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Introduction: Parkinson’s disease (PD) is characterized by progressive degeneration 
of dopaminergic neurons in the substantia nigra and pathological aggregation 
of α-synuclein. Although existing therapies alleviate clinical symptoms, however, 
due to the unclear etiology, it remains impossible to completely halt this process 
through currently available approaches. This study aims to elucidate molecular 
mechanisms underlying PD pathogenesis and identify novel candidate biomarkers.
Methods: We integrated bioinformatics analysis of GEO datasets to pinpoint 
pivotal genes in PD progression from metabolic and stem cell perspectives. Hub 
genes were empirically validated using quantitative real-time polymerase chain 
reaction (qRT-PCR) and western blotting in animal specimens. A combinatorial 
predictive model was constructed and evaluated via nomogram. Single-cell 
RNA sequencing (scRNA-seq) data from PD cohorts were interrogated to 
localize cell-type-specific expression patterns of signature genes and delineate 
subtype-specific mechanisms. Our analytical workflow entailed: differential 
expression screening, functional enrichment, protein–protein interaction (PPI) 
network construction, and machine learning (ML) algorithms.
Results: Our study reveals BMX and CA4 as key hub genes. Experimental 
confirmation of their dysregulation in in vivo PD models. Development of a high-
accuracy PD prediction model (AUC >0.6). scRNA-seq analysis identified an NK cell 
subtype (NK1) enriched with CA4 expression. KEGG pathway analysis of NK1 marker 
genes implicated their role in neuroimmune crosstalk during PD progression.
Discussion: This work establishes a novel CA4-NK1-PD axis, providing a potential 
therapeutic entry point for future interventions.
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1 Introduction

PD is a neurodegenerative disorder marked by the progressive loss of dopaminergic 
neurons in the substantia nigra and the abnormal aggregation of α-synuclein (α-syn). Despite 
recent advances in PD research, due to the unclear etiology (1), it remains impossible to 
completely halt this process through currently available approaches. Standard treatments, 
including levodopa, dopamine receptor agonists, deep brain stimulation (DBS) of the 
subthalamic nucleus (STN) or internal globus pallidus (GPi), and rehabilitative interventions, 
frequently lead to motor complications (such as motor fluctuations and dyskinesia), 
neuropsychiatric side effects (such as schizophrenia), and limited effectiveness for non-motor 
symptoms (such as sleep disorders, olfactory dysfunction, autonomic dysfunction, and 
cognitive and neuropsychiatric disturbances) (2). Therefore, it is crucial to clarify the 
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molecular mechanisms of PD pathogenesis and discover new 
biomarkers, which are vital for early diagnosis, targeted treatment, and 
prognostic assessment.

Metabolism is fundamental to cellular function and homeostasis, 
especially in the energy-intensive central nervous system (CNS). CNS 
energy metabolism is heavily reliant on mitochondrial oxidative 
phosphorylation. In Parkinson’s disease, dopaminergic neurons in the 
substantia nigra show significantly decreased mitochondrial complex 
I activity, resulting in impaired ATP production and increased reactive 
oxygen species (ROS) generation, which perpetuates a cycle of 
metabolic dysfunction and oxidative stress (3). Additionally, 
dysregulated lipid metabolism—for example, ceramide accumulation—
has been shown to facilitate α-synuclein oligomerization (4), while iron 
dysregulation exacerbates neuronal loss through ferroptosis (5, 6).

Stem cell-based therapies have recently emerged as a promising 
and potentially transformative approach for treating Parkinson’s 
disease. By differentiating into functional dopaminergic neurons, 
secreting neurotrophic factors, and modulating neuroinflammation, 
stem cells offer novel avenues to reconstruct the damaged basal 
ganglia circuitry (7, 8). These strategies address two fundamental 
limitations of traditional therapies: (1) the irreversible loss of 
dopaminergic neurons, necessitating cellular replacement to restore 
striatal dopamine levels; and (2) the need for neuroprotection and 
microenvironmental repair, including suppression of chronic 
inflammation and oxidative stress, to slow disease progression. 
However, it remains unclear whether neural stem cells are involved in 
PD pathogenesis (9) or whether metabolic alterations and stem cell 
dynamics interact during the disease course (10).

This study explores PD through metabolic and stem cell lenses by 
integrating bioinformatics analyses of single-cell and bulk RNA 
sequencing data. We identified key genes and cell types associated 
with PD progression and validated the diagnostic performance of a 
gene-based classifier using SHAP modeling and nomogram 
construction. We investigated the involvement of natural killer (NK) 
cells in the pathophysiology of PD and analyzed the importance of 
increased CA4 expression in these cells to understand the molecular 
immune mechanisms in PD. Collectively, our findings offer novel 
insights that may inform future research and therapeutic strategies for 
Parkinson’s disease.

2 Methods

2.1 Data acquisition and preprocessing

The Gene Expression Omnibus (GEO) database provides a 
comprehensive repository for microarray and high-throughput 
sequencing data (11). Raw expression data from four GEO datasets—
GSE99039, GSE18838, GSE6613, and GSE57475—were retrieved. The 
raw CEL files were processed using the “affy” R package (v1.74.0, https://
bioconductor.org/packages/affy) (12), which includes background 
correction, normalization, and probe summarization. Corresponding 
platform annotation files (GPL570, GPL5175, GPL96, and GPL6947) 
were downloaded to map probe IDs to gene symbols. Probes without 
corresponding gene symbols were excluded, and for genes with multiple 
probes, the average expression value was used to represent the gene.

