& frontiers

@ Check for updates

OPEN ACCESS

EDITED BY

Michael D. Staudt,

University Hospitals Cleveland Medical
Center, United States

REVIEWED BY
Tommaso Bocci,

University of Milan, Italy

Jean Paul Buu Cuong Nguyen,
Centre Hospitalier Universitaire (CHU)
de Nantes, France

*CORRESPONDENCE
Wolnei Caumo
wcaumo@hcpa.edu.br

RECEIVED 08 August 2025
ACCEPTED 22 September 2025
PUBLISHED 31 October 2025

CITATION

Betancur DFA, Tarragé MdGL, Oliveira MEL,
Peres SM, Torres ILS, Fregni F and

Caumo W (2025) Cerebellar tDCS and pain
modulation: a critical integrative and
systematic review.

Front. Neurol. 16:1681853.

doi: 10.3389/fneur.2025.1681853

COPYRIGHT

© 2025 Betancur, Tarrago, Oliveira, Peres,
Torres, Fregni and Caumo. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Neurology

Frontiers in Neurology

TYPE Systematic Review
PUBLISHED 31 October 2025
pol 10.3389/fneur.2025.1681853

Cerebellar tDCS and pain
modulation: a critical integrative
and systematic review

Daniel Fernando Arias Betancur'?,

Maria da Graca Lopes Tarrago?,

Maria Eduarda Louzada Oliveira?, Sara Machado Peres?,
Iraci L. S. Torres'*, Felipe Fregni® and Wolnei Caumo®267*

!Graduate Program in Medical Sciences, School of Medicine, Federal University of Rio Grande do Sul
(UFRGS), Porto Alegre, Brazil, ?Laboratory of Pain & Neuromodulation, Clinical Research Center,
Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, Brazil, *Physical Medicine and
Rehabilitation Service, Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, Brazil,
“Pharmacology of Pain and Neuromodulation: Pre-clinical Investigations Research Group, Federal
University of Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil, *Laboratory of Neuromodulation and
Center for Clinical Research Learning, Physics and Rehabilitation Department, Spaulding
Rehabilitation Hospital, Boston, MA, United States, ®Pain and Palliative Care Service, Hospital de
Clinicas de Porto Alegre (HCPA), Porto Alegre, Brazil, ’Department of Surgery, School of Medicine,
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Background: Cerebellar transcranial direct current stimulation (ctDCS) has
emerged as a promising non-invasive neuromodulatory approach for managing
pain. Early evidence suggests beneficial effects on pain perception in both
healthy individuals and patients with chronic pain. However, the underlying
mechanisms and clinical efficacy remain unclear. This systematic review aimed
to synthesize the current evidence on cerebellar involvement in pain processing
and to evaluate the potential of ctDCS as a therapeutic intervention.

Methods: A systematic search was conducted in PubMed, Embase, and the
Cochrane Library, following PRISMA guidelines. MeSH and Emtree descriptors
related to “Cerebellum,” "Pain,” and "tDCS" were used to identify relevant
studies published up to December 11, 2024. Eligible studies were randomized
controlled trials (RCTs) that investigated the effects of ctDCS on pain. Risk of
bias was assessed using the Cochrane Risk of Bias Tool version 2 (RoB 2).
Results: Of 819 records screened, five RCTs met the inclusion criteria. The primary
methodological limitations included incomplete reporting of randomization
procedures and inadequate blinding of outcome assessors. Two studies lacked
key demographic and clinical details, while one showed a high risk of bias due
to repeated same-day stimulation. Despite these issues, Across the included
studies anodal ctDCS generally increased pain thresholds and enhanced
endogenous pain inhibition, whereas cathodal ctDCS tended to reduce thresholds.
Neurophysiological findings supported these behavioral results, with EEG data
showing modulation of cortical activity related to pain processing.

Conclusion: Preliminary findings suggest that ctDCS may modulate nociceptive
pathways and enhance pain inhibition. However, the small number of studies and
methodological heterogeneity limit the generalizability of current results. Further
high-quality RCTs are needed to optimize stimulation protocols, assess long-term
effects, and establish clinical benefits. This review supports the cerebellum as a
relevant and underexplored target for neuromodulatory pain interventions.
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1 Introduction

Chronic pain affects approximately 20% of the adult population
in Western countries and represents a major public health challenge
due to its multifactorial nature and significant impact on quality of life
(1). Typically, it is defined as pain occurring on most days or every day
for more than three months (2). Despite advances in both
pharmacological and non-pharmacological approaches, effective
management remains elusive. Recent U.S. data show that 24.3% of
adults reported chronic pain in 2023, and 8.5% experienced high-
impact chronic pain—pain that frequently limits daily or work
activities—reflecting a worsening trend and emphasizing the need for
more personalized and integrated therapeutic approaches (3-6).

In response to the growing burden of chronic pain, there has been
renewed interest in innovative treatments targeting central pain
modulation mechanisms. Non-invasive neuromodulation techniques
have shown promise in enhancing pain outcomes. Among these,
transcranial direct current stimulation (tDCS) has emerged as a
compelling modality, demonstrating efficacy across a range of pain
conditions, coupled with a favorable safety profile and low incidence
of adverse effects (7, 8).

Most neuromodulation research to date has focused on cortical
targets, particularly the dorsolateral prefrontal cortex (DLPEC) (9, 10)
and the primary motor cortex (M1) (10, 11). However, increasing
attention has recently turned to the cerebellum as a novel target for
non-invasive stimulation. While traditionally associated with
sensorimotor integration, the cerebellum is now recognized as a key
modulator of pain through its role in integrating nociceptive input
with motor and cognitive-affective processes, thereby influencing both
pain perception and emotional reactivity (12).

Functional neuroimaging studies have further elucidated the
cerebellum’s role in pain processing, revealing its interactions with key
regions, including the anterior midcingulate cortex, supplementary
motor area, and thalamus (13, 14). Although emerging studies involving
both healthy individuals and patients with neuropathic pain offer
promising insights (15-19), several critical gaps remain. These include
uncertainties regarding optimal stimulation parameters, the precise
mechanisms of action, long-term efficacy, and the potential benefits of
multisite stimulation protocols targeting regions such as M1 and DLPFC.

To advance the field, this review offers a comprehensive analysis
of cerebellar involvement in pain processing, drawing on anatomical,
clinical, and experimental evidence. It explores the role of the
cerebellum in pain modulation and evaluates the therapeutic potential
of ctDCS. Key technical considerations, current limitations, and future
directions for research and clinical application are also discussed.

2 Mapping cerebellar circuits:
anatomical insights into pain
processing

2.1 Cerebrocortical and cerebellar
contributions to pain modulation

Pain is a multidimensional experience arising from the interplay
of sensory, affective, cognitive, and social factors (20), processed
through distributed brain networks that include the thalamus,
brainstem nuclei, somatosensory cortices, and prefrontal regions (21).
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Among cortical targets, the M1 and DLPFC have been the most
extensively investigated in neuromodulation. Stimulation of M1
enhances excitability within intracortical circuits, thalamic relays, and
descending modulatory pathways, producing analgesic effects partly
mediated by endogenous opioids (22). The DLPFC, in turn,
contributes to top-down regulation of cognitive-affective processes,
strengthening connectivity with the periaqueductal gray (PAG) and
engaging in expectation-driven analgesia (23). Evidence from clinical
and preclinical studies shows that modulation of these regions not
only reduces pain intensity but also alleviates maladaptive cognitive-
emotional factors such as catastrophizing and depressive symptoms
(24-26).

