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Objective: This systematic review and meta-analysis aimed to evaluate the 
efficacy of neuromodulation techniques in alleviating pain and depression in 
patients with phantom limb pain (PLP).
Methods: We conducted a comprehensive search of five databases (Medline, 
Scopus, Embase, Cochrane Library, and Web of Science) up to March 
2025, following PRISMA guidelines. Randomized controlled trials (RCTs) 
investigating central (e.g., rTMS, tDCS) and peripheral (e.g., TENS, NMES, PNS) 
neuromodulation techniques in PLP patients were included. Primary outcomes 
were pain reduction, measured by the Visual Analog Scale (VAS) and McGill 
Pain Questionnaire (MPQ), and depression, assessed using the Beck Depression 
Inventory (BDI) and Self-Rating Depression Scale (SDS). Data were extracted and 
analyzed using Review Manager and Stata, with heterogeneity assessed via the 
I2 statistic and Q test.
Results: 17 RCTs involving 510 patients were included. Central neuromodulation 
techniques, particularly rTMS and tDCS, significantly reduced pain in PLP patients 
[excitatory M1 rTMS: MD = −1.45, 95%CI (−2.78, −0.11), p = 0.03; anodal M1 
tDCS: MD = −1.60, 95%CI (−2.45, 0.74), p = 0.0003]. tDCS with duration >15 min 
[I2 = 12%, MD = -1.91, 95%CI (−3.10, 0.72), p = 0.002] and rTMS>7 days treatment 
[MD = -4.35, 95%CI(−6.34,-2.36), p < 0.0001] were observed significant pooled 
effects. Peripheral techniques, including TENS and PNS, also showed pain relief, 
though with fewer studies. No significant improvement in depression.
Conclusion: Neuromodulation techniques, particularly rTMS and tDCS, are 
effective in reducing PLP but do not significantly alleviate depression. Further 
large-scale RCTs with longer follow-ups are needed to confirm these findings 
and explore the efficacy of other neuromodulation methods.
Systematic review registration: PROSPERO CRD42022314995.
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Introduction

Phantom limb pain (PLP) refers to the subjective sensation that 
an excised limb still exists, accompanied by varying degrees and types 
of pain (1, 2). PLP is one of the most significant complications after 
amputation, with an incidence rate of 50–80% (3–5). The onset of PLP 
typically occurs in the early stages after amputation. Seventy-five 
percent of patients may experience PLP a few days after the procedure, 
although some patients may begin to experience it months or even 
years later (6, 7).

For some patients with PLP, the pain can be alleviated to some 
extent through prosthetics, medication, and other treatments, but 
some patients continue to suffer from persistent pain. Chronic pain 
can significantly reduce a patient’s quality of life, affect their work 
ability, and, in some cases, result in the loss of social functioning. 
Additionally, patients may experience psychological symptoms such 
as depression, anxiety, speech difficulties, insomnia, obsessive-
compulsive disorder, loneliness, social isolation, self-pity, and a loss 
of self-confidence (8, 9). The pathological mechanism of PLP is 
complex. Some studies suggest that PLP is a form of neuropathic 
pain, with a similar pathological mechanism to other types of 
neuropathic pain, primarily involving nerve injury and detachment. 
Central nervous system mechanisms propose that PLP may 
be  linked to changes in sensory afferents, with structural and 
functional reorganization in the peripheral and central nervous 
systems playing a key role (10). Intense and persistent PLP causes 
considerable pain for amputees, creating an urgent need for precise 
and effective pain management strategies addressing the 
pathogenesis of PLP.

With advances in rehabilitation medicine, neuromodulation 
techniques have emerged as important tools in the control of acute 
and chronic pain, particularly for refractory chronic pain. 
Neuromodulation is a therapeutic technique that reversibly regulates 
the physiological and functional activities of the central nervous 
system, peripheral nerves, or the autonomic nervous system through 
implantable or non-implantable methods. These techniques use 
physical (e.g., electricity, magnetism, sound, light) or chemical 
methods to improve symptoms and quality of life (11).

