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Traumatic brain injury (TBI) is a complex, heterogeneous neuropathological disease 
that continues to be among the prominent causes of mortality and disability 
around the world. Translational success in TBI has been significant, yet therapies 
are limited as the intersection of the initial mechanical traumas and secondary 
neuroinflammatory cascades, which predispose to long-term neurological deficits, is 
poorly understood. The pathogenesis of TBI is not limited to the primary mechanical 
injury. The secondary damage, including ischemia, excitotoxicity, oxidative stress, 
and immune dysfunction, leads to neuronal apoptosis, the breakdown of the blood–
brain barrier (BBB), and chronic neuroinflammation. The preclinical controlled 
cortical impact (CCI) and fluid percussion injury (FPI) TBI models have generated 
valuable biomechanical data related to TBI-induced immune responses, including 
microglial priming, astrocyte dysregulation, and peripheral leukocyte recruitment. 
However, experimental models today are unable to completely replicate the 
intricate immune cascades in human TBI, particularly delayed and context-specific 
innate and adaptive immune response activation. Cytokine signaling (IL-1β, TNF-
α, and IL-6), neuroinflammatory amplification through the IL-23/IL-17 pathway, 
and autoantibody-mediated neurodegeneration are emerging as significant 
secondary injury mechanisms. Additionally, TBI-induced immunosuppression, 
which presents as generalized T lymphocyte depletion and aberrant macrophage 
polarization, enhances the risk of infection and delayed neurological recovery. 
Emerging immunotherapeutics such as cytokine blockade, complement blockade, 
and targeted modulation of T lymphocytes have the potential to optimize the 
post-TBI immune microenvironment for reducing secondary damage. Inclusion of 
next-generation experimental models combined with secondary injuries, such as 
hypoxia, polytrauma, and systemic inflammation, is needed to shift towards innovative, 
biomarker-driven, patient-stratified trials. Thus, integration of immunological 
phenotyping with translationally relevant models of TBI represents an important 
cornerstone in the development of targeted therapeutic treatments designed to 
improve neuroprotection, repair, and long-term functional outcome.
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Introduction

Traumatic brain injury (TBI) is the leading cause of mortality 
and morbidity in individuals under the age of 45. This results in 
substantial economic and societal burdens due to lost productivity 
and long-term disability (1). Despite contemporary advancements 
in understanding the pathophysiology of intracranial injuries, the 
ability to precisely reconstruct the sequence of events leading to 
trauma and accurately predict injury severity and progression 
remains a significant challenge (2, 3). The clinical complexity of TBI 
stems from its heterogeneous nature, involving a dynamic interplay 
between mechanical damage, secondary biochemical cascades, and 
a dysregulated immune response. Despite advances in acute care, 
little is known about the pathophysiological mechanisms that 
govern long-term recovery and prognosis following traumatic brain 
injury. Thus, experimental models of TBI serve as a critical tool in 
elucidating such essential mechanisms, providing insights into 
neuroinflammatory processes, immune cell recruitment, and 
secondary injury pathways that shape post-traumatic recovery and 
therapeutic intervention. The current paper elucidates the 
immunological landscape of TBI and its integration with 
experimental models in order to identify potential therapeutic 
targets that can be translated into clinical practice.

TBI is defined as an injury to the brain caused by an external 
mechanical force, such as blast waves, crushing forces, impact 
injuries, projectile penetration, and abrupt acceleration-deceleration 
forces (3, 4). The proceeding injuries from any combination of the 
above forces will lead to focal brain damage due to contact 
phenomena or diffuse brain damage due to acceleration/deceleration 
inertial phenomenon. Focal brain damage can result in lacerations, 
contusions, and intracranial hemorrhages, while diffuse brain 
damage can result in brain swellings and diffuse axonal injuries. 
However, it is important to note that despite these classifications, TBI 
is not a single clinical phenomenon but a highly complex disease 
process with various structural impairments, dysregulated 
biochemical pathways, altered neuronal function, diminished 
regulations of cerebral blood flow (CBF), and dysregulated immune 
metabolism (5).

Neuropathological classification of such injuries is determined 
by primary and secondary injury insults. Primary insult results 
from the direct mechanical impact of the damage to the brain 
immediately following the accident, which can cause instantaneous 
axonal shearing and hemorrhage, and holds a very small window 
of therapeutic intervention. Secondary insult results from 
non-mechanical damage caused by cascades of dysregulated 
physiological, metabolic, and cellular proceedings that follow the 
primary insult (6, 7). Secondary insults can lead to cerebral 
swelling, hypertension, and diffuse and focal hypoxic–ischemic 
damage. Secondary insults are slow in their clinical manifestations 
and present a larger window for therapeutic intervention. 
Furthermore, the mechanism of insults resulting from secondary 
injuries includes alterations of key biochemical cascades such as 
homeostatic disturbances in cellular calcium and sodium 
channels, substantial glutamate excitotoxicity, mitochondrial 
damage, lipid peroxidation, neuroinflammation, increased 
generation of free radicals and increased concentration of 
intracellular free fatty acids, leading to eventual apoptosis and 
diffuse axonal injury (DAI) (4, 8, 9).

Clinical pathophysiology and 
management of TBI

Traumatic Brain Injury (TBI) encompasses a spectrum of clinical 
severity, from mild concussion to profound coma, underpinned by 
complex neuropathological processes. Clinical presentation varies 
with the extent of initial mechanical trauma, with severe forms posing 
a dangerous risk of intracranial hypertension, hypoxemia, and late 
neurological sequelae. Clinical grading systems cannot, of themselves, 
explain pathophysiological variation affecting outcome (2, 3).

The trauma happens in two phases: the first insult is due to direct 
mechanical deformation of brain tissue, and the second phase, from 
hours to days due to metabolic breakdown, ischemia, excitotoxicity, 
and immune dysregulation. Ischemia produces lactic acidosis, 
oxidative stress, and ATP loss, disrupting ionic gradients and 
activating cascades of cell death. Among the characteristics of 
secondary injury is abnormal cerebral blood flow (CBF), triphasic in 
nature and involving hypoperfusion, hyperemia, and delayed 
hypoperfusion, each contributing in a characteristic fashion to tissue 
damage and worsening of clinical condition (3, 4).

