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Traumatic Brain Injury (TBI) affects approximately 69 million people globally
each year and leaves over 5 million with lasting disability, making it a leading
cause of death and long-term impairment across all ages. Yet, most TBI
research still relies on correlation-based regressions and basic propensity
score methods, which are insufficient for addressing treatment-selection bias.
This limitation underscores the need for modern causal-effect models to
produce actionable evidence. This work applies a unified causal inference
framework to quantify the impact of craniotomy, rehabilitation timing, and
rehabilitation intensity on cognitive, functional, and quality-of-life outcomes
in moderate-to-severe TBI. Our approach integrates outcome-adaptive LASSO
for confounder selection, causal graph neural networks for structure discovery,
inverse-probability weighting for average treatment effects (ATEs), and a causal-
effect variational autoencoder to account for latent confounding. We analyzed
data from 79,604 patients in the U.S. Traumatic Brain Injury Model Systems
(TBIMS) database. Key treatments included craniotomy, very-early versus delayed
rehabilitation start, and short versus long rehabilitation stays. Outcomes included
discharge Functional Independence Measure (FIM) cognitive and motor scores,
as well as follow-up assessments of productivity, social participation, and
life-satisfaction. Results showed that craniotomy was causally associated with
modest but statistically significant reductions in all five discharge FIM domains
(average ATE ≈−0.10 to −0.17 on 1–7 scales). Very-early rehabilitation initiation
was linked to improvements in follow-up productivity and life satisfaction (ATE≈
+0.03 to +0.09 on 0–1 scales). Longer rehabilitation stays yielded the largest
positive effects, enhancing both follow-up productivity and global FIM scores
(ATE ≈ +0.08 to +0.24). All models achieved ≥90% accuracy in treatment
assignment prediction, supporting the strength of confounder control and the
robustness of the causal inferences.
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1 Introduction

Traumatic Brain Injury (TBI) remains a leading cause of
death and long-term disability worldwide (1). Beyond its high
incidence, TBI imposes a substantial clinical and societal burden,
one that is further complicated by significant variability in patient
outcomes and recovery trajectories (2). Management of moderate-
to-severe TBI often includes both surgical and rehabilitation
interventions (3). However, despite ongoing advances in these
domains, patient outcomes remain variable and difficult to predict.

To address this uncertainty, researchers have increasingly
turned to advanced statistical and machine learning methods.
These tools aim to enhance our understanding of treatment
efficacy, support individualized prognoses, and inform data-
driven clinical decision-making in TBI care (4). Among the most
consequential decisions in acute TBI management is whether
to pursue surgical intervention, particularly craniotomy for
hematoma evacuation or intracranial pressure control. Evidence
from randomized trials and observational studies comparing
craniotomy to conservative treatment remains mixed, with
outcomes highly contingent upon patient selection, timing, and
injury characteristics (5). Recent observational analyses using
techniques such as propensity score matching and instrumental
variable methods have suggested that, for carefully selected patients,
craniotomy may yield cognitive benefits (6). However, further work
is needed to elucidate how factors such as age and injury severity
modulate these effects. The central challenge lies in identifying
which patients are likely to benefit the most from surgical
intervention, particularly in the context of complex confounding
factors that influence both treatment decisions and outcomes (7–9).

Early initiation of rehabilitation has also emerged as a critical
factor that influences long-term functional recovery. Agrawal and
Joshi found that patients admitted to inpatient rehabilitation within
days of injury achieved greater gains in Functional Independence
Measure (FIM) scores both at discharge and one year post-
injury (10). Specialized, multidisciplinary programs have similarly
been shown to enhance recovery while reducing the length
of hospital stay (11). Consequently, current clinical guidelines
now recommend early rehabilitation for patients with disorders
of consciousness (12). Moreover, family involvement has been
associated with improved patient outcomes (13).

Rehabilitation intensity, often reflected by the overall length
of stay, has emerged as a key healthcare delivery pattern
linked to long-term recovery. Semlyen et al. demonstrated
that intensive, multidisciplinary rehabilitation yields greater FIM
improvements and real-world independence compared to single-
discipline care (14). Spivack et al. reported a dose-response
relationship, where longer stays and higher treatment intensity
led tp better motor, cognitive, and social outcomes (15). This
relationship has been further validated by randomized controlled
trials (RCTs), which show that programs providing four hours
per day of therapy accelerate functional gains compared to
two-hour programs, without significantly altering final recovery
endpoints (16).

At the system level, extended stays often reflect both patient
complexity and the application of comprehensive protocols.
Notably, longer rehabilitation durations have been associated with

greater gains, even among more severely disabled patients (17).
Supporting these clinical observations, neurobiological studies
suggest that sustained and structured stimulation enhances
neuroplasticity, enabling neural reorganization and offering a
mechanistic rationale for the observed benefits of intensive
rehabilitation (18).

In this study, we utilize the Traumatic Brain Injury Model
Systems (TBIMS) National Database (n = 79,604) to estimate
the causal effects of key surgical and rehabilitation decisions
on patient recovery outcomes. Specifically, we investigate two
direct clinical interventions, craniotomy decisions and the
timing of rehabilitation initiation, and one healthcare delivery
exposure, rehabilitation intensity, to provide a comprehensive
understanding of both modifiable and systemic influences
on recovery. To achieve this, we implement a unified causal
inference framework that integrates several advanced methods:
Outcome Adaptive Lasso (OAL) for confounder selection,
Causal Graph Neural Network (CGNN) for causal structure
discovery, Inverse Probability Weighting (IPW) for effect
estimation, and Causal Effect Variational Autoencoder (CEVAE)
for addressing latent confounding. This machine learning-
enhanced approach is designed to overcome limitations of
traditional causal inference techniques by capturing nonlinear
treatment-outcome relationships and accounting for unmeasured
confounding through rigorous bootstrap validation.

The key contributions of our work are:

1. We present a unified AI-enabled causal inference framework—
integrating outcome-adaptive LASSO for confounder selection,
causal graph neural networks (CGNN) for structure discovery,
inverse probability weighting (IPW) for effect estimation, and a
causal-effect variational autoencoder (CEVAE) to address latent
confounding—to support robust treatment effect estimation
from observational healthcare data.

2. We apply this framework to a large, real-world dataset of 79,604
patients from the U.S. Traumatic Brain Injury Model Systems
(TBIMS), enabling scalable causal analysis across multiple
domains of TBI care.

3. We generate high-fidelity actionable estimates of the causal
effects of craniotomy, rehabilitation timing, and rehabilitation
intensity on functional, cognitive, and quality of life outcomes,
supporting future integration into AI-driven clinical decision
support systems.

This study builds on and advances prior work in TBI-related
causal inference by incorporating cutting-edge machine learning
methods designed to address key methodological limitations—
particularly challenges in modeling nonlinear associations and
accounting for latent confounders—that may not be fully addressed
by conventional propensity score and instrumental variable
approaches (19, 20). By systematically combining OAL, CGNN,
IPW, and CEVAE, we demonstrate a scalable and robust analytical
framework for large-scale healthcare data analysis. The study also
provides a foundation for integration within AI-driven clinical
decision support systems (AI-CDSS) to guide individualized
treatment planning for TBI care. This integrated approach supports
a more precise and individualized understanding of intervention
effects, fills a critical gap in machine learning-enhanced causal
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FIGURE 1

Overview of the study workflow, including data extraction from the TBIMS national database, categorization into surgical and rehabilitation cohorts,
application of causal inference methods (CGNN, OAL, IPW, CEVAE), and clinical interpretation of effects on functional outcomes such as FIM scores,
productivity, and quality of life.

inference within TBI research, and generates high-fidelity evidence
to inform both personalized TBI care strategies, as well as system-
level decision-making in biomedical informatics. The workflow of
this study, including the data pipeline, intervention groups, and
causal inference modeling strategies, is illustrated in Figure 1.

