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The immunological landscape of
traumatic brain injury: insights
from pathophysiology to
experimental models
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Traumatic brain injury (TBI) is a complex, heterogeneous neuropathological disease
that continues to be among the prominent causes of mortality and disability
around the world. Translational success in TBI has been significant, yet therapies
are limited as the intersection of the initial mechanical traumas and secondary
neuroinflammatory cascades, which predispose to long-term neurological deficits, is
poorly understood. The pathogenesis of TBI is not limited to the primary mechanical
injury. The secondary damage, including ischemia, excitotoxicity, oxidative stress,
and immune dysfunction, leads to neuronal apoptosis, the breakdown of the blood-
brain barrier (BBB), and chronic neuroinflammation. The preclinical controlled
cortical impact (CCl) and fluid percussion injury (FPI) TBI models have generated
valuable biomechanical data related to TBI-induced immune responses, including
microglial priming, astrocyte dysregulation, and peripheral leukocyte recruitment.
However, experimental models today are unable to completely replicate the
intricate immune cascades in human TBI, particularly delayed and context-specific
innate and adaptive immune response activation. Cytokine signaling (IL-1p, TNF-
a, and IL-6), neuroinflammatory amplification through the IL-23/IL-17 pathway,
and autoantibody-mediated neurodegeneration are emerging as significant
secondary injury mechanisms. Additionally, TBI-induced immunosuppression,
which presents as generalized T lymphocyte depletion and aberrant macrophage
polarization, enhances the risk of infection and delayed neurological recovery.
Emerging immunotherapeutics such as cytokine blockade, complement blockade,
and targeted modulation of T lymphocytes have the potential to optimize the
post-TBl immune microenvironment for reducing secondary damage. Inclusion of
next-generation experimental models combined with secondary injuries, such as
hypoxia, polytrauma, and systemic inflammation, is needed to shift towards innovative,
biomarker-driven, patient-stratified trials. Thus, integration of immunological
phenotyping with translationally relevant models of TBI represents an important
cornerstone in the development of targeted therapeutic treatments designed to
improve neuroprotection, repair, and long-term functional outcome.
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Introduction

Traumatic brain injury (TBI) is the leading cause of mortality
and morbidity in individuals under the age of 45. This results in
substantial economic and societal burdens due to lost productivity
and long-term disability (1). Despite contemporary advancements
in understanding the pathophysiology of intracranial injuries, the
ability to precisely reconstruct the sequence of events leading to
trauma and accurately predict injury severity and progression
remains a significant challenge (2, 3). The clinical complexity of TBI
stems from its heterogeneous nature, involving a dynamic interplay
between mechanical damage, secondary biochemical cascades, and
a dysregulated immune response. Despite advances in acute care,
little is known about the pathophysiological mechanisms that
govern long-term recovery and prognosis following traumatic brain
injury. Thus, experimental models of TBI serve as a critical tool in
elucidating such essential mechanisms, providing insights into
neuroinflammatory processes, immune cell recruitment, and
secondary injury pathways that shape post-traumatic recovery and
therapeutic intervention. The current paper elucidates the
immunological landscape of TBI and its integration with
experimental models in order to identify potential therapeutic
targets that can be translated into clinical practice.

TBI is defined as an injury to the brain caused by an external
mechanical force, such as blast waves, crushing forces, impact
injuries, projectile penetration, and abrupt acceleration-deceleration
forces (3, 4). The proceeding injuries from any combination of the
above forces will lead to focal brain damage due to contact
phenomena or diffuse brain damage due to acceleration/deceleration
inertial phenomenon. Focal brain damage can result in lacerations,
contusions, and intracranial hemorrhages, while diffuse brain
damage can result in brain swellings and diffuse axonal injuries.
However, it is important to note that despite these classifications, TBI
is not a single clinical phenomenon but a highly complex disease
process with various structural impairments, dysregulated
biochemical pathways, altered neuronal function, diminished
regulations of cerebral blood flow (CBF), and dysregulated immune
metabolism (5).

