

OPEN ACCESS

EDITED AND REVIEWED BY Paolo Frigio Nichelli, University of Modena and Reggio Emilia, Italy

*CORRESPONDENCE
Hongjun Li

☑ lihongjun00113@ccmu.edu.cn
Puxuan Lu

☑ lupuxuan@126.com
Yuxin Shi

Shiyuxin@shphc.org.cn
 Zhongkai Zhou
 Shengyun73@mail.ccmu.edu.cn

------- 27 July 2025

RECEIVED 27 July 2025 ACCEPTED 01 August 2025 PUBLISHED 15 August 2025

CITATION

Wang W, Zhou Z, Shi Y, Lu P and Li H (2025) Editorial: Neurocognitive dysfunction in people living with HIV and the underlying brain mechanisms. *Front. Neurol.* 16:1674176. doi: 10.3389/fneur.2025.1674176

COPYRIGHT

© 2025 Wang, Zhou, Shi, Lu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Neurocognitive dysfunction in people living with HIV and the underlying brain mechanisms

Wei Wang^{1,2}, Zhongkai Zhou^{1,2}*, Yuxin Shi³*, Puxuan Lu⁴* and Hongjun Li²*

¹Henan Clinical Research Center of Infectious Diseases (AIDS), Affiliated Infectious Diseases Hospital of Zhengzhou University, Henan Infectious Diseases Hospital, Zhengzhou, China, ²Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China, ³Shanghai Public Health Clinical Center, Fudan University, Shanghai, China, ⁴Shenzhen Center for Chronic Disease Control, Shenzhen, China

KEYWORDS

HIV-associated neurocognitive disorders, asymptomatic neurocognitive impairment, multimodal neuroimaging, precision neuroscience, exosome neuroimaging integration

Editorial on the Research Topic

Neurocognitive dysfunction in people living with HIV and the underlying brain mechanisms

With the widespread implementation of combination antiretroviral therapy (cART), HIV infection has evolved into a manageable chronic condition, with life expectancy significantly extended—approaching that of the general population in some cases (1). However, the central nervous system, as an "immune-privileged site" and potential viral reservoir, may harbor residual virus and persistent inflammation even under effective plasma viral suppression (2, 3) Studies show that neuronal injury can still occur in people living with HIV in the cART era, driven by factors including viral protein neurotoxicity, microglial activation, glutamate excitotoxicity, immune dysregulation, comorbidities, and antiretroviral neurotoxicity (4, 5).

HIV-associated neurocognitive disorders (HAND) have thus emerged as a major challenge in chronic disease management, with a prevalence ranging from 30% to 50% (6, 7). The milder forms of HAND—namely, asymptomatic neurocognitive impairment (ANI) and mild neurocognitive disorder—are the most common. Despite subtle or absent clinical symptoms, they may reflect early neurodegenerative processes (7, 8). This Research Topic features eight representative studies and reviews published in the Frontiers series, spanning structural normalization, local cognitive norms, brain network changes, bibliometric trends, multimodal imaging, and exosome integration—together offering a comprehensive overview of recent progress and future directions in HAND research.

Recent studies have emphasized optimizing structural imaging normalization and cognitive reference systems to enhance early HAND detection. Nguchu et al. proposed that ventricular volume (VV), compared to the conventional intracranial volume, serves as a more suitable normalization metric for structural MRI, as it more sensitively captures basal ganglia and limbic system atrophy in people living with HIV—particularly in detecting interactions with aging. VV-based correction holds promise for enhancing structural evaluation in populations at risk for HAND. In a population-based

Wang et al. 10.3389/fneur.2025.1674176

study in China, Chen C. et al. demonstrated that applying locally derived cognitive norms—rather than international references—enabled more sensitive detection of attention and memory deficits in the ANI stage, particularly in immediate recall tasks, thereby reducing potential misclassifications related to cultural or educational background differences.

The brain is increasingly viewed as a complex, interconnected network, warranting analysis from a systems perspective. In a 1.5-year longitudinal study of individuals with HIV at the ANI stage, Xu et al. employed voxel-based morphometry and structural connectivity network approaches. They found baseline reductions in gray matter volume in the right middle temporal gyrus and left middle frontal gyrus, along with decreased hubness in the anterior cingulate cortex. During follow-up, additional impairments were observed in the volume of the right fusiform gyrus and the nodal efficiency of the inferior frontal gyrus. Although the global smallworld topology remained preserved, the progressive degradation of key regional nodes suggests a cumulative vulnerability of the brain network—potentially reflecting early trajectories of HAND progression.

Against the backdrop of expanding multidimensional research, systematically mapping the developmental trajectory and thematic evolution of HAND studies is essential for clarifying future research priorities. Zhou T. et al. applied CiteSpace to perform a comprehensive visual bibliometric analysis of HAND-related publications from 2000 to 2023. Their findings revealed a three-phase thematic evolution: an early focus on direct neurotoxic mechanisms of HIV, a mid-phase emphasis on chronic inflammation and immune activation, and a recent shift toward gut-brain axis dysfunction, exosome-mediated signaling, and metabolic abnormalities. Keyword burst analysis showed that terms such as "biomarkers," "metabolic disorders," and "exosomes" have recently surged in frequency, indicating a growing emphasis on mechanistic targeting and precision intervention. The authors further noted that while international collaborations are currently centered around the United States, United Kingdom, and South Africa, Chinese research teams are increasingly emerging on the global stage. Multicenter studies incorporating artificial intelligence and multi-omics integration are becoming the dominant research paradigm.

