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The neurodevelopmental disorder autism spectrum disorder (ASD) affects 0.5%—1% of
the global population and is marked by ongoing difficulties in social communication
and cognitive function. Interestingly, ASD has been reported to share a genetic
origin with epilepsy, a condition marked by recurrent, unprovoked seizures. Both
ASD and epilepsy are caused by multifactorial and multigenetic origin. Whereas
the number of genes linked to ASD etiology are growing, the genetic basis of
epilepsy is more diverging leading to distinct epileptic syndromes. Despite decades
of discussion, a comprehensive understanding of the genetic interplay between
these disorders remains elusive. Our article focuses on investigating the shared
genetic basis of abnormalities in synaptic proteins, highlighting the presynaptic
compartment, which is less explored compared to the postsynaptic elements.
We identify those biological processes linked to the presynaptic compartment,
such as presynaptic assembly, ATP metabolism, various aspects of the synaptic
vesicle cycle, are commonly affected across conditions, as evidenced by the
shared genetics. Hence, this study offers initial insights into presynaptic signaling,
and further research could aid in developing improved therapeutic strategies by
targeting these presynaptic processes.

KEYWORDS

ASD, epilepsy, presynaptic genes, comorbidity, abnormal synaptic plasticity, synaptic
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1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that typically manifest
at birth, persisting throughout an individual’s life causing behavioral, cognitive, and social
challenges. Epilepsy, on the other hand, can occur throughout the life span of an individual
due to various other neurological compromises including stroke, tumors or other pathologies.
Notably, epilepsy is a common comorbid condition in individuals with ASD. Although both
environmental and genetic factors contribute to the co-occurrence of ASD and epilepsy (1),
genetic factors play a predominant role in the development of these disorders. Recent studies
highlight that the co-occurrence of ASD and epilepsy is largely driven by disruptions in
fundamental neurodevelopmental pathways. Shared genetic mutations affecting ion channels,
synaptic proteins, and transcription factors contribute to these disruptions, leading to altered
neural connectivity and excitability that underlie both autistic behaviors and epileptic seizures
(2). Approximately 10%-20% of individuals with ASD share genetic factors that overlap with
epilepsy (3). Interestingly, about 30% of individuals diagnosed with epilepsy also meet certain
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diagnostic criteria for ASD (4, 5). Notably, epilepsy may potentially
contribute to the development of ASD, or conversely, the abnormal
brain circuitry underlying ASD could predispose individuals to
epileptic seizures.

The genetic causes of ASD and epilepsy involve dysregulation of
synaptic functions due to mutations in genes such as SYNI (synapsin-
1), SCN2A, and SCN8A (sodium voltage-gated channel alpha subunit
2 and 8), KCNQ2 and KCNQ5 (potassium voltage-gated channel
subfamily Q member 2 and 5), SHANK3 (glutamate receptor signaling
protein SH3 and multiple ankyrin repeat domains 3), GABRG2 or
GABRG3 (gamma-aminobutyric acid type A receptor gamma subunits
2 and 3). These genes are typically linked to synaptic compartments,
and span across the pre- and post-synapse (6-9). However, despite its
critical roles in neurotransmitter maintenance and release, neural
circuit development, and activity regulation, our understanding of the
presynaptic compartment in relation to neuropathology remains
elusive. Although many genes are shared between ASD and epilepsy,
the effects of specific regulatory mutations—such as loss- or gain-of-
function variants—on disease onset and severity remain poorly
understood. This highlights the need for closer examination of the
functional consequences of these variants.

Current knowledge of proteins localized to the presynaptic active
zone, such as RIM (Rab3A-interacting molecule), RIM-BP
(RIM-binding protein), BSN (Bassoon), PCLO (Piccolo), PPFIAI
(Liprin-a), is limited despite their crucial roles. These active zone-
specific scaffolding molecules have been associated with various
conditions including ASD, intellectual disability, epilepsy, or
schizophrenia (10-16). Their implications in these diseases underscore
their
circuit development.