2 Materials and methods

2.1 Database description

The Traumatic Brain Injury Model Systems (TBIMS) National
Database is a cornerstone resource for research on moderate-
to-severe traumatic brain injury (TBI) in the United States.
Established in 1987 and managed by the Traumatic Brain Injury
National Data and Statistical Center (TBINDSC), the TBIMS
collects comprehensive data through a network of federally funded
rehabilitation centers. This database captures a wide array of
clinical, demographic, and functional information, beginning at
hospital admission and extending through inpatient rehabilitation
and long-term community reintegration (21). Participants
are enrolled based on standardized clinical criteria, including
moderate-to-severe TBI confirmed by Glasgow Coma Scale scores,
neuroimaging findings, or the duration of post-traumatic amnesia.
The TBIMS cohort reflects a broad demographic and geographic
distribution, representative of the diverse populations served
by participating centers across the country. Data collection is
longitudinal, with follow-up assessments occurring at one, two,
and five years post-injury, and additional evaluations every five
years thereafter. This structure enables robust analysis of recovery
trajectories and long-term outcomes. The standardized variables
include patient demographics, injury characteristics, acute care
details, rehabilitation variables, and a range of functional and

quality-of-life outcomes. All data are de-identified and collected
in accordance with institutional and federal guidelines, ensuring
participant privacy and compliance with ethical standards. The
TBIMS National Database thus provides a unique and powerful
platform for investigating the effects of clinical interventions and
healthcare delivery patterns on recovery after moderate-to-severe
TBI, supporting both observational studies and the development of
advanced analytic approaches in rehabilitation research. This study
used fully de-identified, publicly funded data from the TBIMS
National Database, accessed with approval from TBINDSC, and
was determined to be ‘Not Human Subjects Research’ and exempt
from IRB review under University of Massachusetts Lowell policy.
The TBIMS dataset request was approved and fulfilled on January
25, 2025, when the de-identified data were received from the
TBINDSC administrator.

2.2 Study population

Individuals were drawn from the Traumatic Brain Injury
Model Systems (TBIMS) National Database and had sustained
moderate-to-severe traumatic brain injury. Eligible participants
were ≥16 years of age, admitted to a TBIMS-affiliated acute-care
hospital within 72 hours of injury, and fulfilled established clinical
criteria for moderate-to-severe TBI based on Glasgow Coma
Scale score, duration of post-traumatic amnesia, or neuroimaging
findings. After acute management, patients were transferred to
a designated TBIMS inpatient rehabilitation center. The cohort
spans diverse demographic and geographic backgrounds, reflecting
the catchment areas of participating centers across the United
States. Prospective data collection commenced during acute
hospitalization and continued through inpatient rehabilitation and
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long-term follow-up. Written informed consent was obtained from
all participants or their legally authorized representatives, and all
records were fully de-identified in compliance with institutional
and federal regulations.

2.3 Variables and measurements

The Traumatic Brain Injury Model Systems (TBIMS)
National Database systematically captures an extensive array
of standardized variables reflecting the clinical, demographic,
and functional profiles of individuals with moderate to severe
traumatic brain injury. Data acquisition commences at acute
hospitalization and extends longitudinally through inpatient
rehabilitation and long-term follow-up, enabling robust tracking
of patient trajectories. Core variables encompass demographics
(age, sex, race/ethnicity, education, employment), detailed injury
characteristics (mechanism, Glasgow Coma Scale score, duration
of loss of consciousness, post-traumatic amnesia), and acute care
parameters (admission/discharge dates, length of stay, payor
source). The database further includes granular rehabilitation
data, such as admission and discharge scores on the Functional
Independence Measure (FIM), rehabilitation length of stay, and
discharge disposition. Participants undergo follow-up evaluations
at one, two, five, ten, and fifteen years post-injury, with additional
assessments every five years thereafter, capturing outcomes related
to functional status, community participation, quality of life,
re-hospitalization, and psychosocial adjustment. Standardized
instrument, including the FIM, Satisfaction With Life Scale
(SWLS), and the Ohio State University TBI Identification Method
are employed to ensure consistency and validity across sites.
Data collection utilizes medical record abstraction, structured
interviews, and validated self-report questionnaires, all governed
by rigorous operational definitions, coding protocols, and quality
assurance procedures detailed in the TBIMS Data Dictionary,
thereby ensuring high reliability and comparability across
participating centers. The multi-step data processing and analysis
pipeline built upon these variables is illustrated in Figure 2.

2.4 Cohort construction and
pre-processing

A comprehensive data integration and pre-processing strategy
was implemented to construct the analytic cohort for this study.
The initial dataset encompassed multiple core data sources and
accompanying code definition files containing variable metadata
and coding schemes. A two-stage merging process was employed
to unify clinical, demographic, and outcome variables across all
records, resulting in a dataset comprising 687 variables and 79,604
observations, totaling approximately 28 million data points. To
address the extensive use of special codes denoting various forms
of missingness, all placeholder values indicating non-collected
data, participant refusals, logical skips, or unknown entries were
systematically recoded as missing (NaN). This harmonization
step affected over 11 million data points across the integrated
dataset. Subsequently, a structured variable retention protocol

was applied to optimize data quality and analytic utility. Each
variable was assigned a composite retention score, reflecting both
completeness (the proportion of non-missing values) and data
quality (the proportion of valid, non-placeholder entries). Variables
were excluded if they exhibited more than 60% missingness, low
data quality (greater than 90% invalid or placeholder values),
redundancy, or lacked clinical relevance based on expert review.
This rigorous filtering process reduced the number of variables
from 687 to 352, retaining over half of the original features while
ensuring robust clinical representation and minimizing potential
sources of bias.

2.4.1 Surgical intervention cohort
Following the initial data cleaning and variable filtering,

we conducted intervention-specific pre-processing to create the
surgical analysis dataset. From the cleaned cohort of 79,604 patients
and 352 variables, we identified a subset of individuals who met
the criteria for surgical decision-making analyses, specifically those
with documented craniotomy decisions and complete outcome
data at discharge. This filtering yielded a surgical intervention
cohort comprising 673 patients, each with complete data on
5 primary cognitive and functional outcomes based on the
Functional Independence Measure (FIM) scales at discharge.

2.4.2 Rehabilitation-timing intervention cohort
For this phase, we applied scenario-specific filtering criteria to

the preprocessed dataset of 79,604 patients. We implemented
an “extreme strategy” to maximize clinical contrast and
statistical power. We compared patients who received very
early rehabilitation initiation (≤ 4.5 days post-injury) against those
with delayed initiation (≥ 45 days post-injury). This approach
excluded patients in the intermediate timing range (5–44 days)
to create the clearest possible distinction between immediate
versus delayed rehabilitation protocols. Binary contrast design
was employed for compatibility maintenance with the causal
inference framework where all models are defined on two levels
of treatment. Methods such as Outcome Adaptive Lasso (OAL),
Inverse Probability Weighting (IPW), and Causal Effect Variational
Autoencoder (CEVAE) are defined for binary exposures and do
not operate natively for multi-category or continuous treatments.
This setting created a clear contrast between immediate and
delayed rehabilitation and improved model stability. Excluding
72,262 patients in the intermediate category (5-44 days) sacrificed
generalizability but provided uniform estimation across methods.

The rehabilitation-specific sample selection criteria
included: (1) availability of rehabilitation admission timing
data (DAYStoREHABadm), (2) complete outcome measurements
for at least one primary endpoint (social participation, productivity,
or quality of life domains), and (3) sufficient confounder data
for causal adjustment. From the 79,604 patients, 7,342 met the
extreme timing criteria. This group included 4,620 patients who
received very early rehabilitation (≤ 4.5 days) and 2,722 patients
who received delayed rehabilitation (≥ 45 days). This distribution
reflects real-world clinical practice, where immediate rehabilitation
is less common due to acute care requirements and medical
stability considerations.
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FIGURE 2

The pipeline integrates confounder selection (Outcome Adaptive Lasso, Causal Graph Neural Networks), causal inference (Inverse Probability
Weighting, Causal Effect Variational Autoencoder), and model refinement within a feedback loop to generate individualized treatment effect
estimates (ATEs) for interventions such as craniotomy, early rehabilitation, and rehabilitation duration. These estimates, along with confidence
intervals and uncertainty measures, can guide data-driven recommendations within AI-driven clinical decision support systems for personalized
TBI care.

