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generated through 
retrotransposition in the ATP7A 
gene results in premature stop 
codons and a case of Menkes 
disease
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Pathogenic variants in the ATP7A gene, which encodes a transmembrane copper-
transporting P-type ATPase, underlie Menkes disease, a rare X-linked recessive 
disorder of copper metabolism. We  report a 3-year-old boy presenting with 
progressive neurodegeneration, refractory epilepsy, connective tissue abnormalities, 
and characteristic kinky hair. Whole-exome sequencing and confirmatory analysis 
identified a retropseudogene insertion (~500 bp) in exon 3 of ATP7A, displaying 
the hallmarks of target-primed reverse transcription. PCR and RNA-seq revealed a 
marked reduction in ATP7A transcript levels in the patient. This case underscores 
the diagnostic relevance of retropseudogene insertions in disease genes and 
highlights their role in human pathology.
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Introduction

Menkes disease (MD, OMIM #309400) is a fatal multisystem disorder of copper 
metabolism, primarily caused by intragenic variants or partial deletions in the ATP7A gene 
(OMIM #300011). Affected individuals typically present with early-onset neurological deficits, 
intractable epilepsy, connective tissue dysfunction, skeletal abnormalities, distinctive kinky 
hair, and urological complications due to loss of ATP7A gene function (1). Reported prevalence 
varies from 1 in 354,507 to 1 in 40,000 based on clinically confirmed cases, while predictive 
estimates suggest a frequency as high as 1 in 8,664 live male births. Most patients with the 
classic MD phenotype succumb in early childhood, often from vascular complications or 
recurrent respiratory infections.

The ATP7A gene, located on chromosome Xq13.3, comprises 23 exons and encodes a 
1,500-amino-acid transmembrane copper-transporting ATPase (transcript NM_000052.7). 
Inactivation of ATP7A impairs intestinal copper absorption, systemic copper distribution, and 
the activity of copper-dependent enzymes, including cytochrome C oxidase and dopamine 
β-hydroxylase (2). Approximately 80% of pathogenic ATP7A variants are point mutations, 
while copy number alterations involving the entire gene account for the remaining 20% (3). 
Nevertheless, more than half of the identified variants have been classified as variants of 
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uncertain significance (4), highlighting the need to explore additional 
molecular mechanisms underlying MD.

Transposable elements (TEs), a diverse class of mobile DNA 
elements, constitute nearly two-thirds of the human genome and play 
crucial roles in genome evolution and gene regulation (5). Through 
embedded regulatory sequences such as promoters, enhancers, and 
open reading frames, TEs can modulate protein-coding gene 
expression (6). However, TE activity may also be  deleterious. 
Insertions into exonic or noncoding regions can disrupt coding 
sequences, alter RNA splicing, or cause deletions, thereby producing 
frameshifts and loss of function (LoF) (7). To date, more than 120 
TE-mediated insertions have been implicated in human diseases, 
including hemophilia, Dent’s disease, neurofibromatosis, and various 
cancers (8). Retrotransposons, in particular, propagate via a “copy-
and-paste” mechanism, creating additional insertions across 
the genome.

In this report, we describe a retropseudogene insertion generated 
through retrotransposition in exon 3 of ATP7A, identified in a 
proband presenting with the classic MD phenotype. Sequence analysis 
revealed that the insertion introduced multiple premature stop 
codons, while PCR and RNA-seq confirmed markedly reduced ATP7A 
transcript expression. This case expands the mutational spectrum of 
ATP7A and emphasizes the role of retropseudogene insertions in 
human genetic disease.

Materials and methods

Patient

The proband was a 3-year-old male, born to non-consanguineous 
parents after an uncomplicated pregnancy and delivery, with no 
history of perinatal asphyxia. Developmental regression was first 
noted at 3 months of age, followed by global developmental delay and 
medically refractory seizures (10–20 per day) that were unresponsive 
to antiepileptic drugs. As the disease progressed, both seizure 

frequency and seizure types increased. Electroencephalography (EEG) 
revealed epileptic spasms, tonic spasms, and focal seizures of mixed 
types (Supplementary Figure 1).

In addition to neurological symptoms, the patient developed 
urological complications, including multiple bladder diverticula and 
recurrent urinary tract infections. Physical examination demonstrated 
hypopigmented skin, fragile kinky hair (Supplementary Figure 2), 
skin and joint laxity, a high and narrow palatal vault, and generalized 
hypotonia. Laboratory testing showed reduced serum copper and 
ceruloplasmin levels (2.0 μmol/L and 50 mg/L, respectively; normal 
ranges:11.0–23.6 μmol/L and 200–600 mg/L).

