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From brain injury to classroom:
cognitive and academic
outcomes after pediatric stroke. A
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Pediatric stroke represents a rare and clinically significant event, often associated
with heterogeneous cognitive sequelae. Early brain injury, particularly during
the perinatal period, can result in impaired intellectual functioning and various
neuropsychological deficits. Cognitive challenges typically affect language, memory,
attention, and executive functions, with their nature and severity influenced by
factors such as lesion location, age at onset, and comorbidities like epilepsy or
sleep disturbances. Language deficits are commonly observed, particularly in
cases involving left-hemispheric or basal ganglia damage, and may endure despite
neuroplastic adaptation. Executive dysfunction is also frequently observed, typically
involving reduced working memory and cognitive flexibility, and is strongly linked
to academic underachievement. Moreover, the diagnosis of secondary ADHD
may further complicate the cognitive profile, intensifying challenges related to
attention, learning, and behavioral regulation. Despite the high need for tailored
educational support, evidence-based cognitive rehabilitation strategies remain
limited. Emerging interventions — such as non-invasive brain stimulation and virtual
reality — have proven promising, but current evidence is preliminary and lacks
validation in youth. Given the elevated risk of long-term academic and functional
impairment, early cognitive screening and individualized multidisciplinary intervention
are essential to support developmental outcomes in children affected by stroke.
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1 Introduction

Stroke, or cerebrovascular accident, is a sudden neurological event caused by a disruption
in cerebral blood flow, leading to brain cell injury or death (1, 2). Pediatric stroke presents
distinct challenges due to the ongoing development of the brain. Although its incidence is rare,
the consequences of stroke are significant for a child’s development, influencing learning,
social skills, and quality of life (3-7). It is classified into three main types: arterial ischemic
stroke (AIS), cerebral sinovenous thrombosis (CSVT), and hemorrhagic stroke (HS) (8). AIS
is the most common type, often associated with arteriopathies, congenital heart disease, or
clotting disorders. CSVT is typically triggered by dehydration, infections, or systemic
conditions. HS, including both intraparenchymal and subarachnoid hemorrhages, is usually
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linked to trauma, vascular malformations, or coagulation
abnormalities (8) (Figure 1). According to the timing of onset,
pediatric stroke (PS) is classified as perinatal stroke, occurring from
the 20th week of gestation to 28 days after birth, and childhood stroke,
occurring from 29 days to 18 years of age (9). The incidence of
perinatal stroke among live births is approximately 1 in 1,100 (10),
while the incidence of childhood stroke ranges from 1.3 to 13 cases
per 100,000 children (11).

Among stroke survivors, motor deficits are common, with
hemiparesis being prevalent. Data from the literature show that
56-67% of children with ischemic stroke develop hemiplegia,
significantly affecting daily activities such as writing, moving, and
participating in physical education (12). Motor deficits affect 89% of
children after stroke, with 40% requiring special education services
(13). Unilateral cerebral palsy or hemiplegia may be a common
adverse motor outcome in children with perinatal ischemic stroke,
potentially affecting up to 84.9% of those with motor impairments (12).

Acute neurological events during critical developmental periods
can cause persistent cognitive, emotional, and social difficulties.
Children affected by traumatic brain injury or pediatric brain tumors
often experience impairments in attention, memory, learning, and
executive function. These deficits negatively impact academic
performance and peer relationships, often requiring tailored support
(14-18). The physical consequences of pediatric stroke, such as motor
impairments, are well established (12, 13, 19). However, its long-term
impact in the educational context—particularly on cognitive
functioning, academic achievement, school adaptation, and peer
integration—remains insufficiently investigated. Survivors often
experience deficits in language, attention, memory, and executive
processes. These difficulties can significantly affect their ability to meet
the cognitive demands of the school environment (4, 20-22). As a
result, stroke survivors may struggle to keep up with their peers in
school, leading to academic delays and difficulties in meeting
educational milestones. Long-term outcomes are influenced by
multiple factors, including the age at stroke, lesion location and extent,
neuroplasticity, and the availability of appropriate rehabilitative and
educational support (4, 22). However, the existing data are not
conclusive, with findings varying across studies.

The school environment plays a crucial role in addressing both
academic and emotional needs. It may exacerbate the emotional and
interpersonal challenges faced by pediatric stroke survivors, thereby
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increasing their susceptibility to social isolation and academic stress
as a result of difficulties in peer interactions, emotional regulation, and
adaptation to classroom dynamics (22, 23). Nonetheless, the school
setting also constitutes a vital context for support and developmental
opportunities (22, 24).

Despite increasing awareness of the challenges faced by pediatric
stroke survivors, research on their adaptation to school life remains
scarce. Existing reviews have primarily addressed general cognitive
functioning or rehabilitation strategies, with limited focus on school-
related performance and educational outcomes (6, 14, 25-29).

Existing research on pediatric stroke provides fragmented insights
into its impact on academic performance and learning progression.
Moreover, the contributions of cognitive rehabilitation and school-
based interventions are still being delineated, leading to a limited
understanding of educational and cognitive outcomes in
affected children.