2.4.3 Rehabilitation-intensity exposure cohort
For the rehabilitation intensity proxy analysis, we applied

exposure-specific filtering to the pre-processed dataset of 79,604
patients to examine patterns of healthcare delivery, rather
than direct clinical interventions. Unlike intervention analyses
that focus on discrete decision points, this analysis targeted
rehabilitation intensity as a proxy for patient complexity, recovery
trajectory, and healthcare system characteristics. To operationalize
rehabilitation intensity, we used an extreme contrast strategy
that compared patients with short versus long rehabilitation
stays. Individuals with moderate-length stays (15–30 days) were
excluded to maximize the contrast between minimal and extended
rehabilitation exposure. Following the extreme contrast strategy
applied in the rehabilitation-timing cohort, this phase used a binary
setup to distinguish patients with short and long rehabilitation
stays. The causal inference framework relies on binary treatment
variables, and models are not designed for multiple exposure levels.
This approach focused on the most distinct patterns of care delivery
and enhanced stability in estimating causal effects. A total of 76,637
patients with moderate-length stays (15–30 days) were excluded.
The remaining groups represented the most distinct clinical and
statistical contrasts for analysis.

The exposure-specific inclusion criteria for this analysis were:

• Availability of rehabilitation length of stay data,
• Completion of rehabilitation (excluding transfers and early

discharges),
• Complete outcome measurements across five functional

domains, and
• Sufficient healthcare system and patient-level data to allow for

confounding control.

Applying these criteria yielded 2,967 cases with complete
rehabilitation duration and covariate data, comprising 166
variables: 1 treatment, 5 outcomes, and 160 candidate confounders.
The final sample included 1,718 patients with short stays (57.9%)
and 1,249 with long stays (42.1%). These proportions reflect real-
world delivery patterns; short stays may indicate rapid recovery or
systemic constraints, while long stays often suggest greater clinical
complexity or access to more comprehensive care protocols.

2.5 Multi-step average treatment effect
estimation

To estimate average treatment effects (ATE) from high-
dimensional, observational TBI data, we developed a three-step
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pipeline that integrates confounder selection, causal structure
discovery, and effect estimation using both traditional and
deep learning-based methods. This hybrid approach enhances
robustness by addressing both measured and latent confounding
through methodological triangulation.

Step 1: confounder selection: We employed a structured
two-step approach that combined Outcome Adaptive LASSO
(OAL) and Causal Graph Neural Networks (CGNN). OAL was
first applied to generate outcome-specific confounder sets using
regularized regression. These sets were then refined with CGNN
to uncover the underlying causal structure and verify directional
relationships among covariates, treatment, and outcome. Initially,
OAL provided outcome-specific confounder sets, mathematically
defined as:

β̂OAL(λ, γ ) = arg min
β

L(β) (1)

where β is the vector of model coefficients, λ is the
regularization parameter that controls the penalty strength, and γ is
the weighting factor that adjusts how strongly the adaptive weights
affect each coefficient during estimation. To obtain the optimal
coefficient estimates, the OAL method minimizes the loss function
through regularized regression, as shown below:

L(β) =
∑

i

(yi − xiβ)2 + λ
∑

j

wj|βj| (2)

where yi is the observed outcome for individual i, and xi is the
vector of predictors. The parameter λ controls the penalty applied
to less important variables, and wj represents the adaptive weight
that scales the penalty for each coefficient βj.

Step 2: structure discovery: We optimized the gamma
convergence factor (γ = 2) and lambda (λ) values (ranging from
10−15 to 100) through cross-validation. This yielded 55-60 relevant
confounders per outcome. We then implemented Causal Graph
Neural Network (CGNN) with 1,000 bootstrap iterations to validate
and refine the OAL selected variables. CGNN is an advanced
deep-learning approach designed to uncover causal relationships
from observational data. It utilizes neural networks structured
around Directed Acyclic Graphs (DAGs) to estimate both the causal
structure and the relationships simultaneously. Formally, CGNN
represents variables Xi through neural network functions fi:

Xi = fi(Pa(Xi), εi), i = 1, . . . , n (3)

where Pa(Xi) denotes the parent variables of Xi, and εi is
an independent noise component. CGNN effectively captures
complex, nonlinear interactions between variables and achieved
strong performance in our dataset (Training R2 = 97.04%, Test
R2 = 92.84%).

In simple terms, CGNN learns how variables are connected
to each other in a network. Each variable, such as a patient’s
characteristic, treatment, or outcome, is represented as a node.
The model passes information between these nodes through
neural network layers that estimate how one variable may

influence another. During training, CGNN builds a map of
these connections, called an adjacency matrix, which shows
the likely causal directions and strengths between variables. To
keep the results interpretable, the network limits unnecessary
connections and enforces a logical order where causes precede
effects. The final output identifies the variables most strongly linked
to treatment and outcomes. These variables represent the key
confounders in the data. The structure of CGNN is illustrated
in Figure 3.

While OAL identifies outcome-specific confounders through
penalized regression, CGNN refines these selections by uncovering
the underlying causal relationships between confounders and
outcomes. By combining the strengths of OAL and CGNN,
we reduced selection bias and retained only the most robust
and clinically relevant confounders. To further improve
model stability and avoid overfitting, we limited the final
analysis to the top 25 confounders consistently identified
across methods.

Step 3: average effects estimation using latent confounding.
We applied two complementary causal inference methods: Inverse
Probability Weighting (IPW) and Causal Effect Variational
Autoencoder (CEVAE).

Inverse probability weighting (IPW). uses propensity
scores to assign weights to individuals, creating a
pseudo-population where treatment is independent of
confounders. For each individual i, the propensity score ei is
defined as:

ei = P(Ti = 1 | Xi) (4)

where Ti is the treatment indicator and Xi is the set of
confounders. P(Ti = 1 | Xi) represents the probability
that individual i receives the treatment given their observed
confounders. Accordingly, ei denotes this estimated probability
(the propensity score). Ti = 1 indicates treatment exposure, and
Ti = 0 indicates no treatment. Xi includes all baseline variables
that may influence both treatment assignment and outcomes. The
weights are computed as:

wi =

⎧⎪⎪⎨
⎪⎪⎩

1
ei

, if Ti = 1

1
1 − ei

, if Ti = 0
(5)

The Average Treatment Effect (ATE) is then estimated
by comparing the weighted outcomes between the
treated and untreated groups. To ensure robustness,
weights are trimmed at the 1st and 99th percentiles
to handle extreme propensity scores. This method
provides transparent and interpretable population-level
estimates of ATE under the assumption of correctly
measured confounders.

Causal Effect Variational Autoencoder (CEVAE) is
a deep generative model used to estimate causal effects
in the presence of hidden confounders. It learns latent
representations that reflect unobserved factors influencing
both treatment and outcome. This helps improve the accuracy of
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FIGURE 3

Graphical representation of the causal graph neural network (CGNN) framework, adjsuted for the surgical intervention scenario. The architecture
consists of three main components: an input layer encoding one treatment variable (Required Craniotomy, red node), five cognitive and functional
outcomes (green nodes), and 160 baseline covariates (blue nodes); a graph convolution module with directed acyclic graph (DAG) constraints
enforcing acyclic information flow (X → T, X → Y, T → Y), two stacked graph convolution layers with ReLU activation, and a connected readout
head estimating E[Y|T, X]; and an output layer representing learned causal dependencies among treatment, outcomes, and top ranked confounders.
The top 10 confounders identified via Outcome Adaptive Lasso and CGNN include Pre-existing Physical Conditions (PreconPhys), Acute Payor
Source (AcutePay1), CT compression (CTComp), Intraventricular Hemorrhage (CTIntraventricular), and cortical lesion locations detected on CT
imaging: Right Parietal (CT5c2CorticalRPar), Left Occipital (CT5d1CorticalLOcc), Right Frontal (CT5b1CorticalRFront), Left Frontal
(CT5a1CorticalLFront), Right Temporal (CT5b2CorticalRTemp), and Right Non-Cortical (CT6aNonCortN). Directed edges represent learned causal
relations derived from adjacency matrix A and feature embeddings across graph convolution layers.

estimated treatment effects. CEVAE models the data-generating
process as:

z ∼ p(z), (6)

T ∼ pθ (T | z), (7)

X ∼ pθ (X | z), (8)

Y ∼ pθ (Y | T, z), (9)

where z represents latent confounders, and θ denotes model
parameters. In this framework, z captures unobserved factors
that influence both treatment assignment and outcomes, T is
the treatment variable, X represents observed covariates, and Y
denotes the outcome. The model assumes that each variable is
generated conditionally based on its parents in the latent causal
structure. This generative setup allows CEVAE to approximate
hidden confounding effects by learning the joint distribution
pθ (z, T, X, Y). The model is trained by maximizing the evidence
lower bound (ELBO), with a modified loss function that balances
reconstruction and regularization:

L = Eqφ (z|X,T,Y)[�(z)] (10)

where L is the ELBO used as the training objective
and qφ(z|X, T, Y) is the variational posterior distribution that
approximates the true latent confounder distribution. φ represents
the parameters of the encoder network and �(z) is the inner loss
term that measures how well the model reconstructs the observed
data for a given latent variable z. Then we obtain the following
equation for the inner loss function �(z), which defines how the
model learns from each latent representation.