The training dataset was created by merging GSE99039 and 
GSE18838, followed by batch effect removal using the “sva” package 

(v3.50.0) (13). GSE6613 and GSE57475 served as external validation 
datasets. The “limma” package (v3.52.4, https://bioconductor.org/
packages/limma) (14) was utilized to identify differentially expressed 
genes (DEGs) between PD and control samples. Genes with p < 0.05 
were considered differentially expressed (15).

2.2 Pathway enrichment analysis

Gene set enrichment analysis (GSEA) (16) assessed the statistical 
significance of differences in predefined gene sets between PD and 
control conditions. The “h.all.v7.5.1.symbols” hallmark gene set was 
downloaded from the Molecular Signatures Database (MSigDB) (17), 
and subjected to GSEA analysis with significance defined as p < 0.05. 
The “clusterProfiler” package (v4.10.0, https://bioconductor.org/
packages/clusterProfiler) (18) was utilized for functional enrichment 
analyses, such as Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis, to investigate the 
biological processes linked to potential therapeutic target genes. GO 
terms were classified into biological process (BP), cellular component 
(CC), and molecular function (MF), with significance determined by 
an adjusted p-value of less than 0.05.

2.3 WGCNA identifies pathogenic genes

Based on transcriptomic data from the training set, with PD and 
Control groups assigned as phenotypic traits for WGCNA, the expression 
matrix of all genes was used as input. Weighted Gene Co-expression 
Network Analysis (WGCNA) is a method used to identify clusters 
(modules) of highly correlated genes, summarize these clusters using the 
module eigengene or an intramodular hub gene, relate modules to one 
another and to external sample traits, and calculate module membership 
measures. This approach helps in understanding the correlation patterns 
among genes across microarray samples.

The “WGCNA” package (v1.71) (19) was utilized to conduct 
WGCNA on the training dataset, aiming to identify co-expression 
gene modules linked to PD. All expressed genes were used as input, 
with phenotype traits defined by PD versus control status. Sample 
clustering was applied to detect and remove outliers. The soft-
thresholding power β was chosen to ensure scale-free topology. 
Modules were constructed with a minimum module size of 200 genes. 
The modules most positively and negatively correlated with PD were 
retained, and their constituent genes were used for 
downstream analysis.

2.4 Identification of PD-associated stem 
cell and metabolic genes

Metabolism-related genes were collected from MSigDB by 
querying for the keyword “metabolism” across HALLMARK, KEGG, 
and REACTOME gene sets (17). Stem cell-related genes were obtained 
from the StemChecker database, which includes 26 curated gene sets 
(21). Intersections were computed between DEGs, PD-associated 
module genes (from WGCNA), metabolic genes, and stem cell genes. 
The overlapping genes were analyzed for GO and KEGG enrichment 
using the “clusterProfiler” tool (18).
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2.5 Construction of protein–protein 
interaction network

To investigate the protein interactions among intersecting genes, 
the STRING database (v12.0) (20) was used to construct a PPI 
network using a combined score >0.15 as the threshold. Key clusters 
were identified using the MCODE plugin (v2.0.3) in Cytoscape 
v3.10.2 (22). Four topological analysis algorithms—MCC, MNC, 
Degree, and EPC—implemented in the cytoHubba plugin (v0.1) (23) 
were employed to rank the top 30 hub genes. Genes common to all 
four rankings were defined as final hub genes.

2.6 Feature gene selection and diagnostic 
model construction via machine learning

Twelve machine learning algorithms were employed to identify 
robust diagnostic gene signatures: Random Forest (RF), Least 
Absolute Shrinkage and Selection Operator (Lasso), Ridge, Elastic Net 
(Enet), Stepwise GLM, Support Vector Machine (SVM), glmBoost, 
Linear Discriminant Analysis (LDA), Gradient Boosting Machine 
(GBM), eXtreme Gradient Boosting (XGBoost), and Naive Bayes. The 
models underwent 10-fold cross-validation training on the training 
dataset and were assessed using validation datasets. The model’s 
diagnostic accuracy was evaluated using the area under the receiver 
operating characteristic curve (AUC), with the model exhibiting the 
highest mean AUC across validation datasets chosen for 
further analysis.

2.7 Validation of feature gene expression 
and ROC analysis

The expression of feature genes was compared between PD and 
control samples using the Wilcoxon test. The “pROC” package 
(v1.18.5) (24) was utilized to compute ROC curves and AUC values 
for assessing diagnostic performance in both training and validation 
datasets. Genes with p < 0.05 and AUC >0.6, and consistent expression 
trends across datasets, were retained for downstream analysis.

2.8 Immune cell infiltration and correlation 
with feature genes

Given the role of immune infiltration in PD pathology, immune 
cell fractions were estimated using the CIBERSORT algorithm (25). 
Differences in immune cell composition between PD and control 
groups were analyzed, and Spearman correlation was used to assess 
associations between immune cells and diagnostic genes. Heatmaps 
were generated to visualize correlation patterns.

