver peak sensory
engagement through stereoscopic vision and
Sensory Sensory engagement is minimal in these systems, engagement by integrating multi-sensory
head motion tracking, which significantly
involvement primarily limited to visual and basic auditory feedback, stimulation—including spatialized audio and
enhance presence. Basic haptic feedback—
and feedback resulting in a weak sense of presence. advanced haptic feedback—to create deeply

compelling and highly realistic experiences.
be incorporated.

Egger’s regression test (31). In addition, meta regression was used to
assess the sources of heterogeneity in the included studies.

3 Results
3.1 Study selection

A total of 2,486 papers were identified using the four databases, of
which 474 were duplicates. Each of these studies underwent a rigorous
and meticulous review, during which inclusion and exclusion criteria
were carefully applied. The assessment process involved a thorough
examination of the methodologies, results, and relevance to the
research focus. After this meticulous screening, 11 articles that met
the inclusion criteria were finally selected. The detailed process of this
screening is as follows Figure 1.

3.2 Characteristics of included articles

A total of 11 studies were included, among which 8 were
conducted in South Korea, and the remaining 3 were carried out in
China, Turkey, and Ecuador. All included studies focused on elderly
individuals with mild cognitive impairment (MCI). Regarding
interventions for cognitive rehabilitation in MCI patients, 6 studies
adopted VR-based cognitive training, such as spatial cognitive
training, simulated shopping activities, and virtual kayaking paddling
exercises; the other 5 studies utilized VR-based games, including Seek
a Song of Our Own, Fireworks Party, and Boxing Trainer. In one of
the articles, no intervention was implemented in the control group,
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while other studies applied interventions such as conventional training
or a combination of cognitive training and physical activities. The
characteristics of the included articles were presented in Table 2. This
study further establishes a systematic classification of immersion levels
across all included studies, with clearly defined criteria based on
specific hardware capabilities and interactive features. The detailed
classification framework is presented in Table 3.

3.3 Assessment of methodological quality

The results of risk of bias assessment were as follows: random
sequence generation (low: 8, uncertain: 2, high: 1), allocation
concealment (low: 8, uncertain: 2, high: 1), blinding of participants
and personnel (low: 1, uncertain: 4, high: 6), blinding of outcome
assessment (low: 6, uncertain: 1, high: 4), incomplete outcome data
(low: 10, uncertain: 1), selective reporting (low: 11), and other biases
(low: 11). For other biases, items such as lack of sample size
calculations, differences in baseline characteristics, and lack of study
protocol registration were assessed as uncertain or high (32)
(Figure 2).

According to the GRADE assessment, the certainty of evidence
regarding the effect of VR interventions on overall cognitive function
in patients with MCI was rated as moderate. This judgment was
based on a balance of downgrading and upgrading factors. The
evidence was downgraded due to substantial heterogeneity
(I? = 64.69%) and imprecision resulting from a limited sample size
and wide confidence intervals. However, it was upgraded based on a
significant dose-response relationship identified in the meta-
regression analysis, wherein a higher level of VR immersion was
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[ Identification of studies via databases and registers
c Records identified from:
g Databases (n=2486) Records removed before screening:
S Web of Science(n=417) Duplicate records removed(n =474)
g PubMed (n=570) —> Records marked as ineligible by automation tools(n =0)
5 Embase(n=178) Records removed for other reasons (n =0)
o Scopus(n=1321)
A4
Records screened Records excluded
(n=2012) ———| (n=1947)
4
Reports sought for retrieval Fun-text unavailable
= (n =65) ————— | (n=2)
c
e
)
5
b A
Reports assessed for eligibility
(n =63) »| Reports excluded:
Not RCT(n=16)
Participants age <55 years(n=4)
Not participants with MCI(n=24)
No specific identification of cognitive impairment(n=5)
Inappropriate use of VR(n=3)
—
v
Studies included in review
k]
g (n=11)
S Reports of included studies
Z (n=11)
FIGURE 1
PRISMA (Preferred Reporting ltems for Systematic Reviews and Meta-Analyses) flow diagram. MCI, mild cognitive impairment; RCT, randomized
controlled trial; VR, virtual reality.

positively correlated with greater cognitive improvement (ff = 0.834,
p <0.05). In subgroup analyses, the certainty of evidence was
moderate for VR-based cognitive training but low for VR-based
gaming. The latter was further downgraded to low certainty within
its subgroup, primarily owing to considerable heterogeneity and
more severe imprecision (as indicated by extremely wide confidence
intervals; Figure 3).