Neuropathological classification of such injuries is determined
by primary and secondary injury insults. Primary insult results
from the direct mechanical impact of the damage to the brain
immediately following the accident, which can cause instantaneous
axonal shearing and hemorrhage, and holds a very small window
of therapeutic intervention. Secondary insult results from
non-mechanical damage caused by cascades of dysregulated
physiological, metabolic, and cellular proceedings that follow the
primary insult (6, 7). Secondary insults can lead to cerebral
swelling, hypertension, and diffuse and focal hypoxic-ischemic
damage. Secondary insults are slow in their clinical manifestations
and present a larger window for therapeutic intervention.
Furthermore, the mechanism of insults resulting from secondary
injuries includes alterations of key biochemical cascades such as
homeostatic disturbances in cellular calcium and sodium
channels, substantial glutamate excitotoxicity, mitochondrial
damage, lipid peroxidation, neuroinflammation, increased
generation of free radicals and increased concentration of
intracellular free fatty acids, leading to eventual apoptosis and
diffuse axonal injury (DAI) (4, 8, 9).
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Clinical pathoph}ll_siology and
management of TBI

Traumatic Brain Injury (TBI) encompasses a spectrum of clinical
severity, from mild concussion to profound coma, underpinned by
complex neuropathological processes. Clinical presentation varies
with the extent of initial mechanical trauma, with severe forms posing
a dangerous risk of intracranial hypertension, hypoxemia, and late
neurological sequelae. Clinical grading systems cannot, of themselves,
explain pathophysiological variation affecting outcome (2, 3).

The trauma happens in two phases: the first insult is due to direct
mechanical deformation of brain tissue, and the second phase, from
hours to days due to metabolic breakdown, ischemia, excitotoxicity,
and immune dysregulation. Ischemia produces lactic acidosis,
oxidative stress, and ATP loss, disrupting ionic gradients and
activating cascades of cell death. Among the characteristics of
secondary injury is abnormal cerebral blood flow (CBF), triphasic in
nature and involving hypoperfusion, hyperemia, and delayed
hypoperfusion, each contributing in a characteristic fashion to tissue
damage and worsening of clinical condition (3, 4).

Treatment of TBI is support-oriented and tiered by severity.
Primary prevention, through safety equipment like helmets and
seatbelts, is the sole truly effective intervention. Restriction of
secondary insult is of urgent priority in the acute setting (4). This
includes tight management of intracranial pressure (ICP),
maintenance of cerebral perfusion pressure (CPP), and surgery to
decompress when necessary. Pharmacologic treatment, such as
NMDA-receptor antagonists, calcium channel blockers, and free-
radical scavengers, has been studied but has not yet yielded consistent
clinical benefit (8, 9). The inability of preclinical potential to
be translated clinically emphasizes the need for improved experimental
models that more accurately mirror the complex and temporally
dynamic nature of human TBI. Table 1 recapitulates a comprehensive
pathophysiological summary of traumatic brain injury.

Experimental models of traumatic
brain injury

Given the heterogeneous pathophysiology of TBI in the patient
population, numerous animal models have been developed over the
last several decades that depict clinically relevant features of both focal
and diffuse pathophysiologies. Although focal pathologies such as
cerebral edema, hematomas, and contusions are well characterized in
animal models, their translational value appears variable because
clinical TBI often presents with diffuse rather than strictly focal injury
patterns (10). Hence, animal models that focus on diffuse
pathophysiologies with widespread impact, such as DAI, vascular
injury and ischemia, may be more clinically applicable in certain
contexts. This paradigm shift is also evident when examining the
history of research in animal models of TBI. In contrast to early
animal models of TBI that focused exclusively on the biochemical
pathophysiology of focal impact injuries, contemporary models focus
on the highly elongated molecular and cellular cascades that
characterize secondary insult pathophysiology (5, 11).

There are currently four widely utilized animal models used in
contemporary TBI research: controlled cortical impact (CCI) injury,
fluid percussion injury (FPI), penetrating ballistic-like brain injury
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TABLE 1 Comprehensive pathophysiological summary of traumatic brain injury (TBI).

Aspect Description

Primary injury Direct mechanical insult causing axonal damage,

contusions, and hemorrhage (155).

Limited immune activation initially; rapid release of DAMPs (HMGBI, ATP, S100p) triggers

innate immune responses, including microglial priming (156).

Immunological component

Secondary injury Progressive biochemical cascades: ischemia,

oxidative stress, excitotoxicity (157).

