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PD: NK1 cells as key mediators
from a bioinformatics perspective
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Introduction: Parkinson’sdisease (PD)is characterized by progressive degeneration
of dopaminergic neurons in the substantia nigra and pathological aggregation
of a-synuclein. Although existing therapies alleviate clinical symptoms, however,
due to the unclear etiology, it remains impossible to completely halt this process
through currently available approaches. This study aims to elucidate molecular
mechanisms underlying PD pathogenesis and identify novel candidate biomarkers.
Methods: We integrated bioinformatics analysis of GEO datasets to pinpoint
pivotal genes in PD progression from metabolic and stem cell perspectives. Hub
genes were empirically validated using quantitative real-time polymerase chain
reaction (QRT-PCR) and western blotting in animal specimens. A combinatorial
predictive model was constructed and evaluated via nomogram. Single-cell
RNA sequencing (scRNA-seq) data from PD cohorts were interrogated to
localize cell-type-specific expression patterns of signature genes and delineate
subtype-specific mechanisms. Our analytical workflow entailed: differential
expression screening, functional enrichment, protein—protein interaction (PPI)
network construction, and machine learning (ML) algorithms.

Results: Our study reveals BMX and CA4 as key hub genes. Experimental
confirmation of their dysregulation in in vivo PD models. Development of a high-
accuracy PD prediction model (AUC >0.6). scRNA-seq analysis identified an NK cell
subtype (NK1) enriched with CA4 expression. KEGG pathway analysis of NK1 marker
genes implicated their role in neuroimmune crosstalk during PD progression.
Discussion: This work establishes a novel CA4-NK1-PD axis, providing a potential
therapeutic entry point for future interventions.
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1 Introduction

PD is a neurodegenerative disorder marked by the progressive loss of dopaminergic
neurons in the substantia nigra and the abnormal aggregation of a-synuclein (x-syn). Despite
recent advances in PD research, due to the unclear etiology (1), it remains impossible to
completely halt this process through currently available approaches. Standard treatments,
including levodopa, dopamine receptor agonists, deep brain stimulation (DBS) of the
subthalamic nucleus (STN) or internal globus pallidus (GPi), and rehabilitative interventions,
frequently lead to motor complications (such as motor fluctuations and dyskinesia),
neuropsychiatric side effects (such as schizophrenia), and limited effectiveness for non-motor
symptoms (such as sleep disorders, olfactory dysfunction, autonomic dysfunction, and
cognitive and neuropsychiatric disturbances) (2). Therefore, it is crucial to clarify the
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molecular mechanisms of PD pathogenesis and discover new
biomarkers, which are vital for early diagnosis, targeted treatment, and
prognostic assessment.

Metabolism is fundamental to cellular function and homeostasis,
especially in the energy-intensive central nervous system (CNS). CNS
energy metabolism is heavily reliant on mitochondrial oxidative
phosphorylation. In Parkinson’s disease, dopaminergic neurons in the
substantia nigra show significantly decreased mitochondrial complex
T activity, resulting in impaired ATP production and increased reactive
oxygen species (ROS) generation, which perpetuates a cycle of
Additionally,
dysregulated lipid metabolism—for example, ceramide accumulation—

metabolic dysfunction and oxidative stress (3).

has been shown to facilitate a-synuclein oligomerization (4), while iron
dysregulation exacerbates neuronal loss through ferroptosis (5, 6).

Stem cell-based therapies have recently emerged as a promising
and potentially transformative approach for treating Parkinson’s
disease. By differentiating into functional dopaminergic neurons,
secreting neurotrophic factors, and modulating neuroinflammation,
stem cells offer novel avenues to reconstruct the damaged basal
ganglia circuitry (7, 8). These strategies address two fundamental
limitations of traditional therapies: (1) the irreversible loss of
dopaminergic neurons, necessitating cellular replacement to restore
striatal dopamine levels; and (2) the need for neuroprotection and
microenvironmental repair, including suppression of chronic
inflammation and oxidative stress, to slow disease progression.
However, it remains unclear whether neural stem cells are involved in
PD pathogenesis (9) or whether metabolic alterations and stem cell
dynamics interact during the disease course (10).

This study explores PD through metabolic and stem cell lenses by
integrating bioinformatics analyses of single-cell and bulk RNA
sequencing data. We identified key genes and cell types associated
with PD progression and validated the diagnostic performance of a
gene-based classifier using SHAP modeling and nomogram
construction. We investigated the involvement of natural killer (NK)
cells in the pathophysiology of PD and analyzed the importance of
increased CA4 expression in these cells to understand the molecular
immune mechanisms in PD. Collectively, our findings offer novel
insights that may inform future research and therapeutic strategies for
Parkinson’s disease.