1.1 Aims

This review has two main aims: (1) to provide a comprehensive
synthesis of the impact of pediatric stroke on school-related outcomes.
For this purpose, we will examine how stroke affects core cognitive
domains, including attention, language, and memory, and the
consequent effects on academic performance and learning
progression; (2) to explore cognitive rehabilitation approaches and
school-based strategies that may support children’s academic
achievement and successful integration into the school environment.

2 Method
2.1 Search strategy

This is a narrative review of the literature on pediatric stroke. A
narrative approach was chosen due to the substantial heterogeneity
of available studies, which differ in design, participant characteristics,
stroke types, ages at onset, and cognitive and academic outcome
measures. The included studies span case reports, longitudinal
cohorts, and cross-sectional investigations, precluding direct
comparison or quantitative synthesis. This approach allowed a

Type of Stroke

Arterial Ischemic
Stroke (AIS)

Most common type
of pediatric stroke

Hemorrhagic Stroke
(HS)

Thrombosisin the
cerebral venous
sinuses

Cerebral Sinovenous
Thrombosis (CSVT)

Cerebral bleeding
(intraparenchymalor
subarachnoid
hemorrhages)

Congenital heart
disease

Arteriopathies Clotting disorders

Infections

Dehydration

Coagulation Vascular

abnormalities fnim=

Systemic conditions malformations

FIGURE 1
Types of pediatric stroke and associated causes.
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comprehensive integration of findings across multiple domains,
including cognitive sequelae, executive functions, academic
performance, rehabilitation strategies, and school reintegration.
Relationships and patterns across studies were explored, and gaps in
the literature were identified. Narrative synthesis enabled the
identification of overarching patterns and the examination of gaps
within the existing evidence base. A comprehensive literature search
was conducted across major academic databases, specifically
PubMed and Scopus, covering studies published between 2000
and 2025.
The search

following keywords:

strategy included combinations of the

» <«

« Population: “pediatric stroke,” “neonatal stroke”
« Cognitive outcomes: “cognitive outcomes,” “cognitive deficits,”

» <

« »
language problems,” “memory problems;
»«

“executive difficulties,

attention problems,”
visuo-spatial difficulties”
 Academic/functional outcomes: “school problems,” “academic

» «

difficulties;” “school integration,” “cognitive rehabilitation”

An example of a search string used:

(“pediatric stroke” OR “neonatal stroke”) AND (“cognitive
outcomes” OR “cognitive deficits” OR “language problems” OR
“memory problems” OR “attention problems” OR “executive function
difficulties” OR “visuo-spatial difficulties”) AND (“school problems”
difficulties” OR
“cognitive rehabilitation”).

OR “academic “school integration” OR
Reference lists of all included studies and relevant review articles

were also manually screened to identify additional eligible publications.

2.2 Inclusion and exclusion criteria
Inclusion criteria:

o Children and adolescents (0-18 years) with a history of pediatric
or neonatal stroke

« Studies reporting cognitive or academic outcomes

« Longitudinal, cross-sectional, or interventional designs

Exclusion criteria:

« Studies focusing on adults (>18 years)
« Studies on unrelated neurological conditions
« Non-full-length publications (e.g., abstracts, editorials)

2.3 Study selection
The selection process involved two stages:

o Phase 1 - Title and abstract screening: Two independent
reviewers (S. T. and M. P. C.) screened titles, abstracts, and
keywords to identify potentially relevant studies. Studies with
insufficient abstract information were retained for full-text
review. Duplicate articles were removed. Studies that did not
address cognitive or academic outcomes related to pediatric or
neonatal stroke were excluded.
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o Phase 2 - Full-text screening: Four additional reviewers (G. M.,
M. A.N.E, A. B. and G. T.) independently assessed full texts for
eligibility according to the inclusion and exclusion criteria
detailed in section 2.2. Disagreements were resolved through
consensus discussion, supervised by the senior author (M. V.).
Main reasons for exclusion at the full-text stage were recorded
and are presented in Figure 2.

2.4 Data extraction and synthesis
Data were extracted for each included study, including:

« Participant characteristics (age at stroke, stroke type, sample size,
control group)

« Cognitive and academic outcomes

o Evaluation methods and study procedures

The narrative synthesis involved the following steps:

1 Preliminary synthesis: organizing studies according to
cognitive domains (attention, memory, executive function),
academic performance, and school integration challenges.

2 Exploring relationships: examining studies collectively to
identify common trends, consistent findings, and interactions
between cognitive and academic outcomes.

3 Assessing the synthesis: key findings were described in a
qualitative and narrative manner, with attention to their
relevance in relation to the review’s objectives. A basic
assessment of study quality was carried out, considering
general aspects such as study design, sample size, and
methodological clarity. This allowed contextualization of the
strength of the evidence and identification of potential
limitations within the literature.

Figure 2 illustrates the study selection process.