Beyond these well-established cortical sites, increasing evidence
highlights the cerebellum as a promising and integrative hub in pain
processing. Far from being solely a motor structure, the cerebellum
contributes to sensory, cognitive, and emotional dimensions of the
pain experience (27, 28). Its activation has been reported across
various pain states, including acute, chronic, and neuropathic pain
(21, 29). Together, these findings position the cerebellum as a novel
neuromodulatory target, with ctDCS offering a promising approach
networks  through

to influence distributed pain-related

cerebellar stimulation.

2.2 Anatomical and functional framework
of the cerebellum in pain

The cerebellum constitutes only a small fraction of total brain
volume, yet it contains more than half of all neurons in the central
nervous system (27, 30). Traditionally regarded as a motor structure,
converging evidence highlights its integrative role in cognitive and
emotional processing (31, 32). Structurally, it comprises the vermis,
paravermal zones, and lateral hemispheres, which form the anterior,
posterior, and flocculonodular lobes (33). Functionally, it is classically
divided into the vestibulocerebellum (balance and oculomotor
control), spinocerebellum (muscle tone and proprioception), and
cerebrocerebellum (motor planning and execution) (34).

At the microcircuit level, mossy and climbing fibers provide the
main excitatory inputs to the cerebellar cortex, converging on Purkinje
cells that exert inhibitory control over the deep cerebellar nuclei.
These nuclei—fastigial, dentate, globose, and emboliform—constitute
the principal output hubs, projecting to motor, sensory, limbic, and
associative regions, thereby linking the cerebellum to both motor and
non-motor functions (35-38). This highly organized architecture
provides the substrate for cerebellar contributions to pain processing,
enabling integration of sensory, affective, and cognitive information.

Topographical mapping further reveals pain-related specialization.
Larsell’s classification divides the cerebellum into ten lobules (I-X),
which display functional heterogeneity. Sensorimotor processing
predominates in lobules I-IV and VIII (39), whereas lobules VI-IX
support emotional and cognitive regulation (32), and lobules V-VII
and IX-X contribute to vestibular and interoceptive integration (40,
41). Neuroimaging studies show that acute pain recruits lobules IIT-
VI, VIIb, Crus II, and bilateral hemisphere VI (28), whereas chronic
pain preferentially engages vermal lobules IV-V and hemispheric
lobules V, VI, and Crus I—patterns consistent with sustained pain
states and emotional dysregulation (28, 42). Distinct networks have
also been described in visceral pain, with consistent activation of
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bilateral lobules V-VI, Crus I, lobule VIII, and vermal VI (43). In the
context of somatic pain, sex-related differences have been observed:
men exhibit increased activation of the lateral cerebellar cortex
following muscle and cutaneous stimulation, whereas women display
reduced or absent responses; this pattern may reflect variability in
endogenous analgesic systems (44). Beyond the direct encoding of
pain, anticipatory mechanisms have also been identified, with
ipsilateral posterior cerebellar activation preceding noxious heat
stimulation, suggesting a role in sensory prediction and pre-attentive
processing (45). Collectively, these findings highlight the heterogeneity
of cerebellar activation across pain modalities, as summarized in
Figure 1.

Taken together, these anatomical and functional features position
the cerebellum as a dynamic hub for integrating sensorimotor,
autonomic, and affective information in pain processing. This
organizational scaffold forms the basis for the afferent and efferent
cerebrocerebellar circuits described in the following sections.

2.3 Cerebrocerebellar afferent systems
involved in pain processing

The cerebellum receives afferent input from diverse cerebral
sources involved in motor, somatosensory, cognitive, affective, and
reward processing. The convergence of these signals allows cerebellar
circuits to integrate nociceptive information and modulate pain
perception across multiple functional domains.

Excitatory input reaches the cerebellar cortex through two
principal pathways. Mossy fibers, originating from various brainstem
nuclei, form excitatory synapses with granule cells and golgi cells in
the granular layer. The axons of these granule cells ascend into the
molecular layer and bifurcate into parallel fibers that synapse with the

10.3389/fneur.2025.1681853

dendrites of Purkinje cells, thereby activating them. This activation
ultimately produces inhibitory output from Purkinje cells to the deep
cerebellar nuclei, contributing to both motor and non-motor adaptive
responses (33, 46).

In parallel, climbing fibers arising from the contralateral inferior
olivary nucleus establish powerful excitatory synapses with Purkinje
cells, inducing long-term depression (LTD) at parallel fiber-Purkinje
cell synapses (47). These fibers also send collateral projections to the
deep cerebellar nuclei and engage inhibitory interneurons, including
basket and stellate cells, which promote lateral inhibition of
neighboring Purkinje cells (48, 49). Through these mechanisms,
climbing fibers convey precise timing and prediction-error signals
essential for sensorimotor integration and pain modulation (50, 51).
These connections between mossy- and climbing-fiber inputs and
cerebellar cortical and nuclear elements are illustrated in the Figure 2.

Convergent nociceptive-related signals reach cerebellar circuits
via both cerebrocerebellar and spino-olivocerebellar pathways.
Among the most prominent are the corticopontocerebellar
projections, which originate from M1, premotor cortices, DLPFC, and
primary somatosensory cortex (S1), and relay through the pontine
nuclei to reach the cerebellar cortex (52-56). Projections from M1 and
S1 primarily target lobules I-V and VI, delivering motor efference
copies and somatosensory feedback critical for fast adaptive responses
during nociceptive events (57). The lateral hemisphere, especially Crus
I, receives input from the DLPFC and parietal cortices, providing a
substrate for integrating attention, salience, and pain expectation (50,
58). In addition, dopaminergic projections from the ventral tegmental
area (VTA) terminate predominantly in Crus II and, to a lesser extent,
This
neuroanatomical interface between motivational-affective processing

in Crus L mesolimbic-cerebellar pathway forms a

and cerebellar circuits, implicating the cerebellum in reinforcement
learning and the drive for analgesia (59-61).

Anterior lobe

Posterior lobe

Flocculonodular lobe

FIGURE 1

sex-related differences).