2 Methods
2.1 Data acquisition and preprocessing

The Gene Expression Omnibus (GEO) database provides a
comprehensive repository for microarray and high-throughput
sequencing data (11). Raw expression data from four GEO datasets—
GSE99039, GSE18838, GSE6613, and GSE57475—were retrieved. The
raw CEL files were processed using the “affy” R package (v1.74.0, https://
bioconductor.org/packages/affy) (12), which includes background
correction, normalization, and probe summarization. Corresponding
platform annotation files (GPL570, GPL5175, GPL96, and GPL6947)
were downloaded to map probe IDs to gene symbols. Probes without
corresponding gene symbols were excluded, and for genes with multiple
probes, the average expression value was used to represent the gene.

The training dataset was created by merging GSE99039 and
GSE18838, followed by batch effect removal using the “sva” package
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(v3.50.0) (13). GSE6613 and GSE57475 served as external validation
datasets. The “limma” package (v3.52.4, https://bioconductor.org/
packages/limma) (14) was utilized to identify differentially expressed
genes (DEGs) between PD and control samples. Genes with p < 0.05
were considered differentially expressed (15).

2.2 Pathway enrichment analysis

Gene set enrichment analysis (GSEA) (16) assessed the statistical
significance of differences in predefined gene sets between PD and
control conditions. The “h.all.v7.5.1.symbols” hallmark gene set was
downloaded from the Molecular Signatures Database (MSigDB) (17),
and subjected to GSEA analysis with significance defined as p < 0.05.
The “clusterProfiler” package (v4.10.0, https://bioconductor.org/
packages/clusterProfiler) (18) was utilized for functional enrichment
analyses, such as Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis, to investigate the
biological processes linked to potential therapeutic target genes. GO
terms were classified into biological process (BP), cellular component
(CC), and molecular function (MF), with significance determined by
an adjusted p-value of less than 0.05.

2.3 WGCNA identifies pathogenic genes

Based on transcriptomic data from the training set, with PD and
Control groups assigned as phenotypic traits for WGCNA, the expression
matrix of all genes was used as input. Weighted Gene Co-expression
Network Analysis (WGCNA) is a method used to identify clusters
(modules) of highly correlated genes, summarize these clusters using the
module eigengene or an intramodular hub gene, relate modules to one
another and to external sample traits, and calculate module membership
measures. This approach helps in understanding the correlation patterns
among genes across microarray samples.

The “WGCNA” package (v1.71) (19) was utilized to conduct
WGCNA on the training dataset, aiming to identify co-expression
gene modules linked to PD. All expressed genes were used as input,
with phenotype traits defined by PD versus control status. Sample
clustering was applied to detect and remove outliers. The soft-
thresholding power f was chosen to ensure scale-free topology.
Modules were constructed with a minimum module size of 200 genes.
The modules most positively and negatively correlated with PD were
their
downstream analysis.

retained, and constituent genes were used for

2.4 ldentification of PD-associated stem
cell and metabolic genes

Metabolism-related genes were collected from MSigDB by
querying for the keyword “metabolism” across HALLMARK, KEGG,
and REACTOME gene sets (17). Stem cell-related genes were obtained
from the StemChecker database, which includes 26 curated gene sets
(21). Intersections were computed between DEGs, PD-associated
module genes (from WGCNA), metabolic genes, and stem cell genes.
The overlapping genes were analyzed for GO and KEGG enrichment
using the “clusterProfiler” tool (18).
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2.5 Construction of protein—protein
interaction network

To investigate the protein interactions among intersecting genes,
the STRING database (v12.0) (20) was used to construct a PPI
network using a combined score >0.15 as the threshold. Key clusters
were identified using the MCODE plugin (v2.0.3) in Cytoscape
v3.10.2 (22). Four topological analysis algorithms—MCC, MNC,
Degree, and EPC—implemented in the cytoHubba plugin (v0.1) (23)
were employed to rank the top 30 hub genes. Genes common to all
four rankings were defined as final hub genes.

2.6 Feature gene selection and diagnostic
model construction via machine learning

Twelve machine learning algorithms were employed to identify
robust diagnostic gene signatures: Random Forest (RF), Least
Absolute Shrinkage and Selection Operator (Lasso), Ridge, Elastic Net
(Enet), Stepwise GLM, Support Vector Machine (SVM), glmBoost,
Linear Discriminant Analysis (LDA), Gradient Boosting Machine
(GBM), eXtreme Gradient Boosting (XGBoost), and Naive Bayes. The
models underwent 10-fold cross-validation training on the training
dataset and were assessed using validation datasets. The model’s
diagnostic accuracy was evaluated using the area under the receiver
operating characteristic curve (AUC), with the model exhibiting the
highest mean AUC across validation datasets chosen for
further analysis.