�(z) = log pθ (X, T, Y|z) − β KL(qφ(z|X, T, Y)‖p(z)) (11)

where log pθ (X, T, Y|z) is the reconstruction term that
measures how well the model reproduces the observed data given z.
The term KL(qφ(z|X, T, Y)‖p(z)) is the Kullback-Leibler divergence
that regularizes the latent space by aligning the inferred distribution
with the prior p(z). θ denotes the parameters of the decoder
network, and β = 0.5 controls the trade-off between reconstruction
accuracy and regularization. The architecture of the Causal Effect
Variational Autoencoder (CEVAE) is shown in Figure 4.

Treatment effects are estimated using Monte Carlo dropout
with 1000 samples to capture model uncertainty. This structure
enables CEVAE to capture nonlinear dependencies and hidden
confounding patterns through its deep learning architecture,
improving causal effect estimation in complex clinical datasets.
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FIGURE 4

Graphical representation of the causal effect variational autoencoder (CEVAE) architecture. The framework consists of three main components: an
input module that encodes observed covariates (X), treatment indicator (T), and outcomes (Y), representing the observed data generation process
(X → T, X → Y, T → Y); an encoder network (qφ (z|X, T, Y)) that infers latent confounders z ∼ N (μ, σ 2) through a multilayer perceptron; and a
decoder network (pθ ) composed of three conditional branches–pθ (T|z), pθ (X|z), and pθ (Y|T, z) that reconstruct treatment assignment, covariates, and
outcomes, respectively. Model training minimizes the evidence lower bound (ELBO) loss, defined as
L = Eqφ (z|X,T,Y)[log pθ (X, T, Y|z)] − β KL(qφ (z|X, T, Y)‖p(z)), with β = 0.5 controlling the regularization strength. The model estimates average treatment
effects (ATE) as the difference between potential outcomes, E[Y|T = 1, X] − E[Y|T = 0, X].

We selected IPW for its transparency and reliability in estimating
ATE under measured confounding, with proper weight trimming
to handle extreme propensity scores. CEVAE complements
IPW by addressing potential unmeasured confounding and
nonlinear relationships within the TBI dataset through its latent
variable modeling. Together, these methods and our OAL-CGNN
confounder selection pipeline improve the accuracy and reliability
of treatment effect estimates by methodological triangulation.

To assess whether selecting 25 confounders introduced
bias or instability, we performed sensitivity analyses across all
three intervention domains (surgical, rehabilitation timing,
and intensity) using 20, 25, and 30 confounders. Both inverse
probability weighting (IPW) and augmented IPW (AIPW)
were applied with 1,000 bootstrap iterations per analysis
across 15 outcomes. Results demonstrated exceptional stability:
IPW showed perfect consistency across all outcomes (15/15,
100%), and AIPW maintained high agreement (13/15, 86.7%).
Combined, 93.3% of all estimates were concordant, with average
treatment effects differing by less than ±0.001 and identical
effect directions across all configurations. These findings confirm
that the top 25 threshold provides an optimal balance between
causal completeness and statistical efficiency, ensuring robust
inference while mitigating risks of both under-adjustment
and overfitting.

2.6 Analysis of interventions, exposures,
and outcomes

We applied our multi-step causal inference framework
(Section 2.5)—including confounder selection, causal structure
discovery, and treatment effect estimation—to evaluate the effects
of three clinically relevant intervention and exposure variables
on recovery outcomes in individuals with moderate-to-severe
TBI. These included (1) surgical intervention via craniotomy,
(2) early vs. delayed rehabilitation timing, and (3) intensity of
rehabilitation based on duration of the inpatient rehabilitation stay.
Each analysis used an extreme binary contrast to maximize clinical
interpretability and reduce misclassification. Outcome measures
were selected based on clinical relevance, statistical robustness, and
data availability.

2.6.1 Surgical intervention analysis
We evaluated the causal impact of required craniotomy on

cognitive and functional recovery at discharge among patients
with moderate-to-severe traumatic brain injury. This investigation
addressed the inherent complexities of observational surgical
research, particularly the challenge of confounding by indication,
through robust causal inference methods and validation strategies.
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By systematically accounting for the greater injury severity
typically observed in patients selected for surgical intervention,
the analysis provided nuanced insights into the short-term effects
of craniotomy on recovery outcomes, thereby enhancing the
clinical understanding of surgical decision-making in this high-
risk population.

The primary treatment variable was Required_Craniotomy,
defined as a binary indicator:

Required_Craniotomy =
{

1, if craniotomy was performed

0, otherwise
(12)

This binary variable provides a clear distinction between
surgical and non-surgical management. It simplifies the
classification process and minimizes the risk of misclassification in
acute TBI clinical decision-making.

We assessed five cognitive and functional outcomes at
discharge using the Functional Independence Measure (FIM):

• Comprehension (FIMCompD): Verbal and written
comprehension, essential for everyday functioning.

• Memory (FIMMemD): Short- and long-term memory,
essential for cognitive recovery.

• Social Interaction (FIMSocialD): Social behavior and
interaction quality, key to community reintegration.

• Problem Solving (FIMProbSlvD): Executive functioning and
decision-making, vital for independent living.

• Expression (FIMExpressD): Verbal and non-verbal
communication, critical for effective rehabilitation.

Each outcome was scored from 1 (complete dependence) to 7
(complete independence). Outcome data were complete for all 673
patients, ensuring robust and unbiased measurement.

2.6.2 Early rehabilitation-timing analysis
We examined the causal effects of very early versus delayed

rehabilitation initiation on functional, social, and quality of life
outcomes in patients with TBI. The same causal inference methods
were applied as the surgical intervention analysis, with multiple
validation steps to address non-random treatment assignment
and confounding by indication. We tested whether very early
rehabilitation initiation (≤ 4.5 days post-injury, 5th percentile)
compared to delayed initiation (≥ 45 days, 95th percentile)
improves follow-up recovery in patients with moderate-to-severe
TBI.

The primary treatment variable was rehabilitation timing,
operationalized as a binary extreme-contrast indicator:

Rehabilitation_Timing =
{

1, Very Early, ≤ 4.5 days

0, Late, ≥ 45 days
(13)

This strategy contrasting the 5th and 95th percentiles created a 10-
fold difference in timing, minimizing ambiguity and confounding
from moderate variations in initiation.

Outcome selection was determined through systematic
data quality assessment and methodological requirements for

robust causal inference. From the initial pool of 9 candidate
outcomes (motor, cognitive, social, productivity, and quality of life
domains at discharge and follow-up), we applied three technical
selection criteria:

1. A minimum standard deviation of ≥ 0.15 on a normalized 0–1
scale to ensure meaningful effect estimation;

2. A missingness threshold of ≤ 30% to retain adequate statistical
power without extensive imputation;

3. Successful convergence in preliminary OAL models, confirming
model stability and interpretability.

These criteria ensured that selected outcomes were not only
clinically meaningful but also supported robust causal modeling.
Five follow-up outcomes met all criteria and were included in the
final analyses, representing key dimensions of long-term recovery
and community reintegration:

• Productivity—participation domain
(PART_Domain_ProdF): Work and daily activities.

• Life satisfaction (SWLSTOTF): Subjective well-being.
• Social functioning (PART_Domain_SocF): Community and

social relationships.
• Social outcomes—Malec scale (Malec_SocialF):

Interpersonal functioning.
• Productivity—Malec scale (Malec_ProdF): Vocational and

educational success.