3.4 Meta-analysis results

3.4.1 The effect size on cognitive rehabilitation

A total of 11 studies involving 500 MCI patients reported on the
effects of VR technology based interventions on cognitive
rehabilitation at post intervention time points (range 4 ~ 12 weeks)
compared with conventional control conditions (Figure 4) (9, 10, 13,
15, 16, 18, 33-37).

The I? between the included studies was >50%, thus a random-
effects model was employed to assess the effect size. The research
indicates that VR-based therapy has a significant positive impact on
cognitive rehabilitation in individuals with MCI (Hedges’s g = 0.6,
95% CI0.29 to 0.90, p < 0.05). The highest and lowest effect sizes were
related to the study of Torpil (37) and Liao (34), respectively (Figure 4).
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Based on Cohen’s d standardized effect size, this effect size is
medium (38). Also, VR games (Hedges’s g = 0.68, 95% CI: 0.12 to 1.24,
p=0.02) have been demonstrated to improve cognitive disorders
more effectively than cognitive training (Hedgess g = 0.52, 95% CI:
0.15 to 0.89, p = 0.05).

3.4.2 Publication bias

The funnel plot (Figure 5) illustrates the absence of publication
bias in the studies. Moreover, the result of the Egger’s regression test
was (f = —1.07, p = 0.31). This shows there is no publication bias.

3.4.3 Meta-regression analysis

Meta-regression analysis identified the level of VR immersion
as a statistically significant and positive moderator of cognitive
improvement (coefficient f =0.834, 95% CI: 0.211 to 1.457,
p <0.05), indicating that each unit increase in immersion level
(e.g., from “low” to “medium” or “medium” to “high”) was
associated with an average 0.834 increase in effect size (Table 4). In
contrast, the analysis revealed that while intervention duration
(p = 0.089) and blinding implementation (p = 0.072) did not reach
conventional statistical significance thresholds, their coeflicient
estimates and confidence intervals suggested meaningful effect
sizes approaching significance. These findings indicate potential
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TABLE 2 Characteristics of the included articles.

10.3389/fneur.2025.1691344

Author, = Country  Study Sample Age Intervention in  Intervention  Duration of = Outcome
Year Design size (M + SD) treatment in control the session
(M/F) group group and the
follow-up
period
RCT EG: 28(12/16) %0 sessions.
Park et al. EG:71.93 +3.11 Virtual reality space No interference is 45 min/session,
(36) Korea (single- oG CG:72.04 +2.42 cognitive training accepted 3 days/week WAIS-BDT
blind) 28(11/17)
8 weeks
Kang et al. Korea RCT EG: 23(6/17) EG: Neuropsychologist- Usual therapy: Approximately MMSE
(15) CG: 18(6/12) 7548 + 4.67 guide-d immersive pharmacotherapy 20-30 min
CG: VR cognitive for each
73.28 £6.96 training. session, twice a
week, for 1 month
Buele et al. Ecuador RCT EG: 17(7/10) EG:75.14 +5.76 VR kitchen search Non-VR cognitive 6-week MoCA
) (single- CG: 17(4/13) CG:77.35+6.75 cognitive training. training task. intervention
blind) (a total of
twelve 40-min
sessions)
Park J. S. Korea RCT EG:18(10/8) EG: MOTOCOG"system Tabletop activities 30 min per MoCA
etal. (10) CG: 17(7/10) 75.8+ 8.5 day, 5 days/week,
CG: for 6 weeks
772+72
Choi et al. Korea RCT EG: 30(5/25) EG:77.27 +4.37 Virtual kayak Home exercises 60 min per MoCA
(33) CG: 30(4/26) | CG:75.37 +3.97 paddling exercise day, 22 days/week,
for 6 weeks
Liao et al. China RCT EG: 18(7/11) EG:755+5.2 VR daily activities; Combined Physical 60 min per MoCA
(34) (single- CG: 16(4/12) CG:73.1+6.8 Cognitive and Cognitive day, 3 days/week,
blind) tasks Training for 12 weeks
Torpil et al. Turkey RCT EG: 30(11/19) | EG:70.12 +2.57 Four games (Boxing LOTCA-G 45 min per day, LOTCA-G
(37) (single- CG: CG:70.30 +2.73 Trainer, Jet Run, cognitive 2 days/week,
blind) 31(14/17) Superkick, Air domain for 12 weeks
Challenge) intervention
Thapa et al. Korea RCT EG: 34(6/28) EG: Four VR training An educational 100 min per day, MMSE
(13) CG: 726 +5.4 games program 3 days/week,
34(10/24) CG: focusing on overall for 8 weeks
727 +5.6 healthcare
Lim et al. Korea RCT EG: 12(3/9) EG: Brain Talk™ Performing daily 30 min per MoCA
(35) (single- CG: 12(4/8) 7542 +5.74 home-based tasks day,
blind) CG: Serious game 3 days/week,
73.33£17.52 for 4 weeks
Yang et al. Korea RCT EG: 33(13/20) EG: Targeted cognitive Health education 100 min per day, MMSE
(16) CG: 33(6/27) 72.5+5.0 games. seminars on 3 days/week,
CG: geriatric nutrition for 8 weeks
726 £5.6 and exercise.
Park J. H. Korea RCT EG: 10(3/7) EG: Six VR Game Maintain normal 30 min per MMSE
etal. (18) CG: 11(4/7) 71.80 £ 6.61 Training daily activities day, 2 days/week,
CG: Programs for 3 months
69.45 +7.45