2.7 Validation of feature gene expression
and ROC analysis

The expression of feature genes was compared between PD and
control samples using the Wilcoxon test. The “pROC” package
(v1.18.5) (24) was utilized to compute ROC curves and AUC values
for assessing diagnostic performance in both training and validation
datasets. Genes with p < 0.05 and AUC >0.6, and consistent expression
trends across datasets, were retained for downstream analysis.

2.8 Immune cell infiltration and correlation
with feature genes

Given the role of immune infiltration in PD pathology, immune
cell fractions were estimated using the CIBERSORT algorithm (25).
Differences in immune cell composition between PD and control
groups were analyzed, and Spearman correlation was used to assess
associations between immune cells and diagnostic genes. Heatmaps
were generated to visualize correlation patterns.

2.9 Molecular mechanisms underlying
diagnostic scores

GeneMANIA (26) was utilized to construct co-expression

networks for investigating potential biological interactions of
diagnostic markers. PD samples were divided into high- and low-score
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groups using the median diagnostic score as a threshold. GSEA was
then performed to identify enriched pathways. Additionally, hallmark
pathway enrichment scores were calculated using the GSVA algorithm
(27), and differential enrichment was tested using “limma”
Correlations between diagnostic scores and hallmark gene sets were
also assessed.

2.10 SHAP-based model interpretation

To interpret the final prediction model, we applied the SHAP
(SHapley Additive exPlanations) algorithm. Global interpretations
were visualized using SHAP summary plots, which illustrate the mean
contribution of each feature to the model, thereby characterizing the
model’s overall behavior. SHAP was applied to the baseline model to
address both regression and classification tasks (28).

2.11 Nomogram construction

A diagnostic nomogram for PD was developed using the
characteristic genes and their expression levels from both control and
PD groups. The nomogram was developed using the “rms” package
(Version 6.8-1) in R (29). The nomogram represents a regression
model by assigning scores to predictors according to their regression
coeflicients. A total score is then calculated for each subject and
translated into a predicted probability of PD occurrence through a
mapping function. Calibration and decision curve analyses evaluated
the model’s accuracy and clinical utility.

2.12 Single-gene GSEA analysis

Samples in the training cohort were categorized into high- and
low-expression groups according to the expression levels of the
selected signature genes. GSEA utilized the “limma” algorithm to
calculate log fold changes between the groups. The reference gene set
used was “c2.cp.kegg_legacy.v2023.2.Hs.symbols.gmt,” with a
significance threshold of p < 0.05.

2.13 Forecasting drug interactions and
molecular docking

Candidate drugs targeting the identified signature genes were
sourced from the DrugBank database' (30). Molecular docking
analyses were performed using AutoDock. Protein crystal structures
were obtained from the Protein Data Bank (PDB, https://www.rcsb.org)
(31). PyMOL was used to remove water molecules and native ligands.
Proteins were prepared using AutoDock Tools by adding hydrogens,
calculating charges, and merging nonpolar hydrogens. Docking
simulations were executed in AutoDock Vina by setting appropriate
grid box sizes and genetic algorithm parameters. Visualization of

1 https://go.drugbank.com
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docking results was conducted in Discovery Studio 2019 (32). Drug
structures were sourced from the PubChem database (33).

2.14 Single-cell RNA-seq data analysis

The GSE157783 PD single-cell transcriptomic dataset was analyzed
with the Seurat package (Version 4.3.0, https://cran.r-project.org/web/
packages/Seurat/index.html) (34). Quality control was performed with
thresholds of nFeature RNA >200 and <7,000, and cells with >20%
mitochondrial gene expression were excluded. PCA was performed
using the 2,000 most variable genes. The Harmony algorithm was
employed to correct batch effects. Dimensionality reduction was
performed using UMAP on the top 20 principal components, and
clustering was subsequently conducted at a resolution of 0.5.

Cell clusters were annotated using literature and marker genes
from the CellMarker 2.0 database (35), a detailed resource of
experimentally validated markers for human and mouse tissues.
Diagnostic scores for individual cells were assessed using GSVA, based
on the expression levels of identified signature genes. Cells with the
highest diagnostic scores were selected for subsequent analyses.