2.9 Molecular mechanisms underlying 
diagnostic scores

GeneMANIA (26) was utilized to construct co-expression 
networks for investigating potential biological interactions of 
diagnostic markers. PD samples were divided into high- and low-score 

groups using the median diagnostic score as a threshold. GSEA was 
then performed to identify enriched pathways. Additionally, hallmark 
pathway enrichment scores were calculated using the GSVA algorithm 
(27), and differential enrichment was tested using “limma.” 
Correlations between diagnostic scores and hallmark gene sets were 
also assessed.

2.10 SHAP-based model interpretation

To interpret the final prediction model, we applied the SHAP 
(SHapley Additive exPlanations) algorithm. Global interpretations 
were visualized using SHAP summary plots, which illustrate the mean 
contribution of each feature to the model, thereby characterizing the 
model’s overall behavior. SHAP was applied to the baseline model to 
address both regression and classification tasks (28).

2.11 Nomogram construction

A diagnostic nomogram for PD was developed using the 
characteristic genes and their expression levels from both control and 
PD groups. The nomogram was developed using the “rms” package 
(Version 6.8-1) in R (29). The nomogram represents a regression 
model by assigning scores to predictors according to their regression 
coefficients. A total score is then calculated for each subject and 
translated into a predicted probability of PD occurrence through a 
mapping function. Calibration and decision curve analyses evaluated 
the model’s accuracy and clinical utility.

2.12 Single-gene GSEA analysis

Samples in the training cohort were categorized into high- and 
low-expression groups according to the expression levels of the 
selected signature genes. GSEA utilized the “limma” algorithm to 
calculate log fold changes between the groups. The reference gene set 
used was “c2.cp.kegg_legacy.v2023.2.Hs.symbols.gmt,” with a 
significance threshold of p < 0.05.

2.13 Forecasting drug interactions and 
molecular docking

Candidate drugs targeting the identified signature genes were 
sourced from the DrugBank database1 (30). Molecular docking 
analyses were performed using AutoDock. Protein crystal structures 
were obtained from the Protein Data Bank (PDB, https://www.rcsb.org) 
(31). PyMOL was used to remove water molecules and native ligands. 
Proteins were prepared using AutoDock Tools by adding hydrogens, 
calculating charges, and merging nonpolar hydrogens. Docking 
simulations were executed in AutoDock Vina by setting appropriate 
grid box sizes and genetic algorithm parameters. Visualization of 

1  https://go.drugbank.com
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docking results was conducted in Discovery Studio 2019 (32). Drug 
structures were sourced from the PubChem database (33).

2.14 Single-cell RNA-seq data analysis

The GSE157783 PD single-cell transcriptomic dataset was analyzed 
with the Seurat package (Version 4.3.0, https://cran.r-project.org/web/
packages/Seurat/index.html) (34). Quality control was performed with 
thresholds of nFeature_RNA >200 and <7,000, and cells with >20% 
mitochondrial gene expression were excluded. PCA was performed 
using the 2,000 most variable genes. The Harmony algorithm was 
employed to correct batch effects. Dimensionality reduction was 
performed using UMAP on the top 20 principal components, and 
clustering was subsequently conducted at a resolution of 0.5.

Cell clusters were annotated using literature and marker genes 
from the CellMarker 2.0 database (35), a detailed resource of 
experimentally validated markers for human and mouse tissues. 
Diagnostic scores for individual cells were assessed using GSVA, based 
on the expression levels of identified signature genes. Cells with the 
highest diagnostic scores were selected for subsequent analyses.

2.15 Cell–cell communication and ligand–
receptor interaction analysis

Intercellular communication between cell populations was 
inferred using the CellChat R package (Version 1.6.1) (36). This 
framework forecasts interaction strength by analyzing the expression 
levels of immune-related ligands and receptors. CellChat contains a 
curated database encompassing multimeric ligand–receptor 
complexes, soluble agonists/antagonists, and membrane-bound 
co-receptors with activating or inhibitory functions. Interaction 
inference involved the identification of differentially expressed 
signaling genes, integration of average expression and communication 
probabilities, and determination of statistically significant 
communication events. Communication networks were compared 
between normal and PD samples across cell types.

2.16 Subpopulation analysis of 
high-scoring cells

Subcluster analysis was performed on cells with the highest 
diagnostic scores. Cell identities and subclusters were annotated using 
marker genes from CellMarker 2.0 and relevant literature (37, 38). 
Subclusters were defined based on differentially expressed top marker 
genes. Hierarchical clustering of enriched signaling pathways 
highlighted distinct expression patterns among DEGs across clusters. 
The proportions of each subpopulation were compared between 
normal and PD tissues.

2.17 Pseudotime trajectory analysis of cell 
subpopulations

Pseudotime trajectory analysis was performed on the 
subpopulations using Monocle (v2.30.1) (39) to investigate lineage 

dynamics. UMI count matrices were imported from Seurat objects to 
create CellDataSet objects using the “newCellDataSet” function. 
Statistical models were constructed via “estimateSizeFactors” and 
“estimateDispersions.” Dimensionality reduction was performed with 
DDRTree through the “reduceDimension” function, followed by 
trajectory ordering using “orderCells.” Branch-dependent gene 
expression modeling was also performed. The resulting trajectories 
delineated cell states, pseudotime, and potential lineage transitions.