Treatment of TBI is support-oriented and tiered by severity. 
Primary prevention, through safety equipment like helmets and 
seatbelts, is the sole truly effective intervention. Restriction of 
secondary insult is of urgent priority in the acute setting (4). This 
includes tight management of intracranial pressure (ICP), 
maintenance of cerebral perfusion pressure (CPP), and surgery to 
decompress when necessary. Pharmacologic treatment, such as 
NMDA-receptor antagonists, calcium channel blockers, and free-
radical scavengers, has been studied but has not yet yielded consistent 
clinical benefit (8, 9). The inability of preclinical potential to 
be translated clinically emphasizes the need for improved experimental 
models that more accurately mirror the complex and temporally 
dynamic nature of human TBI. Table 1 recapitulates a comprehensive 
pathophysiological summary of traumatic brain injury.

Experimental models of traumatic 
brain injury

Given the heterogeneous pathophysiology of TBI in the patient 
population, numerous animal models have been developed over the 
last several decades that depict clinically relevant features of both focal 
and diffuse pathophysiologies. Although focal pathologies such as 
cerebral edema, hematomas, and contusions are well characterized in 
animal models, their translational value appears variable because 
clinical TBI often presents with diffuse rather than strictly focal injury 
patterns (10). Hence, animal models that focus on diffuse 
pathophysiologies with widespread impact, such as DAI, vascular 
injury and ischemia, may be  more clinically applicable in certain 
contexts. This paradigm shift is also evident when examining the 
history of research in animal models of TBI. In contrast to early 
animal models of TBI that focused exclusively on the biochemical 
pathophysiology of focal impact injuries, contemporary models focus 
on the highly elongated molecular and cellular cascades that 
characterize secondary insult pathophysiology (5, 11).

There are currently four widely utilized animal models used in 
contemporary TBI research: controlled cortical impact (CCI) injury, 
fluid percussion injury (FPI), penetrating ballistic-like brain injury 
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(PBBI) and weight-drop impact model. The CCI injury model uses an 
electromagnetic piston to drive and penetrate a rigid impactor onto 
exposed dura of known brain regions with a varying gradation of 
velocity to mimic cortical tissue loss with widespread axonal damage 
(12, 13). FPI model uses a fluid-filled piston to produce and 
subsequently inject a pressurized fluid pulse onto an intact dura to 
cause deformations of brain tissues, with varying degrees of severity, 
depending on the pulse strength (14, 15). PBBI model uses a projectile 
transmission of a metal rod with varying degrees of energy to cause a 
temporary cavity in the brain to induce widespread inflammation, 
cortical spreading depression and brain swelling (16–19). In weight-
drop TBI models, an object of varying weight and height is dropped 
into gravitational free fall onto an exposed brain skull to cause severe 
cortical contusions and progressive hemorrhages (20–22). Although 
each model has unique experimental advantages and limitations in its 
ability to recapitulate a clinically relevant model of TBI, CCI and FPI 
tend to yield more consistent injury patterns and can be  a useful 
model to simulate the immune responses seen in human 
TBI. Accordingly, this review focuses on the role of CCI and FPI 
models as preclinical therapeutic strategies for the treatment of TBI.

Controlled cortical impact (CCI) injury and 
fluid percussion injury (FPI) models

The CCI model offers several practical strengths for translational 
applications. First, CCI can induce widespread diffuse degeneration of 
cortical and thalamic neurons, comatose states, and BBB dysfunction 
while controlling for crucial spatiotemporal parameters such as time, 
velocity and depth of injury across brain regions (14, 23–25). 
Furthermore, CCI models have been shown to induce cognitive deficits 
(Morris-water maze test) and emotional and behavioral impairments 
(forced swim test) that are well-preserved more than 12 months 
post-TBI injury (26–29). This model allows for the manipulation of 
velocity and depth of initial impact during the experiment, thereby 
controlling the severity of such pathophysiological, cognitive and 
emotional deficits (30, 31). Furthermore, increased gradations of 
impact velocity correspond to a progressive reduction in cerebral blood 
flow and elongated elevation of DAI and white matter atrophy. Hence, 
CCI models allow for collecting and extrapolating post-TBI 
physiological data in a context similar to ICU and intensive trauma 

centers. Because CCI reproduces several pathophysiological and 
behavioral features seen in human TBI, it may help connect preclinical 
and clinical work to translate animal models of TBI into novel protocols 
in clinical care (13, 27, 32, 33).

Furthermore, FPI may provide practical advantages in answering 
certain translational questions to study severe TBI in humans. The FPI 
model induces tissue displacements and progressive deformations of 
grey matter, cerebral edema, and intracranial hemorrhage through 
rapid injection of the pressurized fluid-filled piston into the epidural 
space (5, 15, 34). In particular, lateral models of FPI (LFPI) can induce 
both localized cortical contusions and diffuse neuronal injury across 
subcortical structures of the hippocampus and thalamus (35). The 
progressive cell death and DAI in LFPI models will persist up to 1-year 
post-injury. Furthermore, the LFPI-induced pathophysiological 
cascade will further progress across vulnerable subcortical regions of 
the striatum, medial septum and amygdala and cause subsequent 
cognitive impairments, movement disorders and neurobehavioral 
dysfunctions that last more than 1-year post injury, similar to the 
clinical trajectories of human TBI (10, 22, 36, 37).

Although these models have respective features which align with 
certain clinical contexts, the FPI and CCI models carry important 
limitations. Whereas moderate and severe cases of human TBI 
frequently carry skull fractures and substantial contusions across gyri, 
FPI and CCI models reproduce human TBI without clinically present 
skull fractures. In addition, clinical TBI is frequently characterized by 
chronic sleep disorders, vestibular deficits and severe headaches in 
patients following the injury. Extensive literature of the recent decade 
has elucidated that sleep–wake dysfunction is one of the most 
reproducible TBI model sequelae, with phenotypes of 
hypersomnolence, sleep fragmentation, and disrupted orexin signaling 
that reflect those seen in human patients. These studies emphasize that 
no model replicates the whole chronic symptom complex but that 
convergent animal and human data strongly implicate deranged 
sleep–wake circuitry as a mechanistic contributor to long-term 
morbidity after TBI (38–41). Furthermore, investigators have 
recapitulated isolated features of chronic TBI symptoms using a FPI 
mouse model to simulate mild TBI. These investigators found mice 
had difficulty in maintaining wakefulness (42). Stemper et al. (43) 
used a high-rate rotational acceleration model and showed sustained 
balance & anxiety-like changes that scaled with duration 
of acceleration.