2.15 Cell-cell communication and ligand—
receptor interaction analysis

Intercellular communication between cell populations was
inferred using the CellChat R package (Version 1.6.1) (36). This
framework forecasts interaction strength by analyzing the expression
levels of immune-related ligands and receptors. CellChat contains a
curated database encompassing multimeric ligand-receptor
complexes, soluble agonists/antagonists, and membrane-bound
co-receptors with activating or inhibitory functions. Interaction
inference involved the identification of differentially expressed
signaling genes, integration of average expression and communication
probabilities, and determination of statistically significant
communication events. Communication networks were compared

between normal and PD samples across cell types.

2.16 Subpopulation analysis of
high-scoring cells

Subcluster analysis was performed on cells with the highest
diagnostic scores. Cell identities and subclusters were annotated using
marker genes from CellMarker 2.0 and relevant literature (37, 38).
Subclusters were defined based on differentially expressed top marker
genes. Hierarchical clustering of enriched signaling pathways
highlighted distinct expression patterns among DEGs across clusters.
The proportions of each subpopulation were compared between
normal and PD tissues.

2.17 Pseudotime trajectory analysis of cell
subpopulations

Pseudotime trajectory analysis was performed on the
subpopulations using Monocle (v2.30.1) (39) to investigate lineage
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dynamics. UMI count matrices were imported from Seurat objects to
create CellDataSet objects using the “newCellDataSet” function.
Statistical models were constructed via “estimateSizeFactors” and
“estimateDispersions.” Dimensionality reduction was performed with
DDRTree through the “reduceDimension” function, followed by
trajectory ordering using “orderCells” Branch-dependent gene
expression modeling was also performed. The resulting trajectories
delineated cell states, pseudotime, and potential lineage transitions.

2.18 Parkinson’s disease mouse modeling

Mouse modeling were performed following the standard methods
(40, 41): Male C57BL/6] mice (9 weeks old) were randomly assigned
to MPTP-treated (n = 8) and saline control (n = 8) groups. To model
subacute Parkinson’s disease progression, mice received daily
intraperitoneal injections of MPTP (30 mg/kg in saline) for 5
consecutive days. Control animals were injected with equivalent
volumes of sterile saline. All mice were maintained in temperature-
controlled dark chambers for 24h post-injection to prevent
hypothermia. Motor impairments were assessed on day 5 post-
modeling. Midbrain substantia nigra tissues were harvested for:
qRT-PCR, western blot and immunofluorescence.

2.19 RNA extraction and real-time PCR

Trizol reagent was used to extract total RNA following manufacturer
instructions. RNA reversed transcription using PrimeScriptTM RT
reagent Kit (YEASEN), and analyzed by quantitative PCR (qPCR) using
SYBR Premix Ex TaqTM II (YEASEN) in ABI Q3 system. Relative gene
expression was normalized to GAPDH. qPCR primers were as follows:

Forward 5' . 3

CA4 TACGTGGCCCCCTCTACTG GCTGATTCTCCTTACAGGCTCC
Bmx GCTCCCACTTTCCCAGAGAG TTGGGGTAGAATGGCACCTG
Gapdh AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA

2.20 Cell lysis solution and western blots

Tissue samples (100 mg wet weight) were homogenized in 1 mL
ice-cold RIPA lysis buffer supplemented with 1 mM PMSF protease
inhibitor. Protein concentrations were tested by BCA kit and
equivalent proteins were loaded into SDS-PAGE. Following western
blots were performed according to standard procedures. The primary
antibodies were list as follow:

« Anti-CA4 (Proteintech, Cat#85706-1-RR).
« Anti-BMX (Proteintech, Cat#27413-1-AP).
2.21 Immunofluorescence
Paraffin-embedded tissue sections were subjected to standard
deparaffinization and rehydration. Following antigen retrieval,

sections were incubated with primary antibodies at 37 °C for 1 h
under light-protected conditions. After three 5-min PBS washes,
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fluorescent secondary antibodies were applied at 37 °C for 30 min
with light protection. Sections were then thoroughly rinsed with
PBS buffer, counterstained with DAPI (5 min), and mounted for
imaging. Fluorescence visualization was performed using a digital
slide scanner (3DHISTECH, Hungary). The primary antibodies
were list as follow:

o Anti-CA4 (Proteintech, Cat#85706-1-RR, 1:500).
o Anti-BMX (Proteintech, Cat#27413-1-AP, 1:200).

The secondary antibody were list as follow:

o Cy3-conjugated goat anti-rabbit IgG (H+ L) (Beyotime,
Cat#A0516).

2.22 Statistical analysis

All statistical analyses were performed using SPSS Statistics
(Version 27.0; IBM Corp., Armonk, NY, United States). Data
visualization was conducted with GraphPad Prism (Version 9.2;

10.3389/fneur.2025.1681261

GraphPad Software, Inc., San Diego, CA, United States). Quantitative
data underwent normality assessment via Shapiro-Wilk testing.
Normally distributed variables are presented as mean + standard
deviation (SD) and compared between groups using two-tailed

Student’s t-tests. Statistical significance was defined as p < 0.05.