Neuroinflammation propagates via microglial activation, astrogliosis, and sustained cytokine

release (IL-1B, TNF-a, IL-6), leading to prolonged BBB dysfunction (158).

Blood-brain barrier

(BBB) disruption

Loss of BBB integrity due to endothelial and
astrocytic damage (159).

Recruitment of peripheral immune cells neutrophils, monocytes, T cells through upregulated

adhesion molecules (ICAM-1, VCAM-1) and chemokine gradients (CXCL1, MCP-1) (114, 160).

Neuroinflammation Chronic activation of resident and peripheral

immune cells (161).

Dysregulated M1/M2 microglial polarization influences recovery; M1 phenotype sustains injury

via ROS and NO, while M2 phenotype promotes tissue repair (162, 163).

Oxidative stress Excessive ROS, lipid peroxidation,

mitochondrial dysfunction (164).

Microglial and neutrophil-derived ROS/NOS contribute to oxidative DNA damage and neuronal

apoptosis; Nrf2 dysregulation exacerbates redox imbalance (165, 166).

Cerebral edema Tonic dysregulation induces cytotoxic and

vasogenic swelling (167).

IL-1P, TNF-a increase endothelial permeability; aquaporin-4 (AQP4) dysregulation on

astrocytes contributes to cerebral fluid accumulation and edema progression (159, 168).

(PBBI) and weight-drop impact model. The CCI injury model uses an
electromagnetic piston to drive and penetrate a rigid impactor onto
exposed dura of known brain regions with a varying gradation of
velocity to mimic cortical tissue loss with widespread axonal damage
(12, 13). FPI model uses a fluid-filled piston to produce and
subsequently inject a pressurized fluid pulse onto an intact dura to
cause deformations of brain tissues, with varying degrees of severity,
depending on the pulse strength (14, 15). PBBI model uses a projectile
transmission of a metal rod with varying degrees of energy to cause a
temporary cavity in the brain to induce widespread inflammation,
cortical spreading depression and brain swelling (16-19). In weight-
drop TBI models, an object of varying weight and height is dropped
into gravitational free fall onto an exposed brain skull to cause severe
cortical contusions and progressive hemorrhages (20-22). Although
each model has unique experimental advantages and limitations in its
ability to recapitulate a clinically relevant model of TBI, CCI and FPI
tend to yield more consistent injury patterns and can be a useful
model to simulate the immune responses seen in human
TBI. Accordingly, this review focuses on the role of CCI and FPI
models as preclinical therapeutic strategies for the treatment of TBI.

Controlled cortical impact (CCl) injury and
fluid percussion injury (FPI) models

The CCI model offers several practical strengths for translational
applications. First, CCI can induce widespread diffuse degeneration of
cortical and thalamic neurons, comatose states, and BBB dysfunction
while controlling for crucial spatiotemporal parameters such as time,
velocity and depth of injury across brain regions (14, 23-25).
Furthermore, CCI models have been shown to induce cognitive deficits
(Morris-water maze test) and emotional and behavioral impairments
(forced swim test) that are well-preserved more than 12 months
post-TBI injury (26-29). This model allows for the manipulation of
velocity and depth of initial impact during the experiment, thereby
controlling the severity of such pathophysiological, cognitive and
emotional deficits (30, 31). Furthermore, increased gradations of
impact velocity correspond to a progressive reduction in cerebral blood
flow and elongated elevation of DAI and white matter atrophy. Hence,
CCI models allow for collecting and extrapolating post-TBI
physiological data in a context similar to ICU and intensive trauma
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centers. Because CCI reproduces several pathophysiological and
behavioral features seen in human TBI, it may help connect preclinical
and clinical work to translate animal models of TBI into novel protocols
in clinical care (13, 27, 32, 33).

Furthermore, FPI may provide practical advantages in answering
certain translational questions to study severe TBI in humans. The FPI
model induces tissue displacements and progressive deformations of
grey matter, cerebral edema, and intracranial hemorrhage through
rapid injection of the pressurized fluid-filled piston into the epidural
space (5, 15, 34). In particular, lateral models of FPI (LFPI) can induce
both localized cortical contusions and diffuse neuronal injury across
subcortical structures of the hippocampus and thalamus (35). The
progressive cell death and DAI in LFPI models will persist up to 1-year
post-injury. Furthermore, the LFPI-induced pathophysiological
cascade will further progress across vulnerable subcortical regions of
the striatum, medial septum and amygdala and cause subsequent
cognitive impairments, movement disorders and neurobehavioral
dysfunctions that last more than 1-year post injury, similar to the
clinical trajectories of human TBI (10, 22, 36, 37).