TABLE 1  Comprehensive pathophysiological summary of traumatic brain injury (TBI).

Aspect Description Immunological component

Primary injury Direct mechanical insult causing axonal damage, 

contusions, and hemorrhage (155).

Limited immune activation initially; rapid release of DAMPs (HMGB1, ATP, S100β) triggers 

innate immune responses, including microglial priming (156).

Secondary injury Progressive biochemical cascades: ischemia, 

oxidative stress, excitotoxicity (157).

Neuroinflammation propagates via microglial activation, astrogliosis, and sustained cytokine 

release (IL-1β, TNF-α, IL-6), leading to prolonged BBB dysfunction (158).

Blood–brain barrier 

(BBB) disruption

Loss of BBB integrity due to endothelial and 

astrocytic damage (159).

Recruitment of peripheral immune cells neutrophils, monocytes, T cells through upregulated 

adhesion molecules (ICAM-1, VCAM-1) and chemokine gradients (CXCL1, MCP-1) (114, 160).

Neuroinflammation Chronic activation of resident and peripheral 

immune cells (161).

Dysregulated M1/M2 microglial polarization influences recovery; M1 phenotype sustains injury 

via ROS and NO, while M2 phenotype promotes tissue repair (162, 163).

Oxidative stress Excessive ROS, lipid peroxidation, 

mitochondrial dysfunction (164).

Microglial and neutrophil-derived ROS/NOS contribute to oxidative DNA damage and neuronal 

apoptosis; Nrf2 dysregulation exacerbates redox imbalance (165, 166).

Cerebral edema Ionic dysregulation induces cytotoxic and 

vasogenic swelling (167).

IL-1β, TNF-α increase endothelial permeability; aquaporin-4 (AQP4) dysregulation on 

astrocytes contributes to cerebral fluid accumulation and edema progression (159, 168).
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Contemporary animal models of TBI, including FPI and CCI 
models, often omit secondary insults, which can complicate 
extrapolation to heterogeneous clinical populations (12, 44–46). 
Hence, prioritizing models that include secondary neurologic insults 
are likely to improve translational alignment. For instance, recent 
studies have devised randomized TBI + Hypoxemia models of diffuse 
brain injury in which elevated neuroinflammatory markers of TNFα, 
IL1-β and IL-6 corresponded to the reduced recovery of sensorimotor 
function 2 weeks post-injury (47–49). In addition, regions of 
concentrated axonal injury coincided with substantial astrocytosis and 
microglial activation (49). Such secondary insult experimental models 
are particularly promising for the clinical population as they are 
predictive models of treatment response and recovery rate 
immediately following the injury. Beyond recapitulating mechanical 
injury, these models have also been instrumental in deciphering the 
complex immunological landscape following TBI, providing insights 
into potential therapeutic targets, as explored in the next section. 
Table 2 elucidates on the emergent experimental models of TBI and 
their respective immunological insights.

Immunological mechanism of 
traumatic brain injury

TBI initiates a multi-factorial cascade of immunological events 
which may serve as a basis for therapeutic target and intervention in 
future studies (50). Initial mechanical injury to the brain parenchyma 
leads to disruption of the BBB, which serves as an interface between 
the central nervous system and peripheral circulation (51). An 
impaired and permeable BBB is a pathological hallmark which 
precedes the immune cascade in TBI (52, 53). Immediately following 
injury, an inflammatory response is generated, which recruits glial cells 
(macrophages and astrocytes) to the site of injury, followed by 

peripheral immune cells, such as monocytes, natural killer cells, 
dendritic cells and T cells (47, 54). The activation of the immune 
system and the subsequent cascades are mediated by damage-
associated molecular patterns (DAMPs), purinergic signaling, and the 
secretion of pro-inflammatory cytokines by glial cells and macrophages 
near the site of injury (55–57). During this time, the dysfunctional 
BBB also allows for continued trafficking of pro-inflammatory 
immune cells, leading to chronic neuroinflammation and cell death 
(58). Therefore, understanding the role of inflammation and its 
contribution to secondary injury in the brain following TBI could lead 
to the development of immune modulation therapies that improve 
long-term outlooks for TBI patients. Furthermore, the biphasic 
immune response in TBI mirrors the inflammatory dynamics of 
glioblastoma (59, 60), making TBI a valuable model for profiling GBM 
immunophenotypes. Insights into cytokine signaling, BBB disruption, 
and myeloid polarization in TBI may inform precision immunotherapy 
in GBM, in particular on the role of metabolic orchestrations that 
tumor cells utilize to instantiate immune evasions, many of which are 
abundantly present in post-TBI inflammation cascades (61, 62).

Innate immune response

Microglia and astrocytes are the innate immune cell population in 
the CNS and play critical roles in neuroinflammation and repair 
following TBI. Microglia are known to disrupt the BBB when activated 
by NLRP3, a known pro-inflammatory marker (63). While the 
mechanism of this activation pathway is not fully elucidated, such 
process is thought to involve the recruitment of CXCR2-containing 
neutrophils by GDF-15 production (63). Additionally, astrocytes can 
exhibit neuroprotective and neurotoxic effects that are highly context 
dependent which allow for modulation of their behavior via 
inflammation-associated molecules. Astrocytes have impaired glutamate 

TABLE 2  Experimental models of TBI and their immunological insights.

Model Description Immunological insights Strengths Limitations

Controlled cortical impact 

(CCI) (169)

Electromagnetic piston 

delivers cortical impact at 

controlled velocity and depth.

Induces acute cytokine release 

(TNF-α, IL-1β), BBB disruption, 

microglial priming, and delayed 

complement activation (170).

High reproducibility; well-suited 

for mechanistic and therapeutic 

studies.

Does not model diffuse 

injuries or secondary 

polytrauma seen in severe 

TBI.

Fluid percussion injury (FPI) 

(171)

Fluid pulse on intact dura 

induces mixed focal and 

diffuse injury.

Replicates systemic 

neuroinflammation, neutrophil 

infiltration, and prolonged astroglial 

activation (126, 172, 173).

Models diffuse injuries 

effectively induces persistent 

neuroinflammation similar to 

human TBI.

Less control over injury 

parameters; minimal 

replication of focal 

contusions.

Weight-drop model (174) Free-falling object induces 

cortical contusions and 

hemorrhages.

Increases microglial reactivity, BBB 

permeability, and excitotoxicity 

(excessive glutamate release) (175, 

176).