moderating trends that merit examination in future studies with  appreciable relationship with effect size (p > 0.15), supporting their
exclusion as substantive moderators in the current data set

(Table 4).

larger sample sizes. Other covariates, including VR intervention
type and outcome measurement characteristics, demonstrated no
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TABLE 3 Classification of immersion level in included studies.

Rationale for classification

Study (First

Assigned
immersion
level

Author, Year)

Utilized a fully immersive HMD with 6-DOF tracking, wireless controllers enabling natural interaction, and a fully enclosed

Buele (9) High
interactive virtual environment.
Choi (33) L The system employed a large projection screen instead of a head-mounted display, delivering a “virtual reality” experience more
oi ow
akin to immersive video viewing than interactive simulation.
The study explicitly reported using an Oculus Rift CV1 head-mounted display with Oculus Touch controllers. As a high-end
Kang (15) High PC-VR system, the Oculus Rift provides 6-DOF positional tracking and enables natural interaction, establishing a fully immersive
3D virtual environment.
Liso (34) Hioh The study utilized a fully immersive HTC VIVE head-mounted display with room-scale 6-DOF tracking, wireless controllers
iao (34 i
¢ supporting natural interaction, and a complex interactive virtual environment based on activities of daily living.
Lim (35) L The study was described as a “home-based serious game on a tablet computer,” with the intervention entirely delivered on a 2D flat
im (35 ow
screen. Participants interacted via touchscreen, without using a head-mounted display or possessing spatial tracking capabilities.
Park (36) L The study utilized a desktop computer running a Unity program with joystick-controlled navigation. No head-mounted display
ark (36 ow
was employed, and multi-sensory feedback was absent, resulting in a screen-based two-dimensional interactive experience.
The study employed an HTC Vive head-mounted display featuring a 2,160 x 1,200 resolution, 90 Hz refresh rate, and 110-degree
Park J. H. (18) High field of view. The system supported 6-degree-of-freedom tracking and bimanual controller interaction, delivering fully immersive

visual and auditory experiences.

The study utilized a PC-driven commercial HTC Vive head-mounted display, delivering high-resolution stereoscopic vision,

approximately 110-degree field of view, 90 Hz refresh rate, and room-scale 6-degree-of-freedom tracking. Interaction was
Park J. S. (10) Middle

implemented through standard VR controllers. Although the tracking precision was high, the interaction modality remained

conventional, with no mention of natural hand interaction or haptic feedback beyond standard vibration.