Although these models have respective features which align with
certain clinical contexts, the FPI and CCI models carry important
limitations. Whereas moderate and severe cases of human TBI
frequently carry skull fractures and substantial contusions across gyri,
FPI and CCI models reproduce human TBI without clinically present
skull fractures. In addition, clinical TBI is frequently characterized by
chronic sleep disorders, vestibular deficits and severe headaches in
patients following the injury. Extensive literature of the recent decade
has elucidated that sleep-wake dysfunction is one of the most
TBI
hypersomnolence, sleep fragmentation, and disrupted orexin signaling

reproducible model sequelae, with phenotypes of
that reflect those seen in human patients. These studies emphasize that
no model replicates the whole chronic symptom complex but that
convergent animal and human data strongly implicate deranged
sleep-wake circuitry as a mechanistic contributor to long-term
morbidity after TBI (38-41). Furthermore, investigators have
recapitulated isolated features of chronic TBI symptoms using a FPI
mouse model to simulate mild TBI. These investigators found mice
had difficulty in maintaining wakefulness (42). Stemper et al. (43)
used a high-rate rotational acceleration model and showed sustained
balance & anxiety-like changes that scaled with duration

of acceleration.
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Contemporary animal models of TBI, including FPI and CCI
models, often omit secondary insults, which can complicate
extrapolation to heterogeneous clinical populations (12, 44-46).
Hence, prioritizing models that include secondary neurologic insults
are likely to improve translational alignment. For instance, recent
studies have devised randomized TBI + Hypoxemia models of diffuse
brain injury in which elevated neuroinflammatory markers of TNFa,
IL1-B and IL-6 corresponded to the reduced recovery of sensorimotor
function 2 weeks post-injury (47-49). In addition, regions of
concentrated axonal injury coincided with substantial astrocytosis and
microglial activation (49). Such secondary insult experimental models
are particularly promising for the clinical population as they are
predictive models of treatment response and recovery rate
immediately following the injury. Beyond recapitulating mechanical
injury, these models have also been instrumental in deciphering the
complex immunological landscape following TBI, providing insights
into potential therapeutic targets, as explored in the next section.
Table 2 elucidates on the emergent experimental models of TBI and
their respective immunological insights.

Immunological mechanism of
traumatic brain injury

TBI initiates a multi-factorial cascade of immunological events
which may serve as a basis for therapeutic target and intervention in
future studies (50). Initial mechanical injury to the brain parenchyma
leads to disruption of the BBB, which serves as an interface between
the central nervous system and peripheral circulation (51). An
impaired and permeable BBB is a pathological hallmark which
precedes the immune cascade in TBI (52, 53). Immediately following
injury, an inflammatory response is generated, which recruits glial cells
(macrophages and astrocytes) to the site of injury, followed by

TABLE 2 Experimental models of TBI and their immunological insights.

10.3389/fneur.2025.1668480

peripheral immune cells, such as monocytes, natural killer cells,
dendritic cells and T cells (47, 54). The activation of the immune
system and the subsequent cascades are mediated by damage-
associated molecular patterns (DAMPs), purinergic signaling, and the
secretion of pro-inflammatory cytokines by glial cells and macrophages
near the site of injury (55-57). During this time, the dysfunctional
BBB also allows for continued trafficking of pro-inflammatory
immune cells, leading to chronic neuroinflammation and cell death
(58). Therefore, understanding the role of inflammation and its
contribution to secondary injury in the brain following TBI could lead
to the development of immune modulation therapies that improve
long-term outlooks for TBI patients. Furthermore, the biphasic
immune response in TBI mirrors the inflammatory dynamics of
glioblastoma (59, 60), making TBI a valuable model for profiling GBM
immunophenotypes. Insights into cytokine signaling, BBB disruption,
and myeloid polarization in TBI may inform precision immunotherapy
in GBM, in particular on the role of metabolic orchestrations that
tumor cells utilize to instantiate immune evasions, many of which are
abundantly present in post-TBI inflammation cascades (61, 62).