significant impact on synaptic transmission and

In this study, we investigate the genetic associations between ASD
and epilepsy, specifically exploring the signaling pathways mediated
by presynaptic genes. Our objective is to shed light on potential
alterations in presynaptic and overall synaptic functions, thereby
characterizing the presynaptic compartment as a target for novel
therapeutic drug interventions. By conducting a systematic literature
review and employing subsequent synaptic enrichment analysis using
the SynGO database, we identified common genes associated with
both ASD and epilepsy, highlighting a significant subset of synaptic
genes. Beyond cataloging shared genes, our analysis specifically
focuses on the nature of identified variants (loss- versus gain-of-
function) and their mechanistic impact on synaptic processes. This
approach provides a more comprehensive understanding of the
genetic and functional interplay underlying ASD and epilepsy
comorbidity. Moreover, characterizing variants as loss- or gain-of-
function will help identifying promising candidates for precision
therapies targeting synaptic dysfunctions.

2 Methods

A list of genes linked to both ASD and epilepsy was compiled
through an extensive literature search on google scholar and PubMed
using the keywords “comorbidity of ASD and epilepsy”; “ASD in
epilepsy”; “Epilepsy percentage in ASD”; “genetics of ASD and
epilepsy” and from the databases for ASD (SFARTI: https://gene.sfari.
org/database/human-gene/), epilepsy (EpilepsyGene: http://www.
wzgenomics.cn/EpilepsyGene/index.php; epiGAD: https://www.
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epigad.org/index.html; CarpeDG: http://carpedb.ua.edu/search.cfm).
Common genes implicated in both diseases were compiled, and a list
of associated synaptic genes was identified using the synaptic gene
ontologies (SynGO) database (17). Using the domain ‘Cellular
Components’ (location), genes localized to the presynaptic region
were identified. Their involvement in various processes was further
identified and focused on by using the domain ‘Biological Process’
(Supplementary Figure 1).

3 Results and discussion

In our SynGO analysis, we identified 49 synaptic genes out of 125
common genes (Supplementary Table 1). Among these, 16 genes are
exclusively associated with presynaptic localization and function,
while 19 genes are linked to postsynaptic roles. Employing SynGO
enrichment analysis, we further identified several synaptic genes
based on the localization and biological processes that are common to
both ASD and epileptic phenotypes (Supplementary Figure 2A and
Supplementary Table 2). Additionally, 14 genes are shared between the
pre- and post-synapse (Supplementary Figure 2A). Based on this
analysis, the presynaptic genes are specifically localized to various
cellular components (Supplementary Figure 2B).

The list of identified common ASD-epilepsy genes localized at the
presynaptic compartment are involved in various synaptic processes,
including synaptic assembly, regulation of presynaptic processes,
synaptic signaling, and metabolism (Figures 1 A,B). Mutations in these
associated genes or resulting protein dysfunctions have been shown
to impact these processes during the progression of ASD and epilepsy.

There are nearly 40% of genes associated with both ASD and
epilepsy are synaptic genes, as identified through a gene ontology
study using SynGO and the presynaptic function is as crucial as
postsynaptic function in disease pathogenesis. While much attention
has been devoted to understanding the postsynaptic receptor signaling
in disease progression and drug development, knowledge about the
presynaptic compartment remains limited. Our analysis underscores
the significant enrichment of various processes within the presynaptic
compartment. Disruption of these processes could have profound
impact on overall synaptic function (Figure 2B), highlighting the
critical need to investigate presynaptic mechanisms for a
comprehensive understanding of disorders.

The Presynaptic Assembly involves three major steps: neuronal
contact formation, synaptic precursor transport, and the cessation of
transport processes at the contact sites. The CNTN5 gene encodes the
protein Contactin-5, a member of the immunoglobulin superfamily
of cell adhesion molecules critical for nervous system development,
particularly in axonal contact formation. CNTN5 is primarily
expressed postnatally in the central nervous system, including the
cerebral cortex (auditory cortex), thalamus, and caudate putamen
(18). Gene mutations or copy number variation (CNVs) in CNTN5
have been linked to ASD and epilepsy (19, 20). Loss of CNTN5 leads
to synaptic dysfunction, resulting in heightened neuronal
excitability (21).