The study employed a commercial all-in-one head-mounted display (Oculus Quest), providing first-person perspective,
Thapa (13) High stereoscopic vision, and 6-degree-of-freedom head tracking. Interactions were implemented through standard wireless VR

controllers.

The study utilized Microsoft Kinect for PC, explicitly described as operating “without immersion,” with visual content displayed
Torpil (37) Low on a 65-inch flat-panel screen. Participants stood before the television and controlled interactions through body movements. The

setup lacked a head-mounted display and multi-sensory immersion capabilities.

Yang (16) Hich The study employed an Oculus Quest head-mounted display paired with two wireless hand controllers, delivering a fully
ang (1 i
¢ ¢ immersive VR experience. The headset provided complete visual isolation and environmental occlusion.

4 Discussion

The present systematic review and meta-analysis specifically
focuses on the efficacy of VR-based cognitive training and games in
patients with MCI, providing targeted insights into this critical
transitional stage between normal aging and dementia. The findings
indicate that both VR-based cognitive training and games exert
significant positive effects on cognitive rehabilitation in MCI patients,
with a medium overall effect size (Hedgess g=0.60, p <0.05).
Subgroup analysis further reveals that VR games (Hedges’s g = 0.68)
yield a slightly larger effect size than VR cognitive training (Hedges’s
g=0.52), though the difference is not statistically significant
(p = 0.64). Additionally, meta-regression identifies VR immersion
level as a key moderator of intervention efficacy, highlighting its
potential role in optimizing therapeutic outcomes.

The therapeutic benefits of VR-based cognitive rehabilitation in
MCI can be attributed to the condition’s distinctive neuropathological
profile (39). While advanced dementia involves widespread neuronal
degeneration, MCI patients maintain preserved neuroplasticity and
functional capacity, rendering them particularly responsive to targeted
cognitive stimulation (40). VR technology generates ecologically valid
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environments through multisensory integration and real-time
interaction, effectively engaging neural networks underlying memory,
attention, and executive functions (41, 42). Our findings, consistent
with accumulating evidence (43-46) confirm that VR-based
interventions significantly enhance cognitive performance in MCI
patients. Notably no interference is accepted (47) and demonstrated
VR efficacy in improving cognitive function in brain tumor patients,
while Kim et al. (48) reported enhanced outcomes when combining
VR with computer-based rehabilitation in stroke patients. These
collective findings underscore VR transdiagnostic potential in
cognitive rehabilitation, with MCI patients deriving particular
advantage due to their retained neuroplasticity. Our findings indicate
that VR-based games outperform structured cognitive training in
rehabilitation efficacy, primarily attributable to their dual
“entertainment-therapy” nature. By incorporating narrative tasks,
reward mechanisms, and adaptive difficulty, these games effectively
sustain engagement and overcome adherence limitations common in
conventional training (10, 37). Empirical evidence confirms this
advantage: Muoz et al. (49) demonstrated that gamified VR tasks
integrating motor-cognitive components significantly enhance
participation, while Yanguas et al. (50) reported substantial cognitive
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Risk of bias summary [Park et al. (36); Kang et al. (15);
Lim et al. (35); Yang et al. (16); Park et al. (18)].
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GRADE level of evidence rating scale for indicators of consequences.

improvements through VR gaming applications. Conversely, VR

cognitive training employs structured protocols targetin

domains, potentially yielding focused effects but lacking comparable
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motivational engagement. Although statistical significance was not
achieved—possibly due to sample size constraints—the consistent
effect pattern suggests clinical relevance for intervention selection.
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Publication bias of the included articles.
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TABLE 4 Effect sizes for separate meta-analyses on moderator variables.