All outcomes were normalized (0–1 scale) for comparability.
This approach confirmed consistent interpretation across domains.
Among 7,342 patients with extreme timing patterns (4,620 very
early, 2,722 late), complete outcome data were available, supporting
robust effect estimation. To address the Malec Scales, they are
standardized assessment tools developed by James Malec to
measure social integration and productive activity in individuals
with brain injury (22, 23).

2.6.3 Rehabilitation-intensity exposure analysis
We further examined the impact of rehabilitation intensity,

operationalized as inpatient rehabilitation length of stay, to assess
how healthcare delivery patterns influence TBI recovery. Unlike
surgical or early rehabilitation decisions, duration of inpatient
stay reflects system-level and policy factors beyond immediate
clinical control.

This proxy-based analysis serves three critical methodological
and clinical purposes: (1) it distinguishes modifiable clinical
interventions from system-generated indicators, informing policy
and protocol development; (2) it demonstrates the robustness and
adaptability of our causal inference framework across different
variable types from direct medical decisions to healthcare system
patterns; and (3) it addresses a gap in TBI literature by
evaluating how healthcare delivery characteristics independent
of direct clinical decision-making influence functional and
cognitive outcomes. By analyzing rehabilitation duration as a
proxy exposure rather than a direct intervention, we extend our
methodological scope and capture the influence of institutional and
systemic variation on patient outcomes. This analysis completes
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the continuum from acute intervention through rehabilitation
processes to long-term outcomes. We defined rehabilitation
intensity using an extreme-contrast strategy:

Rehabilitation_Intensity =
{

1, Very Short, ≤ 14 days

0, Very Long, ≥ 30 days
(14)

Five outcomes were selected through systematic screening
based on two technical criteria: (1) high data completeness rates
(> 85%) in the follow-up cohort, and (2) comprehensive coverage
of both objective functional domains (social participation,
productivity) and subjective well-being measures. Outcome
selection followed similar data quality standards as in the
early rehabilitation analysis but was streamlined to two criteria
due to reduced missingness and strong model convergence
across all candidate outcomes. Two of these outcomes,
Productivity—Participation Domain (PART_Domain_ProdF)
and Productivity—Malec Scale (Malec_ProdF) were also analyzed
in the previous intervention scenario to enable direct comparison
across intervention types. Thus, the rest outcomes are as follows:

• Motor function (FIMMOTF): Physical mobility and daily
activity performance.

• Total function (FIMTOTF): Combined motor and cognitive
functional independence.

• Cognitive function (FIMCOGF): Communication, memory,
and problem-solving abilities.

In summary, we applied a consistent multi-step causal inference
framework to evaluate three distinct interventions and exposures
across acute and post-acute care in individuals with moderate-to-
severe TBI. Each analysis employed an extreme binary contrast,
rigorous confounder selection, and robust effect estimation to
isolate the impact of clinical and system-level factors on functional
and quality-of-life outcomes. While the intervention types varied,
all analyses leveraged the same methodological pipeline to ensure
comparability and minimize bias. The results of these analyses are
presented in the following section.

3 Results

3.1 Surgical intervention

We estimated the effects of craniotomy on discharge cognitive
and functional outcomes using FIM domains: comprehension,
memory, social interaction, problem solving, and expression. The
analysis included 302 treated and 371 untreated patients. Across
methods, craniotomy was associated with lower FIM scores in all
domains. According to Table 1, OAL and IPW produced consistent,
statistically significant negative estimates across all outcomes, with
ATEs ranging from −0.10 to −0.17. CEVAE also showed negative
effects, although with smaller absolute values, reinforcing the
robustness of the findings. For comprehension and memory, the
estimated effects ranged from −0.04 (CEVAE) to −0.15 (IPW),
suggesting a decline in cognitive functioning post-craniotomy. For
soical interaction and problem solving, the effects were similarly

negative, with estimates between −0.07 (CEVAE) and −0.11
(IPW). The largest negative effects were observed for expression,
where estimates ranged from −0.08 (CEVAE) to −0.17 (IPW).
Craniotomy showed negative effects across all domains. OAL and
IPW produced similar estimates. CEVAE showed smaller but still
negative values. The adverse pattern persisted after adjusting for
latent confounding. The agreement among methods suggests that
lower outcomes in surgical patients likely reflect greater clinical
complexity, not model bias.

3.2 Rehabilitation-timing intervention

Building on the methodological foundation, the OAL-CGNN
pipeline identified 25 key confounders relevant to rehabilitation
timing decisions. These included acute injury severity markers
(Glasgow Coma Scale, CT findings), pre-injury functional status,
acute care facility characteristics, and early medical complications.
These confounders capture the clinical decision-making factors
that determine when patients become medically stable for
rehabilitation transfer. Across methods, very early rehabilitation
timing showed positive effects on productivity and life satisfaction.
As shown in Table 2, effects on social outcomes were mixed across
methods, with some estimates indicating small or non-significant
differences. For the Productivity - Participation Domain (PART
Domain ProdF), OAL estimated an ATE of 0.03, IPW estimated
0.04, and CEVAE estimated 0.02, all statistically significant. For
Life Satisfaction (SWLSTOTF), OAL estimated an effect of 0.06,
IPW showed a higher effect at 0.09, and CEVAE estimated
0.04, consistently indicating improvements in perceived quality
of life with earlier rehabilitation. Effects on social outcomes,
including Productivity - Participation Domain (PART Domain
ProdF) and Social Outcomes - Malec Scale (Malec SocialF), were
small and varied. OAL and IPW estimates were near zero and
non-significant, while CEVAE produced small but statistically
significant positive estimates around 0.003 and 0.03, respectively.
The results suggest potential benefits of early rehabilitation timing
on functional recovery while indicating variability in social domain
outcomes. These findings are visually summarized in Figure 5,
which illustrates the estimated treatment effects and confidence
intervals across causal inference methods and outcome domains.

3.3 Rehabilitation-intensity exposure

We applied the established causal inference strategy to
the rehabilitation-intensity analysis. This included adjustments
specific to proxy variable estimation. Proxy exposures pose
higher confounding risk than direct interventions. Using multiple
methods allowed us to validate results under different assumptions.
Applying a consistent framework across interventions and
exposure enabled direct comparison of effect sizes and helped
separate clinical decisions from systemic care patterns. The
results in Table 3 represent consistent positive effects of longer
rehabilitation stays across domains, with variations by method.
OAL and IPW produced comparable positive estimates, while
CEVAE provided additional insights under latent confounding
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TABLE 1 Treatment effects of craniotomy on discharge FIM outcomes.

Outcome Method Treated Untreated ATE 95% CI
lower

95% CI
upper

P-
value

Bootstrap 95% CI

FIMCompD OAL 302 371 −0.1024∗ −0.2004 −0.0044 0.0405 [−0.1620, −0.0494]

IPW −0.1496∗ −0.1948 −0.0644 0.0010 [−0.1948, −0.0644]

CEVAE −0.0911∗ −0.0927 −0.0894 <0.001 [−0.0465, −0.0452]

FIMMemD OAL 302 371 −0.1184∗ −0.2164 −0.0204 0.0179 [−0.1495, −0.0451]

IPW −0.0921∗ −0.1760 −0.0331 0.0080 [−0.1760, −0.0331]

CEVAE −0.0418∗ −0.0430 −0.0405 <0.001 [−0.0458, −0.0440]

FIMSocialD OAL 302 371 −0.1140∗ −0.2120 −0.0160 0.0226 [−0.1776, −0.0954]

IPW −0.1031∗ −0.2076 −0.0530 0.0010 [−0.2076, −0.0530]

CEVAE −0.0701∗ −0.0734 −0.0669 <0.001 [−0.0865, −0.0847]

FIMProbSlvD OAL 302 371 −0.1056∗ −0.2036 −0.0077 0.0346 [−0.1651, −0.0799]

IPW −0.1093∗ −0.1885 −0.0517 0.0020 [−0.1885, −0.0517]

CEVAE −0.0694∗ −0.0714 −0.0669 <0.001 [−0.0861, −0.0839]

FIMExpressD OAL 302 371 −0.1300∗ −0.2280 −0.0320 0.0093 [−0.2023, −0.1195]

IPW −0.1665∗ −0.2291 −0.0846 0.0010 [−0.2291, −0.0846]

CEVAE −0.0796∗ −0.0828 −0.0768 <0.001 [−0.0609, −0.0579]

∗Statistically significant at p < 0.05.