Cerebellar areas activated during pain

Cerebellar activation patterns in different pain states. The diagram illustrates brain regions activated during acute pain (lobules Il1-VI, VIib, Crus II),
chronic pain (vermal IV-V, hemispheric V-VI, Crus I), visceral pain (bilateral V-VI, Crus I, VIII, vermal VI), and somatic pain (lateral cerebellar cortex with

Acute pain (Moulton et al., 2010)

Chronic pain (Li CN et al.,2024;Li X et al., 2020)

Visceral pain (Claassen et al., 2020)

Cutaneous pain (Henderson et al., 2008)
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affective information.
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Afferent convergence in the cerebellar cortex and deep nuclei. Mossy fibers from brainstem and spinal relays excite granule and Golgi cells in the
granular layer; granule axons ascend as parallel fibers and contact Purkinje dendrites in the molecular layer. Climbing fibers from the inferior olive form
powerful synapses on Purkinje dendrites and send collaterals to the deep cerebellar nuclei. The inhibitory output of Purkinje neurons to these nuclei,
which relay to thalamic and brainstem targets, provides an anatomical substrate consistent with the integration of nociceptive, sensorimotor, and

Complementing these cerebrocortical inputs, animal studies have
shown that direct nociceptive information can reach the cerebellum
via the spino-olivocerebellar pathway. Ekerot et al. (60) demonstrated
that stimulation of A- and B-type cutaneous nociceptive fibers in
animal models triggered climbing fiber-mediated activation of
Purkinje cells in the anterior cerebellum. This effect was likely
mediated by the spino-olivocerebellar tract, which ascends via the
dorsal and dorsolateral funiculi to deliver nociceptive input directly
to cerebellar circuits (28, 62). The inferior olive itself receives
convergent input from midbrain structures involved in pain control,
including the red nucleus, zona incerta, and the periaqueductal gray
(PAG), a key hub of descending pain modulation (63). Figure 3
illustrates the and anatomical

schematically topographical

organization of these afferent systems.

2.4 Cerebrocerebellar efferent pathways
modulating nociception

Among cerebellar efferent pathways, projections originating in
lobules IV-VI and Crus I/II provide the structural substrate for
top-down modulation of pain-related behaviors. Purkinje cells in
these lobules send inhibitory outputs to the deep cerebellar nuclei,
which in turn project excitatory fibers to the motor thalamic nuclei.
These thalamic relays establish reciprocal circuits with the M1,
forming a closed-loop circuit that integrates motor commands and
nociceptive processing (53). Optogenetic stimulation of Crus I also
modulates M1 via the dentate nucleus, influencing whisker movement
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and tactile responses in rodents and highlighting its role in
sensorimotor integration (54). This circuitry is depicted in Figure 4.
The functional coupling between the cerebellum and M1 is
particularly relevant for pain modulation, given that M1 stimulation
induces analgesic effects in chronic pain conditions. Such effects are
attributed to the antidromic recruitment of thalamocortical circuits and
engagement of descending modulatory systems (22, 64-66). Moreover,
cerebellar output pathways appear to influence not only sensorimotor
dimensions but also affective-motivational components of pain, involving
key limbic regions such as the ACC and anterior insula (22, 42, 67).
Beyond M1, cerebellar projections from lobules IV-VI and Crus
T also target medial prefrontal areas. Specifically, lobules IV-V project to
the ACC, while vermal lobule VI and Crus I are connected to the
prelimbic and orbitofrontal cortices (68, 69). The medial prefrontal
cortex is involved in emotion regulation, memory-guided decision-
making, and higher-order behavioral control (70, 71). Its role in pain
modulation—particularly in descending control, ruminative processing,
and comorbid affective symptoms such as anxiety and depression—is
well supported by both preclinical and clinical studies (72-74). Taken
together, this evidence supports a role for cerebellar output in modulating
both sensory-discriminative and cognitive-affective aspects of pain.
Pain- and motivation-related brain regions, such as the nucleus
accumbens (NAc) and the VTA, can be modulated by cerebellar output.
While direct anatomical projections from the cerebellum to the NAc
have not been conclusively identified, studies of functional connectivity
and evidence for polysynaptic relay circuits suggest that cerebellar
activity can influence NAc function. In contrast, the modulatory
pathway from Purkinje cells in Crus I to VTA neurons—mediated via
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FIGURE 3

Topographical mapping of afferent projections to the cerebellum from brain regions involved in motor, sensory, cognitive, affective, and reward
processing. M1 — primary motor cortex; S1 — primary somatosensory cortex; DLPFC — dorsolateral prefrontal cortex; V1 — visual cortex; PAG —
periaqgueductal gray; VTA — ventral tegmental area. This schematic illustrates the multidimensional integration of nociceptive inputs by the cerebellum
through mossy and climbing fibers, which contributes to the modulation of sensory-discriminative, affective, and cognitive components of pain.

the dentate nucleus—is more clearly established (68, 75). Both the NAc
and VTA are key components of mesolimbic circuits responsible for
encoding the salience and motivational valence of pain. Consistently,
chemogenetic activation of Crus I Purkinje cells projecting to the VTA
has been shown to attenuate depressive-like behaviors in chronically
stressed mice, reinforcing the notion that cerebellar circuits contribute
to the regulation of affective states and mood-related comorbidities
commonly observed in chronic pain (75).

The cerebellum also communicates with the hippocampus, a
region central to memory and contextual processing of pain. Vermal
lobule VI and Crus I influence the dentate gyrus via fastigial and
dentate nuclei through polysynaptic thalamic-septal relays (76).
Optogenetic stimulation of vermal lobules IV-V and hemispheric
lobule VI modulates hippocampal activity and alters performance on
hippocampus-dependent spatial tasks (77). The hippocampus itself
exhibits structural and functional abnormalities in both rodent
models of neuropathic pain and patients with chronic low back pain
and complex regional pain syndrome (78). Chronic pain impairs the
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extinction of contextual—but not cued—fear memories, indicating a
selective disruption of hippocampus-dependent learning, associated
with decreased neurogenesis and synaptic remodeling. These findings
suggest that cerebellar modulation of hippocampal circuits may
contribute to maladaptive emotional and mnemonic responses
observed in persistent pain states.

3 Transcranial direct current
stimulation -technical factors

3.1 Methods

The methodology of this systematic review followed the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) guidelines. No protocol was registered or published in
PROSPERO (International Prospective Register of Systematic
Reviews) before the development of this study.
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FIGURE 4
Efferent cerebellar pathway potentially involved in pain modulation. Schematic illustration of the dentatothalamocortical tract, an efferent pathway
projecting from the dentate nucleus of the cerebellum to the thalamus, and subsequently to cortical regions such as the primary motor cortex and
prefrontal cortex. This tract is thought to contribute to the modulation of both sensorimotor and affective-cognitive components of pain processing.
Abbreviations: M1 — primary motor cortex; S1 — primary somatosensory cortex; DLPFC — dorsolateral prefrontal cortex; MPFC — medial prefrontal
cortex; ACC — anterior cingulate cortex; PAG - periaqueductal gray; VTA — ventral tegmental area.

Relevant studies were identified through comprehensive searches
of the Cochrane Library (from 1996), PubMed (from 1996), and
Embase (from 1993). The MeSH terms and entry terms used, along
with their combinations, were: [(“Cerebellum”) AND (“Pain” OR
“DCS”) AND (“tDCS”)] (search conducted up to December 11,
2024). Additionally, the reference lists of the included studies were
manually reviewed to identify other potentially eligible articles.