10.3389/fneur.2025.1691344

Covariates Coefficient Standard error 95% ClI P

Duration of intervention —0.446 0.212 (—0.992, 0.099) 0.089
Blind implementation 0.891 0.392 (—0.118, 1.900) 0.072
Immersive level 0.834 0.242 (0.211, 1.457) 0.018
Type of VR intervention 0.361 0.216 (—0.193, 0.915) 0.154
Result measure characteristics 0.075 0.127 (—0.251, 0.401) 0.581

Notably, the moderate heterogeneity observed in the study
(I? = 64.69%) underscores the necessity of developing standardized
intervention protocols. The findings of Moulaei et al. (11) further
emphasize the importance of considering specific design elements—
such as the immersive characteristics of virtual reality environments—
for achieving positive outcomes. In exploring potential sources of this
heterogeneity, a notable finding emerging from the meta-regression is
that the level of VR immersion—ranging from low-cost head-
mounted displays to fully immersive systems—significantly moderates
intervention efficacy (f = 0.834, p < 0.05). Interpretation of hardware-
based immersion in meta-regression requires distinguishing technical
immersion (objective system attributes) from subjective presence (the
psychological sense of “being there”). While technical immersion
establishes the foundation for presence through multisensory
integration, presence intensity remains equally dependent on content
design and individual factors (51). This conceptual distinction clarifies
that the benefits of high-immersion systems operate primarily through
presence-mediated pathways. Soh et al’s research (52) further
corroborated the interference-shielding effect of immersion in remote
virtual rehabilitation. As demonstrated by Torpil et al’s (37),
heightened hippocampal and prefrontal activation under high-
immersion VR conditions suggests presence may enhance cognitive
outcomes by reducing environmental interference and deepening
emotional engagement. Our meta-regression, however, could only
approximate these mechanisms indirectly through hardware
specifications. Future investigations should directly quantify presence
using standardized measures while examining its mediating role
between technical parameters and cognitive outcomes. Concurrently,
optimizing immersion through haptic feedback and 360° rendering
must balance technological advancement with individual tolerance in
elderly MCI populations. This integrated approach will advance our
understanding of VR therapeutic mechanisms while ensuring
clinical applicability.

GRADE evaluation confirms moderate-quality evidence
supporting VR interventions for cognitive improvement in MCI,
establishing them as valid non-pharmacological alternatives.
However, VR-based gaming specifically demonstrates low evidence
certainty, warranting exploratory application.  Clinical
implementation should align with care settings: structured task-
based protocols in hospitals, engaging games in community centers,
and portable device training for home use. All applications require
personalization of duration, frequency, and difficulty based on
individual patient profiles. As demonstrated by Samarasinghe et al.
(53) in their development of VR games for Alzheimer’s patients,
tailoring interventions to individual cognitive profiles is essential.
Future development should focus on standardizing immersion
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metrics, creating age-appropriate interfaces, and establishing
remote support systems for home-based VR training. These steps
are essential for ensuring intervention consistency and accessibility.
To strengthen the evidence base, future research should adhere to
GRADE recommendations through large-scale RCTs with
enhanced blinding procedures and comprehensive outcome
reporting. Such methodological rigor will address current
limitations in precision and heterogeneity, ultimately supporting
the standardized
rehabilitation protocols.

integration of VR into cognitive

5 Limitations

This study has several limitations that should be considered
when interpreting the findings. First, according to the GRADE
assessment, the limited number of available trials and their
aggregate sample size led to imprecise estimates, as reflected in
wide confidence intervals. This imprecision was a key reason for
the GRADE assessment of moderate (for overall VR efficacy) to
low (for VR games) certainty of evidence. Second, the included
studies predominantly featured short-term follow-up periods,
which restricts our ability to draw firm conclusions regarding the
long-term sustainability of the cognitive benefits derived from VR
interventions. Third, the geographical distribution of the evidence
is skewed, with 8 of the 11 included studies conducted in South
Korea, potentially limiting the cross-cultural generalizability of the
results. Fourth, the definition and measurement of “VR immersion
level” were inconsistent across studies, challenging a standardized
comparison of its moderating effect. Finally, the absence of double-
blinding in all trials introduces a potential for performance and
detection bias.

6 Conclusion

This systematic review of 11 randomized controlled trials
establishes that VR-based cognitive training produces significant
cognitive improvements in mild cognitive impairment, with technical
immersion level serving as a crucial moderating factor. Achieving
optimal outcomes requires balancing technological sophistication
with individual cognitive adaptability to promote sustained
engagement. To advance this field, future multi-center trials featuring
extended follow-up periods and culturally diverse cohorts are essential
for validating long-term efficacy and developing personalized
intervention protocols.
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