TABLE 2 Treatment effects of very early vs. delayed rehabilitation timing on follow-up outcomes.

Outcome Method Treated Untreated ATE 95% CI
lower

95% CI
upper

P-
value

Bootstrap 95% CI

PART_Domain_
ProdF

OAL 4,620 2,722 0.0278∗ 0.0213 0.0336 < 0.001 [0.0213, 0.0336]

IPW 0.0358∗ 0.0149 0.0703 0.0040 [0.0149, 0.0703]

CEVAE 0.0200∗ 0.0199 0.0201 < 0.001 [0.0199, 0.0201]

SWLSTOTF OAL 4,620 2,722 0.0638∗ 0.0325 0.0785 < 0.001 [0.0325, 0.0785]

IPW 0.0912∗ 0.0387 0.1829 < 0.001 [0.0387, 0.1829]

CEVAE 0.0447∗ 0.0445 0.0448 < 0.001 [0.0445, 0.0448]

PART_Domain_
SocF

OAL 4,620 2,722 0.0009 −0.0063 0.0080 0.8485 [−0.0063, 0.0080]

IPW −0.0002 −0.0239 0.0209 1.0000 [−0.0239, 0.0209]

CEVAE 0.0028∗ 0.0027 0.0029 < 0.001 [0.0027, 0.0029]

Malec_SocialF OAL 4,620 2,722 0.0047 −0.0368 0.0344 0.6800 [−0.0368, 0.0344]

IPW 0.0313 −0.0135 0.0682 0.1560 [−0.0135, 0.0682]

CEVAE 0.0277* 0.0275 0.0279 < 0.001 [0.0275, 0.0279]

Malec_ProdF OAL 4,620 2,722 0.0866∗ 0.0067 0.1702 0.0200 [0.0067, 0.1702]

IPW 0.1770∗ 0.1017 0.2408 < 0.001 [0.1017, 0.2408]

CEVAE 0.1856∗ 0.1843 0.1869 < 0.001 [0.1843, 0.1869]

∗Statistically significant at p < 0.05.

assumptions. For the Productivity - Malec Scale (Malec ProdF),
OAL estimated an ATE of 0.24, IPW estimated 0.22, and
CEVAE estimated 0.20, all statistically significant. These values
suggest that longer rehabilitation stays are associated with
improved productivity outcomes at follow-up. For Motor Function
(FIMMOTF) and Total Function (FIMTOTF), the effects were also
positive, with OAL and IPW showing smaller estimates around

0.08–0.11, while CEVAE provided higher estimates, particularly
for FIMMOTF at 0.17. This indicates that longer stays may have
a beneficial impact on functional mobility and total FIM scores,
though the size of these effects varies depending on the method
used. For Cognitive Function (FIMCOGF), the estimated effects
ranged from 0.06 (IPW) to 0.09 (CEVAE), suggesting potential
cognitive benefits linked to longer rehabilitation durations. All
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FIGURE 5

Estimated treatment effects and confidence intervals across multiple causal inference methods and outcome measures in the rehabilitation timing
analysis. The results demonstrate consistent positive effects of very early rehabilitation initiation on productivity and life satisfaction, while findings for
social outcomes are more variable across methods. These results align with the comparative analysis presented in Table 2.

estimators showed positive links between longer stays and better
outcomes. Differences among methods were small. IPW and OAL
produced similar results. CEVAE estimated slightly higher effects,
possibly due to nonlinear adjustment of residual confounding.
These findings support the same direction of effect but require
caution in interpretation because of high treatment predictability
and selection bias.

3.4 Treatment assignment modeling
performance

We evaluated treatment assignment models across the
three intervention/exposure analyses; craniotomy, rehabilitation
timing, and rehabilitation intensity using Logistic Regression
(LR), Random Forest (RF), Support Vector Machine (SVM),
XGBoost, and Naive Bayes. These models were selected to
represent a comprehensive range of algorithmic approaches: LR
for its simplicity and statistical grounding, RF for handling
complex non-linear relationships, SVM for its performance
in high-dimensional settings, XGBoost for gradient boosting
optimization, and Naive Bayes for probabilistic classification with
independence assumptions.

Model training process: for each algorithm, we implemented
a standardized training pipeline. Explanatory variables consisted
of the same confounder sets used in causal inference analyses
(25 common confounders identified by OAL-CGNN consensus).
Response variables were binary treatment indicators: craniotomy
(1 = yes, 0 = no), rehabilitation timing (1 = very early ≤4.5
days, 0 = late ≥45 days), and rehabilitation intensity (1 = short
≤14 days, 0 = long ≥30 days). Hyperparameter optimization
was performed using 5-fold cross-validation with grid search
for optimal parameters: LR (C = 1.0, L2 penalty), RF
(n_estimators = 200, max_depth = 8), SVM (C = 1.0,
RBF kernel), XGBoost (learning_rate = 0.1, max_depth =
6), and Naive Bayes (Gaussian priors). Performance evaluation
used train-test split (70/30) with stratified sampling to maintain
class balance.

• Craniotomy: XGBoost achieved the highest accuracy
(0.970) and precision (0.964), while RF maintained strong
performance across all metrics. Naive Bayes showed
lower performance but provided probabilistic clarity
(Table 4).

• Rehabilitation timing: XGBoost demonstrated superior
performance with 0.987 accuracy and 0.990 F1-score,
significantly outperforming other algorithms. RF
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TABLE 3 Treatment effects of long vs short rehabilitation intensity on follow-up outcomes.

Outcome Method Treated Untreated ATE 95% CI
lower

95% CI
upper

P-
value

Bootstrap 95%
CI

Malec_ProdF OAL 1,718 1,249 0.2385∗ 0.2191 0.2607 0.010 [0.2191, 0.2607]

IPW 0.2152∗ 0.1180 0.2686 0.010 [0.1083, 0.2730]

CEVAE 0.2003∗ 0.1108 0.1634 < 0.001 [0.1108, 0.1634]

FIMMOTF OAL 1,718 1,249 0.1136∗ 0.1011 0.1276 0.010 [0.1011, 0.1276]

IPW 0.0829∗ 0.0594 0.1248 0.005 [0.0474, 0.1300]

CEVAE 0.1691∗ 0.1249 0.1795 0.0107 [0.1249, 0.1795]

FIMTOTF OAL 1,718 1,249 0.1068∗ 0.0975 0.1168 0.010 [0.0975, 0.1168]

IPW 0.0829∗ 0.0677 0.1146 0.005 [0.0616, 0.1189]

CEVAE 0.1503∗ 0.0962 0.1602 0.0118 [0.0962, 0.1602]

FIMCOGF OAL 1,718 1,249 0.0753∗ 0.0666 0.0855 0.010 [0.0666, 0.0855]

IPW 0.0631∗ 0.0409 0.0865 0.005 [0.0367, 0.0875]

CEVAE 0.0934 0.0942 0.1431 0.2482 [0.0942, 0.1431]

PART_Domain_ProdF OAL 1,718 1,249 0.0733∗ 0.0637 0.0843 0.010 [0.0637, 0.0843]

IPW 0.0687∗ 0.0366 0.0895 0.005 [0.0333, 0.0926]

CEVAE 0.0808 0.0537 0.0815 0.1789 [0.0537, 0.0815]

∗Statistically significant at p< 0.05.

remained competitive as the second best performer
(Table 5).

• Rehabilitation intensity: XGBoost again achieved the highest
accuracy (0.971) and F1-score (0.975), while RF and LR
maintained strong performance. Naive Bayes showed reduced
effectiveness in this domain (Table 6).

The models consistently performed well across interventions,
with XGBoost yielding the most reliable results across all three
cohorts, followed by Random Forest. The high prediction
accuracy (>90% average) across all algorithms confirms
the strong confounding by indication present in treatment
assignment decisions.