3 Results

3.1 Identification of differentially expressed
genes and enrichment analysis

To mitigate batch effects between datasets GSE99039 and
GSE18838, we performed batch correction and merged the two
datasets, resulting in a combined cohort of 222 PD samples and 244
control samples (Figure 1A). Analysis of differential expression
between PD and control groups revealed 2,221 DEGs, comprising
1,183 upregulated and 1,038 downregulated genes (Figure 1B).

GO and KEGG enrichment analyses were performed to investigate
the biological functions and pathways linked to the DEGs displays the
top five enriched terms for each GO category (Figures 1C,D). In the
biological process category, DEGs showed significant enrichment in
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terms related to cellular carbohydrate metabolism regulation and
brainstem development, indicating a strong link to metabolism and
neural stem cell regulation. Significant enrichment was identified in
the cytolytic granule, beta-catenin-TCF complex, and secondary
lysosome within the CC category.

KEGG pathway analysis identified enrichment in immune
response and metabolic pathways, such as choline metabolism in
cancer, natural killer cell-mediated cytotoxicity, and central carbon
metabolism in cancer. GSEA revealed that PD samples showed
increased activity in immune-related pathways, including the Toll-
like receptor signaling pathway and natural killer cell-mediated
cytotoxicity, alongside decreased activity in metabolic pathways like
ascorbate and aldarate metabolism (Figures 1E,F). These findings
highlight the involvement of natural killer (NK) cell activity,
immune dysregulation, and metabolic alterations in the
pathogenesis of PD.

10.3389/fneur.2025.1681261

3.2 WGCNA identifies pathogenic genes
interlinked with stem cell and metabolic
genes

WGCNA was conducted with PD and Control serving as
phenotypic traits. The soft-thresholding power was determined to
be 7, marking the initial point where the scale-free topology fit index
(R?) achieved 0.85 (red line) (Figures 2A,B). Genes were clustered into
modules using hierarchical clustering combined with dynamic tree
cutting, resulting in seven modules excluding the grey module.
Module-trait relationships were subsequently assessed, identifying the
turquoise and red modules as most significantly correlated with
phenotype (Figure 2C). Further correlation analysis between these
two modules and phenotypic traits was performed (Figures 2D,E).

The 2,586 and 796 genes from the turquoise and red modules,
respectively, were intersected with the upregulated and downregulated
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DEGs, yielding 609 and 134 overlapping genes. Merging these resulted
in a total of 743 genes (Supplementary Figure S1). Based on the
enrichment results highlighting stem cell and metabolic processes,
we extracted 3,120 metabolism-related genes from the Molecular
Signatures Database using the keyword “metabolism” and identified
5,046 stem cell-related genes from 26 gene sets in StemChecker.
Intersection of these three gene sets identified 38 overlapping genes
(Figure 2F).

Enrichment analyses of the 38 intersecting genes using the
“clusterProfiler” package for GO and KEGG revealed a significant
association with metabolic pathways (Figures 2G-J).

3.3 Development of a PPl network and
application of machine learning for feature
gene detection and ROC analysis

PPI network for the specified genes was constructed using
STRING, applying a minimum interaction score threshold of 0.15.
Genes MID1IP1 and STARDI10, which were absent from the
network, were excluded, resulting in 36 genes retained for

10.3389/fneur.2025.1681261

subsequent analyses (Figure 3A). The MCODE plugin was utilized
for clustering analysis to detect densely connected regions
(Supplementary Figure S2). Through the intersection of four distinct
algorithms, 29 hub genes were identified (Figure 3B). Expression
profiles of these shared model genes and PD status were extracted
from both training and validation cohorts. Prognostic models were
constructed by integrating 12 different machine learning algorithms
in various combinations. Based on concordance indices (C-indices)
across training and validation sets, a combined Stepwise GLM (both
directions) and Random Forest (RF) model was selected for
prognostic prediction (Supplementary Figure S3). This model
achieved a C-index of 0.996 in the training set, 0.611 in GSE6613,
and 0.902 in GSE57475, with an average C-index of 0.836.
Ultimately, six feature genes were prioritized: DHX9, BMX, PDK1,
CA4, SMG7, and RBM17. Notably, BMX and CA4 exhibited
significant differential expression between PD and control groups in
both training and validation cohorts (Figures 3C,E,G). Receiver
operating characteristic (ROC) curve analyses further confirmed the
strong predictive performance of these feature genes
(Figures 3D,FH). BMX and CA4 were therefore selected for
downstream analyses.
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3.4 Validation of BMX and CA4
upregulation in the substantia nigra of
Parkinson'’s disease model mice