Simple and cost-effective; 

replicates severe cortical 

contusions.

Poor reproducibility; limited 

utility in modeling secondary 

systemic insults.

Penetrating ballistic-like 

brain injury (PBBI) (16)

High-velocity penetration of 

brain tissue mimics ballistic 

trauma.

Triggers chronic 

neuroinflammation and glial 

scarring (177–179).

Models severe inflammation and 

persistent immune dysregulation 

in penetrating injuries.

Highly invasive; difficult to 

standardize and ethically 

challenging.

TBI + secondary insults (180) Combined TBI with hypoxia, 

hemorrhagic shock, or 

systemic inflammation.

Enhances IL-6, TNF-α, and MCP-1 

signaling, worsening BBB 

permeability and neuroimmune 

dysfunction (52, 180).

Clinically relevant; mimics 

polytrauma conditions seen in 

severe TBI.

Complex methodologies; 

limited standardization across 

research groups.
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reuptake abilities following TBI which can lead to excitotoxicity 
following TBI (64, 65). This mechanism may be  in part due to an 
imbalance of D-serine release between injured neurons and astrocytes 
at the site of injury (66). Continued excitotoxicity is linked to microglial 
activation and neuroinflammation via calmodulin-dependent protein 
kinase (CaMK), cAMP and extracellular signal-regulating kinase (ERK) 
pathways (67). Astrocytes are also implicated in maintaining the 
structural integrity of the BBB as they can release signaling molecules to 
affect BBB permeability. For instance, VEGF and APOE secretion by 
astrocytes increases leakiness of the BBB (68, 69). In contrast, sonic the 
hedgehog (SHH) genes or secretion of retinoic acid by astrocytes can 
reduce BBB permeability (70, 71). Transgenic mouse model without 
astrocytes showed greater cortical degeneration, demonstrating that 
astrocytes may play a protective role following TBI as their absence in 
TBI leads to neuronal degeneration and increased inflammation (72). 
Conversely, astrocyte activation following the circulation of 
inflammatory microRNAs was associated with pro-inflammatory state 
of astrocytes and contributes to secondary brain injury (73). Therefore, 
astrocytes demonstrate both neuroprotective or neurotoxic, which 
varies highly within the context of their microenvironment.

Populations of innate immune cells, such as neutrophils and 
monocytes, undergo proliferation in cervical and draining lymph 
nodes following TBI (74). The entry of these peripheral immune cells 
is permitted through the functionally disrupted BBB. M1 macrophages, 
activated by INF-γ and toll-like receptors (TLRs), cause neurotoxicity 
via inflammation induction whereas M2 macrophages promote axonal 
repair following TBI (75). Indeed, a high M1/M2 macrophage ratio 
has been reported to be detrimental to the reduction of inflammation 
in CNS injuries (76, 77). Furthermore, a study by Makinde et al. (78) 
found that circulating peripheral monocytes recruit neutrophils into 
the injured brain, propagating further breakdown of the BBB. In this 
model, mice were depleted of all peripheral monocytes, but retained 
microglia, demonstrating that abrogating peripheral monocyte and 
neutrophil infiltration following TBI could contribute to enhanced 
survival and cognitive recovery following TBI.

Cytokine and chemokine signaling in TBI

Immediately after TBI (0–6 h), DAMPS released from necrotic 
neurons engage TLR2/4 on infiltrating neutrophils, upregulating 
TNF-α and IL-1β that promotes endothelial adhesion-molecule 
expression, matrix metalloproteinase release, and rapid phagocytic 
clearance of myelin and erythrocytic debris (79). However, persistence 
of a pro-inflammatory milieu beyond 72 h impedes oligodendrocyte 
progenitor maturation and synaptic pruning, suggesting phase-
specific rather than blanket inhibition (80). Additionally, in the acute 
post-TBI period, levels of IL-1β are elevated, and neutralizing IL-1β 
with a monoclonal antibody has been shown to prevent secondary 
injury by inhibiting downstream microglial activation (81). Similarly, 
inhibiting TNF-α with 3,6-dithiothalidomide within 12 h post-TBI 
improves recovery outcomes in mouse models (82). IL-6, which can 
serve as a biomarker of inflammatory load in the central nervous 
system (CNS), is associated with a worse prognosis during the first 
year after TBI when elevated. IL-17, which plays a role in sustaining 
inflammation, is linked to secondary brain injury, as its inhibition by 
IL-23 abrogates neuronal apoptosis and improves neural function. 
Furthermore, transfection of astrocytes to produce and release IL-2 

locally in the brain has demonstrated neuroprotective effects through 
the recruitment of T regulatory (Treg) cells (83). These findings 
collectively suggest that inflammation must be carefully modulated 
after TBI—both insufficient and excessive inflammation can hinder 
recovery, with prolonged or elevated inflammation leading to 
secondary injury.

The adaptive immune response in TBI

T helper (Th) cell subsets play distinct roles in modulating 
neuroinflammation after traumatic brain injury (TBI), with Th1, Th2, 
and Th17 cells influencing the blood–brain barrier (BBB) and 
secondary brain injury through different mechanisms. Th1 cells 
produce pro-inflammatory cytokines (IFN-ɣ, IL-2 and IL-12) which 
can cause further harm. One mechanism by which Th1 cells increase 
neuroinflammation is by permeabilizing the BBB to allow greater 
uptake of leukocytes, and results in white matter injury (84). In 
contrast, Th2 presence is associated with anti-inflammatory cytokine 
release and neuroprotection in TBI (85). Specifically, Th2 inhibits the 
activation of microglia, and therefore serves to modulate the 
neuroinflammatory response following initial TBI (86). In addition, 
Th17 cells secrete IL-17, which is suspected to promote BBB 
disruption, increase CNS inflammation, and contribute to secondary 
brain injury through the IL-23, IL-17 axis (87).