Innate immune response

Microglia and astrocytes are the innate immune cell population in
the CNS and play critical roles in neuroinflammation and repair
following TBI. Microglia are known to disrupt the BBB when activated
by NLRP3, a known pro-inflammatory marker (63). While the
mechanism of this activation pathway is not fully elucidated, such
process is thought to involve the recruitment of CXCR2-containing
neutrophils by GDF-15 production (63). Additionally, astrocytes can
exhibit neuroprotective and neurotoxic effects that are highly context
dependent which allow for modulation of their behavior via
inflammation-associated molecules. Astrocytes have impaired glutamate

Description

Immunological insights

Strengths

Limitations

Controlled cortical impact

(CCI) (169)

Electromagnetic piston

delivers cortical impact at

controlled velocity and depth.

Induces acute cytokine release
(TNF-a, IL-1p), BBB disruption,
microglial priming, and delayed

complement activation (170).

High reproducibility; well-suited
for mechanistic and therapeutic

studies.

Does not model diffuse
injuries or secondary
polytrauma seen in severe

TBIL

Fluid percussion injury (FPI)
(171)

Fluid pulse on intact dura
induces mixed focal and

diffuse injury.

Replicates systemic
neuroinflammation, neutrophil
infiltration, and prolonged astroglial

activation (126, 172, 173).

Models diffuse injuries
effectively induces persistent
neuroinflammation similar to

human TBIL.

Less control over injury
parameters; minimal
replication of focal

contusions.

Weight-drop model (174)

Free-falling object induces
cortical contusions and

hemorrhages.

Increases microglial reactivity, BBB
permeability, and excitotoxicity
(excessive glutamate release) (175,

176).

Simple and cost-effective;
replicates severe cortical

contusions.

Poor reproducibility; limited
utility in modeling secondary

systemic insults.

Penetrating ballistic-like

brain injury (PBBI) (16)

High-velocity penetration of
brain tissue mimics ballistic

trauma.

Triggers chronic
neuroinflammation and glial

scarring (177-179).

Models severe inflammation and
persistent immune dysregulation

in penetrating injuries.

Highly invasive; difficult to
standardize and ethically

challenging.

TBI + secondary insults (180)

Combined TBI with hypoxia,
hemorrhagic shock, or

systemic inflammation.

Enhances IL-6, TNF-a, and MCP-1
signaling, worsening BBB
permeability and neuroimmune

dysfunction (52, 180).

Clinically relevant; mimics
polytrauma conditions seen in

severe TBI.

Complex methodologies;
limited standardization across

research groups.
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reuptake abilities following TBI which can lead to excitotoxicity
following TBI (64, 65). This mechanism may be in part due to an
imbalance of D-serine release between injured neurons and astrocytes
at the site of injury (66). Continued excitotoxicity is linked to microglial
activation and neuroinflammation via calmodulin-dependent protein
kinase (CaMK), cAMP and extracellular signal-regulating kinase (ERK)
pathways (67). Astrocytes are also implicated in maintaining the
structural integrity of the BBB as they can release signaling molecules to
affect BBB permeability. For instance, VEGF and APOE secretion by
astrocytes increases leakiness of the BBB (68, 69). In contrast, sonic the
hedgehog (SHH) genes or secretion of retinoic acid by astrocytes can
reduce BBB permeability (70, 71). Transgenic mouse model without
astrocytes showed greater cortical degeneration, demonstrating that
astrocytes may play a protective role following TBI as their absence in
TBI leads to neuronal degeneration and increased inflammation (72).
Conversely, astrocyte activation following the circulation of
inflammatory microRNAs was associated with pro-inflammatory state
of astrocytes and contributes to secondary brain injury (73). Therefore,
astrocytes demonstrate both neuroprotective or neurotoxic, which
varies highly within the context of their microenvironment.