3 Results
3.1 Cognitive sequelae

Cognitive outcomes following pediatric stroke vary widely, from
typical development to severe impairments. These differences are
influenced by several factors (20, 30-33). A critical determinant of
cognitive outcomes is the timing of the stroke, which plays a pivotal
role in shaping long-term cognitive function (6, 34). Some studies
show that strokes occurring before the age of 1 are associated with
poorer cognitive outcomes (35, 36), while others suggest that strokes
occurring later in childhood, particularly AIS when brain maturation
is more advanced, result in worse cognitive outcomes (30). In a
previous review, Rees et al. reported that children with perinatal stroke
had IQ scores more than 24 points lower than their peers, with deficits
becoming more pronounced as academic demands increased. The
authors also noted substantial heterogeneity across studies in terms of
assessment timing, assessment tools, and the inclusion of both left-
and right-sided strokes (6). In an earlier investigation, Westmacott
et al. (37) observed that, although children with unilateral neonatal
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1551 potentially relevant articles according to
search study

from databases

1015 were screened

241 articles were analyzed for more details

|

v

75 studies included

FIGURE 2
Flow diagram of the study methodology.

536 duplicates

774 deleted: no use of English
language, conference abstract, no
peer reviewed articles, only adult
neuropsychological data,
biological only focus

166 deleted: other neurologic
diseases not involving stroke,
studies not reporting pediatric
neuropsychological outcome,
motor rehabilitation only

strokes show average IQ scores during preschool, these tend to decline
during the school years. In a later study, the authors found that stroke
timing influences cognitive outcomes. Patients with perinatal strokes
had the lowest mean IQ (91.63), followed by those who sustained a
stroke between 1 month and 5 years (95.42), and those between 6 and
16 years (97.21) (35) (Supplementary Table S1). The authors reported
that subcortical strokes had the most substantial impact on intellectual
ability and information processing skills when they occurred during
the prenatal or perinatal period. Cortical strokes in the same period
were less frequently associated with cognitive deficits. Children who
experienced cortical strokes between 1 month and 5 years of age
showed lower performance across multiple cognitive domains
compared to those with cortical strokes occurring either earlier or
later in development (35).

These results highlight the important roles of both timing and
lesion location in cognitive outcomes. Supporting this view, Anderson
et al. found that children with larger or more extensive lesions,
particularly those involving both cortical and subcortical regions, have
lower IQ scores, whereas a better acute neurological status and the
absence of seizures predict higher IQ outcomes (33). These findings
underscore the importance of early neurological health and lesion
characteristics in shaping long-term cognitive outcomes such as IQ.

In addition to stroke timing and location, motor recovery may
play a role in cognitive function. Ledochowski et al. (38) reported that
children who exhibited better motor recovery in the first year
following the stroke have higher IQ scores, particularly in domains
such as verbal ability, visuo-perception, and processing speed.
However, cognitive function, more than motor recovery, is a stronger
predictor of long-term educational needs. This highlights the
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importance of addressing cognitive challenges during rehabilitation,
as these deficits often have a more lasting impact than motor
impairments (13).

The presence of comorbidities, particularly post-stroke
epilepsy, can further complicate the cognitive outcome. In this
regard, children who experience stroke during mid-childhood
(ages 5-10 years) have the most favorable prognosis, whereas those
with stroke before the age of five or after the age of 10 have less
favorable cognitive outcomes (30). Neonates, especially those with
epilepsy, have poor cognitive outcomes, underscoring the
significant role that comorbidities, such as epilepsy, play in the
overall prognosis of cognitive function following pediatric stroke.
Gschaidmeier et al. (39) found that children with post-stroke
epilepsy exhibit significantly lower non-verbal IQ scores,
particularly in abstract reasoning and visuospatial tasks, compared
to their peers without epilepsy. These findings are consistent with
earlier studies demonstrating progressive cognitive impairment
linked to post-neonatal epilepsy in children following perinatal
AIS (40).

Extending the focus from cognitive outcomes, language abilities
represent another critical aspect of post-stroke development.
Language impairments, frequently observed following stroke, can
significantly disrupt both expressive and receptive communication,
compromising the individual’s ability to understand verbal
instructions and participate in social interactions (41-43). Children
who experience a stroke during childhood often face considerable
challenges in language development, with the timing, location, and
type of stroke playing pivotal roles in determining the extent of these
impairments (44-51).
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The perinatal period, in particular, represents a window of
heightened vulnerability and opportunity in brain development. Some
studies have found that children who suffered a stroke before the age
of 1 exhibit significantly poorer outcomes compared to those who
experience a stroke later in life (44, 45). In a study involving 15
patients and their healthy sibling, Newport et al. showed that perinatal
strokes, especially those affecting the left hemisphere, can lead to long-
term atypical lateralization of language functions, with compensatory
shifts to the right hemisphere (46). However, this reorganization does
not always ensure full recovery (47). In a previous study, Francois et al.
reported the case of a 3.5-year-old child with a left-sided perinatal
stroke (49). Despite undergoing extensive brain reorganization to
develop language, the child did not achieve full functional recovery.
In contrast, children with right hemisphere lesions perform
comparably to controls, though they show reduced use of complex
syntax (47).