Following TBI, B cells become activated and produce autoantibodies. 
Autoreactive CD19 + B cells increase in number in the spleen and 
cervical lymph nodes, with peak levels 8–10 days post-injury (88, 89). 
Autoantibodies are generated against brain-specific proteins, such as 
GFAP, myelin-associated glycoprotein (MAG) and myelin basic protein 
(MBP) (89, 90). Zhang et al. (90) found that elevated levels of anti-GFAP 
are negatively correlated with patient outcomes, demonstrating that 
Anti-GFAP may be monitored as a biomarker to correlate with long-
term neurodegeneration post-TBI. A subset of B-cells, regulatory B-cells 
(Breg; CD1dhi CD5+), infiltrate perilesional cortex within 12–48 h, 
secrete IL-10 and IL-35, and suppress microglial NF-κB activation, 
thereby limiting reducing nearby axonal degeneration (91, 92). 
Additionally, persistent anti-MAG IgM autoantibodies are associated 
with elevated serum neurofilament light concentrations, which suggest 
an active neurodegeneration process (89). Furthermore, autoantibodies 
against MBP and phospholipids in CSF are correlated with increased 
injury severity and vascular complications (93). Notably, the presence of 
brain-derived antigens in lymphoid tissue was demonstrated to trigger 
an adaptive autoimmune response and may be associated with patient 
outcomes (94). Finally, the production of autoantibodies and its 
associated sequelae can last for many years after the injury and lead to 
ongoing neuroinflammation and neurodegeneration.

Systemic immune dysregulation following 
TBI

Systemic inflammation following TBI is a contributor to 
secondary injury in the CNS. High levels of inflammation during the 
first 90 days post-injury generally lead to less favorable outcomes 
when recovery is evaluated at 6 and 12 months following TBI (95–97). 
The systemic inflammatory response is characterized by immune 
activity by both CNS and peripheral immune cells. As previously 
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mentioned, microglia produce inflammatory molecules such as IL-1β, 
IL-6, IL-12, NO, or ROS (81, 91, 98–100). In addition to the release of 
these pro-inflammatory molecules, reactive microglia increase 
neuroinflammation by exhibiting phagocytic behavior on the 
astrocytic processes which extend to support the BBB, and thus 
increase BBB permeability (98). Microglia further sustain 
neuroinflammation through the recruitment of peripheral 
macrophages following TBI (99). In contrast, B cells demonstrate a 
neuroprotective role following TBI by downregulating the number of 
inflammatory processes occurring in the immune environment 
following TBI (100). This occurs through B cell secretion of IL-10 and 
IL-35 anti-inflammatory cytokines (91). Furthermore, B cells produce 
brain-derived neurotrophic factor (BDNF), which supports neuronal 
survival and recovery (101).

TBI impairs the function of key immune cells, namely 
macrophages, neutrophils, NK cells, and T cells, by disrupting 
immune responses and increasing susceptibility to infections. Notably, 
macrophages in patients with TBI have impaired phagocytic 
capabilities as well as impaired activation of NK cells, resulting in 
increased risk for infection (102, 103). Neutrophils are elevated in the 
first 48 h following TBI but are hyporesponsive and demonstrate a 
mitigated ability to phagocytose bacterial infections for up to several 
weeks following traumatic injury. This impaired immune response is 
suspected to be in response to neutrophil infiltration of the brain and 
subsequent preservation of brain tissue through downregulation of 
phagocytic behavior (104, 105). Additionally, the severity of NK cell 
depletion is correlated with severity of TBI and can persist for weeks 
following initial injury (106). Following TBI, the thymus shrinks, 
which correlates with the decrease in T cell circulation observed 
following TBI (107, 108). Th1 cells shift towards Th2 phenotype 
following TBI and the accompanying shift to Th2 cells predisposes 
patients to higher rates of infection (109). In concordance, PD-1 
upregulation, a sign of immune cell exhaustion, is observed in T cells 
following TBI (110). Figure 1 recapitulates such immunological axis 
characteristic of traumatic brain injury.

Immunology in experimental models of TBI

In order to better understand the underlying pathophysiology and 
immunological mechanisms of both primary and secondary insults 
following TBI, experimental models, such as CCI and FPI, have been 
utilized for their ability to recapitulate the immunological cascades 
following focal and diffuse TBI.

CCI has been shown to be an effective model for replicating 
the acute neuroinflammatory cascade following TBI (111, 112). In 
one study of mice undergoing CCI injury followed by biopsy, 
seven cytokines were measured, six of which showed significant 
elevation when compared to naïve controls (113). Following CCI 
injury, pro-inflammatory cytokines CXCL1, IL-1β, and IL-6 
showed rapid elevation with peak expression at day +1. Three 
other pro-inflammatory cytokines, IL-12p70, IFN-γ, and IL-10, 
showed peak expression at day +3. Though not completely 
mirrored in humans, a number of pro-inflammatory cytokines are 
preserved in mice and have shown similar temporality and 
upregulation post-TBI. Elevated serum CXCL1 concentration 
<24 h post-TBI was positively correlated with TBI severity, and 
higher levels of CSF IL-6  in the acute phase post-TBI were 

associated with worse outcomes as measured by Glasgow Outcome 
Scale scores at 6 months following injury (114, 115). Another 
study utilizing cerebral microdialysis paired with arterial and 
jugular bulb plasma in six TBI patients showed that IL12-p70 and 
IL-10 peaked more than 3 days following injury, whereas IL-1β 
peaked less than 2 days post-injury (116). CCI has been shown to 
be an effective model for replicating the acute neuroinflammatory 
cascade following TBICCI has frequently been used to characterize 
acute neuroinflammatory cascades following TBI. In one study of 
mice undergoing CCI injury followed by biopsy, seven cytokines 
were measured, six of which showed significant elevation when 
compared to naïve controls (113). Following CCI injury, 
pro-inflammatory cytokines CXCL1, IL-1β, and IL-6 showed 
rapid elevation with peak expression at day +1. Three other 
pro-inflammatory cytokines, IL-12p70, IFN-γ, and IL-10, showed 
peak expression at day +3. Though not completely mirrored in 
humans, a number of pro-inflammatory cytokines are preserved 
in mice and have shown similar temporality and upregulation 
post-TBI. Elevated serum CXCL1 concentration <24 h post-TBI 
was positively correlated with TBI severity, and higher levels of 
CSF IL-6 in the acute phase post-TBI were associated with worse 
outcomes as measured by Glasgow Outcome Scale scores at 
6 months following injury (114, 115). Another study utilizing 
cerebral microdialysis paired with arterial and jugular bulb plasma 
in six TBI patients showed that IL12-p70 and IL-10 peaked more 
than 3 days following injury, whereas IL-1β peaked less than 
2 days post-injury (116).