2.18 Parkinson’s disease mouse modeling

Mouse modeling were performed following the standard methods 
(40, 41): Male C57BL/6J mice (9 weeks old) were randomly assigned 
to MPTP-treated (n = 8) and saline control (n = 8) groups. To model 
subacute Parkinson’s disease progression, mice received daily 
intraperitoneal injections of MPTP (30 mg/kg in saline) for 5 
consecutive days. Control animals were injected with equivalent 
volumes of sterile saline. All mice were maintained in temperature-
controlled dark chambers for 24 h post-injection to prevent 
hypothermia. Motor impairments were assessed on day 5 post-
modeling. Midbrain substantia nigra tissues were harvested for: 
qRT-PCR, western blot and immunofluorescence.

2.19 RNA extraction and real-time PCR

Trizol reagent was used to extract total RNA following manufacturer 
instructions. RNA reversed transcription using PrimeScriptTM RT 
reagent Kit (YEASEN), and analyzed by quantitative PCR (qPCR) using 
SYBR Premix Ex TaqTM II (YEASEN) in ABI Q3 system. Relative gene 
expression was normalized to GAPDH. qPCR primers were as follows:

Targets Forward 5′ → 3′ Reverse 5′ → 3′
CA4 TACGTGGCCCCCTCTACTG GCTGATTCTCCTTACAGGCTCC
Bmx GCTCCCACTTTCCCAGAGAG TTGGGGTAGAATGGCACCTG
Gapdh AGGTCGGTGTGAACGGATTTG GGGGTCGTTGATGGCAACA

2.20 Cell lysis solution and western blots

Tissue samples (100 mg wet weight) were homogenized in 1 mL 
ice-cold RIPA lysis buffer supplemented with 1 mM PMSF protease 
inhibitor. Protein concentrations were tested by BCA kit and 
equivalent proteins were loaded into SDS-PAGE. Following western 
blots were performed according to standard procedures. The primary 
antibodies were list as follow:

	•	 Anti-CA4 (Proteintech, Cat#85706-1-RR).
	•	 Anti-BMX (Proteintech, Cat#27413-1-AP).

2.21 Immunofluorescence

Paraffin-embedded tissue sections were subjected to standard 
deparaffinization and rehydration. Following antigen retrieval, 
sections were incubated with primary antibodies at 37 °C for 1 h 
under light-protected conditions. After three 5-min PBS washes, 
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fluorescent secondary antibodies were applied at 37 °C for 30 min 
with light protection. Sections were then thoroughly rinsed with 
PBS buffer, counterstained with DAPI (5 min), and mounted for 
imaging. Fluorescence visualization was performed using a digital 
slide scanner (3DHISTECH, Hungary). The primary antibodies 
were list as follow:

	•	 Anti-CA4 (Proteintech, Cat#85706-1-RR, 1:500).
	•	 Anti-BMX (Proteintech, Cat#27413-1-AP, 1:200).

The secondary antibody were list as follow:

	•	 Cy3-conjugated goat anti-rabbit IgG (H + L) (Beyotime, 
Cat#A0516).

2.22 Statistical analysis

All statistical analyses were performed using SPSS Statistics 
(Version 27.0; IBM Corp., Armonk, NY, United  States). Data 
visualization was conducted with GraphPad Prism (Version 9.2; 

GraphPad Software, Inc., San Diego, CA, United States). Quantitative 
data underwent normality assessment via Shapiro–Wilk testing. 
Normally distributed variables are presented as mean ± standard 
deviation (SD) and compared between groups using two-tailed 
Student’s t-tests. Statistical significance was defined as p < 0.05.

3 Results

3.1 Identification of differentially expressed 
genes and enrichment analysis

To mitigate batch effects between datasets GSE99039 and 
GSE18838, we  performed batch correction and merged the two 
datasets, resulting in a combined cohort of 222 PD samples and 244 
control samples (Figure  1A). Analysis of differential expression 
between PD and control groups revealed 2,221 DEGs, comprising 
1,183 upregulated and 1,038 downregulated genes (Figure 1B).

GO and KEGG enrichment analyses were performed to investigate 
the biological functions and pathways linked to the DEGs displays the 
top five enriched terms for each GO category (Figures 1C,D). In the 
biological process category, DEGs showed significant enrichment in 

FIGURE 1

(A) sva batch effect removal: training set before and after batch correction. (B) Volcano plot of differentially expressed genes (blue: downregulated; 
yellow: upregulated). (C) GO enrichment analysis (bar plot). (D) KEGG enrichment analysis (bubble plot). (E) GSEA enrichment (upregulated gene sets). 
(F) GSEA enrichment (downregulated gene sets).
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terms related to cellular carbohydrate metabolism regulation and 
brainstem development, indicating a strong link to metabolism and 
neural stem cell regulation. Significant enrichment was identified in 
the cytolytic granule, beta-catenin-TCF complex, and secondary 
lysosome within the CC category.

KEGG pathway analysis identified enrichment in immune 
response and metabolic pathways, such as choline metabolism in 
cancer, natural killer cell-mediated cytotoxicity, and central carbon 
metabolism in cancer. GSEA revealed that PD samples showed 
increased activity in immune-related pathways, including the Toll-
like receptor signaling pathway and natural killer cell-mediated 
cytotoxicity, alongside decreased activity in metabolic pathways like 
ascorbate and aldarate metabolism (Figures 1E,F). These findings 
highlight the involvement of natural killer (NK) cell activity, 
immune dysregulation, and metabolic alterations in the 
pathogenesis of PD.