3.2 Study selection and eligibility criteria
To be eligible, studies were required to meet the following

inclusion criteria: (1) involve human participants; (2) be published in
English, Portuguese, or Spanish. In addition to English, Portuguese

Frontiers in Neurology

and Spanish were included because all reviewers are fluent in these
languages, which ensured accurate assessment and data extraction
without introducing interpretation bias; and (3) be classified as
clinical studies, randomized controlled trials, systematic reviews,
meta-analyses, or book chapters. Eligible studies specifically
investigated the application of ctDCS for pain modulation, either in
individuals with clinical pain or in healthy participants undergoing
experimental pain induction. No restrictions were placed on the year
of publication.

Title and abstract screening were conducted independently by two
reviewers. In cases of disagreement, a third reviewer was consulted to
reach a consensus. Duplicate records were removed before screening.
Studies involving animal models or not aligned with the review
objectives were then excluded.
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The initial selection targeted studies with titles containing key
pain” and “cerebellar tDCS;’
or simply “tDCS? Articles using synonymous or related MeSH terms

»

terms such as “pain” and “cerebellum,

were also considered. Abstracts were reviewed to assess relevance to
ctDCS as a therapeutic intervention for pain or to the cerebellum’s role
in nociceptive processing. Full-text articles were then analyzed, and
only those that fulfilled all inclusion criteria were retained.

For each included study, the following data were extracted: first
author, year of publication, study design, number of participants,
electrode montage and stimulation site, stimulation parameters,
reported adverse events (if any), neurophysiological outcomes (when
applicable), pain assessment methods, study objectives, and
main findings.

3.3 Quality and bias risk assessment

The methodological quality of the included studies was
independently assessed by two reviewers using the Cochrane Risk of
Bias Tool for Randomized Trials (RoB 2). In cases of disagreement, a
third reviewer was consulted to reach a consensus. The domains
evaluated included the randomization process, potential bias arising
from period and carryover effects (when applicable), deviations from
intended interventions, missing outcome data, outcome measurement,
and selection of the reported results.

Following the assessment, the overall risk of bias for each study
was categorized as “low risk,” “some concerns,” or “high risk” It is
important to note that the specific domains assessed varied according
to the study design, such as parallel group randomized controlled
trials or randomized crossover trials.

10.3389/fneur.2025.1681853

4 Results

A summary of the search strategy is illustrated in Figure 5, following
the PRISMA flowchart methodology. A total of 819 records were initially
identified—808 through database searches and 11 through manual
screening of bibliographic references. After removing duplicates and
excluding studies involving animal models, 511 records remained for title
and abstract screening. Studies that did not address the use of tDCS for
pain management or the relationship between the cerebellum and pain
processing were excluded. Subsequently, 18 full-text articles were assessed
for eligibility, of which only five met the predefined inclusion criteria.
These five studies specifically investigated the effects of ctDCS on pain
modulation, either in healthy participants exposed to nociceptive stimuli
or in patients with pain-related conditions.

4.1 Demographic characteristics of the
patients included

The five randomized clinical trials included a total of 80
participants. Of these, 66 were healthy individuals enrolled across
four studies, while 14 were patients with unilateral upper limb
amputation (eight with left-sided and six with right-sided
amputation), assessed in a single study (17). Four studies employed
a crossover randomized controlled trial (RCT) design (15, 17-19),
and one utilized a parallel-arm RCT design, including 16 healthy
participants as controls (16). All participants in the active
intervention arms were adults, with a mean age of approximately
28.5years (SD=7.0). A total of 47 women were included,
representing a slight difference compared to men across both studies

!
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5 g:g;::;?:ins%‘; through Records removed before the Records identified from:
§ screening: Websites (n = 0)
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v
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FIGURE 5

PRISMA fowchart of the included studies.
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involving healthy individuals and those involving participants with
chronic pain.

4.2 Stimulation protocol

The stimulation protocols employed across the studies typically
positioned the target electrode (anode, cathode, or sham) along the
midline, 2cm below the inion, with the lateral edges placed
approximately 1 cm medial to the mastoid processes. The placement of
the reference electrode varied among studies: in three investigations, it
was positioned on the right shoulder (16, 17, 19); in the remaining two,
it was placed on the lateral aspect of the upper arm near the deltoid
region (18) and the right buccinator area (15), respectively. The electrodes
used had surface areas of either 35 cm? (17, 18) or 25 cm? (15, 16, 19).

All studies applied a stimulation intensity of 2 mA, and sham
stimulation being discontinued after the ramp-up phase. Session
duration and frequency varied. Four studies delivered a single session,
whereas one study (17) implemented five consecutive daily sessions.
Regarding duration, three studies (17-19) used 20-min sessions; one
used 15-min (16) and one 5-min (15) protocols.

4.3 Neurophysiological tools and pain
outcome measures

In three studies (16, 17, 19), laser stimulation combined with EEG
was employed to assess perceptual thresholds, pain perception, and
laser-evoked potentials (LEPs). Additionally, two studies incorporated
peripheral electrical stimulation with surface electrodes into their
protocols. Pereira et al. used cutaneous stimulation to quantify sensory
and pain thresholds (15), whereas Stacheneder et al. (18) applied
electrical sural-nerve stimulation and EEG to record spinal and
cortical responses, as well as subjective pain ratings. In the same study,
thermal stimuli and the conditioned pain modulation (CPM)
paradigm were applied to evaluate endogenous pain modulation and
to determine individual heat pain thresholds (18).

Subjective pain intensity was assessed using two different scales:
the Visual Analog Scale (VAS) was employed in three studies (15, 17,
19), while the Numerical Rating Scale (NRS) was used in two studies
(16, 18).

4.4 Adverse effects

In general, the studies included in this review did not report any
adverse effects associated with ctDCS. An exception was observed in
the study by Stacheneder et al., which described mild and transient
side effects, including itching at the electrode site and post-session
headaches (18).

4.5 Overview of study outcomes

The evidence gathered from the reviewed studies consistently
supports the efficacy of ctDCS in modulating pain processing in both
healthy individuals and patients with chronic pain conditions. Three
studies reported polarity-dependent effects of ctDCS (16, 18, 19).
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Anodal stimulation was associated with increased pain thresholds,
reduced scores on the VAS, and enhanced endogenous pain inhibition.
In contrast, cathodal stimulation tended to decrease pain thresholds
and impair inhibitory responses. Neurophysiological data supported
these behavioral findings. Anodal ctDCS resulted in reduced
amplitudes and prolonged latencies of the N1 and N2/P2 components
in EEG recordings, whereas cathodal stimulation led to increased
amplitudes and shortened latencies of the same components.

Additional support for the analgesic potential of anodal ctDCS
was provided by Bocci et al. (17) and Pereira et al. (15). In patients
with phantom limb pain, anodal stimulation reduced the frequency of
paroxysmal pain episodes and alleviated non-painful phantom
sensations (17). In healthy participants, it consistently increased pain
thresholds, suggesting a facilitative effect on endogenous pain
modulation mechanisms (15). Table | summarizes the demographic
characteristics of the participants, the study designs, the main
specifications of the stimulation protocols, and the reported outcomes
across the included studies.