The chronic inflammatory response following CCI extends well 
beyond the acute phase, demonstrating persistent neuroinflammation 
that mirrors human TBI pathology (117–120). In one study of CCI in 
moderate-level TBI mice, the chronic phase was characterized by 
progressive expansions of lesion volumes: 287, 309, and 483% 
increases at 5, 12, and 52 weeks post-TBI, respectively, along with 
microglial activation persisting up to 1 year post-TBI (121). These 
findings recapitulate those found in humans, where PET imaging of 
moderate to severe TBI survivors indicated increased microglial 
activation up to 17 years post-TBI (122). The extended inflammatory 
response represents a potential therapeutic window that extends well 
beyond the traditional acute treatment period, highlighting the 
importance of understanding and targeting chronic inflammation in 
TBI treatment strategies.

Despite its control and reproducibility, CCI may not 
adequately represent diffuse injuries (123). To better simulate 
these types of injuries, FPI is utilized, which is classified into two 
categories: midline FPI and lateral FPI. Midline FPI induces 
diffuse TBI with bilateral structural injury and inflammation 
while lateral FPI induces both diffuse and focal TBI. In the acute 
phase, FPI models have demonstrated significant neutrophil 
infiltration (124, 125). One study analyzed myeloperoxidase 
(MPO) activity, a specific marker of neutrophils, in rats which 
underwent trauma via FPI and saw that MPO concentration 
peaked at 24 h post-trauma (126). In severe TBI human patients, 
polymorphonuclear neutrophils (PMNs) have shown increased 
activation and decreased apoptosis, leading to levels up to three 
times that of controls for the first 24 h following injury (127). 
Furthermore, FPI models have shown upregulation of the 
pro-inflammatory cytokines IL-1β and TNF-α following TBI. In 
midline FPI, IL-1β mRNA was significantly upregulated at 24 h 
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post-TBI, and TNF-α mRNA was significantly upregulated at 4 
and 24 h post-TBI when compared to control mice (128). In brain 
tissue samples from 21 human TBI patients, both IL-1β and 
TNF-α were significantly overexpressed as well, suggesting that 
FPI captures immunologic responses that resemble clinical TBI in 
certain respects (129).

Several innate and adaptive pathways differ between rodents 
and humans. For instance, mice exclusively express the membrane-
attack-complex inhibitor, CD59b, exclusively in their testis, as 
opposed to ubiquitous expression in humans, predisposing mice to 
heightened complement-mediated inflammation following TBI 
(130). Furthermore, mouse macrophage and dendritic cells express 
TLR11/12, absent in humans, which leads to heightened IFN- γ 
secretion (131). Given that this isoform of TLR is not functionally 
expressed by humans, this contributes an additional immune 
mechanism of M1 macrophage polarization that differs between 
mice and humans. In the adaptive compartment, C57BL/6 mice 
mount a rapid Vβ8.1/8.2 T-cell expansion driving IL-17 production, 

whereas human TCR repertoires show delayed, polyclonal 
activation (132). These discrepancies may underlie the failure of 
IL-17 blockade and complement inhibitors to replicate rodent 
efficacy in phase II trials.

Given the limitations of traditional models like CCI and FPI in 
replicating complex secondary injuries such as hypoxia, there has 
been a shift towards more sophisticated models. These advanced 
models are designed to include these secondary neurological insults, 
providing a better model which can recreate the complex realities 
of human TBI. The TBI + Hypoxia model, in particular, shows 
notable potential for translational application. A study by Davies 
and colleagues induced hypoxia in mice 1 day following TBI, and 
found this led to deficits in memory and learning along with 
increased astrocytic response when compared to TBI mice which 
did not undergo hypoxia (133). Other studies incorporating hypoxia 
as a secondary insult have shown elevated pro-inflammatory 
cytokines TNFα, IL1-β and IL-6 (134, 135). By incorporating 
secondary insults into these TBI models, the subsequent 

FIGURE 1

The immunological cascade of traumatic brain injury: from acute neuroinflammation to chronic systemic dysregulation and neurodegeneration. 
Traumatic brain injury (TBI) is characterized by a multistage immune response that ranges from acute neuroinflammation to systemic immune 
dysregulation and chronic neurodegeneration. Acute BBB breakdown permits damage-associated molecular patterns (DAMPs) to stimulate via TLR4 
signaling the activation of microglial cells and the release of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IFN-γ). This induces peripheral immune 
infiltration (neutrophils, monocytes, and T cells) and increases the permeability of BBB and the injury of neurons. Th1 and Th17 cells maintain 
inflammation, CD8 + T cells lead to the death of neurons (granzyme B, perforin) and B cells produce autoantibodies (anti-GFAP, anti-MBP, and anti-
MAG), leading to development of autoimmunity of the CNS. Systemically, T cell exhaustion (PD-1/PD-L1) and diminished neutrophil phagocytosis in 
concert with peripheral  inflammation increase responses to opportunistic infections. Chronically, long-term microglial priming, oxidative stress, and 
damage of blood–brain barrier (BBB) lead to white matter atrophy and synaptic loss, thereby increasing the risks for AD, PD, and chronic traumatic 
encephalopathy (CTE). This ongoing neuroimmune dysregulation calls for the development of directed immunotherapies to reduce long-term 
cognitive and functional decline. Figures were created using BioRender.com.
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neuroinflammatory cascades more closely resemble human TBI 
patients, providing a promising direction for clinically translational 
TBI models. Given the critical role of neuroinflammation in 
secondary injury, emerging immunomodulatory therapies aim to 
mitigate these effects, offering new avenues for intervention. Table 3 
provides an overview of fundamental mechanisms of resistance in 
emergent TBI therapeutics.

Targeted immunologic therapy

TBI elicits a complex immunopathological cascade characterized 
by microglial activation, peripheral leukocyte recruitment, and 
elevated pro-inflammatory cytokines. Initial neuroprotective 
responses can transition to detrimental inflammation, exacerbating 
neuronal damage and impeding recovery. Advances in 
neuroimmunology have delineated the molecular and cellular 
mechanisms underpinning post-traumatic neuroinflammation, 
identifying targeted interventions such as cytokine antagonism, 
complement inhibition, and T cell modulation. These strategies aim 
to reduce secondary injury and enhance neurofunctional outcomes in 
TBI management.