Peterson et al. investigated the impact of childhood strokes
involving the basal ganglia on language and academic outcomes (50).
They found that strokes affecting the left basal ganglia are associated
with higher-order language difficulties in verbal fluency, narrative, and
pragmatic language. Involvement of these areas leads to an increased
risk of academic challenges, including learning disorders.

In addition to lesion location, the type of stroke plays a significant
role in determining language outcome. Sherman et al. explored the
incidence of language impairments in children with AIS or cerebral
venous sinus thrombosis (CSVT) (51). Around 48.7% of children with
AIS show initial language impairment, with a persisting delay in 74%
of patients with neonatal ischemic stroke (Supplementary Table S1).

Despite the paucity of studies on environmental factors, emerging
evidence suggests that bilingual exposure may influence recovery
following pediatric stroke. Leung et al. reported comparable overall
cognitive outcomes between monolingual and bilingual children;
however, bilinguals who experienced stroke within the first year of life,
exhibited superior productive language outcomes compared to
monolingual peers (52). These findings suggest that bilingual
environments may support post-stroke language recovery, with
experiential factors influencing outcomes alongside lesion timing
and location.

Extending the examination of post-stroke cognitive sequelae,
memory constitutes a critical domain frequently affected in pediatric
stroke. Impairments may encompass working, verbal, and episodic
memory, reflecting the vulnerability of these systems during early
neurodevelopment and their susceptibility to disruption following
cerebral injury (7, 53-56).

Kolk et al. (7) investigated how strokes occurring very early in
life, such as during the neonatal period, can lead to severe memory
impairments. In their study, 21 children with neonatal strokes
(mean age 6.86 years) and 10 children with strokes later in
childhood (mean age 8.21 years) were assessed. The neonatal stroke
group exhibited the most significant impairments, particularly in
the visuospatial domain, which was more affected than in the
childhood stroke group. Particularly in the neonatal stroke group,
memory difficulties were pronounced in sentence repetition tasks,
suggesting a disruption in the development of verbal memory and
phonological processing. However, a study by Abgottspon et al.
(53) offers a more nuanced perspective, revealing a nonlinear,
U-shaped association between age at stroke and long-term memory
outcome. Indeed, children with stroke during early childhood
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(between 29 days and under 6 years of age) exhibited more
pronounced memory deficits than those with neonatal or later-
onset strokes.

Also, the location and lateralization of the lesion play a crucial role
in shaping memory outcome (7). In a cross-sectional study involving
32 children (aged 6-14 years), Fuentes et al. (55) found that left
hemisphere strokes, particularly those affecting the middle cerebral
artery, are strongly associated with deficits in working memory.
Episodic memory, which is vital for recalling personal experiences and
organizing narrative information, is often disrupted when strokes
affect medial temporal lobe structures. Gold and Trauner (56) showed
that perinatal strokes leading to reduced hippocampal volume impair
a child’s ability to retain and organize narrative details, such as
recalling stories, events, and sequences. Reduced hippocampal
volumes are associated with impaired memory performance, with left-
sided reductions predominantly affecting verbal memory and right-
sided reductions impacting non-verbal memory. Furthermore, the
occurrence of seizures contributes to both memory deficits and
additional hippocampal volume loss. A recent study by Salzmann et al.
(57) provides novel longitudinal data indicating that lesion volume
and involvement of basal ganglia structures, particularly the left
caudate nucleus, predict long-term working memory and processing
speed after childhood stroke. Neurological function at discharge and
follow-up was also found to be an important predictor. This study
advances previous research by combining quantitative lesion metrics
with repeated neurological assessments, although its focus was limited
to selected cognitive domains and sample size was relatively small.

Deficits in executive functions (EF) are common in children with
a history of stroke, independent of intellectual abilities (7, 58-65).
Strokes occurring during the perinatal or early childhood period may
disrupt EF maturation by damaging brain networks critical for
cognitive control and self-regulation, such as the frontoparietal and
frontostriatal systems (62). These impairments often hinder the child’s
ability to follow routines and cope with increasing cognitive demands,
especially in structured school settings. (25). Morphometric and
behavioral studies show that children with AIS often exhibit elevated
parent-rated ADHD symptoms and EF impairments, including
deficits in working memory, planning, and organization. In contrast,
children with periventricular venous infarction (PVI) tend to show
fewer deficits, highlighting the role of lesion type in cognitive
outcomes. Lesion size also predicts long-term cognitive outcomes,
such as processing speed and EF, with larger lesions linked to poorer
performance (66). According to studies by Rivella et al. (5) and Rivella
and Viterbori (25), EF impairments caused by perinatal or pediatric
stroke are more severe when the lesion is large and leads to language
deficits. Li et al. (63) suggested that EF abnormalities could represent
a key predictor of learning difficulties, particularly in mathematics.