To more specifically quantify which of the baseline factors
assigned treatment and to determine the presence of confounding
by indication, we also conducted an extended feature importance
analysis on six other complementary techniques. These were (1) F-
Test (ANOVA) that quantifies statistical significance of treatment
group mean differences. (2) Mutual Information: Detects non-
linear associations between features and treatment allocation. (3)
Random Forest importance: Quantifies feature importance through
tree-based splits. (4) Logistic Regression coefficients: Quantifies
linear contribution of each predictor to treatment prediction. (5)
Recursive Feature Elimination (RFE): Successively removes less
informative features. (6) Correlation Analysis: Quantifies strength
of linear associations. As seen from Table 7, composite scores are
the normalized and averaged importance of all six feature selection
methods. From analysis, assignment of the comatose patients
to treatment was mainly based on baseline severity variables,
which included the Glasgow Coma Scale (GCS) components,
Functional Independence Measure (FIM) admission scores, and
Post-Traumatic Amnesia (PTA) duration.

4 Discussion

4.1 Clinical interpretations

4.1.1 Surgical intervention
The analysis shows consistent, statistically significant

negative effects of craniotomy across cognitive and functional
domains. Results indicate that patients undergoing craniotomy
experience moderately worse cognitive and functional outcomes
at discharge compared to non-surgical patients, after controlling
for confounders. Our comprehensive causal analysis demonstrates
that, within a large, well-characterized cohort of moderate-
to-severe TBI patients, required craniotomy is associated with
worse cognitive and functional outcomes at discharge across all
measured FIM domains. These associations are robust across
multiple advanced causal inference frameworks (OAL, IPW,
CEVAE) and remain consistent after rigorous confounder selection
and validation.

However, these findings likely reflect confounding by
indication where patients requiring surgical intervention
present with more severe injuries that independently predict
worse functional outcomes, despite comprehensive confounder
adjustment. Our results align with established clinical literature
demonstrating similar patterns. Multiple propensity-matched
and meta-analytic studies have reported that patients undergoing
craniotomy or Decompressive Craniectomy (DC) for TBI
experience lower functional independence compared to those
managed non-surgically. For example, Kelly et al. (24), focus
specifically on adult patients with severe TBI, found that
individuals who underwent Craniectomy had significantly greater
impairment on the Glasgow Outcome Scale-Extended and
were less likely to be employed at one-two years post-injury,
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TABLE 4 Average treatment assignment prediction performance across models (surgical).

Algorithm Accuracy Balanced
accuracy

F1-score Precision
(treated)

Recall (treated)

Logistic (L2) 0.912 0.915 0.907 0.868 0.949

Random forest 0.953 0.955 0.950 0.928 0.974

SVM 0.898 0.904 0.896 0.837 0.965

XGBoost 0.970 0.970 0.967 0.964 0.971

Naive Bayes 0.885 0.886 0.876 0.855 0.899

Average 0.924 0.926 0.919 0.894 0.952

TABLE 5 Average treatment assignment prediction performance across models (rehabilitation-timing).

Algorithm Accuracy Balanced
accuracy

F1-score Precision
(treated)

Recall (treated)

Logistic (L2) 0.900 0.905 0.917 0.952 0.885

Random forest 0.964 0.962 0.971 0.973 0.969

SVM 0.928 0.929 0.942 0.959 0.925

XGBoost 0.987 0.985 0.990 0.988 0.991

Naive Bayes 0.815 0.764 0.867 0.791 0.959

Average 0.919 0.909 0.937 0.933 0.946

TABLE 6 Average treatment assignment prediction performance across models (rehabilitation intensity).

Algorithm Accuracy Balanced
accuracy

F1-score Precision
(treated)

Recall (treated)

Logistic (L2) 0.901 0.904 0.925 0.954 0.897

Random forest 0.957 0.959 0.968 0.984 0.953

SVM 0.886 0.890 0.912 0.949 0.878

XGBoost 0.971 0.971 0.975 0.970 0.980

Naive Bayes 0.756 0.756 0.751 0.740 0.763

Average 0.894 0.896 0.906 0.919 0.894

while acknowledging that these patients had more severe initial
presentations. This adult-focused finding aligns with our mixed
adult-pediatric cohort results, though age-specific effects within
our population warrant further investigation. Similarly, Guo et
al. (6) in their propensity-matched study of 120 adult TBI patients
(mean age 46-52 years), demonstrated that patients requiring
more invasive procedures (Decompressive Craniectomy) had
worse long-term outcomes compared to those needing craniotomy
only, consistent with a severity gradient where more invasive
interventions are reserved for more critically ill patients.

These adult-specific findings support our observations across
a broader age range that includes both adult and pediatric
patients. Recent systematic reviews and meta-analyses confirm
that surgical interventions can reduce mortality and intracranial
pressure in severe TBI, though functional outcomes remain
challenging to improve due to underlying injury severity. A 2025
meta-analysis (25), analyzing five randomized controlled trials
predominantly involving adult TBI populations, found robust
mortality reduction with surgical intervention but no significant

improvement in functional outcomes and this highlighted the
complex relationship between life-saving procedures and long-term
recovery (26, 27). While these adult-focused trial results inform
our findings, the inclusion of pediatric patients (ages 16+) in
our TBIMS cohort provides broader generalizability across age
groups. These findings confirm that while craniotomy and DC
remain essential for managing life-threatening complications, the
observed functional outcomes primarily reflect the severity of
injury necessitating surgical intervention rather than adverse effects
of surgery.

Clinically, our findings support the established understanding
that patients requiring craniotomy represent a more severely
injured population with inherently worse prognosis. The
consistency of these associations across multiple causal inference
methods suggests that even advanced statistical techniques cannot
fully eliminate confounding by indication in observational surgical
research. This reinforces the importance of multidisciplinary care
models that recognize both the life-saving necessity of surgical
intervention and the need for intensive, long-term rehabilitation
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TABLE 7 Three top predictors by intervention domain (averaged across
six feature-selection methods).

Domain Variable (meaning) Average (all
methods)

Surgical
(craniotomy)

GCSMot (functional motor response) 94.7

GCSVer (verbal response) 91.7

DAYStoREHABadm (days to rehab
admission)

82.6

Rehabilitation
timing

PTADays (post-traumatic amnesia
duration)

95.3

AGENoPHI (age at injury) 84.0

GCSMot (functional motor response) 83.3

Rehabilitation
intensity

FIMExpressA (FIM Expression at
admission)

96.0

FIMCompA (FIM Comprehension at
admission)

93.3

PTADays (Post-traumatic amnesia
duration)

92.7

support for these high-severity patients. Our study adds to
the existing evidence on the difficulties of achieving functional
recovery after surgical management of TBI and highlights the
importance of comprehensive post-acute care plans that address
the needs of this complex patient group.

4.1.2 Rehabilitation-timing intervention
The analysis reveals statistically significant but clinically

marginal associations between very early rehabilitation timing and
some follow-up outcomes. While productivity measures showed
small positive associations across methods (0.02–0.19 points), the
clinical significance of these differences remains unclear given the
absence of established minimal clinically important differences
for these outcome scales. The largest effects were observed for
’Productivity—Malec Scale (Malec ProdF)’ (0.09–0.19 points),
which may represent the only potentially meaningful clinical
difference, though this requires validation against functional
benchmarks. These modest effect sizes are consistent with
recent systematic reviews that have noted the heterogeneity in
rehabilitation timing benefits and the need for more nuanced
interpretation of statistical versus clinical significance in adults of
working age, a population broadly similar to our primarily adult
TBIMS cohort (28, 29).

Social, participation, and productivity outcomes provided
contradictory results by approaches. Conventional causal
approaches (OAL, IPW) estimated small or no effects for
social participation domains. CEVAE found moderate positive
correlations. These differences arise from how each model is built.
IPW conditions on ignorability and uses measured covariates only.
It is sensitive to missing or crude covariates. OAL discourages weak
predictors and shrinks small effects to zero. CEVAE incorporates
latent layers that could capture hidden or nonlinear patterns.
CEVAE could overfit or be ill conditioned. When CEVAE showed
effects not seen in IPW or OAL, they likely reflected unobserved or

nonlinear confounding. CEVAE results were taken as exploratory.
More reliance was placed on effects seen in two or more estimators.
This pattern concurs with multicenter studies which show that
social reintegration outcomes are less frequently affected by
intervention timing compared to functional domains. Such
heterogeneity likely reflects psychosocial impacts that transcend
the timing of rehabilitation in adults with TBI, a group similar to
our dataset (30, 31). The strong prediction success of treatment
(93% average) suggests prevailing selection effects. Rehabilitation
timing decisions appear extensively organized and guided by
patient factors.