Populations of innate immune cells, such as neutrophils and
monocytes, undergo proliferation in cervical and draining lymph
nodes following TBI (74). The entry of these peripheral immune cells
is permitted through the functionally disrupted BBB. M1 macrophages,
activated by INF-y and toll-like receptors (TLRs), cause neurotoxicity
via inflammation induction whereas M2 macrophages promote axonal
repair following TBI (75). Indeed, a high M1/M2 macrophage ratio
has been reported to be detrimental to the reduction of inflammation
in CNS injuries (76, 77). Furthermore, a study by Makinde et al. (78)
found that circulating peripheral monocytes recruit neutrophils into
the injured brain, propagating further breakdown of the BBB. In this
model, mice were depleted of all peripheral monocytes, but retained
microglia, demonstrating that abrogating peripheral monocyte and
neutrophil infiltration following TBI could contribute to enhanced
survival and cognitive recovery following TBI.

Cytokine and chemokine signaling in TBI

Immediately after TBI (0-6 h), DAMPS released from necrotic
neurons engage TLR2/4 on infiltrating neutrophils, upregulating
TNF-a and IL-1p that promotes endothelial adhesion-molecule
expression, matrix metalloproteinase release, and rapid phagocytic
clearance of myelin and erythrocytic debris (79). However, persistence
of a pro-inflammatory milieu beyond 72 h impedes oligodendrocyte
progenitor maturation and synaptic pruning, suggesting phase-
specific rather than blanket inhibition (80). Additionally, in the acute
post-TBI period, levels of IL-1f are elevated, and neutralizing IL-1f
with a monoclonal antibody has been shown to prevent secondary
injury by inhibiting downstream microglial activation (81). Similarly,
inhibiting TNF-a with 3,6-dithiothalidomide within 12 h post-TBI
improves recovery outcomes in mouse models (82). IL-6, which can
serve as a biomarker of inflammatory load in the central nervous
system (CNS), is associated with a worse prognosis during the first
year after TBI when elevated. IL-17, which plays a role in sustaining
inflammation, is linked to secondary brain injury, as its inhibition by
IL-23 abrogates neuronal apoptosis and improves neural function.
Furthermore, transfection of astrocytes to produce and release IL-2
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locally in the brain has demonstrated neuroprotective effects through
the recruitment of T regulatory (Treg) cells (83). These findings
collectively suggest that inflammation must be carefully modulated
after TBI—both insufficient and excessive inflammation can hinder
recovery, with prolonged or elevated inflammation leading to
secondary injury.

The adaptive immune response in TBI

T helper (Th) cell subsets play distinct roles in modulating
neuroinflammation after traumatic brain injury (TBI), with Th1, Th2,
and Th17 cells influencing the blood-brain barrier (BBB) and
secondary brain injury through different mechanisms. Thl cells
produce pro-inflammatory cytokines (IFN-y, IL-2 and IL-12) which
can cause further harm. One mechanism by which Th1 cells increase
neuroinflammation is by permeabilizing the BBB to allow greater
uptake of leukocytes, and results in white matter injury (84). In
contrast, Th2 presence is associated with anti-inflammatory cytokine
release and neuroprotection in TBI (85). Specifically, Th2 inhibits the
activation of microglia, and therefore serves to modulate the
neuroinflammatory response following initial TBI (86). In addition,
Th17 cells secrete IL-17, which is suspected to promote BBB
disruption, increase CNS inflammation, and contribute to secondary
brain injury through the IL-23, IL-17 axis (87).

Following TBI, B cells become activated and produce autoantibodies.
Autoreactive CD19 + B cells increase in number in the spleen and
cervical lymph nodes, with peak levels 8-10 days post-injury (88, 89).
Autoantibodies are generated against brain-specific proteins, such as
GFAP, myelin-associated glycoprotein (MAG) and myelin basic protein
(MBP) (89, 90). Zhang et al. (90) found that elevated levels of anti-GFAP
are negatively correlated with patient outcomes, demonstrating that
Anti-GFAP may be monitored as a biomarker to correlate with long-
term neurodegeneration post-TBI. A subset of B-cells, regulatory B-cells
(Breg; CD1dhi CD5+), infiltrate perilesional cortex within 12-48 h,
secrete IL-10 and IL-35, and suppress microglial NF-kB activation,
thereby limiting reducing nearby axonal degeneration (91, 92).
Additionally, persistent anti-MAG IgM autoantibodies are associated
with elevated serum neurofilament light concentrations, which suggest
an active neurodegeneration process (89). Furthermore, autoantibodies
against MBP and phospholipids in CSF are correlated with increased
injury severity and vascular complications (93). Notably, the presence of
brain-derived antigens in lymphoid tissue was demonstrated to trigger
an adaptive autoimmune response and may be associated with patient
outcomes (94). Finally, the production of autoantibodies and its
associated sequelae can last for many years after the injury and lead to
ongoing neuroinflammation and neurodegeneration.