Cytokine modulation has emerged as a potent therapeutic 
strategy for TBI, targeting the reduction of neuroinflammation and 
edema through the neutralization of pro-inflammatory cytokines. 
Among these, interleukin-1 receptor antagonists (IL-1ra) and 
TNF-α inhibitors have shown significant promise. Inhibition of 
NLRP3, an upstream inflammasome of IL-1β, in mice has been 
shown to attenuate neurological deficits in spatial learning and 
memory recovery after TBI (136, 137). Furthermore, brain edema 
and cortical lesion size were significantly reduced following 
inhibition of NLRP3 in mice. Anakinra, a recombinant form of the 
human IL-1ra, has been approved in humans for rheumatologic 
conditions and is now being trialed in humans for TBI (138). 
Another target for cytokine modulation is TNF-α, and anti-TNF-α 
agents, such as infliximab, are currently being explored as therapies 

for TBI, particularly for their ability to ameliorate endothelial 
dysfunction in the setting of TBI (139, 140).

Complement inhibition may serve as another potential therapy 
for TBI, preventing synaptic loss and neurotoxicity. Inhibition of C3 
activation has been shown to reduce chronic neuroinflammation and 
neurodegeneration in mice following CCI (117). C5 deficient mice 
showed reduced brain lesion size when treated with C1-Inh and 
CR2-Crry and improved cognitive function following CCI when 
compared to control mice (141). Currently, anti-C5 antibodies such 
as eculizumab are being trialed for safety and efficacy in subarachnoid 
hemorrhage patients, but no trials have been conducted in the setting 
of patients with TBI (142).

T cell modulation has been seen as another potential 
therapeutic target for TBI patients. Various T cell subsets, namely 
Vγ1 and Vγ4 γδ T cell subsets, play distinct roles in TBI 
pathophysiology. The former is responsible for activation of 
microglia and induction of neuroinflammation by secretion of 
IFN-γ and IL-17, and the latter dampens TBI and maintains 
microglial homeostasis through TGF-β secretion (143). CD8 + T 
cells have also been implicated in TBI pathophysiology, causing 
chronic neurological impairment through increased expression of 
GrB in activated CD8 + T cells, upregulating the GrB/perforin 
cytolytic pathway (144). Mice which were pharmacologically 
depleted of CD8 + T cells showed improved neurological 
outcomes following CCI.

Other emerging therapies which have shown promise but have 
not yet progressed to clinical trials include exosome therapy, 
immune checkpoint inhibitors, and precision immunology 
approaches. Exosome therapy works by utilizing engineered 
nanoparticles to deliver anti-inflammatory miRNAs or cytokine 
inhibitors. In one study of human adipose mesenchymal stem cell-
derived exosomes (hADSC-ex) in TBI rats, the exosome therapy 
facilitated sensorimotor functional recovery, inhibited 
neuroinflammation, reduced neuronal apoptosis, and promoted 
hippocampal neurogenesis (145). Immune checkpoint inhibitors, 
namely the PD-1/PD-L1 pathway, have also been studied for their 

TABLE 3  Therapeutic strategies and their challenges.

Therapeutic domain Current strategies Emerging approaches Challenges and limitations

Primary insults Injury prevention (seatbelts, helmets). Advanced neuroprotective gear 

incorporating rotational force 

dissipation (181).

Limited therapeutic intervention post-

impact; relies on behavioral adherence.

Secondary insults ICP monitoring, CPP optimization, 

hypothermia therapy.

BBB-permeable neuroprotective agents, 

biomarker-driven interventions (182).

Heterogeneity of TBI pathology 

complicates standardized treatment; 

failure of neuroprotective agents in large-

scale trials.

Surgical interventions Clot evacuation, decompressive 

craniectomy, CSF drainage.

Minimally invasive procedures, 

neuroimaging-guided interventions 

(183, 184).

Risk of infection, exacerbation of 

neuroinflammation, need for 

individualized treatment strategies.

Pharmacological interventions Anticonvulsants, anticoagulants, anti-

inflammatory drugs.

Targeted cytokine inhibition, 

nanoparticle-mediated drug delivery 

(185, 186).

Poor penetration across the BBB; systemic 

toxicity concerns.

Experimental models and research FPI, CCI, TBI + polytrauma models. Integration of multi-insult models, 

organoid-based TBI modeling (187, 

188).

Limited translational success due to 

species differences; high experimental 

costs.
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application in TBI. Following surgical brain injury in mice, 
administration of PD-L1, the ligand for PD-1, significantly reduced 
cerebral edema, and PD-L1 blockade exacerbated cell death in vivo 
(146). Furthermore, blockade of PD-L1 in post-TBI mice which 
underwent CCI led to increased cavity size of the injured cortex 
along with motor and emotion dysfunction, further highlighting 
that inhibiting T cells through PD-1 interaction may play a 
protective role in TBI (147). Given the possibility of overactivation 
of the immune system and subsequent non-specific inflammation, 
future studies involving immune checkpoint inhibition will need 
dose-escalation trials to satisfy safety requirements. While PD-1/
PD-L1 modulation has been found to be potentially effective at 
reducing edema and inhibiting T-cell–mediated damage after TBI, 
the overall risk remains that of immune overdrive within the 
already inflamed and compromised environment of the CNS (146, 
147). Excessive checkpoint blockade can potentially increase BBB 
disruption, amplify Th1/Th17-mediated cytokine cascades, and 
induce autoantibody formation against CNS antigens such as GFAP 
and MBP, thereby accelerating chronic neurodegeneration. Such 
concerns are further instantiated in GBM, where PD-1 blockade 
reveals CNS autoimmunity despite therapeutic response in patient 
populations (60, 148). Thus, new approaches must include 
biomarker-directed, time-limited checkpoint modulation, possibly 
in addition to adjuncts such as exosome delivery platforms or 
microbiome-directed approaches, to maximize the balance between 
protective immunity and pathologic inflammation.

Gut–brain axis modulation, a precision immunological approach, 
works by restoring microbiota through probiotics or fecal microbiota 
transplantation to reduce systemic inflammation and has been 
explored in mental health, inflammatory bowel disease, multiple 
sclerosis, and rheumatoid arthritis (148–150). Recent efforts have 
characterized the gut–brain axis as a therapeutic target for TBI as well 
(151). Table 4 provides an overview of emergent immunotherapeutic 
strategies in this venture.

Integration with clinical strategies

Integration of these immunological therapies with clinical 
strategies is essential for clinical relevance in TBI patients. Utilizing 
immunological biomarkers for patient stratification is one potential 
avenue by which we can create more targeted immunological therapies 
to treat TBI patients. Translationally relevant biomarkers must 
be consistent between CCI rodent models and human TBI patients 
(43, 123). One study showed correlational similarity between post-TBI 
rodent and humans for cytokines IL-1β, IL-6, G-CSF, CCL3, CCL5, 
and TNF-α, which were also associated with white matter integrity 
preservation (152). Targeting these specific cytokines may allow for 
more targeted immunological therapies in the future.