OPHNI encodes Oligophrenin-1, a Rho-GTPase-activating
protein (RhoGAP) expressed ubiquitously in the developing brain.
Oligophrenin-1 functions as extracellular growth and guiding signal
mediators important for the linking of these signals originated from
the cell-surface adhesion molecules to the intracellular signal
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presynaptic SCNIA
membrane
potential
Synapse assembly | Biological Process | 3 3.92e-4 NRXNI1; CNTNS5;
DPYSL2
FIGURE 1

(A) Sunburst image depicts the gene enrichment analyses for common synaptic genes associated with ASD and epilepsy, categorized by biological
processes. (B) Summary of the SynGO gene ontology database, categorizing gene products based on their biological processes and the functional
processes that they are linked to. Key process within the presynapse, such as the synaptic vesicle cycle and regulation of membrane potential, show
significant enrichment. Additionally, processes related to synapse organization indicating the disruptions in overall synaptic function in both ASD and

epilepsy, primarily originating from the presynaptic compartment.

transduction pathways. These pathways are crucial for neuronal
morphogenesis, and cytoskeletal dynamics by orienting the actin
molecules at axonal growth cones (22, 23). Deletion or mutations in
OPHNI are associated with nonspecific X-linked intellectual disability,
ASD, intellectual disability, epilepsy, enlargement of ventricles in the
brain, ataxia, and cerebellar hypoplasia (24). Loss of OPHNI function
results in impaired maturation of dendritic spines (25).

The NRXNI gene encodes Neurexin 1, a presynaptically localized
membrane protein involved in the formation of Ca**-dependent
surface receptor complexes. Neurexins form complexes with
neuroligins, facilitating efficient synaptic contact formation and
neurotransmission by linking calcium (Ca®*) channels to synaptic
vesicles for exocytosis (26). The expression of different neurexins
occurs during early cortical plate formation before extensive
synaptogenesis takes place, with age-dependent increase in the
expression of Neurexinl (27). Mutations in the human NRXNI gene
have been implicated in several neuropathological conditions,
including ASD, schizophrenia, autosomal recessive intellectual
disability, Pitt-Hopkins-like syndrome, attention-deficit hyperactivity
disorder (ADHD), and epilepsy (28, 29). Loss-of-function mutations
in the NRXNI gene disrupt protein—protein interactions, leading to
synaptic dysfunctions, whereas gain-of-function mutations promote
increased excitatory synaptogenesis and neuronal excitability,
potentially via enhanced calcium signaling (30-32).

The Regulation of Presynaptic Processes, such as maintaining Ca**
levels, ion channel activity to balance the membrane potential, and
the synaptic vesicle cycle (encompassing exocytosis and
neurotransmitter reuptake), is mediated by several proteins at the
presynaptic terminal. The list of identified presynaptic genes from
our analysis falls under the processes mentioned above that occur at
the presynaptic compartment. CACNAIA encodes the alA pore-
forming subunit of the voltage-gated P/Q-type calcium channel
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(Cav2.1), which mediates its function at the presynaptic terminal
(33). These channels are widely expressed throughout the central
nervous system and are particularly abundant in brain regions such
as the cerebellum, especially in Purkinje and granule cells (34). The
Cav2.1 channel facilitates synaptic vesicle exocytosis through Ca**-
influx, thus playing a crucial role in neurotransmission.
Haploinsufficiency or de novo mutations in the CACNAIA gene can
lead to the development of epileptic encephalopathy, ASD, and
schizophrenia (35).

The CNRI gene encodes the type 1 cannabinoid receptor (CB1),
which is part of the endocannabinoid system and is the receptor for
the most widely used yet controversial psychoactive drug, cannabis.
CNRI expression is higher during the fetal stage compared to the
postnatal stage in various brain areas, such as the prefrontal cortex,
hippocampus, and caudate. The CB1 receptor, a G-protein-coupled
receptor, is expressed presynaptically on neuronal terminals in brain
regions including the hippocampus, amygdala, hypothalamus,
midbrain, frontal cortex, and cerebellum, where it regulates the
gamma-aminobutyric acid (GABA)ergic and glutamatergic
transmission (36, 37). Genetic variations in the CNRI gene are
associated with neurological disorders, including ASD (38).