Functional neuroimaging studies demonstrate that lesions during
sensitive developmental periods cause lasting changes in neural
connectivity. Larsen et al. reported that reduced interhemispheric
frontal connectivity correlates with poorer attention and executive
performance in children with perinatal stroke (62). Atypical resting-
state activity in the default mode network also associates with deficits
in cognitive flexibility and processing speed (64). In contrast, Kolk
et al. (7) observed that EF often remains spared in children who
experienced a stroke during the neonatal or early childhood period,
despite impairments in other cognitive domains, such as attention
and memory.
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Brain network disruptions following pediatric stroke contribute
to attentional difficulties and increase the risk of secondary ADHD
(S-ADHD), affecting 13.1% of post-stroke children (67, 68). Children
with neonatal AIS display persistent attention deficits into adolescence,
suggesting long-term executive control alterations (68).

Neuropsychological vulnerabilities in attention and EF are
independent of the involved hemisphere (68). Long et al. (60)
demonstrated that pediatric brain lesions, irrespective of location, can
impair executive functions, including attention, cognitive flexibility,
goal-setting, and information processing. Steinlin reported a child
with cerebellar infarction who exhibited severe attentional difficulties
similar to those seen in attention deficit disorders. This finding
underscores the cerebellum’s important role in attention regulation
(69). The severity of the dysfunction is strictly related to the size of the
lesion, at least regarding attentional capacity (60, 70).

Pediatric stroke can lead to visuospatial impairments, with visual
neglect and deficits in spatial processing frequently observed,
particularly following right-hemisphere lesions.

Purpura et al. (71) found that although visual neglect is less
common in children than in adults, neglect-like behaviors are
observed, especially in patients with right hemisphere lesions,
particularly during the perinatal period. These deficits can significantly
impact daily functioning and academic performance, although further
research is needed to fully understand their mechanisms. Children
who experience stroke also face challenges in spatial processing,
affecting both motor and cognitive functions. Everts et al. (72)
reported that right hemisphere lesions, particularly those occurring
early in life, are associated with deficits in spatial attention and
neglect-like symptoms. Left hemisphere lesions, in contrast, are
primarily linked to language and verbal memory deficits (72). A recent
study by Nenning et al. (73) provides important integration with
existing data, highlighting how spatio-temporal alterations in brain
connectivity may underlie the neural mechanisms responsible for
visuo-spatial difficulties observed in children with AIS.

Cognitive deficits may directly impact school learning. They
impair the acquisition, consolidation, and application of academic
skills, including reading, writing, and mathematics (50, 59, 63, 74-76).
A growing body of research has highlighted the substantial impact of
pediatric stroke on children’s educational outcomes. In a follow-up
study, 64% of children demonstrated mild to severe impairments in
school-related activities and academic performance (74). EE, including
working memory, planning, and attention, are critical for
mathematical learning. Damage to these functions, which is frequently
observed following stroke, can lead to dyscalculia. This condition is
characterized by difficulties in numerical understanding and
calculation (63).

Secondary ADHD is another complication commonly observed
in pediatric stroke survivors. It exacerbates academic difficulties by
disrupting attention regulation, organizational skills, and task
completion. This condition exacerbates academic difficulties by
disrupting attention regulation, organizational skills, and task
completion. In a longitudinal study, Roberts et al. followed children
with secondary ADHD (S-ADHD), stroke-only, and developmental
ADHD (D-ADHD) for about 4 years to assess academic outcomes
(59). They found that S-ADHD children experience greater worsening
in reading, while math scores decline similarly across groups. Both
ADHD groups show high rates of learning disabilities. No individual
or neurological factors predict academic decline, but ADHD
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symptoms are linked to poorer sustained attention and
organizational skills.

Metacognition, the ability to monitor and regulate one’s own
cognitive processes, also plays a vital role in academic success. Stroke-
related disruptions in metacognitive skills can hamper the use of
effective learning strategies, limiting both reading comprehension and
mathematical problem-solving. Deotto et al. (76) reported that 40%
of children with stroke exhibit clinically significant impairment in
pencil-and-paper arithmetic, primarily due to deficits in planning,
monitoring, and cognitive regulation.

Damage to specific brain regions, such as the basal ganglia, can
further impair academic performance by disrupting phonological
processing, a crucial component of reading and writing. This damage
may also contribute to learning difficulties, including dyslexia.
Peterson et al. (50) found that children with stroke-related damage to
the basal ganglia often struggle with word decoding, severely
impacting literacy skills. Mathematical abilities are also affected,
suggesting that basal ganglia damage has broad implications across
academic domains.

3.2 Rehabilitation and educational support

Cognitive rehabilitation plays a key role in the recovery of children
after neonatal or pediatric stroke. It addresses deficits in attention,
memory, executive functions, and other domains essential for learning
and academic success.