Future immune-based therapies must also complement existing 
TBI management strategies. Current TBI management focuses on 
prevention of secondary insults by avoiding hypotension and hypoxia 
through maintenance of cerebral perfusion pressure and cerebral 
blood flow. Continual monitoring of intracranial pressure and 
utilization of bedside maneuvers, hyperosmolar therapy, CSF drainage, 
pentobarbital coma, and decompressive craniectomy when 
appropriate are necessary as well (133, 153). Immune-based therapies 
are focused on reducing neuroinflammation and enhancing functional 
recovery. This strategy is suited for complementing current therapies 
focused on therapeutic interventional windows for secondary insults, 
limiting future complications such as risk of death and long-term 
neurological and cognitive damage.

Future directions for research and 
clinical translation

Advancement in TBI research requires closing the translational 
gap between animal models and human disease. CCI and FPI remain 
of use but due to their poor ability to emulate diffuse injury, secondary 

TABLE 4  Immunological therapeutic targets in TBI.

Target Mechanism of action Therapeutic examples Stage of development Challenges

Cytokine modulation Blocks pro-inflammatory 

cytokines to prevent 

neuroinflammation.

IL-1β antagonists (anakinra), 

TNF-α inhibitors (infliximab) 

(140, 185).

Preclinical and early-phase trials. Systemic immunosuppression, 

narrow therapeutic window.

Microglial polarization Shifts microglia from M1 

(neurotoxic) to M2 

(neuroprotective) phenotype.

PPAR-γ agonists (pioglitazone), 

TGF-β modulators (176, 189, 

190).

Preclinical studies. Risk of impairing microglial 

surveillance; limited in vivo 

specificity.

Complement Inhibition Blocks C3a/C5a signaling to 

prevent neurotoxicity.

Anti-C5 antibodies 

(eculizumab) (142, 191).

Early-phase clinical trials. BBB penetration challenges; 

increased infection risk.

Chemokine signaling 

blockade

Inhibits immune cell infiltration 

by targeting chemokine 

receptors.

CCR2 inhibitors, CXCR4 

antagonists (192, 193).

Preclinical studies. Risk of off-target immune 

suppression.

Exosome therapy Delivers neuroprotective agents 

via engineered vesicles.

MSC-derived exosomes with 

ncRNAs modulate 

neuroinflammation and promote 

repair (194)

Preclinical research. Efficiency of BBB crossing; 

manufacturing scalability.

Gut–brain axis 

modulation

Alters microbiota composition to 

regulate systemic inflammation.

Probiotics, fecal microbiota 

transplantation (FMT) (195, 

196).

Early-stage research. Individual variability in 

microbiota responses.
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insults, and chronic effects (sleep–wake disturbance, vestibular failure, 
and headache) predictability is compromised. Next-generation models 
are required to pair TBI with systemic stressors such as hypoxia or 
polytrauma, use humanized immune systems or brain organoids to 
address species differences, and standardized injury severities and 
readouts across laboratories. Essential endpoints to harmonize include 
blood–brain barrier integrity, cytokine and complement signaling 
(IL-1β, TNF-α, IL-6, IL-23/IL-17, C3/C5), immune cell phenotyping, 
and autoantibody tracking (anti-GFAP, MBP, MAG) that can 
be directly compared with human biospecimens.

Clinically, enriched longitudinal cohorts supplemented by 
biomarkers and imaging readouts would need to be developed in 
order to align immune signatures with recovery trajectories. This 
platform would permit patient stratification by biomarkers for 
adaptive trials instead of the one-size-fits-all approach that has 
unraveled previous therapeutic efforts. Near-term objectives include 
careful testing of cytokine and inflammasome blockade, complement 
inhibition, and T-cell modulation, alongside concomitant efforts to 
confirm pharmacodynamic biomarkers of target engagement. Optimal 
treatment windows of TBI inflammation must also be addressed by 
trials given the biphasic development of TBI inflammation.

Other than these main approaches, adjunctive therapies should 
be  examined in well-characterized subgroups. Exosome therapy, 
modulation of the gut–brain axis, and orexin-targeted therapy for 
sleep disturbance due to TBI are only a few promising options. Multi-
omics and spatial transcriptomics combined with clinical phenotyping 
will be needed in order to make the leap to precision immunotherapy, 
as the therapy will be adapted to the individual’s specific immune 
make-up. By combining preclinical rigor with biomarker-informed, 
mechanism-based clinical trials, the emergent research can shift 
towards precision therapies that substantially improve long-term 
neurological and cognitive outcomes.

Concluding remarks

Recent advances in experimental TBI models have enabled more 
accurate replication of human secondary injury cascades, including 
dysregulated cerebral blood flow, neuroinflammation, and diffuse axonal 
injury (154). Unlike earlier models, which emphasized focal insults, new 
paradigms emphasize the systemic and dynamic nature of secondary 
damage. Multifactorial models, including the addition of hypotension, 
radiation, or polytrauma, more closely replicate clinical presentation and 
may more validly predict treatment response. Immunopathologically, 
TBI progresses in a biphasic manner: an acute microglial activation, 
neutrophil invasion, and DAMP-mediated breakdown of the BBB 
pro-inflammatory process, and a chronic maladaptive immunity 
subsequently characterized by persistent M1 macrophage activation, 
oxidative stress, and excitotoxicity. Adaptive immune processes such as 
Th1/Th17-mediated damage and Th2/Treg-mediated modulation also 
determine long-term outcome, while autoantibodies to CNS antigens 
such as GFAP and MBP contribute to progressive neurodegeneration.

Moving forward, precision-targeted immunomodulation offers a 
compelling therapeutic avenue. IL-1β, TNF-α, and C5a inhibitors have 
all shown a potential to reduce secondary injury, and novel approaches, 
including exosome-mediated cytokine delivery and microbiota 
modulation, are emerging ventures. The introduction of 
immunophenotyping and biomarker-based stratification into the clinic 

will be instrumental in advancing beyond generalized neuroprotection. 
Lastly, the integration of multi-omics and spatial transcriptomics with 
patient-specific immune profiling has the potential to shift the field 
toward personalized, mechanism-driven therapies that more effectively 
address the heterogeneity of human TBI.
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