3.2 WGCNA identifies pathogenic genes 
interlinked with stem cell and metabolic 
genes

WGCNA was conducted with PD and Control serving as 
phenotypic traits. The soft-thresholding power was determined to 
be 7, marking the initial point where the scale-free topology fit index 
(R2) achieved 0.85 (red line) (Figures 2A,B). Genes were clustered into 
modules using hierarchical clustering combined with dynamic tree 
cutting, resulting in seven modules excluding the grey module. 
Module-trait relationships were subsequently assessed, identifying the 
turquoise and red modules as most significantly correlated with 
phenotype (Figure 2C). Further correlation analysis between these 
two modules and phenotypic traits was performed (Figures 2D,E).

The 2,586 and 796 genes from the turquoise and red modules, 
respectively, were intersected with the upregulated and downregulated 

FIGURE 2

(A) Left: Selection of soft-thresholding power (β) for adjacency matrix. X-axis: soft-thresholding power; Y-axis: scale-free topology model fit (R2). Red 
line: cutoff threshold (R2 = 0.85). Right: Mean gene connectivity under different soft-thresholding powers. Red line: mean connectivity at selected β. 
(B) Hierarchical clustering dendrogram of co-expression modules (colors denote modules). (C) Module-trait associations heatmap. (D) Scatter plot of 
gene significance vs. module membership for the turquoise module. (E) Scatter plot of gene significance vs. module membership for the red module. 
(F) Overlap between WGCNA hub genes, DEGs, and stem cell/metabolism-related genes. (G–J) Enrichment analysis: (G) biological processes (BP); 
(H) cellular components (CC); (I) molecular functions (MF); (J) KEGG pathways.
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DEGs, yielding 609 and 134 overlapping genes. Merging these resulted 
in a total of 743 genes (Supplementary Figure S1). Based on the 
enrichment results highlighting stem cell and metabolic processes, 
we  extracted 3,120 metabolism-related genes from the Molecular 
Signatures Database using the keyword “metabolism” and identified 
5,046 stem cell-related genes from 26 gene sets in StemChecker. 
Intersection of these three gene sets identified 38 overlapping genes 
(Figure 2F).

Enrichment analyses of the 38 intersecting genes using the 
“clusterProfiler” package for GO and KEGG revealed a significant 
association with metabolic pathways (Figures 2G–J).

3.3 Development of a PPI network and 
application of machine learning for feature 
gene detection and ROC analysis

PPI network for the specified genes was constructed using 
STRING, applying a minimum interaction score threshold of 0.15. 
Genes MID1IP1 and STARD10, which were absent from the 
network, were excluded, resulting in 36 genes retained for 

subsequent analyses (Figure 3A). The MCODE plugin was utilized 
for clustering analysis to detect densely connected regions 
(Supplementary Figure S2). Through the intersection of four distinct 
algorithms, 29 hub genes were identified (Figure 3B). Expression 
profiles of these shared model genes and PD status were extracted 
from both training and validation cohorts. Prognostic models were 
constructed by integrating 12 different machine learning algorithms 
in various combinations. Based on concordance indices (C-indices) 
across training and validation sets, a combined Stepwise GLM (both 
directions) and Random Forest (RF) model was selected for 
prognostic prediction (Supplementary Figure S3). This model 
achieved a C-index of 0.996 in the training set, 0.611 in GSE6613, 
and 0.902  in GSE57475, with an average C-index of 0.836. 
Ultimately, six feature genes were prioritized: DHX9, BMX, PDK1, 
CA4, SMG7, and RBM17. Notably, BMX and CA4 exhibited 
significant differential expression between PD and control groups in 
both training and validation cohorts (Figures  3C,E,G). Receiver 
operating characteristic (ROC) curve analyses further confirmed the 
strong predictive performance of these feature genes 
(Figures  3D,F,H). BMX and CA4 were therefore selected for 
downstream analyses.

FIGURE 3

(A) PPI network of signature genes. (B) Venn diagram of top 30 hub genes identified by Degree/MCC/MNC/EPC algorithms. (C) Expression box plots of 
signature genes in training set. (D) ROC curves for signature genes in training set. (E,G) Expression box plots in validation sets: (E) GSE6613; 
(G) GSE57475. (F,H) ROC curves in validation sets: (F) GSE6613; (H) GSE57475.
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3.4 Validation of BMX and CA4 
upregulation in the substantia nigra of 
Parkinson’s disease model mice

To verify bioinformatically predicted dysregulation of BMX and 
CA4, qRT-PCR analysis was performed on substantia nigra tissues 
from PD model mice and controls (n = 4 mice/group). Using GAPDH 
as endogenous control, relative mRNA expression was shown in 
Figures 4A,B: BMX (p < 0.001) and CA4 (p = 0.003) transcript levels 
increased in PD (p < 0.05). Western blotting further confirmed 
protein-level alterations,and quantification revealed significant 
upregulation in PD group (p < 0.001) (Figures  4C,D). 
Immunohistochemical analysis of tissue microarrays (n = 4/group) 
localized enhanced expression of both targets within nigral tissues of 
PD mice (Figure 4E).