Brain magnetic resonance imaging (MRI) demonstrated delayed 
white matter myelination and diffuse symmetrical cerebral atrophy, 
while magnetic resonance angiography (MRA) revealed tortuous 
cerebral vessels (Figure 1). Copper-histidine therapy (0.5 mL daily) 
was initiated at 11 months of age. Following treatment, serum copper 
(20.7 μmol/L) and ceruloplasmin (320 mg/L) normalized. Despite 
biochemical correction, neurological deterioration and seizures 
persisted, with only partial improvement in hair pigmentation and 
texture. At the age of 3 years, the patient remained unable to raise his 
head and exhibited profound deficits in gaze fixation, rolling over, 
and chewing.

Molecular genetic testings

After obtaining written informed consent from the patient’s 
guardian, peripheral blood samples were collected from the proband, 
who was clinically diagnosed with Menkes disease, as well as from his 
first- and second-degree relatives. A comprehensive panel of molecular 
genetic analyses was performed, including whole-exome sequencing 
(WES), Sanger sequencing, copy number variation (CNV) analysis, 
multiplex ligation-dependent probe amplification (MLPA), Manta 
structural variant analysis, chromosome karyotyping, targeted 
sequence analysis, polymerase chain reaction (PCR), and RNA 
sequencing (RNA-seq). These stepwise investigations allowed us to 

FIGURE 1

Magnetic resonance angiography results of the proband. The proband’s MRA revealed that the intracranial blood vessels were highly coiled, resembling 
a screw cone.
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elucidate the molecular genetic etiology of the disease and to provide 
accurate genetic counseling for the family (9).

Results

WES identified a missense variant in ATP7A (c.4390A > G, p. 
Ile1464Val) in the proband. According to ACMG-AMP guidelines, 
this variant was classified as benign/likely benign. It has been reported 
as a polymorphism in the Japanese population (10), and the proband’s 
family segregation analysis excluded its pathogenicity 
(Supplementary Figure 3). Structural variant analysis using Manta 
revealed two chromosomal breakpoints on chromosomes 22 and X, 
the latter where ATP7A is located. However, no deletions, duplications, 
or balanced chromosomal translocations were detected by CNV 
analysis, MLPA, or karyotyping. Given the X-linked recessive 
inheritance of MD and the limitations of detecting noncoding 
variants, we performed deep targeted WES and transposable element 
(TE) analysis to further investigate potential pathogenic variants.

TE analysis revealed an insertion of approximately 500 bp within 
exon 3 of ATP7A in the proband (Supplementary Figure 4). Further 
in silico review with Integrative Genomics Viewer (IGV) revealed 
multiple hallmarks of target-primed reverse transcription (TPRT)-
mediated retrotransposition, including soft-clipped reads, poly(A) 
tails, and a flanking target site duplication (TSD) (Figure 2). Targeted 
sequencing of junction amplicons resolved the insertion at single-
nucleotide resolution, demonstrating a full-length retrotransposon 
with an uninterrupted poly(A) tail of at least 100 bp at the 3′ end and 
a 16 bp TSD (GACAATAATCCCTTCT) flanking the site (Figure 3). 

These findings confirmed that the insertion occurred via TPRT in the 
reverse orientation. In silico reading-frame analysis further indicated 
that the insertion introduced multiple premature stop codons, 
truncating the ATP7A transcript and abolishing its functional capacity.

To confirm the insertion, full-length PCR was performed using 
primers flanking the affected region. An additional ~500 bp product 
was observed in the proband compared with DNA from unaffected 
donors. PCR with primers spanning upstream and downstream 
regions of the insertion further validated the event (Figure 4).

Finally, we  examined the effect of the insertion on ATP7A 
expression using RNA sequencing of peripheral blood. After 
alignment with STAR and normalization using RPKM, we observed 
comparable expression levels of ATP7A in both parents, whereas the 
proband exhibited markedly reduced transcript abundance. This 
reduction in expression is consistent with the predicted pathogenic 
mechanism and correlates with the clinical phenotype of 
Menkes disease.

Discussion

Retrotransposons can profoundly influence chromosome integrity 
and gene expression, thereby contributing to hereditary disorders (11, 
12). Their transpositions can disrupt genomic structure and function, 
and more than 150 de novo retrotransposition events have been 
reported to date (13). However, these mobile element insertions 
(MEIs) are often larger than the read lengths of short-read sequencing 
platforms and are therefore frequently missed by routine genetic 
testing methods (14). For example, a recent long-read sequencing 