Neuromodulation techniques can be categorized into central 
and peripheral nervous techniques. Peripheral techniques include 
transcutaneous electrical nerve stimulation (TENS), neuromuscular 
electrical stimulation (NMES), and peripheral nerve stimulation 
(PNS). These methods alleviate pain by activating Aβ fibers, which 
conduct coarse tactile sensations, while inhibiting Aδ and C fibers, 
thus reducing central sensitization and hyperalgesia (12, 13). 
Central nervous techniques, such as transcranial magnetic 
stimulation (TMS) and transcranial direct current stimulation 
(tDCS), regulate brain bioelectric activity, cerebral blood flow, and 
metabolism through electromagnetic signals, adjusting cortical 
excitability (14) and intervening in long-term synaptic plasticity 
(15) to alleviate pain.

Neuromodulation techniques hold significant potential in the 
treatment of PLP. However, there is no unified approach regarding the 
selection of techniques, timing of treatment interventions, or the 
setting of treatment parameters. This study systematically reviews the 
evidence on the efficacy of neuromodulation techniques, providing 
data on intensity, duration, frequency, and other relevant parameters 
to inform future research and clinical applications for the 
treatment of PLP.

Methods

Search strategy and selection criteria

The protocol for this study was registered with PROSPERO (number 
CRD42022314995) and followed the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (16, 17). 
Researchers conducted a comprehensive search of the Medline, Scopus, 
Embase, Cochrane Library, and Web of Science databases for studies 
published up until March 2025 (16). The search terms used were (1) 
neuromodulation techniques; (2) PLP; (3) random or allocation. 
Literature screening strategies are detailed in the Supplementary materials. 
The method of combining MeSH terms with free words was employed, 
with repeated preliminary examinations supplemented by manual 
retrieval and reference tracking.

Studies were included if they met the following criteria: (1) Type 
of study: Randomized controlled trials (RCTs) of neuromodulation in 
patients with PLP. (2) Population: Participants (≥18 years old) 
diagnosed with PLP who were in the non-acute stage. Gender, race, 
and nationality were not restricted. (3) Intervention: Central 
neuromodulation techniques (e.g., rTMS, tDCS) or peripheral 
neuromodulation techniques (e.g., TENS, NMES, PNS). (4) 
Outcomes: Primary outcomes included pain, measured using the 
visual analog scale (VAS), McGill Pain Questionnaire (MPQ).

Studies were excluded if they met any of the following criteria: (1) 
non-RCTs.

(2) Duplicated publications (same treatment discussed in multiple 
papers from the same clinical trial); (3) Missing required outcome 
measures or failure to report data necessary for meta-analysis (e.g., 
means, standard deviations); (4)Only abstracts available with no full 
text accessible through any channels;

Data extraction

Two researchers ((blind*)) independently conducted the literature 
search. The titles, abstracts, and keywords of all studies were screened 
based on the established criteria. Afterward, the full texts of eligible 
studies were reviewed, and those that did not meet the requirements 
were excluded. Data was extracted from each study, including the first 
author, sample size, mean age, intervention details, stimulation 
intensity, stimulation location, and outcome measures. If data was 
incomplete, the authors were contacted to obtain the necessary 
information. If the data was not provided, the study was excluded. 
Discrepancies were resolved through discussion with a third 
researcher ((blind*)) until consensus was reached.

Risk of bias assessment

The risk of bias for each included study was assessed using the 
Cochrane RCT bias risk evaluation criteria by two researchers (blind*)
independently. Seven domains of bias were evaluated: (1) Random 
sequence generation; (2) Allocation concealment; (3) Blinding of 
participants and personnel; (4) Blinding of outcome assessment; (5) 
Incomplete outcome data; (6) Selective reporting; (7) Other sources 
of bias. Each domain was rated as “low bias risk,” “high bias risk,” or 
“unclear bias risk.” Discrepancies in evaluations were resolved through 
discussion with a third researcher (18) (blind*).
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Statistical analysis and data synthesis

Statistical analyses were conducted using Review Manager 
(RevMan, V.5.4.1) and Stata version 14.0. The I2 statistic and Q test 
were used to assess the heterogeneity of trial results and to construct 
pooled estimates of effect. Low heterogeneity was considered if 
I2 < 40% (19). The random-effects model (REM) was used due to 
expected heterogeneity across studies. Continuous variables were 
pooled and presented as mean differences (MDs) with 95% confidence 
intervals (CIs) or standard MDs (SMDs) with 95% CIs. A p-value < 
0.05 was considered statistically significant. Publication bias was 
assessed using funnel plots (20) and the Egger regression test, when 
there were more than 10 studies in each meta-analysis.