4.6 Bias risk assessment

The risk of bias was assessed using the RoB 2 tool, as recommended
by the Cochrane Collaboration, and is illustrated in Figures 6, 7.
Overall, the main concerns identified across the studies included
insufficient reporting of the randomization process (Domain D1 of
RoB 2) and inadequate information regarding blinding of outcome
assessors (Domain D2). Although not classified as a high risk, the
studies by Pereira et al. (15) and Bocci et al. (19) lacked important
details—such as demographic and clinical characteristics of the
participants—that would have allowed for a more comprehensive
characterization of the intervention groups.

In the study by Pereira et al. (15), a high risk of bias was identified
due to potential carryover effects (Domain DS of RoB 2). Although
the interval between sessions may vary among studies, conducting
multiple sessions on the same day can lead to cumulative effects,
which may confound the outcomes (15).

5 Discussion

Chronic pain remains a major clinical and societal burden, often
refractory to conventional treatments and associated with significant
adverse effects. In this context, ctDCS has emerged as a promising
neuromodulatory technique. This systematic review provides an
integrative synthesis of the stimulation protocols employed, the
clinical characteristics of the populations studied, and the potential
therapeutic effects of ctDCS in pain management. Despite preliminary
findings suggesting polarity-dependent analgesic effects, the overall
evidence remains limited, highlighting the need for more rigorous and
standardized investigations.

5.1 Cerebellar tDCS and pain perception:
mechanisms and effects

Evidence from the studies included in this review supports the
role of ctDCS in modulating nociceptive processing through
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TABLE 1 Demographic characteristics and protocol specifications (n = 80).

Reference  Study Active =~ Sham group Anode Cathode tDCS protocol = Adverse = Neurophysiological Pain Notes (aim, results)
design  group (n) (n) location location effects measurements outcome
used
Boccietal. (19) RCT, 15(7/8 M) | In a crossover study, For anodal For cathodal 2 mA, 20 min, 1 session | Notinformed | Laser stimulation was applied VAS The study aimed to evaluate
crossover participants stimulation, the stimulation, the of each stimulation with to the dorsum of the left hand. the effect of ctDCS on
design underwent three electrode was electrode was centered intervals of 1 week The PTh was quantified, and perceptive threshold, pain
interventions— centered on the on the median line, | Cathodal, 2 mA, 20 min nociceptive laser stimuli were intensity, and laser-evoked
anodal, cathodal, median line,2cm | 2 cm below the inion, | Anodal, 2 mA, 20 min applied at two intensities (VAS1 potentials
and sham below the inion, with its lateral borders | Sham, current on only and VAS2). N1 and N2/P2 Result: Cathodal stimulation
stimulation—with with its lateral positioned 1 cm for the initial 30 s components were captured decreased the perceptive
1- week interval borders positioned | medially to the mastoid using EEG threshold, increased the VAS
between sessions | 1 cm medially to the apophysis. RMT was assessed pre- and score, enhanced N1 and N2/
mastoid apophysis. | For anodal stimulation, post-intervention using TMS P2 amplitudes, and reduced
For cathodal the electrode was their latencies, while anodal
stimulation, the placed on the right stimulation had the opposite
electrode was placed shoulder effect. Motor thresholds were
on the right not affected by the
shoulder intervention
Bocci etal. (16) RCT 16 highly There was no sham For anodal For cathodal 2 mA, 15 min, 1 session | Notinformed | Laser stimulation was applied NRS The study aimed to evaluate
hypnotizable | group; the control stimulation, the stimulation, the of each stimulation was to the dorsum of the left hand. the effect of ctDCS on pain
volunteers group consisted of electrode was electrode was centered applied The PTh was quantified, perception and LEPs in highly
(9/7 M) were 16 healthy subjects centered on the on the median line, | Cathodal, 2 mA, 15 min followed by eight nociceptive hypnotizable individuals
recruited | matched for ageand = medianline,2cm | 2 cm below the inion, | Anodal, 2 mA, 15 min laser stimuli, with subjects compared to controls

gender, not selected
based on

hypnotizability.

below the inion,
with its lateral
borders positioned
1 cm medially to the
mastoid apophysis
For cathodal
stimulation, the
electrode was placed
on the right

shoulder

with its lateral borders
positioned 1 cm
medially to the mastoid
apophysis
For anodal stimulation,
the electrode was
placed on the right

shoulder

rating the perceived pain. N1
and N2/P2 components were

recorded using EEG

Result: In highly hypnotizable
individuals, anodal
stimulation increased N2/P2
amplitude without affecting
perceived pain, while cathodal
stimulation had no significant
effects. In contrast, control
participants reported
decreased pain and reduced
NI and N2/P2 amplitudes
after anodal stimulation, with
the opposite pattern observed

following cathodal

stimulation.

(Continued)
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TABLE 1 (Continued)

Reference  Study

design

Active
group (n)

14 (7/7 M)

Sham group
(n)

In a crossover study,
participants
underwent three
interventions—
anodal, cathodal,
and sham
stimulation—with at
least 5 h interval

between sessions

Anode
location

For anodal
stimulation, the
electrode was
centered on the
median line, 2 cm
below the inion,
with its lateral
borders positioned
1 cm medially to the
mastoid apophysis
For cathodal
stimulation, the
electrode was placed
over the right

buccinator area

Cathode
location

For cathodal
stimulation, the
electrode was centered
on the median line,

2 cm below the inion,
with its lateral borders
positioned 1 cm
medially to the mastoid
apophysis
For anodal stimulation,
the electrode was
placed over the right

buccinator area

tDCS protocol

2 mA, 5 min, 1 session
of each stimulation with
intervals separated by at

least 5 h.
Cathodal, 2 mA, 5 min
Anodal, 2 mA, 5 min
Sham, turned off after

the ramp-up phase

Adverse
effects

Not informed

Neurophysiological
measurements

Electrical stimulation was
applied to the proximal third of
the right medial tibia. The ST
was defined as a slight
sensation in the leg (VAS 1),
and the PThres as barely
painful (VAS 4)

Pain
outcome
used
VAS

Notes (aim, results)

The study aimed to evaluate

the effect of ctDCS on lower

extremity sensory and pain
thresholds.

Result: Anodal stimulation
increased the pain threshold,
while cathodal and sham
stimulations had no significant
effect. No changes in sensory
threshold were observed with

any stimulation.

Pereira et al. RCT,
(15) crossover
design
Boccietal. (19) RCT,
crossover
design

14 (8/6 M)
with
unilateral
upper limb

amputation

In a crossover study,
participants
underwent two
interventions—
anodal, and cathodal
stimulation—with a
3-month interval

between sessions

For anodal
stimulation, the
electrode was
centered on the
median line, 2 cm
below the inion,
with its lateral
borders positioned
1 cm medially to the
mastoid apophysis
For cathodal
stimulation, the
electrode was placed
on the right

shoulder

For cathodal
stimulation, the
electrode was centered
on the median line,

2 cm below the inion,
with its lateral borders
positioned 1 cm
medially to the mastoid
apophysis
For anodal stimulation,
the electrode was
placed on the right

shoulder

2 mA, 20-min sessions
were applied to each
type of stimulation—

anodal, and cathodal—
over five consecutive

days, with three-month
intervals separating each
stimulation type.