The Potassium Calcium-Activated Channel Subfamily M Alpha 1,
encoded by KCNMA1I gene and commonly referred to as the Big
K + (BK) channel exhibits exceptionally high conductance (>100 pS).
These channels are predominantly expressed in the brain and muscle
tissues and are classified within the voltage-gated K + channel family.
BK channels are recognized for their ability to respond to changes in
voltage, thereby regulating excitability through mediating potassium
efflux, alongside intracellular calcium levels, making them pivotal in
regulating neuronal and muscular function. Dysfunction or loss of BK
channel can result from mutations or single nucleotide polymorphisms
(SNPs) in the KCNMAI gene. Such genetic alterations have been
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(A) Interactions among the shared ASD and epilepsy presynaptic genes regulating different biological functions. GeneMANIA database was used to
identify interaction partners. (B) Schematic representation of presynaptic processes linked to common genes for ASD and epilepsy.

implicated in various disorders including autism, intellectual disability,
epilepsy, hypertension, asthma (39, 40).

SCNIA and SCN2A encode the alpha subunit of the voltage-gated
sodium channels Navl.1 Nav1.2 (41). Both channels are expressed in
the central nervous system and function as transmembrane protein
complexes composed of glycosylated alpha subunits that form
ion-conducting pores. Together, they play a crucial role in sodium
exchange, as well as action potential generation and propagation
among neurons, thus regulating excitability. Nav1.1 and Nav1.2 are
widely distributed across the cerebral cortex, hippocampal CA3 and
CA2 regions, dentate gyrus, thalamus, substantia nigra, putamen and
cerebellum (42). SCNIA and SCN2A are considered risk genes for
ASD due to their proximity to autism susceptibility loci on
chromosomes (43). Additionally, mutations in these genes are
associated with various forms of seizures, such as generalized epilepsy
with febrile seizures plus or myoclonic epilepsy (44). Loss of SCNIA
impairs inhibitory neuron excitability, leading to Dravet syndrome
and ASD-like features, whereas gain-of-function mutations contribute
to early-onset epilepsy and familial hemiplegic migraine type 3
(FHM3) (45). Similarly, gain-of-function variants in SCN2A are
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associated with early-infantile epilepsies (seizure onset before
3 months of age), while loss-of-function variants result in late-onset
epilepsies and ASD/ID (46).

Synapsin family proteins, such as Synapsinl encoded by SYNI and
Synapsin2 encoded by SYN2, are phosphoproteins that bind to
synaptic vesicles (SVs). They are essential for neurotransmitter release
and synaptic plasticity by participating in various steps of the SV cycle,
including SV tethering, docking, fusion. These proteins also play an
important role in synaptogenesis and have been implicated to
be involved in key aspects of neuronal development, axonogenesis,
and synaptic maintenance (47). As SYNI and SYN2 are X-linked
genes, mutations in these genes are associated to X-linked
neurodevelopmental disorders, primarily affecting males with clinical
presentation of epilepsy, learning disabilities, etc. Additionally, genetic
variants in SYNI and SYN2 are linked to ASD traits and X-linked
intellectual disability across various ethnic backgrounds (47, 48).
Mutations in SYNI impair neurotransmitter release, neurite
outgrowth, and synaptic vesicle pool trafficking (47, 49). Similarly, the
loss-of-function mutations in SYN2 produce phenotypes nearly
identical to those observed with SYNI variants (48).
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Calcium/Calmodulin Dependent Serine Protein Kinase
(CASK) is a protein-coding gene belonging to the MAGUK
(membrane-associated guanylate kinase) family of proteins and is
ubiquitously expressed in the developing brain. At the presynaptic
compartment, CASK regulates SV exocytosis, interacts with
NRXNI, and contributes to maintaining the excitatory/inhibitory
(E/T) balance by modulating ionotropic receptor trafficking (50).
Located on the X-chromosome, loss of CASK is associated with
X-linked intellectual disability, ASD and epilepsy (13). Recent
studies have shown that loss-of-function mutations in CASK result
in distinct phenotypes, including impaired neuronal outgrowth
during development and reduced
adulthood (51).

The STXBPI gene encodes syntaxin-binding protein 1 (also

excitability  during

known as MUNCI18-1), which plays a role in neurotransmitter release
by participating in SV cycle steps such as docking, priming and fusion
through interactions with SNARE proteins (52). De novo heterozygous
mutations in STXBPI lead to severe forms of epileptic
encephalopathies, including Ohtahara syndrome or Dravet syndrome
(53). Mutations in the STXBPI gene have been linked to intellectual
disability and other neurodevelopmental conditions, such as ASD
(54). While loss of STXBPI leads to presynaptic dysfunction,
neurodegeneration, and hyperexcitability (55, 56), gain-of-function
mutations enhance synaptic functions (57).