Sensitivity analysis

A sensitivity analysis was performed to evaluate the robustness of 
the review findings. One study at a time was removed, and the 
remaining studies were analyzed to determine whether the results 
were significantly affected by any single study.

Missing data management

If the primary outcome data (e.g., VAS) was unclear, the authors 
were contacted for clarification. Additionally, Web Plot Digitizer 
version 4.5 was used to extract data from relevant graphs. If the target 
data could not be retrieved, the study was excluded.

Results

Eligible studies

A total of 3,045 articles were retrieved from five databases. 
After screening titles and abstracts, 879 duplicates were removed, 
and 2,110 articles were excluded. Seventeen RCTs were selected 
based on full-text screening from 59 potentially relevant studies 
(Supplementary materials 3, 4).

Study characteristics

Seventeen RCTs were included in this study, with research 
conducted between 1991 and 2025. A total of 510 patients with PLP 
from various regions were included. Four rTMS studies (21–24) used 
1 Hz, 10 Hz, and 20 Hz treatment intensities, targeting the primary 
motor cortex (M1) at different treatment periods. Six tDCS studies 
(25–30) used current intensities of 1, 1.5, and 2 mA with varying 
treatment times and locations. Four TENS studies (31–34) targeted 
the outer ear, pain site, or contralateral limb. One NMES study (35) 
targeted quadriceps muscles of both legs. Two PNS studies (36, 37) 
targeted the femoral and sciatic nerves with percutaneous PNS leads 
under ultrasound guidance. VAS, MPQ, Beck Depression Inventory 
(BDI), Self-Rating Depression Scale (SDS) and Hamilton Depression 
Scale (HAMD) were used to evaluate the effects of neuromodulation 
techniques on PLP patients (Supplementary material 4.3).

Quality assessment

The quality of the studies in the seventeen included RCTs was 
assessed using the Cochrane Collaboration Network’s risk of bias 
evaluation criteria. Twelve of the RCTs (22–24, 26, 27, 29–31, 33, 35, 
36, 38) used random assignment, and ten (21, 22, 24–29, 31, 32) 
described the method of concealed random assignment. Eight RCTs 
(21–24, 26, 32, 35, 37) were conducted in a blinded fashion for subjects 
and treatment protocol implementers. Nine RCTs (21, 22, 25–27, 29, 
32, 35, 37) blinded the experimental outcome measures. Therefore, the 
overall quality was good (Supplementary material 4.2).

Meta-analysis results

VAS
A total of 14 RCTs (21–30, 32, 33, 36, 37) with 387 patients were 

included in this study. Statistical heterogeneity was observed between 
studies by the X2 test (p = 0.05, I2  = 42%), and meta-analysis was 
performed using REM. Neuromodulation techniques were 
significantly superior in improving the VAS index in patients with PLP 
compared with the control group, with a statistically significant 
difference [MD = -1.61, 95% CI (−2.36, −0.86), p < 0.0001]. Funnel 
plots were performed for the VAS subgroup, showing no asymmetry. 
The Egger’s regression test (p = 0.338) did not detect significant small 
study effects (Supplementary Figure 5.1).

MPQ
Three RCTs (32, 35, 36) with 123 patients were included in this 

study. There was no statistical heterogeneity between studies by the X2 
test (p = 0.77, I2  = 0%), and meta-analysis was performed using 
REM. Neuromodulation techniques relieved pain in PLP patients 
based on the MPQ index, with a statistically significant difference 
between groups [MD = -4.59, 95% CI (−8.12, −1.06), p = 0.01]. 
However, no follow-up analysis was performed because the small 
number of included studies (n = 4) did not meet the requirements for 
further refinement (Supplementary Figure 5.2).