To verify bioinformatically predicted dysregulation of BMX and
CA4, qQRT-PCR analysis was performed on substantia nigra tissues
from PD model mice and controls (# = 4 mice/group). Using GAPDH
as endogenous control, relative mRNA expression was shown in
Figures 4A,B: BMX (p < 0.001) and CA4 (p = 0.003) transcript levels
increased in PD (p <0.05). Western blotting further confirmed
protein-level alterations,and quantification revealed significant
upregulation (p <0.001) 4C,D).
Immunohistochemical analysis of tissue microarrays (n = 4/group)

in PD group (Figures
localized enhanced expression of both targets within nigral tissues of
PD mice (Figure 4E).

3.5 Based on GSVA scoring and GSEA
analysis of the two feature genes, followed
by drug docking

The GeneMANIA database was utilized to conduct a protein—
protein interaction (PPI) analysis involving the two feature genes and
20 associated interacting genes (Figure 5A) predicting correlations
among co-localization, shared protein domains, co-expression, and

10.3389/fneur.2025.1681261

pathways. The genes were enriched in functions such as “peptidyl-

» o«

tyrosine modification,

«

regulation of peptidase activity, and
pyruvate metabolic process” Gene Set Enrichment Analysis (GSEA)
of GO and KEGG pathways was performed to compare samples with
high and low GSVA scores. A total of 22 KEGG pathways and 827 GO
terms showed significant enrichment at a p-value threshold of 0.05.
The top five upregulated and top five downregulated pathways are
shown in Figures 5B,C. Using the GSVA algorithm, hallmark gene set
enrichment scores were calculated for each sample, and correlations
between the GSVA score and hallmark enrichment scores were
assessed (Figure 5D).

Based on KEGG gene sets, GSEA revealed signaling pathways
associated with the two feature genes under thresholds of adjusted
P <0.05and |NES| >1 (Figure 5E). Both BMX and CA4 regulated the
“RIBOSOME” pathway, but showed opposite regulatory trends in the
“NEUROACTIVE LIGAND RECEPTOR INTERACTION” pathway.

For drug docking, compounds corresponding to the two feature
genes were retrieved from DrugBank. The protein structures
corresponding to BMX and CA4 were obtained from the PDB
database (PDB IDs: 8X2A and 3F7B, respectively). BMX protein was
docked with zanubrutinib (binding energy —6.24 kcal/mol)
(Figure 5F), ritlecitinib (—5.06 kcal/mol), and fostamatinib
(—5.05 kcal/mol) (Supplementary Figures S4A,B). CA4 protein was
docked with (—4.86 kcal/mol), methazolamide
(—4.63 kcal/mol) (Supplementary Figures S4C,D), and dorzolamide
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(—6.81 kcal/mol) (Figure 5G). Binding energies below —4.5 kcal/
mol suggest spontaneous interactions with strong stability
and affinity.

3.6 Model interpretation using SHAP and
construction of diagnostic nomogram

The final predictive model was interpreted using the SHAP
method, revealing that both BMX and CA4 contribute significantly to
the global model variables (Figure 6A). The global distribution of
SHAP values for both genes showed that higher expression levels
predominantly correspond to positive SHAP values (right side of zero)
(Figure 6B) suggests that elevated BMX and CA4 expression correlates
with an increased risk of PD. The combined prediction using BMX
and CA4 improved accuracy (Figure 6C), with ROC curves exceeding
0.8, demonstrating good predictive performance (Figure 6D).

To evaluate the combined diagnostic capability of BMX and CA4
for PD, both genes were incorporated into a nomogram (Figure 6E).
Calibration and decision curve analyses confirmed the nomogram’s
accuracy and clinical utility (Figures 6F,G). ROC curve analysis
indicated that the nomogram attained AUC values exceeding 0.6 in
both the training and validation cohorts (Figures 6H-]), indicating
satisfactory predictive efficacy.
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3.7 PD single-cell atlas and intercellular
communication

Based on the single-cell dataset GSE157783, comprising 5 PD
samples and 6 Control samples, quality control was performed
(Figure 7A), yielding 41,189 high-quality cells for subsequent
analysis. PCA was performed on the 2,000 most variable genes, and
batch effects were corrected using Harmony (Figure 7B). The
UMAP algorithm was utilized for dimensionality reduction and
clustering, resulting in 20 unique cell clusters. These clusters were
annotated into 10 cell types, with their respective proportions
shown in Figure 7C: oligodendrocytes, monocytes, CD8" T cells,
neural stem cells, endothelial cells, progenitors, astrocytes,
inhibitory neurons, excitatory neurons, NK cells, and fibroblasts
(Figure 7D).