Non-pharmacological interventions, including cognitive
enhancement programs and neuropsychological therapies, are central
to restoring these cognitive functions. Despite their widespread use,
the efficacy of traditional rehabilitation approaches in pediatric stroke
is still supported by limited evidence (4, 26).

Direct neuropsychological rehabilitation approaches in children
are usually divided into two categories: substitution and restoration.
Substitution involves teaching alternative strategies or modifying
environments to compensate for cognitive deficits, leveraging the
child’s strengths to minimize impairment. Restoration, instead, relies
on targeted exercises to improve impaired cognitive abilities,
particularly attention and executive function (77). Most studies on
non-pharmacological interventions in pediatric stroke have primarily
focused on motor rehabilitation, while cognitive outcomes remain
relatively understudied (26). Mrakotsky et al. (78) highlighted that,
although interventions addressing sensorimotor and speech/language
deficits are more advanced, those targeting higher-order cognitive and
behavioral impairments are still underdeveloped. They advocate for
pediatric-specific, multidisciplinary approaches rather than
adaptations of adult rehabilitation models (78).

Speech-language therapy primarily targets motor speech and basic
language deficits. However, in early childhood stroke, children often
develop higher-order language impairments, such as difficulties with
discourse processing, verbal fluency, and organizing ideas, which are
rarely addressed by standard interventions (50, 79). Case reports
suggest that speech-language therapy, when integrated with other
interventions, may offer additional benefits, even though empirical
evidence in pediatric stroke is still limited (80, 81).

Controlled trials in cognitive rehabilitation are mostly derived
from adult stroke or pediatric acquired brain injury populations and

often target single domains (e.g., working memory or motor skills),
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with limited generalization to daily life or academic performance (79).
Early research investigated the effects of combining memory training
with academic tutoring in children with sickle cell disease and stroke
(SCD). Yerys et al. (82) conducted a 6-week pilot study involving six
children with SCD-related cerebral infarcts. Participants were divided
into two groups: one group (n = 3) received standard tutoring alone,
while the other group (n = 3) received tutoring supplemented with
adjunctive training in memory strategies, specifically silent rehearsal
and semantic organization. The group receiving the combined strategy
training demonstrated significantly greater improvements in memory
performance compared to the tutoring-only group (82). Few years
later, King et al. (83) conducted a 2-year educational rehabilitation
study in a very small sample (11 children) with SCD and cerebral
infarcts, specifically targeting memory deficits. Children who received
general tutoring combined with targeted memory strategy training
showed greater improvements in verbal memory and backward Digit
Span compared to those who received tutoring alone. However, these
cognitive gains did not clearly lead to significant improvements in
academic achievement (reading, math, and spelling). Academic
performance remained modest and similar across both groups,
highlighting a gap between improved memory and real-world
academic outcomes. Gilardone et al. (81) reported a case of a 13-year-
old with AIS, in whom an intensive, individualized rehabilitation
program yielded cognitive and functional improvements, partly
sustained at follow-up. In another study, Eve et al. (84), using Cogmed,
a computerized program designed to train working memory through
specific exercises aimed at enhancing cognitive skills related to
learning, showed short-term working memory improvements but no
sustained academic benefit after 12 months.

Technological innovations offer promising adjuncts to traditional
methods, activating neuroplastic pathways through repetitive,
individualized practice (27, 80). Virtual reality-based rehabilitation,
primarily validated in adults, is potentially effective in improving
attention, memory, and EE, with benefits in cognition, motor function,
and balance (27). Evidence for rTMS in pediatric AIS is extremely
limited and restricted to isolated case reports. Carlson et al. (80)
described a 15-year-old patient with post-stroke expressive dysphasia
who demonstrated language improvements following inhibitory
r'TMS to the contralesional right inferior frontal gyrus combined with
intensive speech therapy. Although well tolerated and partly sustained
at follow-up, this intervention remains experimental. Caution is
necessary due to potential risks, including a reduction in seizure
threshold, which may increase seizure risk, particularly in patients
with epilepsy or other neurological vulnerabilities (85).

Rehabilitation following pediatric stroke should not only target
cognitive recovery but also support the child’s reintegration into
everyday life, including academic, social, and functional domains. In
this context, school-based interventions play a key role in facilitating
meaningful participation and long-term adjustment.

Approximately 40% of children with pediatric ischemic stroke
require special education services, and 19% attend specialized schools
(22). Hawks et al. (86) reported the educational placements of children
who experienced a pediatric intracerebral hemorrhage. Among these
children, 46.7% attended age-appropriate regular classes, 40% received
in-class support, 10% were enrolled in special education, and 3.3%
required home-based services. The type of educational placement
appears to influence recovery trajectories significantly. Indeed,
children who receive in-class support have better academic and social
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integration compared to those placed in separate special education
settings. Cognitive factors play a central role in educational outcomes.
Yvon et al. (13) reported that cognitive deficits, particularly in IQ, are
stronger predictors of academic performance than motor
impairments. These findings emphasize the need for educational
interventions tailored to each childs specific neurocognitive
profile (13).