Depression
BDI, SDS, HAMD were selected to evaluate depression in patients 

with PLP, and three RCTs (21, 22, 34, 37) with 142 patients were 
included. There was no statistical heterogeneity between studies by the 
X2 test (p = 0.06, I2 = 60%), and meta-analysis was performed. rTMS, 
TENS, and PNS had no effect on improving depression in PLP patients, 
with no statistically significant differences between groups [SMD = -0.44, 
95% CI (−1.00, 0.12), p = 0.12] (Supplementary Figure 5.3).

Neuromodulation effects on pain

We conduct subgroup analysis based on treatment types. Pain 
relief was evaluated using VAS as the outcome index. We  found 
significant pooled effects for VAS reduction in rTMS [MD = -2.37, 
95% CI (−4.35, −0.39), p = 0.02], tDCS [MD = -1.56, 95% CI (−2.37, 
−0.75), p = 0.0002], PNS [MD = -1.88, 95% CI (−3.05, −0.71), 
p = 0.002], central [MD = -0.55, 95% CI (−0.81, −0.30), p < 0.0001], 
and peripheral [SMD = -0.38, 95% CI (−0.73, −0.03), p = 0.03]. A 
subgroup analysis based on the type of control group showed that 
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TENS studies [SMD = -0.46, 95% CI (−0.87, −0.06), p = 0.02], using 
sham stimulation as the control group, demonstrated a significant 
pooled effect on pain relief (Supplementary Table 1).

Efficacy of rTMS with different treatment 
conditions in PLP patients

Subgroup analysis of rTMS was performed based on (1) 
Excitatory(≥5 Hz) and Inhibitory(≤1 Hz); (2) brain stimulation location; 
(3) treatment duration of >20 min and ≤20 min; (4) treatment period of 
>7 days and ≤ 7 days. Regarding VAS as the primary indicator, we found 
significant pain reduction at excitatory M1 (≥1 Hz) with duration 
≤20 min [I2 = 0%, MD = -1.45, 95%CI (−2.78, −0.11), p = 0.03]. Only 
one study was in the subgroup of inhibitory DLPFC (≤1 Hz) with 
duration >20 min [MD = -4.48, 95%CI (−6.69, −2.27), p < 0.0001] and 
the pooled effect size cannot be calculated. We also found a significant 
effect size of pain reduction after >7 days treatment [MD = −4.35, 
95%CI (−6.34, −2.36), p < 0.0001] (Supplementary Table 3).

Efficacy of tDCS with different treatment 
conditions in PLP patients

Considering tDCS only. Pooled effects were analyzed based on the 
treatment types, intensity, duration, and period: (1) stimulation 
location and procedure; (2) treatment intensity of >1.5 mA and 
≤1.5 mA; (3) duration of >15 min and ≤15 min; (4) treatment period 
of >1 week and ≤1 week. VAS was used as an outcome indicator to 
evaluate the improvement in pain relief. We found anodal M1 tDCS 
significantly reduced pain in PLP patients [I2  = 4%, MD = -1.60, 
95%CI (−2.45, 0.74), p = 0.0003]. We also found tDCS with duration 
>15 min a significant pooled effect[I2 = 12%, MD = −1.91, 95%CI 
(−3.10, 0.72), p = 0.002]. No adverse effects are repoted to tDCS 
(Supplementary Table 2).

Sensitivity analysis

Studies from the VAS and central subgroups were included in the 
sensitivity analysis. Excluding any single study, the combined results 
of the remaining studies remained statistically significant, consistent 
with the original combined results, indicating stable results. Other 
subgroups with fewer than ten studies were not included because they 
did not satisfy the essential elements for sensitivity analysis 
(Supplementary material 6.1–6.6).

Discussion

Maladaptive plasticity versus persistent functional representation 
acknowledged that reorganization in the primary somatosensory 
cortex is not sufficient to explain phantom limb pain. Predictive 
coding framework (38) derived a three-step theory of the emergence 
and maintenance of PLP. When expectations differ from perceptual 
input, a prediction error occurs and evoke pains. Sensorimotor system 
increases salience processing and facilitate peripheral and central 
disinhibition to solve the prediction error, which lead to persistent 

pain. Neuromodulation or mirror therapy (39) can reduce predictive 
error and regulate nerual plasticity to restore sensorimotor 
system dysfunction.

The seventeen studies included in this review examined the effects 
of various neuromodulation techniques (six tDCS studies, four rTMS 
studies, four TENS studies, two PNS studies, and one NMES study) 
on PLP patients and showed an inhibitory effect on pain. However, the 
efficacy varied by treatment duration, frequency, and target.