The SLCIA2 gene encodes Solute Carrier Familyl Member2
(EAAT?2), a member of the solute transporter protein family. SLCIA2
is responsible for clearing glutamate from the extracellular space
between synapses and facilitates its reuptake to maintain excitatory
neurotransmission. EAAT? is the predominant glutamate transporters
in the brain, accounting for over 95% of total glutamate uptake activity
(58). Mutations in the SLCIA2 gene are primarily associated with
epileptic encephalopathy, with some reports also linking them to ASD
and intellectual disability (59). Mutations in SLC1A2 cause glutamate
dysregulation, disrupted Ca*" storage in the endoplasmic reticulum,
and reduced EAAT?2 expression and glutamate transport (60). Mild
gain-of-function variants of SLC1A2 lead to modest increases in anion
currents (61).

The CNTNAP2 gene, primarily active during the brain
development, encodes the single-pass transmembrane protein
contactin-associated protein-like 2 (CASPR2) protein. As a member
of cell adhesion molecules, such as the neurexin superfamily, CASPR2
is crucial for synapse formation, neurite outgrowth and myelination
through its interaction with contactin-1. The expression of CNTNAP2
is restricted to specific regions of the brain, including the cortex,
striatum, and thalamus, thereby participating in the regulation of
higher cognitive functions. Loss-of-function mutations in CNTNAP2
disrupt excitatory neuron development, reduce neurite branching and
neuronal complexity, and impair cortical connectivity, contributing to
intellectual disability, ASD, epilepsy, schizophrenia, and depression
(62-65).

Dihydropyrimidinase-protein 2, also known as Collapsin response
mediator protein-2, is encoded by the DPYSL2 gene and is crucial for
neuronal development, cell migration and axonal growth and
thus
Dihydropyrimidinase-protein 2 is also involved in synaptic

guidance, contributing  to  neuronal  polarity.

transmission, calcium homeostasis, neurotransmitter release,
cytoskeletal dynamics and vesicle trafficking (66). Polymorphisms or

mutations in DPYSL2 are associated with schizophrenia, intellectual
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disability, and epilepsy (67, 68). Loss of DPYSL2 leads to defects in
axonal pruning and corpus callosal axon guidance (69).

The YWHAG gene encodes the adapter protein 14-3-3 protein
gamma, a member of the 14-3-3 protein family, which is ubiquitously
expressed in brain. 14-3-3 proteins bind to various other proteins
containing phosphoserine sites and are involved in neuronal migration
by mediating signal transduction. Through interactions with
presynaptic active zone proteins, 14-3-3 regulates presynaptic
remodeling during synaptic plasticity and long-term potentiation
(70). De novo missense mutations in YWHAG are linked to epileptic
encephalopathies, ASD and intellectual disability (71, 72).

Interactions among these genes (also known as epistasis) or the
end products-proteins is responsible for physiological functions as
well drive the complexity of disease pathology. List of identified shared
presynaptic genes display interactions among and in between the
biological processes arguing for a crosstalk among different functional
aspects and synergistic approach in mediating the crucial synaptic
functions (Figure 2A and Supplementary Table 3).

In conclusion, our analysis highlights the critical role of
presynaptic signaling, which can be disrupted by mutations in genes
commonly associated to both ASD and epilepsy. While the relationship
between these two disorders has been described for decades,
substantial evidence for a shared mechanistic basis underlying their
core symptoms and for the efficacy of therapeutic intervention
remains limited. Emerging data suggest that dysfunction of
presynaptic genes is a key contributor to disease progression in both
conditions. So far, a handful of studies have highlighted that targeting
specific presynaptic components, such as receptors regulating
neurotransmitter release or kinases essential for axonal transport, may
offer promising avenues for pharmacological interventions (73, 74).
Nevertheless, a more in-depth investigation into presynaptic signaling
pathways and mechanisms mediating various presynaptic processes
and assembly (Figure 2B) could provide additional targets for novel
therapeutics. Future interventions should carefully consider the
functional consequences of diverse gene mutations, including gain-
and loss-of-function variants, to enable precision therapeutics for
these comorbidities.
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