Several school-based educational programs have proven
promising. Proios et al. (24) demonstrated the effectiveness of a
school-based educational program in Greece aimed at improving
stroke awareness among students. Williams et al. (87) developed the
“Hip Hop Stroke” program. This initiative educates elementary school
children in high-risk communities on recognizing stroke symptoms.

Leib et al. (88) implemented a quality improvement initiative to
support school reintegration for children hospitalized with acute
neurological conditions. They established a neuropsychology consult
workflow with school reintegration recommendations and staff
training. In 12 months, 36 consults were completed, with
recommendations increasing from 0 to 100%. Patients included those
with stroke, neuroimmune disorders, cardiac arrest, TBI, encephalitis,
and brain tumors. The initiative was feasible and practical, but further
research is needed to evaluate outcomes and sustainability.

Although the role of teachers in the recovery of children after
pediatric stroke is essential, it has been insufficiently explored in the
existing literature. While cognitive rehabilitation is central to recovery,
teacher involvement is equally important for academic and social
integration. Emerging evidence emphasizes the need for adequate
teacher preparation to address the educational challenges of pediatric
stroke (22). Vanderlind et al. (22) highlighted a gap in teacher training.
Teachers may struggle to provide necessary support without adequate
resources and knowledge. McKevitt et al. (89) reported that parents
often act as intermediaries between the health and education systems.
They advocate for their child’s needs while navigating fragmented
(89). This better
consistent  care, responsive

support  structures approach promotes

communication, and more

educational planning.

4 Discussion

This review synthesizes the existing literature on the impact of
pediatric stroke on school-related outcomes, a topic less explored
compared to broader cognitive sequelae and rehabilitation. The
highlights  the
neuropsychological impairments and academic performance, with

evidence complex relationship  between
particular attention to the challenges faced during school reintegration
after pediatric stroke. Pediatric stroke disrupts the developmental
trajectory of children, resulting in long-term cognitive, emotional, and
academic consequences. Although typically viewed as a medical issue,
growing evidence shows that pediatric stroke impacts not only
physical health but also cognition, emotional well-being, and broader
aspects of school functioning. Rehabilitation can enhance neurological
function. However, these improvements do not consistently translate
into academic achievement. This suggests that gains observed in
clinical settings may not fully meet the complex demands of the
educational environment. Pediatric stroke is frequently associated
with impairments in executive functioning, attention, working
memory, and language. These deficits interfere with essential processes
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for academic success and often lead to significant difficulties in school
(7, 53, 58, 59, 63, 90). For example, executive dysfunction impairs
goal-directed behavior and cognitive flexibility, limiting the child’s
ability to initiate, organize, and adaptively regulate problem-solving
strategies. These challenges are often compounded by attentional
deficits. Such deficits reduce the capacity for sustained focus and task
persistence, ultimately hindering effective engagement in academic
activities (60-62, 68, 76). Furthermore, limitations in working
memory, critical for the transient storage and manipulation of
information, disrupt the efficient encoding and retrieval of new
material, thereby affecting higher-order learning and the acquisition
of complex skills (53, 55). Language impairments can also hinder both
expressive and receptive communication, impacting the child’s ability
to follow verbal instructions and interact with peers (42, 43). Motor
impairments primarily affect physical function. However, they may
also complicate academic reintegration by interfering with cognitive
and social processing (39, 91).

The consequences of pediatric stroke are influenced by factors
such as age at stroke onset, lesion location, and comorbidities like
epilepsy (92-94). The relationship between age at stroke onset and
recovery outcome is complex and subject to debate. The developing
brain has significant neuroplastic potential. This potential enables
functional recovery, especially during critical periods of neural
maturation (43, 44, 95, 96). During these windows, plasticity facilitates
the reorganization of neural circuits, allowing alternative pathways to
compensate for functional impairments. This adaptive capacity,
however, has limitations. Maladaptive plasticity, characterized by
inefficient or atypical reorganization, may hamper recovery and
contribute to atypical maturation of the neural systems (4, 43). Two
main theoretical frameworks address this dual role. The early plasticity
hypothesis posits that the immature brain has an enhanced capacity
for compensatory reorganization. The early vulnerability hypothesis
suggests that early injuries may disrupt critical neurodevelopmental
processes, leading to long-term impairments (43, 95, 96). Empirical
findings support both perspectives, revealing a non-linear pattern of
recovery. For example, strokes occurring between 1 month and 6 years
of age are frequently associated with poorer cognitive outcomes
compared to those occurring in neonates or later in childhood (53).
This pattern may reflect the heightened vulnerability of specific
cognitive and neural systems during sensitive developmental windows.