Effects of central nervous system techniques on pain in patients 
with PLP tDCS and rTMS can modulate the excitatory-inhibitory 
balance of brain networks, acting on multiple stages of the predictive 
coding process: they can reduce aberrant sensory input and 
sensorimotor mismatch at the source, and also suppress the excessive 
amplification of pain signals downstream. Ultimately, these 
interventions work together to reduce the intensity and salience of the 
unresolved prediction error, breaking the vicious cycle of PLP and 
achieving pain relief.

Past research has predominantly focused on the neocortex, often 
overlooking the role of subcortical structures such as the cerebellum. 
Streng ML et  al. (40) systematically explores the functional 
connections between the cerebellum and the mirror neuron system 
(MNS), particularly highlighting the cerebellum’s role in action 
observation (AO) and motor imagery (MI), as well as its implications 
for neuromodulation and rehabilitation. rTMS/tDCS may modulate 
Purkinje cell simple spike activity to improve predictive accuracy and 
reduce mismatches between expected and actual sensory 
feedback (41).

Our review comprised ten studies on central nervous system 
neuromodulation techniques, including tDCS (n  = 6) and rTMS 
(n  = 4). Six studies (25–30) on tDCS noted benefits in reducing 
PLP. Five studies (25–28, 30) targeted anodal M1 showed a significant 
reduction in PLP. Three study, respectively, targeted anodal PPC (25), 
anodal cerebellum (29) and cathoal PPC (25) showed no significant 
difference between intervention and control groups. Cathodal PPC of 
tDCS (25) reported a decrease of nonpainful phantom sensations. Due 
to the small number of included studies, we cannot suggest a potential 
dose response of this intervention.

Our exploratory subgroup analysis of rTMS included four RCTs 
(21–24) demonstrated pooled effects of excitatory/inhibitory and 
different brain stimulation sites. VAS scores declined with excitatory 
M1 rTMS. One study (24) used inhibitoy DLPFC reported an 
significant reduction of pain. Ahmed et al. believed that pain relief was 
related to increased serum beta-endorphin levels. Malavera et  al. 
found that pain relief decreased after 30 days of treatment during 
follow-up, revealing the influence of time on the therapeutic effect of 
rTMS. We found that rTMS had significant effects when applied with 
high frequency (>1 Hz). This may be because rTMS at >1 Hz has an 
excitatory effect on the cerebral motor area and increases the content 
of brain-derived neurotrophic factor. Significant effects were observed 
at periods ≥7 days, while a period <7 days showed no significant 
effect. The pooled effect sizes of intensity below 1 Hz, duration 
>20 min could not be obtained due to insufficient studies.

rTMS (42) uses electromagnetic induction to cause more robust, 
direct neuronal depolarization and has broader effects on cortical 
excitability, neurochemistry and functional connectivity. tDCS uses 
weak electrical currents to subtly modulate membrane potentials. Its 
effects are more polarity-dependent and likely involve NMDA 
receptor-dependent synaptic plasticity. The effects of rTMS are 
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longer-lasting in compare with tDCS, while tDCS lead a superiority 
pain alleviation which may related to the anti-inflamatory mechanism 
(43). Recent research indicates tDCS offers practicality for home-use 
but may require more sessions for sustained benefit (44).

Effects of peripheral nervous system 
techniques on pain in patients with PLP

Peripheral disinhibition (reduced inhibitory control) allows 
excessive nociceptive input from sources like neuromas, ectopic nerve 
firing, or spinal ganglion changes to reach the brain. This input 
strengthens the cycle of PLP by fueling central disinhibition and 
prediction errors. Peripheral nerve regulation technologies directly 
reduce this abnormal input (38). Some patients with PLP also 
experience stump pain. After relief of stump pain, PLP will also 
be  alleviated. Animal studies have shown that neuromas at the 
extremities of amputations release chemicals and enzymes, increasing 
the frequency of painful afferent impulses and the brain’s sensitivity to 
pain (45). The sensory input of stump abnormalities can induce 
sensorimotor cortex remodeling, although its effect on PLP is not yet 
clear (22, 46). This peripheral input may affect cortical remodeling 
after amputation (47, 48).