Cell-cell communication analysis was conducted across all cell
populations (Figures 7E,F), alongside evaluation of signaling
pathways and ligand-receptor pair activation involved in cellular
interactions (Figure 7G), as well as differences in activation
between PD and Control groups. Intercellular communication was
predicted based on specific pathways and ligand-receptor pairs
(Figure 7H). The results revealed that although the number of
the the
communication intensity was markedly increased, particularly

communicating cells decreased in PD group,
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among excitatory neurons, astrocytes, CD8" T cells, and NK cells.
Inflammation-related pathways were notably activated in
PD samples.

3.8 Expression patterns of feature genes
and corresponding changes in cell
subclusters in single-cell data

We analyzed the expression patterns of BMX and CA4 genes in
the single-cell dataset (Figure 8A). BMX was found to be broadly
expressed across all 10 cell types, whereas CA4 showed high
expression specifically in NK cells and endothelial cells.
We calculated the ssGSEA scores of six feature genes (DHX9, BMX,
PDK1, CA4, SMG7, and RBM17) in the annotated cell populations
(Figure 8B), indicating that NK cells showed the most pronounced
differential expression compared to other cell types. Therefore, NK
cells were selected as the core cell population for
subsequent analyses.

Re-clustering of NK cells revealed three distinct subclusters,
designated as NK1, NK2, and NK3 (Figure 8C). Comparing the

proportions of these subclusters between PD and Control groups
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revealed that NK2 and NK3 proportions were significantly lower in
PD, whereas NK1 was significantly enriched in PD samples
(Figure 8D). Expression analysis within these subclusters showed that
CA4 was highly expressed in the NK1 subcluster (Figure 8E).

We further extracted NK subpopulations and performed
pseudotime trajectory analysis using Monocle2 (Figure 8F). Tracking
the expression dynamics of feature genes along the pseudotime
trajectory indicated a differentiation trajectory oriented toward the
NK1 subcluster. Scatter plots of gene expression levels confirmed
notably higher CA4 expression in NK1 compared to NK2 and NK3
(Figure 8G).

To clarify the functional characteristics of NK subclusters,
we combined gene heatmap data (Figure 8H) and observed that NK1
cells highly express genes such as UNC13C, CADPS2, and MSRA,
which are involved in processes like neuron- and endocrine cell-
mediated secretory granule exocytosis, antioxidant maintenance of
mitochondrial function, and cell survival. KEGG enrichment analysis
of the NK1
(Supplementary Figure S5) demonstrated enrichment in pathways

hallmark genes specifically expressed in
including calcium-cAMP secretion, dopaminergic and glutamatergic
synapse, and axon guidance (Figure 8I), highlighting the role of NK1

cells in cytotoxic granule release, synapse formation, and axon guidance.
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Discussion

PD involves complex pathological mechanisms, including
dopaminergic neuron degeneration, o-synuclein aggregation,
neuroinflammation, mitochondrial dysfunction, and various
interacting processes (42). This study investigates PD through
metabolic and stem cell perspectives, employing scRNA-seq and
extensive bulk RNA-seq data for comprehensive bioinformatics
analysis. Our study highlights the pivotal role of the CA4 gene and NK
cells in PD development and progression, offering novel insights into
its pathogenesis and potential therapeutic targets. The following
discussion focuses on our core findings, innovations, and
translational potential.

Initially, RNA-seq data was utilized to identify DEGs between PD
and control groups. Subsequent GO functional annotation, KEGG
pathway enrichment, and GSEA analyses suggested involvement in
brainstem cell development and metabolic processes. By intersecting
the DEGs with PD-related up- and down-regulated gene modules
identified through WGCNA, we identified 743 genes. Further
intersecting with stem cell- and metabolism-related genes yielded 38
genes. GO and KEGG enrichment of these 38 genes again emphasized
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metabolism-related pathways, with no significant enrichment in stem
cell-associated pathways, suggesting that endogenous neural stem cells
may not play a central role in PD progression.

Utilizing PPI network construction and integrated machine
learning techniques, we refined the initial set of 38 genes to six key
genes: DHX9, BMX, PDK1, CA4, SMG7, and RBM17. Among these,
only BMX and CA4 showed significant differential expression in both
training and validation datasets. Our characteristic genes
demonstrated good performance in ROC curve analysis, SHAP values,
and nomogram models. The combined diagnostic model based on
these two genes showed high accuracy and predictive power. Given
that clinical diagnosis of PD remains challenging in early stages due
to lack of reliable biomarkers despite clear clinical manifestations (43),
our findings contribute to building a more precise and comprehensive
diagnostic model for PD. Additionally, we identified potential drug
targets and corresponding compounds for these two genes through
the DrugBank database, laying a foundation for subsequent drug
intervention studies.