School should not be viewed solely as a place where difficulties
arise. It also serves as a therapeutic environment that actively supports
recovery Schools can foster cognitive and emotional development by
offering structured activities. They can also provide personalized
learning strategies and opportunities for social engagement (22, 24,
29, 87). Effective educational support includes individualized
instruction, teacher training, and coordinated efforts between
educators and healthcare professionals (22). Developing Individualized
Education Plans (IEPs) tailored to each child’s cognitive, emotional,
and behavioral needs can significantly enhance academic performance.
These plans may include adaptive strategies, extra time for tasks, and
assistive technologies (4, 97). Moreover, promoting positive peer
interactions and combating social isolation through inclusive
programs can strengthen well-being and resilience (22, 24, 87). With
the right strategies and collaboration, schools can turn educational
challenges into valuable opportunities for growth.

This review comprehensively integrates heterogeneous literature
on pediatric stroke outcomes. It elucidates how lesion features, timing,
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neurological recovery, and comorbidities collectively shape cognitive
and academic development. A key strength of this review is its focus
on real-world academic outcomes, bridging the gap between
neuropsychological sequelae and school performance-a perspective
largely underrepresented in previous literature (7, 22, 53, 63).
Furthermore, by integrating heterogeneous studies across multiple
cognitive domains and stroke types, the review offers a broad
understanding of  potential recovery trajectories and
educational challenges.

The findings of the present review have practical relevance for
clinicians and educators supporting children after pediatric stroke.
Early, comprehensive assessment of cognitive, language, and executive
functions is essential to identify children at risk and guide
individualized interventions, including IEPs and rehabilitation
strategies. Schools play a pivotal role by implementing personalized
learning strategies, adaptive tools, and social support, while teacher
training can enhance inclusion and reduce barriers to learning.
Finally, integrating multidisciplinary approaches that combine
neurological, cognitive, and educational strategies can optimize
academic and overall outcomes, turning schools into therapeutic

environments that complement medical care.

4.1 Limitations of the review

Despite these strengths, several methodological limitations
warrant consideration. The included studies show substantial
stroke onset, lesion

heterogeneity. This includes age at

characteristics, stroke subtypes, comorbidities, assessment
instruments, and timing of evaluations. Such variability complicates
direct comparisons and limits the generalizability of findings (53,
55). Such variability may partly explain some inconsistencies in the
cognitive outcomes reported. In this contest, Kolk et al. (7) included
only children with an IQ of 80 or above, which could account for
their observation that executive functions were often spared. These
results diverge from the observations reported by Larsen et al.
included children with a broader range of cognitive abilities,
capturing more pronounced executive deficits (62). This underscores
how variations in inclusion criteria, sample characteristics, and
assessment methods can influence reported outcomes. Many studies
are limited by small sample sizes and the absence of control groups,
which reduces the reliability and generalizability of the reported
outcomes and interventions (Supplementary Table S1). Most
included studies originate from Western, high-income countries
and are published in English, potentially introducing language and
publication biases that limit the generalizability of findings to
non-Western populations. The influence of cultural and
socioeconomic factors on psychological development, rehabilitation,
and school integration following pediatric stroke remains
insufficiently explored. Yet, extensive evidence shows that
socioeconomic status (SES) significantly impacts cognitive
development and access to educational resources. Children from
disadvantaged backgrounds tend to perform worse in executive
functions, language, and memory than their more advantaged peers
(98, 99). These disparities likely affect both rehabilitation outcomes
and school reintegration but remain under-addressed in pediatric
stroke research. Beyond SES, family environment and cultural

dynamics also shape social participation and access to rehabilitation
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(100, 101). Qualitative studies indicate that cultural values, such as
family responsibility, can either support or hinder engagement with
post-stroke rehabilitation programs. A qualitative study on social
participation among stroke survivors further highlighted how
cultural norms, including filial piety, influence social engagement
and indirectly limit access to rehabilitation (100). Although focused
on adults, these findings offer valuable insight into the sociocultural
factors that shape recovery. They underscore the need for culturally
sensitive interventions that consider family and community values
to improve participation outcomes.

Future studies should systematically incorporate cultural and
socioeconomic variables and perform rigorous bias assessments to
enhance the applicability and validity of findings.

Another gap concerns the limited integration of medical,
neurocognitive, and educational perspectives. Although cognitive and
academic outcomes are often reported, few studies assess how
rehabilitation strategies translate into meaningful improvements in
school functioning or incorporate multidisciplinary approaches (22,
24, 87). Future research should investigate how coordinated
interventions—combining neurological, cognitive, and educational
strategies—can optimize long-term outcomes and support children’s
academic achievement.

5 Conclusion

Pediatric stroke represents a complex neurological event that
profoundly affects cognitive and functional abilities. Effective
rehabilitation is crucial to support recovery and optimize outcomes
for affected children. The school setting must be recognized as a vital
component of the rehabilitation process, providing an environment
where cognitive and functional skills can be reinforced and applied in
real-life contexts. Tailored educational interventions, coordinated with
medical and rehabilitation teams, enhance the child’s reintegration
into academic life and support ongoing recovery. Multidisciplinary
collaboration among healthcare providers, therapists, educators, and
families is essential to deliver comprehensive care and maximize the
potential for successful rehabilitation and academic achievement in
pediatric stroke survivors.
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