Cathodal, 2 mA, 20 min
Anodal, 2 mA, 20 min

Not informed

Laser stimulation was applied
to the stump to determine the
PT, followed by twenty
nociceptive laser stimuli,
during which subjects rated
their perceived pain. EEG was
used to record the N1 and N2/
P2 components
Clinical evaluations were
conducted at baseline (T0), at
the end of the ctDCS week
(T1), and at 2 weeks (T2) and
4 weeks (T3) post-intervention.
The variables assessed included
PLP intensity, pain paroxysms,
stump pain, non-painful
phantom limb sensations, and

phantom limb movements

VAS

The study aimed to evaluate
the effect of ctDCS on
modulating nociceptive
processing and pain
perception in patients with
painful and non-painful
phantom limb sensations
Result: Anodal ctDCS reduced
paroxysmal pain, non-painful
phantom limb sensations, and

phantom limb movements

(Continued)
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TABLE 1 (Continued)

Reference  Study Active =~ Sham group

group (n) (n)

design

Stacheneder RCT, 21 (16/6 M) | Ina crossover study,
etal. (18) crossover participants
design underwent three

interventions—
anodal, cathodal,
and sham
stimulation—with a
5-day interval

between sessions

Anode
location

For anodal
stimulation, the
electrode was
centered on the
median line, 1-2 cm
below the inion
For cathodal
stimulation, the
electrode was placed
on the lateral upper

arm

Cathode
location

For cathodal
stimulation, the
electrode was centered
on the median line, 1-
2 cm below the inion
For anodal stimulation,
the electrode was
placed on the lateral

upper arm

tDCS protocol

2 mA, 20 min, 1 session
of each stimulation with
intervals of 1 week
Cathodal, 2 mA, 20 min
Anodal, 2 mA, 20 min
Sham, current on only

for the initial 15 s

Adverse
effects

Itching under
the electrode
and headache
following the

procedure

Neurophysiological
measurements

The study recorded spinal and
cortical responses to sural
nerve stimulation, assessing the
RIII reflex from the biceps
femoris and SEPs from the
vertex referenced to the
forehead. Each 2-min cycle
included 12 stimuli, and pain
intensity was rated using an
NRS after each cycle.
Thermal stimuli were employed
to assess pain perception and
modulation mechanisms. This
protocol determined heat pain
intensity and offset analgesia
CPM was evaluated using a test
stimulus (a 30-s heat
application) and a conditioning
stimulus (a 60-s cold water

immersion)

Pain
outcome
used
NRS

Notes (aim, results)

The study aimed to assess the
impact of ctDCS on
nociceptive processing and
endogenous pain modulation.
Result: Findings indicated that
cathodal ctDCS increased pain
perception and reduced
endogenous pain inhibition,
while anodal ctDCS enhanced

endogenous pain inhibition

RCT Randomized Clinical Trial, PTh Perceptive Threshold, EEG Electroencephalogram, VAS Visual Analogue Scale, RMT Resting Motor Threshold, TMS Transcranial Magnetic Stimulation, ctDCS Cerebellar Transcranial Direct Current Stimulation, NRS Numerical
Rating Scale, LEPs Laser Evoked Potentials, ST Sensory Threshold, PThres Pain Threshold, PLP Phantom Limb Pain, SEPs Somatosensory Evoked Potentials, CPM Conditioned Pain Modulation.
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polarity-dependent mechanisms. In healthy volunteers, anodal
stimulation consistently increased pain thresholds and reduced pain-
related evoked potentials, whereas cathodal stimulation either
enhanced pain sensitivity or produced no change (15, 16, 19). In
phantom limb pain, anodal c¢tDCS reduced paroxysmal pain and
phantom sensations (16), while Stacheneder et al. (18) showed that
anodal stimulation enhanced inhibitory control and cathodal
stimulation impaired descending inhibition, reinforcing polarity-
dependent effects.

Mechanistically, it has been proposed that nociceptive inputs may
converge on Purkinje cells, which exert inhibitory control over the
dentate nucleus. Through these circuits, the cerebellum can influence
thalamic and brainstem nociceptive relays that project to cortical
regions involved in pain processing (12, 28, 42). The analgesic effects
of ctDCS may rely on modulation of the cerebello-thalamo-cortical
pathway, whose inhibitory influence has been consistently
demonstrated via TMS-based cerebellar-brain inhibition (CBI) (79).
Supporting this, Galea et al. (80) showed that anodal ctDCS increases

Frontiers in Neurology 12

Purkinje cell excitability, thereby reinforcing the inhibitory influence
over the dentate nucleus and reducing thalamocortical drive. In
contrast, cathodal stimulation produces the opposite effect, confirming
the polarity-specific nature of cerebellar neuromodulation (80). Such
bidirectional control becomes particularly relevant in chronic pain,
where thalamic plasticity alters connectivity, excitability, and
rhythmicity, leading to thalamocortical dysrhythmia that amplifies
nociceptive salience and sustains persistent pain (81, 82). It is therefore
plausible that ctDCS restores inhibitory control within the dentate-
thalamo-cortical pathway, counteracting pathological oscillatory
activity. This framework parallels the rationale in dystonia, where
reduced cerebellar inhibition justifies anodal stimulation (83), and in
tremor disorders, where abnormal olivocerebellar rhythmicity
supports the use of cathodal interventions (84).

A complementary mechanism involves the anti-inflammatory and
neuroprotective actions of tDCS. In experimental neuropathic pain
models, repeated stimulation has been shown to downregulate
pro-inflammatory cytokines (e.g., spinal IL-1p, hippocampal TNF-a),
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upregulate IL-10, and suppress microglial and astrocytic activation,
thereby fostering adaptive plasticity and reducing hypersensitivity (85,
86). Although clinical evidence remains limited, these preclinical
findings, when integrated with the polarity-dependent modulation of
cerebellar circuits, suggest a dual potential of ctDCS: rebalancing
dysfunctional ~ thalamocortical — activity —and  attenuating
neuroinflammatory processes. Collectively, these mechanisms
strengthen the conceptualization of the cerebellum as a central
modulatory hub in pain pathophysiology and support ctDCS as a

mechanism-based strategy for chronic pain management.

5.2 Determinants of interindividual
variability in tDCS response

Interindividual variability in response to ctDCS is a critical
challenge that limits the generalizability of its clinical effects. Beyond
the stimulation parameters, factors such as neurochemical balance,
inflammatory states, and genetic predispositions can substantially
modulate outcomes, shaping both the magnitude and direction of
neuromodulatory effects.