Such systematic assignment patterns suggest substantial
confounding by indication that may not be fully addressed
by current adjustment methods, potentially limiting the causal
interpretation of observed associations. This finding is consistent
with observational studies demonstrating that rehabilitation timing
is heavily influenced by injury severity, medical complications,
and institutional factors of adults with TBI (32, 33). The findings
suggest that timing effects, if present, are considerably smaller
than selection effects in determining rehabilitation outcomes.
The results emphasize the importance of individualized clinical
decision-making that prioritizes medical readiness and appropriate
care transitions.

4.1.3 Rehabilitation-intensity proxy
The analysis reveals positive associations between longer

rehabilitation duration and functional outcomes across multiple
domains, with effect sizes ranging from 0.06 to 0.24 points.
However, the exceptionally high treatment prediction accuracy
(91.5%) suggests that rehabilitation duration is almost entirely
determined by patient characteristics, which limits the causal
interpretation of these associations. Patients requiring longer
rehabilitation stays likely present with greater injury severity,
medical complications, and baseline functional impairments,
factors that independently influence both length of stay and
recovery trajectories.

While these positive associations are consistent with dose
response hypotheses observed in controlled rehabilitation studies,
such as those by Spivack et al. (15) and Zhu et al. (16), it is
important to contextualize our findings. Prior work has typically
focused on adult TBI populations aged 18-65 years under more
controlled settings, whereas our broader cohort includes patients
with a wider range of clinical complexity and system exposure.
As such, the observed associations more likely reflect confounding
by indication, where rehabilitation duration acts as a proxy for
underlying patient needs and complexity, rather than a modifiable
intervention. Previous research has shown that discharge timing
from acute care hospitals is only partially explained by clinical
factors. Sorensen et al. (34) found that for adults aged ≥18 years
treated at Level I trauma centers, only about 20% of discharge
timing was attributable to clinical variables; the remainder was
driven by administrative, insurance, and system-level determinants
that reflect patient acuity and institutional practices.

Additionally, the clinical significance of the observed effect
sizes remains uncertain in the absence of established minimal
important differences for the functional outcome measures used.
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Thus, while extended rehabilitation may benefit certain patients,
it cannot be assumed that artificially extending stays would
improve outcomes. Healthcare systems should instead focus on
ensuring that rehabilitation duration is tailored to individual
patient needs. Evans et al. (35) studied older adults (≥65 years)
discharged to skilled nursing facilities, a population distinct from
the broader adult cohort analyzed in our study. Similarly, Avesani
et al. (36) examined a younger adult TBI cohort (mean age 43.6
years) and found that acute-care length of stay and admission
FIM scores, rather than demographic factors, independently
predicted rehabilitation duration. These findings highlight the
strong influence of patient complexity on stay length. Future
research should aim to establish clinically meaningful thresholds
for rehabilitation duration and determine whether observed
outcome differences persist after rigorous adjustment for injury
severity, recovery potential, and healthcare system variables.

5 Conclusion

We systematically evaluated associations between surgical
intervention, rehabilitation timing, and rehabilitation duration
with cognitive, functional, and quality-of-life outcomes across
four distinct intervention domains. Across all analyses, we
observed consistently high treatment prediction accuracy: 93.1%
for rehabilitation timing, 91.5% for rehabilitation duration, and
92.1% for surgical intervention. These high accuracies suggest
that observed associations likely reflect confounding by indication
rather than true causal treatment effects.

Surgical interventions were negatively associated with
functional outcomes, a finding that likely reflects underlying
injury severity among patients requiring surgery, rather than the
impact of surgery itself. Similarly, while rehabilitation timing may
represent a modifiable intervention and rehabilitation duration a
proxy for care intensity, the high treatment prediction accuracy of
these variables from patient covariates suggests that both are more
likely influenced by baseline patient complexity and care needs.

Past research shows that minimal clinically important
differences (MCIDs) for the Functional Independence Measure
(FIM) are typically 17-22 points for total scores and 4-5 points
for domain-level changes, depending on population and injury
severity (37). In contrast, the ATEs estimated in this study (0.06-
0.24 points) are statistically significant but unlikely to be clinically
meaningful. The TRACK-TBI cohort found that about half of
patients with severe TBI regained functional independence within
one year (38). This finding opens up wide variation in recovery
outcomes. Systematic reviews also present that motor and cognitive
rehabilitation often produce measurable but modest improvements
(39, 40). An old work by Whitlock and Hamilton (41) found that
few patients achieved full independence at discharge. Those who
improved showed only small gains in FIM scores.

A practical pathway toward clinical deployment can be
addressed in three stages. First, individualized treatment effect
models should be integrated into an interactive dashboard that
displays effect estimates with confidence intervals and represents
uncertainty through probabilistic ranges rather than fixed point
values. Second, each recommendation should include the most
influential patient or clinical variables and clear indicators when

the model depends on extrapolated or weakly supported data
regions. Third, prospective validation across multiple rehabilitation
centers is required to assess usability, clinician confidence, and
the influence of model based guidance on treatment planning
and patient outcomes. These steps provide a structured path
for advancing the current causal framework from an analytic
research tool to a system that supports evidence based clinical
decision making.

Based on this translational framework, broader implications
follow for their integration into AI-facilitated clinical decision
support. The proposed methodological framework has ready
implications for implementation in AI-based clinical decision
support systems (AI-CDSS) for the management of TBI. By
applying patient specific covariate profiles, models herein
can calculate individualized treatment effect estimations,
particularly for surgery planning and rehabilitation timing.
This offers the possibility of enabling more informed, data driven
advice and exchange among patients, families, and clinicians.
Operationalization is guarded, however, the very high treatment
predictability observed in our study underscores the contribution
of patient complexity to treatment allocation. Prospective real-
world clinical workflow validation will be important. Moreover,
the ensuing AI-CDSS tools developed on this approach must place
utmost emphasis on transparency, control by clinicians, and ethical
protections to facilitate that decision support acts as an additive
and not a substitute for expert clinical judgment in TBI treatment.
Key ethical principles are algorithmic transparency, risk of bias in
training data, equitable access to AI-CDSS tools, and arrangements
for monitoring responsible use in practice.

6 Limitations and future work

Limitations of this study include the inability to fully
address unmeasured confounding, despite the use of advanced
methodological approaches, as well as the observational
nature of the data, which inherently limits causal inference
due to selection effects. Additionally, outcome measurement
was limited to discharge and early follow-up assessments,
without extended longitudinal tracking or comprehensive
patient-reported outcomes.

Although several findings reached statistical significance,
many of the observed average treatment effects (ATEs) were
modest. These effect sizes may not translate into meaningful
changes at the individual patient level and may fall below
thresholds considered clinically impactful. As a result, while
our findings provide valuable insight into potential treatment-
outcome associations, their standalone clinical utility remains
limited without further validation.

Another limitation is that the existing causal framework
only simulates treatment assignment and outcomes according
to baseline covariates. Realistically, recovery following traumatic
brain injury is a process that changes over time while patients’
neurological, metabolic, and systemic states develop between acute
admission and rehabilitation initiation. Intermediate events such
as infections, secondary neurological insults, or instability shifts
may be time varying confounders impacting on the intensity
or the timing of the rehabilitation and subsequent functional
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outcomes simultaneously. Because these dynamic factors were not
modeled explicitly, residual bias on the basis of time dependent
confounding cannot be ruled out with certainty. Future research
should employ longitudinal covariate designs and advanced
causal models such as marginal structural models or dynamic
treatment regime modeling to better identify these changing
patient pathways and increase causal validity in real-world
rehabilitation settings.

Looking forward, future work will focus on testing and
refining the proposed models using independent TBI datasets
across diverse healthcare settings to enhance generalizability
and reliability. Broader deployment within AI-driven Clinical
Decision Support Systems (AI-CDSS) will also require ongoing
monitoring for bias, fairness across demographic and clinical
subgroups, interpretable outputs, and clinician-centered design
to build trust, promote adoption, and mitigate disparities in
treatment recommendations.
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