FIGURE 2

Identification of the insertion generated through retrotransposition in ATP7A exon 3. Integrative Genomics Viewer (IGV) analysis revealed an insertion 
generated through retrotransposition within exon 3 of the ATP7A gene in the proband, which was absent in his father; the mother exhibited mosaicism. 
The non-reference insertion was supported by soft-clipped reads (colored bases) spanning the insertion breakpoints (red dashed lines). Hallmarks of 
target-primed reverse transcription (TPRT)–mediated retrotransposition were evident, including a target site duplication (TSD) and a poly(A) tail. A 
sharp decrease in coverage depth was observed at the junction of the insertion.
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study identified a 2.8 kb SVA retrotransposon insertion deep within 
an intron of ATP7A in a 16-year-old boy with occipital horn syndrome 
(OHS) (15). Similarly, exome and Sanger sequencing have been used 
to characterize an SVA-F retrotransposon in SMN1 intron 7 as a novel 
mutational cause of spinal muscular atrophy (16), and PCR combined 
with Sanger sequencing identified an SVA retrotransposon insertion 
in ITGB3 in a family with Glanzmann thrombasthenia (17).

In the present study, we identified a novel insertion in exon 3 of 
ATP7A in a patient with Menkes disease. Sequence analysis 
demonstrated that the insertion carried hallmarks of LINE-1–
mediated retrotransposition, including a 16-bp TSD, a poly(A) tail 
exceeding 100 bp, and a LINE-1 endonuclease cleavage motif (5′–
TTCT/AT–3′). PCR confirmed the insertion, and RNA-seq revealed 
significant downregulation of ATP7A expression in the proband. 
We hypothesize that the insertion introduced a strong cryptic donor 
splice site, leading to aberrant splicing and degradation of the 
transcript via nonsense-mediated decay (NMD). The generation of 
premature termination codons (PTCs) is consistent with the observed 
depletion of ATP7A expression and provides a plausible molecular 
mechanism (18).

LINE-1 is the only autonomous transposable element currently 
active in humans, capable of mobilizing not only itself but also 
non-autonomous elements such as Alu, SVA, and occasionally cellular 
RNAs to form retropseudogenes (19). Some processed mRNAs are 
reverse transcribed and integrated into a staggered chromosome break 
by the enzymatic machinery of LINE-1 non-LTR retrotransposon, 
called retropseudogenes (20, 21). Although most retropseudogenes 

likely represent dead-on-arrival gene copies, they can still influence the 
evolution and function of genes. These retrotranspositions utilize 
LINE–1–encoded proteins to relocate to new genomic locations via a 
coupled reverse-transcription integration mechanism, referred to as 
TPRT (22, 23). Hallmarks of such events include remnants of poly(A) 
tails and the presence of TSDs (19). Although many retropseudogenes 
are transcriptionally inactive, LINE-1-mediated retrotransposition 
events have long been recognized as drivers of genomic instability, 
particularly when they occur within coding or regulatory regions. In 
this case, BLAST and RepeatMasker analyses revealed that this 
retrotransposon is neither an SVA nor an Alu, but rather a 
retropseudogene. Sequence alignment demonstrated that the 
retropseudogene shares 97.7% sequence similarity with a region on 
chromosome 22, allowing the source of the retrocopy to be traced. The 
proband’s mother was identified as a mosaic carrier, with amplicon 
sequencing confirming ~2% chimerism, whereas the father harbored 
no variants. Notably, the mother’s mosaic status suggests the 
retrotransposition event occurred during gametogenesis or early 
embryogenesis, after which it was transmitted in a mosaic state. 
Functionally, this retropseudogene localizes to exon 3 of ATP7A, which 
encodes the metal-binding domains (MBDs) harboring the copper-
binding GMXCXXC motifs essential for protein function (24). 
Disruption of this domain likely results in a truncated, 
non-functional protein.

In conclusion, our findings expand the mutational spectrum 
of ATP7A by identifying a novel retrotransposition-derived, 
exon-disrupting retropseudogene insertion as a pathogenic cause 

FIGURE 3

A schematic diagram of the insertion in exon 3 of the ATP7A gene. The schematic diagram illustrates the fully resolved exonic insertion at single-base 
resolution. The ~500 bp insertion generated through retrotransposition contained a 16-bp target site duplication (TSD), a poly(A) tail exceeding 100 bp, 
and a LINE-1 endonuclease cleavage motif (5′–TTCT/AT–3′).

FIGURE 4

Validation of the insertion in ATP7A exon three by PCR. Representative gel electrophoresis images from full-length PCR and PCR using primers flanking 
both ends of the transposable element confirmed the exonic insertion. Genomic DNA (gDNA) was extracted from blood samples of the proband, his 
parents, and two unrelated controls.
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of Menkes disease. This case highlights the diagnostic challenges 
of detecting mobile element insertions and underscores the 
importance of considering such events in unresolved genetic 
etiologies. Advances in bioinformatics pipelines and re-analysis 
strategies, particularly those incorporating long-read sequencing, 
will be  essential for improving the detection of MEIs in 
hereditary disorders.
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