At the neurochemical level, anodal stimulation can reduce cortical
GABA concentrations, as shown by spectroscopy (87). Its after-effects
are also sensitive to the dopaminergic state, with evidence that
receptor function/availability modulates the magnitude and direction
of plasticity (88-90). Moreover, tDCS-induced plasticity critically
depends on NMDA receptor mechanisms: antagonists abolish and
partial agonists enhance these effects, indicating that departures from
these
neurophysiological changes (91, 92). In neuropathic conditions,

an optimal glutamatergic balance can dampen
reduced GABAergic tone and disruption of opioid signaling further
compromise responsiveness (93). Consistent with this, PET imaging
demonstrated that anodal tDCS over M1 enhances endogenous opioid
release and increases y-opioid receptor binding, highlighting the role
analgesia (94, 95).
Neuroinflammation also emerges as a critical determinant: elevated
cytokines such as TNF-a, IL-1B, and IL-6 destabilize synaptic

homeostasis, impair inhibitory neurotransmission within descending

of opioid-mediated mechanisms to

pain pathways, and exacerbate central sensitization, ultimately
limiting the therapeutic impact of tDCS (96-98). Genetic
polymorphisms further contribute to variability. The BDNF Val66Met
variant affects activity-dependent plasticity and functional
connectivity, influencing both pain modulation and responsiveness to
stimulation (99, 100). Similarly, COMT Vall58Met, which alters
dopaminergic tone, has been linked to differences in cognitive
flexibility and neuromodulatory outcomes (101-103).

In sum, ctDCS responsiveness appears intrinsically state-
dependent: the neurochemical milieu, inflammatory activity, and
genetic background gate both the sign and magnitude of induced
plasticity, offering a coherent explanation for the between- and within-

subject heterogeneity observed to date.

5.3 Clinical characteristics of the study
population

In the present review, most included ctDCS studies were
conducted in healthy young adults, which restricts the applicability of
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their findings to clinical pain populations. Only one trial specifically
investigated patients—upper-limb amputees with phantom limb
pain—reporting that anodal ctDCS reduced paroxysmal pain and
phantom sensations (17). Among studies with healthy participants,
polarity-dependent effects on pain perception were observed only in
low-hypnotizable individuals, suggesting that cognitive traits may
modulate cerebellar-cortical interactions and shape the
neuromodulatory impact of ctDCS (16).

Demographic variables are also relevant. The predominance of
young female samples introduces potential bias, as sex-related
anatomical factors—such as greater skull thickness in men—may
reduce current penetration (104). In addition, age-related gray matter
atrophy and increased cerebrospinal fluid volume can alter current
flow and target engagement (105). Hormonal fluctuations—
particularly in estrogen and cortisol—may further modulate
excitability and plasticity, adding variance to ctDCS outcomes (106).
Medications and commonly used substances also represent important
confounders. Anticonvulsants, benzodiazepines, and other
GABAergic agents may attenuate stimulation-induced plasticity,
whereas SSRIs may prolong facilitatory after-effects (107-109).
Caffeine and nicotine have also been shown to modulate cortical
excitability in a dose-dependent manner (110, 111).

Viewed across studies, sample composition is a first-order
determinant of observed effects: clinical diagnosis, cognitive traits,
sex/age/hormonal status, and medication/substance exposure shape
current delivery and plasticity, and thereby the size and stability of

ctDCS outcomes.

5.4 Anatomical and technical determinants
of ctDCS efficacy

Despite the use of standardized protocols—typically positioning
the active electrode 1-2 cm below the inion and 1 cm medial to the
mastoids to target the cerebellar vermis—reported outcomes
remain inconsistent: some studies demonstrate robust
neuromodulatory effects, whereas others do not detect significant
changes. One major factor contributing to this variability is
interindividual anatomical diversity, which shapes both the
magnitude and spatial distribution of the electric field within
cerebellar structures. Computational modeling studies have shown
that the distance between the scalp and cerebellum is the most
influential anatomical variable, accounting for up to 60% of the
variance in intracerebellar electric field strength (112-114).
Additional morphometric features—such as the angulation of the
cerebellar and pontine fossae—can further shape the trajectory and
depth of current penetration (115). These anatomical variations
imply that even under standardized electrode placement, the
resulting neural engagement can differ substantially across
individuals. Emerging evidence suggests that variability in local
electric field strength has functional consequences. Studies have
reported that differences in field intensity are associated with
changes in GABA concentrations, modulation of motor-evoked
potentials, and alterations in cerebello-cortical connectivity (90,
116-118). Together, these findings indicate that anatomical features
not only affect current delivery but also determine the
of ctDCS,

underscoring the importance of individualized targeting strategies.

neurophysiological and behavioral outcomes
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In addition to anatomical variability, the electrode montage
plays a decisive role in shaping current distribution. Cephalic
montages, in which the reference electrode is placed over frontal or
supraorbital regions, can generate stronger overall fields but with
greater spatial dispersion, potentially engaging adjacent cortical
structures such as the prefrontal and occipital cortices (112, 119). In
contrast, extracephalic montages—where the reference electrode is
positioned on the shoulder or buccinator muscle—tend to produce
more focal stimulation of cerebellar targets while reducing
unintended spread to supratentorial regions (114, 120). Despite
these well-documented biophysical differences, current evidence
does not clearly demonstrate whether one montage translates into
superior clinical efficacy.

Stimulation parameters are another critical determinant of ctDCS
efficacy. Most protocols apply 2 mA for 15-25 min across multiple
sessions interspersed with rest days, a regimen considered the current
standard. Shorter applications, such as 5 min, can induce transient
changes in cortical excitability (9, 121), but their ability to produce
sustained modulation of cerebellar circuits remains uncertain. To
ensure effective engagement, Habas et al. recommend using at least
1.5 mA (36), whereas Workman et al. (122) demonstrated that 4 mA
is safe and well tolerated in patients with Parkinson’s disease.
Importantly, posterior-fossa morphometrics—such as scalp-to-
cerebellum distance and the cerebellopontine angle—further
determine how stimulation intensity translates into effective current
delivery (114). The effects of 2 mA protocols, however, must
be interpreted with caution. Several studies included in this review
found that anodal ctDCS increased pain thresholds and reduced pain
perception, whereas cathodal stimulation lowered thresholds and
enhanced pain perception (16, 18, 19). Nonetheless, evidence from
non-cerebellar paradigms highlights important inconsistencies.
Batsikadze et al. (123) reported that cathodal tDCS over M1 at 2 mA
paradoxically enhanced excitability, producing facilitatory effects
similar to anodal stimulation. In line with this, Vimolratana et al.
(124) showed that both anodal and cathodal stimulation at 2 mA
increased muscle strength in healthy participants, while cathodal
stimulation at 1-1.5 mA produced the expected inhibitory effects.
Dyke et al. (125) added further nuance by showing that 2 mA
stimulation yields highly variable outcomes: while anodal stimulation
increased excitability at the group level, its effects were poorly reliable
within individuals, and cathodal stimulation failed to produce
consistent changes either within or between subjects. Overall, the
evidence suggests that, outside the cerebellum, 2 mA stimulation may
not reliably induce polarity-specific responses; instead, observed
changes may reflect non-linear or state-dependent physiology rather
than genuine polarity-dependent modulation. By contrast, in the
cerebellum, polarity-dependent effects of ctDCS have been
demonstrated: anodal tends to strengthen, whereas cathodal tends to
reduce, the cerebellar inhibitory influence on cortical excitability
(80). Importantly, any apparent polarity effects should be interpreted
in the context of effective intracerebellar field strength, montage-
dependent current distribution, and individual posterior fossa
morphology, which together determine target engagement and
downstream effects.