3.5 Based on GSVA scoring and GSEA 
analysis of the two feature genes, followed 
by drug docking

The GeneMANIA database was utilized to conduct a protein–
protein interaction (PPI) analysis involving the two feature genes and 
20 associated interacting genes (Figure 5A) predicting correlations 
among co-localization, shared protein domains, co-expression, and 

pathways. The genes were enriched in functions such as “peptidyl-
tyrosine modification,” “regulation of peptidase activity,” and 
“pyruvate metabolic process.” Gene Set Enrichment Analysis (GSEA) 
of GO and KEGG pathways was performed to compare samples with 
high and low GSVA scores. A total of 22 KEGG pathways and 827 GO 
terms showed significant enrichment at a p-value threshold of 0.05. 
The top five upregulated and top five downregulated pathways are 
shown in Figures 5B,C. Using the GSVA algorithm, hallmark gene set 
enrichment scores were calculated for each sample, and correlations 
between the GSVA score and hallmark enrichment scores were 
assessed (Figure 5D).

Based on KEGG gene sets, GSEA revealed signaling pathways 
associated with the two feature genes under thresholds of adjusted 
p < 0.05 and |NES| >1 (Figure 5E). Both BMX and CA4 regulated the 
“RIBOSOME” pathway, but showed opposite regulatory trends in the 
“NEUROACTIVE LIGAND RECEPTOR INTERACTION” pathway.

For drug docking, compounds corresponding to the two feature 
genes were retrieved from DrugBank. The protein structures 
corresponding to BMX and CA4 were obtained from the PDB 
database (PDB IDs: 8X2A and 3F7B, respectively). BMX protein was 
docked with zanubrutinib (binding energy −6.24 kcal/mol) 
(Figure  5F), ritlecitinib (−5.06 kcal/mol), and fostamatinib 
(−5.05 kcal/mol) (Supplementary Figures S4A,B). CA4 protein was 
docked with topiramate (−4.86 kcal/mol), methazolamide 
(−4.63 kcal/mol) (Supplementary Figures S4C,D), and dorzolamide 

FIGURE 4

(A,B) qRT-PCR analysis of BMX and CA4 mRNA expression (n = 4 mice/group). Data normalized to GAPDH. (C,D) Western blot quantification of CA4 
and BMX protein expression. Loading control: β-actin. Representative blots shown above graphs [Biological replicates: Control group (Mice #1, 3, 5, 7), 
PD group (Mice #2, 4, 6, 8)]. (E) Immunofluorescence localization in substantia nigra sections. Nuclei counterstained with DAPI (blue). Target proteins: 
CA4 (red, left panels), BMX (red, right panels).
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(−6.81 kcal/mol) (Figure 5G). Binding energies below −4.5 kcal/
mol suggest spontaneous interactions with strong stability 
and affinity.

3.6 Model interpretation using SHAP and 
construction of diagnostic nomogram

The final predictive model was interpreted using the SHAP 
method, revealing that both BMX and CA4 contribute significantly to 
the global model variables (Figure 6A). The global distribution of 
SHAP values for both genes showed that higher expression levels 
predominantly correspond to positive SHAP values (right side of zero) 
(Figure 6B) suggests that elevated BMX and CA4 expression correlates 
with an increased risk of PD. The combined prediction using BMX 
and CA4 improved accuracy (Figure 6C), with ROC curves exceeding 
0.8, demonstrating good predictive performance (Figure 6D).

To evaluate the combined diagnostic capability of BMX and CA4 
for PD, both genes were incorporated into a nomogram (Figure 6E). 
Calibration and decision curve analyses confirmed the nomogram’s 
accuracy and clinical utility (Figures  6F,G). ROC curve analysis 
indicated that the nomogram attained AUC values exceeding 0.6 in 
both the training and validation cohorts (Figures 6H–J), indicating 
satisfactory predictive efficacy.

3.7 PD single-cell atlas and intercellular 
communication

Based on the single-cell dataset GSE157783, comprising 5 PD 
samples and 6 Control samples, quality control was performed 
(Figure  7A), yielding 41,189 high-quality cells for subsequent 
analysis. PCA was performed on the 2,000 most variable genes, and 
batch effects were corrected using Harmony (Figure  7B). The 
UMAP algorithm was utilized for dimensionality reduction and 
clustering, resulting in 20 unique cell clusters. These clusters were 
annotated into 10 cell types, with their respective proportions 
shown in Figure 7C: oligodendrocytes, monocytes, CD8+ T cells, 
neural stem cells, endothelial cells, progenitors, astrocytes, 
inhibitory neurons, excitatory neurons, NK cells, and fibroblasts 
(Figure 7D).

Cell–cell communication analysis was conducted across all cell 
populations (Figures  7E,F), alongside evaluation of signaling 
pathways and ligand–receptor pair activation involved in cellular 
interactions (Figure  7G), as well as differences in activation 
between PD and Control groups. Intercellular communication was 
predicted based on specific pathways and ligand–receptor pairs 
(Figure  7H). The results revealed that although the number of 
communicating cells decreased in the PD group, the 
communication intensity was markedly increased, particularly 

FIGURE 5

(A) GeneMANIA interaction network. (B,C) GSEA enrichment: (B) KEGG pathways; (C) GO terms. (D) GSVA correlation heatmap of enriched pathways. 
(E) Pathway enrichment for signature genes: (A) BMX; (B) CA4. (F,G) Molecular docking: (F) BMX with zanubrutinib; (G) CA4 with dorzolamide.
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among excitatory neurons, astrocytes, CD8+ T cells, and NK cells. 
Inflammation-related pathways were notably activated in 
PD samples.