In the scRNA-seq atlas, we identified 10 core cell types and
performed cell-cell communication analysis. Although the number of
communicating cells decreased in the PD group, the communication
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strength was significantly enhanced, with more frequent interactions
among excitatory neurons, astrocytes, CD8" T cells, and NK cells.
Inflammation-related pathways showed significant activation in PD. The
activation of glial cells and inflammatory cells, as well as their interactions
with neurons, are crucial in the onset and progression of PD (44-46),
which aligns with current research findings.

In our scRNA-seq analysis of BMX and CA4 gene expression
patterns, we found that BMX was broadly expressed across all 10 cell
types, while CA4 showed high expression in NK cells and endothelial
cells. The ssGSEA scores from six characteristic genes indicate that NK
cells are crucial in PD pathogenesis.

Traditionally, neuroinflammation in PD has been mainly
attributed to microglia and T cells (47-49), while the role of NK
cells has long been overlooked. Our findings challenge this
paradigm. Recent single-cell sequencing studies have further
revealed significant phenotypic and functional alterations of NK
cell subsets in the peripheral blood and cerebrospinal fluid of PD
patients, indicating their potential association with disease
progression (50, 51). Previous studies reporting increased NK cell
numbers mostly sampled peripheral blood and cerebrospinal fluid,
whereas our study used midbrain substantia nigra tissue for
single-cell sequencing, providing a more precise conclusion.
However, the specific mechanisms and regulatory networks of NK
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in PD
in-depth investigation.

cells remain controversial and require further

We performed reclustering of NK cells and identified three
subclusters. Pseudotime analysis of NK cells revealed a differentiation
trajectory toward the NK1 subset. In the UMAP plot, the CA4 gene
was highly expressed in NK1 cells. This result suggests a key role for
CA4 in the progression of PD. Previous studies have indicated that NK
cells may have a double-edged sword effect in PD progression: they
can contribute to pathological protein clearance through immune
surveillance, thereby inhibiting disease development, but excessive
activation may lead to direct damage of vulnerable dopaminergic
neurons via the release of granzyme B (52, 53).

In this study, gene heatmap results and KEGG pathway enrichment
analysis of differential genes in NKI1 cells indicated involvement in
secretory granule exocytosis, CAMP signaling, calcium signaling,
dopaminergic neuron synapse formation, and axon growth. These
findings suggest that NK1 cells may participate simultaneously in
cytotoxic activity and neuroprotection. CA4 (carbonic anhydrase IV), as
a membrane protein, typically acts to alleviate acidic environments or
maintain pH homeostasis when its activity or expression is increased (54),
rather than directly causing acidification. We hypothesize that CA4
upregulation is crucial for NK cell survival in the acidic microenvironment

of PD, sustaining their physiological functions and enhancing migration.

frontiersin.org


https://doi.org/10.3389/fneur.2025.1681261
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Zhao et al.

Analysis revealed a significant increase in resting NK cells in the
PD group compared to controls, with a negative correlation between
CA4 expression and resting NK cells (Supplementary Figure S6).
This suggests that increased CA4 expression may help hinder PD
progression. Previous studies on midbrain dopaminergic neuron
lineages have shown that dopaminergic progenitor cells can
differentiate into dopaminergic neurons and glutamatergic neurons
(55). Our findings indicate that NK1 cells also influence the
formation of both glutamatergic and dopaminergic neurons,
implying that NK1 cells may affect the differentiation outcomes
following exogenous stem cell transplantation.

This study has certain limitations: (1) the scRNA-seq data sample
size is relatively small. (2) The regulatory mechanisms of characteristic
genes in NK cells are not yet fully understood, current experimental
evidence cannot demonstrate PD-specificity of this CA4-NK1-PD
axis, nor can it preclude its potential critical role in other
Alzheimer’s disease,

neurodegenerative conditions such as

highlighting a crucial area for future research.

5 Conclusion

Collectively, our study demonstrates that CA4 plays a pivotal role
in Parkinson’s disease pathogenesis. We further identified and
characterized the disease-associated NK1 cellular subset, unveiling
previously unrecognized neuroimmune mechanisms. These findings
enabled the development of a high-accuracy diagnostic model and
therapeutic compound prediction platform, revealing CA4-NK1-PD
axis as a promising target for future interventions.
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