Our review comprised seven studies on peripheral nervous system 
neuromodulation techniques, including TENS (n = 4), PNS (n = 2), 
and NMES (n = 1). Meta-analysis showed that peripheral nerve 
regulation could relieve PLP based on VAS and MPQ. Subgroup 
analysis was performed based on different control groups. In the 
condition of sham stimulation as the control group, TENS had a 
positive impact on PLP based on VAS. Two PNS RCTs were selected, 
and the results showed that PNS significantly reduced pain intensity 
in PLP patients. However, it is premature to conclude the clinical 
efficacy of PNS in PLP patients, as the number of studies included in 
the PNS analysis was limited.

Effects of neuromodulation techniques on 
depression in PLP patients

According to the Predictive Coding framework (38), the brain is 
an inference machine that continuously generates predictions and 
compares them with sensory inputs to minimize prediction errors 
(discrepancies between expectation and reality). Depression can 
be  understood as a chronic, unresolved state of “interoceptive 
prediction error.” Neuroinflammation (49, 50), by impacting key 
neurotransmitter systems (HPA axis), neurogenesis, potently 
exacerbates and sustains this erroneous state (51). Regarding the 
studies included in this review, there is currently insufficient evidence 
to determine a definitive effect of neuromodulation treatments on 
depression. Three of the included studies indicated no significant 
effect, while Ahmed et al. (21) found that rTMS could reduce the 
anxiety and depression of PLP patients based on the Hamilton Scale. 
Ahmed et al. (21) and Malavera et al. (22) conduct excitatory M1 
rTMS studies with frequency of 20 Hz and 10 Hz, respectively. 
Gilmore et al. (37) offered a minimally invasive option with potential 
long-term relief, possibly by modulating peripheral input and central 
plasticity. Kang (34) conduct a study of particularly intact-side TENS, 
provided a low-cost, non-invasive clinical approach emphasizing 

sensory reintegration and psychological factors in pain management. 
The four studies explored effective PLP treatments were heterogeneous 
across different levels (central, peripheral, integrated rehabilitation) 
and techniques (rTMS, PNS, TENS+OT). Whether neuromodulation 
techniques are an effective treatment for alleviating negative emotions 
in PLP patients still needs further evidence. Antonioni et  al. (44) 
suggest that home-based tDCS could be a non-invasive, safe, and 
effective intervention for managing depression and patients with 
chronic pain, creating a precedent for its use in PLP.

Limitations

A key limitation is the absence of subgroup analyses or meta-
regressions to investigate the potential influence of important patient-
level factors, such as the level and etiology of amputation, the presence 
of concomitant stump pain, and specific comorbidities. In routine 
clinical practice, response to treatment is likely heterogeneous and 
modulated by these variables. Consequently, the aggregate findings 
presented here should be  extrapolated with caution to individual 
patients, as the extent to which they are applicable across these diverse 
clinical characteristics remains uncertain. Other limitation is the small 
sample size of 510 patients across the seventeen RCTs. The number of 
original studies on TENS, PNS, and NMES was too small to conduct 
a subgroup analysis based on different treatment intensities, durations, 
and periods. These factors contributed to the lack of diversity in the 
study results.

Conclusion

This study found that rTMS and tDCS more effectively relieve PLP 
than other neuromodulation techniques. The analgesic effects of 
excitatory M1 rTMS [MD = −1.45, 95%CI (−2.78, −0.11), p = 0.03] 
and anodal M1 tDCS [MD = −1.60, 95% CI (−2.45, −0.74), 
p = 0.0002] exceed the minimal clinically important difference 
(MCID) of 1.4 for the VAS (52). However, these neuromodulation 
techniques do not appear to improve symptoms of depression. There 
is a better efficacy in tDCS treatment period lasts for >1 week and 
rTMS duration>20 min, but we  cannot suggest a potential dose 
response due to the small number of the studies. There is a lack of 
evidences on the efficacy of invasive neuromodulation techniques 
(DRG, SCS and DBS, et al.). More RCTs with larger sample sizes and 
longer follow-up periods are necessary to evaluate the effects of 
neuromodulation techniques on PLP in the future.
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