3.8 Expression patterns of feature genes 
and corresponding changes in cell 
subclusters in single-cell data

We analyzed the expression patterns of BMX and CA4 genes in 
the single-cell dataset (Figure 8A). BMX was found to be broadly 
expressed across all 10 cell types, whereas CA4 showed high 
expression specifically in NK cells and endothelial cells. 
We calculated the ssGSEA scores of six feature genes (DHX9, BMX, 
PDK1, CA4, SMG7, and RBM17) in the annotated cell populations 
(Figure 8B), indicating that NK cells showed the most pronounced 
differential expression compared to other cell types. Therefore, NK 
cells were selected as the core cell population for 
subsequent analyses.

Re-clustering of NK cells revealed three distinct subclusters, 
designated as NK1, NK2, and NK3 (Figure  8C). Comparing the 
proportions of these subclusters between PD and Control groups 

revealed that NK2 and NK3 proportions were significantly lower in 
PD, whereas NK1 was significantly enriched in PD samples 
(Figure 8D). Expression analysis within these subclusters showed that 
CA4 was highly expressed in the NK1 subcluster (Figure 8E).

We further extracted NK subpopulations and performed 
pseudotime trajectory analysis using Monocle2 (Figure 8F). Tracking 
the expression dynamics of feature genes along the pseudotime 
trajectory indicated a differentiation trajectory oriented toward the 
NK1 subcluster. Scatter plots of gene expression levels confirmed 
notably higher CA4 expression in NK1 compared to NK2 and NK3 
(Figure 8G).

To clarify the functional characteristics of NK subclusters, 
we combined gene heatmap data (Figure 8H) and observed that NK1 
cells highly express genes such as UNC13C, CADPS2, and MSRA, 
which are involved in processes like neuron- and endocrine cell-
mediated secretory granule exocytosis, antioxidant maintenance of 
mitochondrial function, and cell survival. KEGG enrichment analysis 
of the hallmark genes specifically expressed in NK1 
(Supplementary Figure S5) demonstrated enrichment in pathways 
including calcium-cAMP secretion, dopaminergic and glutamatergic 
synapse, and axon guidance (Figure 8I), highlighting the role of NK1 
cells in cytotoxic granule release, synapse formation, and axon guidance.

FIGURE 6

(A) SHAP global feature importance (bar plot). (B) SHAP multi-feature beeswarm plot. (C) SHAP force plot for individual prediction. (D) ROC curve of 
diagnostic model. (E) Diagnostic nomogram. (F) Calibration curve. (G) Decision curve analysis (DCA). (H–J) Nomogram ROC curves: (H) Training set; 
(I) GSE6613; (J) GSE57475.
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4 Discussion

PD involves complex pathological mechanisms, including 
dopaminergic neuron degeneration, α-synuclein aggregation, 
neuroinflammation, mitochondrial dysfunction, and various 
interacting processes (42). This study investigates PD through 
metabolic and stem cell perspectives, employing scRNA-seq and 
extensive bulk RNA-seq data for comprehensive bioinformatics 
analysis. Our study highlights the pivotal role of the CA4 gene and NK 
cells in PD development and progression, offering novel insights into 
its pathogenesis and potential therapeutic targets. The following 
discussion focuses on our core findings, innovations, and 
translational potential.

Initially, RNA-seq data was utilized to identify DEGs between PD 
and control groups. Subsequent GO functional annotation, KEGG 
pathway enrichment, and GSEA analyses suggested involvement in 
brainstem cell development and metabolic processes. By intersecting 
the DEGs with PD-related up- and down-regulated gene modules 
identified through WGCNA, we  identified 743 genes. Further 
intersecting with stem cell- and metabolism-related genes yielded 38 
genes. GO and KEGG enrichment of these 38 genes again emphasized 

metabolism-related pathways, with no significant enrichment in stem 
cell-associated pathways, suggesting that endogenous neural stem cells 
may not play a central role in PD progression.

Utilizing PPI network construction and integrated machine 
learning techniques, we refined the initial set of 38 genes to six key 
genes: DHX9, BMX, PDK1, CA4, SMG7, and RBM17. Among these, 
only BMX and CA4 showed significant differential expression in both 
training and validation datasets. Our characteristic genes 
demonstrated good performance in ROC curve analysis, SHAP values, 
and nomogram models. The combined diagnostic model based on 
these two genes showed high accuracy and predictive power. Given 
that clinical diagnosis of PD remains challenging in early stages due 
to lack of reliable biomarkers despite clear clinical manifestations (43), 
our findings contribute to building a more precise and comprehensive 
diagnostic model for PD. Additionally, we identified potential drug 
targets and corresponding compounds for these two genes through 
the DrugBank database, laying a foundation for subsequent drug 
intervention studies.