Systemic immune dysregulation following
TBI

Systemic inflammation following TBI is a contributor to
secondary injury in the CNS. High levels of inflammation during the
first 90 days post-injury generally lead to less favorable outcomes
when recovery is evaluated at 6 and 12 months following TBI (95-97).
The systemic inflammatory response is characterized by immune
activity by both CNS and peripheral immune cells. As previously
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mentioned, microglia produce inflammatory molecules such as IL-1f,
IL-6, IL-12, NO, or ROS (81, 91, 98-100). In addition to the release of
these pro-inflammatory molecules, reactive microglia increase
neuroinflammation by exhibiting phagocytic behavior on the
astrocytic processes which extend to support the BBB, and thus
increase BBB permeability (98). Microglia further sustain
neuroinflammation through the recruitment of peripheral
macrophages following TBI (99). In contrast, B cells demonstrate a
neuroprotective role following TBI by downregulating the number of
inflammatory processes occurring in the immune environment
following TBI (100). This occurs through B cell secretion of IL-10 and
IL-35 anti-inflammatory cytokines (91). Furthermore, B cells produce
brain-derived neurotrophic factor (BDNF), which supports neuronal
survival and recovery (101).

TBI impairs the function of key immune cells, namely
macrophages, neutrophils, NK cells, and T cells, by disrupting
immune responses and increasing susceptibility to infections. Notably,
macrophages in patients with TBI have impaired phagocytic
capabilities as well as impaired activation of NK cells, resulting in
increased risk for infection (102, 103). Neutrophils are elevated in the
first 48 h following TBI but are hyporesponsive and demonstrate a
mitigated ability to phagocytose bacterial infections for up to several
weeks following traumatic injury. This impaired immune response is
suspected to be in response to neutrophil infiltration of the brain and
subsequent preservation of brain tissue through downregulation of
phagocytic behavior (104, 105). Additionally, the severity of NK cell
depletion is correlated with severity of TBI and can persist for weeks
following initial injury (106). Following TBI, the thymus shrinks,
which correlates with the decrease in T cell circulation observed
following TBI (107, 108). Thl cells shift towards Th2 phenotype
following TBI and the accompanying shift to Th2 cells predisposes
patients to higher rates of infection (109). In concordance, PD-1
upregulation, a sign of immune cell exhaustion, is observed in T cells
following TBI (110). Figure 1 recapitulates such immunological axis
characteristic of traumatic brain injury.

Immunology in experimental models of TBI

In order to better understand the underlying pathophysiology and
immunological mechanisms of both primary and secondary insults
following TBI, experimental models, such as CCI and FPI, have been
utilized for their ability to recapitulate the immunological cascades
following focal and diffuse TBI.

CCI has been shown to be an effective model for replicating
the acute neuroinflammatory cascade following TBI (111, 112). In
one study of mice undergoing CCI injury followed by biopsy,
seven cytokines were measured, six of which showed significant
elevation when compared to naive controls (113). Following CCI
injury, pro-inflammatory cytokines CXCL1, IL-1pB, and IL-6
showed rapid elevation with peak expression at day +1. Three
other pro-inflammatory cytokines, IL-12p70, IFN-y, and IL-10,
showed peak expression at day +3. Though not completely
mirrored in humans, a number of pro-inflammatory cytokines are
preserved in mice and have shown similar temporality and
upregulation post-TBI. Elevated serum CXCL1 concentration
<24 h post-TBI was positively correlated with TBI severity, and
higher levels of CSF IL-6 in the acute phase post-TBI were
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associated with worse outcomes as measured by Glasgow Outcome
Scale scores at 6 months following injury (114, 115). Another
study utilizing cerebral microdialysis paired with arterial and
jugular bulb plasma in six TBI patients showed that IL12-p70 and
IL-10 peaked more than 3 days following injury, whereas IL-1f
peaked less than 2 days post-injury (116). CCI has been shown to
be an effective model for replicating the acute neuroinflammatory
cascade following TBICCI has frequently been used to characterize
acute neuroinflammatory cascades following TBI. In one study of
mice undergoing CCI injury followed by biopsy, seven cytokines
were measured, six of which showed significant elevation when
compared to naive controls (113). Following CCI injury,
pro-inflammatory cytokines CXCLI, IL-1f, and IL-6 showed
rapid elevation with peak expression at day +1. Three other
pro-inflammatory cytokines, IL-12p70, IEN-y, and IL-10, showed
peak expression at day +3. Though not completely mirrored in
humans, a number of pro-inflammatory cytokines are preserved
in mice and have shown similar temporality and upregulation
post-TBI. Elevated serum CXCL1 concentration <24 h post-TBI
was positively correlated with TBI severity, and higher levels of
CSF IL-6 in the acute phase post-TBI were associated with worse
outcomes as measured by Glasgow Outcome Scale scores at
6 months following injury (114, 115). Another study utilizing
cerebral microdialysis paired with arterial and jugular bulb plasma
in six TBI patients showed that IL12-p70 and IL-10 peaked more
than 3 days following injury, whereas IL-1p peaked less than
2 days post-injury (116).