Multimodal imaging has shown synergistic value for HAND identification and mechanistic analysis. Chen J. et al. reviewed EEG-fMRI integration, noting its ability to capture both temporal and spatial neural activity—particularly sensitive to disruptions between the default mode network and anterior cingulate cortex. Zhou Z. et al. proposed a "multimodal connectomics" framework that integrates structural MRI (sMRI), diffusion tensor imaging (DTI), and functional MRI (fMRI) data to uncover network damage patterns in HAND using graph-theoretical metrics and machine learning techniques, offering a novel path for subtype stratification and mechanistic decoding. Wang et al. provided a comprehensive review of recent advances in multimodal imaging techniquesincluding sMRI, fMRI, DTI, magnetic resonance spectroscopy, and arterial spin labeling-in the study of HAND. They emphasized that these modalities enable quantification of brain atrophy, white matter injury, and metabolic abnormalities in people living with HIV. The authors further emphasized that incorporating peripheral biomarkers, such as neurofilament light chain (NfL), could enhance the diagnostic specificity of HAND. They advocated for greater standardization of preprocessing pipelines, harmonization of atlas selection, expansion of longitudinal cohorts, and the integration of AI and imaging–genomics approaches to accelerate the transition toward precision neuroimaging in HAND research.

Beyond advancing neuroimaging research, mechanistic exploration of HAND is gradually extending toward a centralperipheral integrative perspective. Luo et al. introduced the concept of a "brain-blood bridge" and systematically reviewed the synergistic potential of neuroimaging and exosome analysis in elucidating HAND pathophysiology. Neuron-derived exosomes (e.g., tau, miR-146a) are capable of crossing a compromised blood-brain barrier, and fluctuations in their levels are closely associated with imaging markers such as functional connectivity and gray matter integrity, reflecting processes of neuroinflammation and synaptic injury. The authors categorized three potential central-peripheral coupling mechanisms and highlighted key challenges, including a lack of methodological standardization and limited dynamic monitoring capabilities. They propose that future studies could benefit from establishing a "neuroimaging-exosome feature map" to decode coupling mechanisms in HAND, thereby advancing early detection and precision intervention.

HAND research is entering a new phase characterized by the convergence of network visualization, multimodal integration, and fluid biomarker synergy. Future directions include leveraging ultra-high-field MRI, portable EEG systems, artificial intelligence algorithms, and peripheral omics platforms to facilitate early detection, subtype classification, and mechanism-based interventions for HAND. These advances promise to usher in a new era of precision neuroscience for the neurocognitive care of people living with HIV.

Author contributions

WW: Writing – original draft. ZZ: Writing – review & editing. YS: Writing – review & editing. PL: Writing – review & editing. HL: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This work was supported by the Beijing Hospital Authority Clinical Medicine Development Special Funding (no. ZLRK202333), the Open Projects of the Henan Clinical Research Center of Infectious Diseases (AIDS) (nos. KFKT202401 and KFKT202403), and the 2025 Henan Provincial Key Scientific and Technological Project (no. 252102310104).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Wang et al. 10.3389/fneur.2025.1674176

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript. Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

- 1. van Sighem AI, Gras LA, Reiss P, Brinkman K, de Wolf F. Life expectancy of recently diagnosed asymptomatic HIV-infected patients approaches that of uninfected individuals. *AIDS*. (2010) 24:1527–35. doi: 10.1097/QAD.0b013e32833a3946
- 2. Rojas-Celis V, Valiente-Echeverría F, Soto-Rifo R, Toro-Ascuy D. New challenges of HIV-1 infection: how HIV-1 attacks and resides in the central nervous system. *Cells*. (2019) 8:1245. doi: 10.3390/cells8101245
- 3. González-Scarano F, Martín-García J. The neuropathogenesis of aids. *Nat Rev Immunol.* (2005) 5:69–81. doi: 10.1038/nri1527
- 4. Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. *Nat Rev Neurosci.* (2007) 8:33–44. doi: 10.1038/nrn2040
- 5. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, et al. HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. *Nat Rev Neurol.* (2016) 12:234–48. doi: 10.1038/nrneurol.2016.27
- 6. Sacktor N, Skolasky RL, Seaberg E, Munro C, Becker JT, Martin E, et al. Prevalence of HIV-associated neurocognitive disorders in the multicenter aids cohort study. *Neurology.* (2016) 86:334–40. doi: 10.1212/WNL.000000000002277
- 7. Heaton RK, Clifford DB, Franklin DR Jr., Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: charter study. *Neurology*. (2010) 75:2087–96. doi: 10.1212/WNL.0b013e318200d727
- 8. Winston A, Spudich S. Cognitive disorders in people living with HIV. Lancet HIV. (2020) 7:e504–e13. doi: 10.1016/S2352-3018(20)30107-7