From a translational standpoint, montage selection and
stimulation parameters should be aligned with the intended
neuromodulatory goal. Future progress will depend on integrating
high-resolution imaging, individualized electric-field modeling, and
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systematic evaluation of stimulation intensity and dosing schedules to
consolidate polarity-sensitive interventions and establish the
therapeutic potential of ctDCS for chronic pain.

6 Future directions

Recent evidence supports a paradigm shift in pain neuroscience,
highlighting the cerebellum not merely as a motor structure but as a
central hub that integrates sensory, affective, and cognitive dimensions
of pain processing. In this context, ctDCS emerges as a promising
technique to modulate distributed pain-related networks.

One important gap in the current literature is the limited use of
inflammatory and neuroimmune biomarkers as outcome measures.
Experimental studies in neuropathic pain models suggest that tDCS
exerts anti-inflammatory and neuroprotective effects, including the
down-regulation of pro-inflammatory cytokines (e.g., TNF-a, IL-1p),
the up-regulation of IL-10, and the suppression of microglial and
astrocytic activation, thereby fostering adaptive plasticity and reducing
hypersensitivity (85, 86). Incorporating such biomarkers in clinical
trials may provide a translational link between molecular pathways
and behavioral outcomes, clarifying whether modulation of
neuroinflammatory cascades contributes to the analgesic effects of
tDCS, tACS, or rTMS in chronic, drug-resistant pain syndromes.

Another promising avenue is the use of multi-target stimulation
protocols. Preliminary evidence suggests that concurrent anodal
stimulation of M1 and the cerebellum can induce synergistic plasticity,
producing greater facilitatory effects than single-site stimulation
(126). Extending this rationale, combined cerebellar-spinal tDCS may
enhance descending modulatory control. Advances in computational
modeling and “deep NIBS” approaches also offer the possibility of
predicting and optimizing electric field distribution within deep
cerebellar nuclei and subcortical structures, providing novel,
non-invasive ways to engage circuits traditionally considered
inaccessible (127).

Finally, the integration of neurophysiological and imaging
techniques (e.g., EEG, fMRI, TMS) remains essential to clarify the
mechanisms of ctDCS and identify biomarkers predictive of treatment
response. Such multimodal approaches will not only improve
mechanistic understanding but also guide the development of
personalized and network-oriented stimulation strategies.

Overall, future research should prioritize biomarker-based
validation, multi-target stimulation designs, and multimodal
neurophysiological assessments. This integrative approach may
enhance reproducibility, reduce variability, and consolidate ctDCS as
a precision tool for mechanism-based interventions in chronic pain.

7 Limitations

When interpreting the findings of this review, several limitations
must be acknowledged. First, most studies included small sample sizes
predominantly composed of healthy young female participants, which
limits statistical power and reduces the generalizability of results to
clinical populations. Second, the widespread use of single-session
ctDCS protocols prevents meaningful conclusions about cumulative
or long-term effects. As tDCS-induced plasticity relies on activity-
dependent mechanisms, both the number and frequency of sessions
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are likely to influence clinical outcomes. Therefore, longitudinal
studies involving repeated ctDCS applications are needed to evaluate
the durability and therapeutic relevance of its effects over time.

Third, another important limitation is the absence of advanced
neuroimaging techniques—such as functional near-infrared
spectroscopy and functional magnetic resonance imaging—which
hinders mechanistic interpretation. Without such tools, it remains
unclear whether observed changes in pain perception result from
direct cerebellar modulation or downstream effects on broader
cortical networks. Integrating multimodal neuroimaging in future
research could enhance mechanistic understanding and support the
development of more targeted and effective interventions.

Fourth, a further limitation relates to the prevalent use of 2 mA
stimulation. Evidence from M1 tDCS indicates that cathodal
stimulation at 2 mA may fail to produce the canonical inhibitory effect
and can even yield facilitatory changes; although this has not been
demonstrated directly for ctDCS, several studies in this review using
2 mA have reported polarity-dependent analgesic effects. Given
target-specific differences between M1 and the cerebellum,
interpretations of cathodal ctDCS at 2 mA should be made with
caution. Future trials should include systematic dose-response
comparisons (e.g., 1-1.5 mA vs. 2-4 mA), immediate and delayed
outcome assessments, and repeated-session designs to clarify
intensity—polarity interactions.

Fifth, heterogeneity in stimulation parameters—spanning
electrode montage, current polarity, session duration, and outcome
measures—complicates cross-study comparisons. Standardized
reporting and methodological harmonization are essential for
improved reproducibility and the identification of optimal
stimulation protocols.

Sixth, only a small number of studies included clinical
populations, and those that did focused primarily on individuals with
phantom limb pain—a condition characterized predominantly by
neuropathic mechanisms. As a result, it remains uncertain whether
similar effects would be observed in other pain phenotypes, such as
nociplastic pain (e.g., fibromyalgia), nociceptive pain (e.g.,
osteoarthritis), or other neuropathic conditions (e.g., diabetic
neuropathy). These conditions differ in their underlying neurobiology,
including degrees of central sensitization, descending pain inhibition,
and ongoing peripheral input, all of which may influence
responsiveness to ctDCS. Future studies should explicitly address
these pain subtypes to clarify the broader applicability of
cerebellar stimulation.

Seventh and lastly, the influence of individual psychological and
biological characteristics—such as anxiety, pain catastrophizing, pain
sensitivity, and placebo responsiveness—was rarely considered in the
reviewed studies. Incorporating psychometric and biological markers
in future protocols will be essential for elucidating interindividual
variability in response to ctDCS and for guiding the development of
personalized neuromodulatory interventions.

8 Conclusion

The ctDCS has emerged as a promising non-invasive technique
for modulating nociceptive processing and may provide therapeutic
benefits for individuals with chronic pain—even after a single
session. However, its clinical efficacy is shaped by a complex
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of
psychological factors that influence individual responsiveness

interplay anatomical, neurochemical, cognitive, and
to neuromodulation.

To enhance its translational potential, ctDCS should be integrated
into personalized, network-based strategies, ideally in combination
with stimulation of other cortical regions. Optimizing protocols—
through tailored selection of stimulation parameters, electrode
montage, and dosing schedules—requires mechanistic insight and
careful consideration of patient-specific features. Incorporating
neurophysiological and neuroimaging assessments within a
biopsychosocial framework will be essential for refining interventions
and identifying biomarkers of treatment response.

Collectively, the available evidence indicates that the effects of
ctDCS in chronic pain are modulated by neurochemical,
inflammatory, and genetic factors. Addressing these dimensions
through precision neuromodulation approaches will be key to
improving clinical outcomes and establishing ctDCS as a viable

therapeutic tool in pain management.
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