In the scRNA-seq atlas, we  identified 10 core cell types and 
performed cell–cell communication analysis. Although the number of 
communicating cells decreased in the PD group, the communication 

FIGURE 7

(A) Post-QC cell distribution. (B) Batch correction by Harmony. (C) Annotated UMAP cell atlas. (D) Cell type proportions. (E) Number and strength of 
cell–cell interactions mediated by signaling pathways (PD vs. Control). (F) Differential cell communication networks (red: PD; blue: control). 
(G) Pathway-specific communication strength (red: PD-enriched; blue: control-enriched; black: neutral). (H) Signaling intensity heatmap (left: PD; 
right: control). Color depth indicates interaction strength. Top/right bars: cumulative signaling intensity.
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strength was significantly enhanced, with more frequent interactions 
among excitatory neurons, astrocytes, CD8+ T cells, and NK cells. 
Inflammation-related pathways showed significant activation in PD. The 
activation of glial cells and inflammatory cells, as well as their interactions 
with neurons, are crucial in the onset and progression of PD (44–46), 
which aligns with current research findings.

In our scRNA-seq analysis of BMX and CA4 gene expression 
patterns, we found that BMX was broadly expressed across all 10 cell 
types, while CA4 showed high expression in NK cells and endothelial 
cells. The ssGSEA scores from six characteristic genes indicate that NK 
cells are crucial in PD pathogenesis.

Traditionally, neuroinflammation in PD has been mainly 
attributed to microglia and T cells (47–49), while the role of NK 
cells has long been overlooked. Our findings challenge this 
paradigm. Recent single-cell sequencing studies have further 
revealed significant phenotypic and functional alterations of NK 
cell subsets in the peripheral blood and cerebrospinal fluid of PD 
patients, indicating their potential association with disease 
progression (50, 51). Previous studies reporting increased NK cell 
numbers mostly sampled peripheral blood and cerebrospinal fluid, 
whereas our study used midbrain substantia nigra tissue for 
single-cell sequencing, providing a more precise conclusion. 
However, the specific mechanisms and regulatory networks of NK 

cells in PD remain controversial and require further 
in-depth investigation.

We performed reclustering of NK cells and identified three 
subclusters. Pseudotime analysis of NK cells revealed a differentiation 
trajectory toward the NK1 subset. In the UMAP plot, the CA4 gene 
was highly expressed in NK1 cells. This result suggests a key role for 
CA4 in the progression of PD. Previous studies have indicated that NK 
cells may have a double-edged sword effect in PD progression: they 
can contribute to pathological protein clearance through immune 
surveillance, thereby inhibiting disease development, but excessive 
activation may lead to direct damage of vulnerable dopaminergic 
neurons via the release of granzyme B (52, 53).

In this study, gene heatmap results and KEGG pathway enrichment 
analysis of differential genes in NK1 cells indicated involvement in 
secretory granule exocytosis, cAMP signaling, calcium signaling, 
dopaminergic neuron synapse formation, and axon growth. These 
findings suggest that NK1 cells may participate simultaneously in 
cytotoxic activity and neuroprotection. CA4 (carbonic anhydrase IV), as 
a membrane protein, typically acts to alleviate acidic environments or 
maintain pH homeostasis when its activity or expression is increased (54), 
rather than directly causing acidification. We  hypothesize that CA4 
upregulation is crucial for NK cell survival in the acidic microenvironment 
of PD, sustaining their physiological functions and enhancing migration.

FIGURE 8

(A) Expression of signature genes in single cells (dot plot). (B) ssGSEA scores based on 6 signature genes. (C) NK cell subclusters (UMAP). (D) Differential 
abundance of NK subclusters (PD vs. Control). (E) Signature gene expression in NK cells (dot plot). (F) Pseudotime trajectory of NK cells. (G) Dynamic 
expression of signature genes along pseudotime. (H) Marker gene heatmap for NK subclusters. (I) KEGG enrichment of NK1 cluster-specific hallmarker 
genes.
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Analysis revealed a significant increase in resting NK cells in the 
PD group compared to controls, with a negative correlation between 
CA4 expression and resting NK cells (Supplementary Figure S6). 
This suggests that increased CA4 expression may help hinder PD 
progression. Previous studies on midbrain dopaminergic neuron 
lineages have shown that dopaminergic progenitor cells can 
differentiate into dopaminergic neurons and glutamatergic neurons 
(55). Our findings indicate that NK1 cells also influence the 
formation of both glutamatergic and dopaminergic neurons, 
implying that NK1 cells may affect the differentiation outcomes 
following exogenous stem cell transplantation.

This study has certain limitations: (1) the scRNA-seq data sample 
size is relatively small. (2) The regulatory mechanisms of characteristic 
genes in NK cells are not yet fully understood, current experimental 
evidence cannot demonstrate PD-specificity of this CA4-NK1-PD 
axis, nor can it preclude its potential critical role in other 
neurodegenerative conditions such as Alzheimer’s disease, 
highlighting a crucial area for future research.

5 Conclusion

Collectively, our study demonstrates that CA4 plays a pivotal role 
in Parkinson’s disease pathogenesis. We  further identified and 
characterized the disease-associated NK1 cellular subset, unveiling 
previously unrecognized neuroimmune mechanisms. These findings 
enabled the development of a high-accuracy diagnostic model and 
therapeutic compound prediction platform, revealing CA4-NK1-PD 
axis as a promising target for future interventions.
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