The chronic inflammatory response following CCI extends well
beyond the acute phase, demonstrating persistent neuroinflammation
that mirrors human TBI pathology (117-120). In one study of CCI in
moderate-level TBI mice, the chronic phase was characterized by
progressive expansions of lesion volumes: 287, 309, and 483%
increases at 5, 12, and 52 weeks post-TBI, respectively, along with
microglial activation persisting up to 1 year post-TBI (121). These
findings recapitulate those found in humans, where PET imaging of
moderate to severe TBI survivors indicated increased microglial
activation up to 17 years post-TBI (122). The extended inflammatory
response represents a potential therapeutic window that extends well
beyond the traditional acute treatment period, highlighting the
importance of understanding and targeting chronic inflammation in
TBI treatment strategies.

Despite its control and reproducibility, CCI may not
adequately represent diffuse injuries (123). To better simulate
these types of injuries, FPI is utilized, which is classified into two
categories: midline FPI and lateral FPI. Midline FPI induces
diffuse TBI with bilateral structural injury and inflammation
while lateral FPI induces both diffuse and focal TBI. In the acute
phase, FPI models have demonstrated significant neutrophil
infiltration (124, 125). One study analyzed myeloperoxidase
(MPO) activity, a specific marker of neutrophils, in rats which
underwent trauma via FPI and saw that MPO concentration
peaked at 24 h post-trauma (126). In severe TBI human patients,
polymorphonuclear neutrophils (PMNs) have shown increased
activation and decreased apoptosis, leading to levels up to three
times that of controls for the first 24 h following injury (127).
Furthermore, FPI models have shown upregulation of the
pro-inflammatory cytokines IL-1f and TNF-a following TBI. In
midline FPI, IL-1p mRNA was significantly upregulated at 24 h
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The immunological cascade of traumatic brain injury: from acute neuroinflammation to chronic systemic dysregulation and neurodegeneration.
Traumatic brain injury (TBI) is characterized by a multistage immune response that ranges from acute neuroinflammation to systemic immune
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dysregulation and chronic neurodegeneration. Acute BBB breakdown permits damage-associated molecular patterns (DAMPs) to stimulate via TLR4
signaling the activation of microglial cells and the release of pro-inflammatory cytokines (TNF-a, IL-1p, IL-6, IFN-v). This induces peripheral immune
infiltration (neutrophils, monocytes, and T cells) and increases the permeability of BBB and the injury of neurons. Thl and Th17 cells maintain
inflammation, CD8 + T cells lead to the death of neurons (granzyme B, perforin) and B cells produce autoantibodies (anti-GFAP, anti-MBP, and anti-
MAG), leading to development of autoimmunity of the CNS. Systemically, T cell exhaustion (PD-1/PD-L1) and diminished neutrophil phagocytosis in
concert with peripheral inflammation increase responses to opportunistic infections. Chronically, long-term microglial priming, oxidative stress, and
damage of blood-brain barrier (BBB) lead to white matter atrophy and synaptic loss, thereby increasing the risks for AD, PD, and chronic traumatic
encephalopathy (CTE). This ongoing neuroimmune dysregulation calls for the development of directed immunotherapies to reduce long-term
cognitive and functional decline. Figures were created using BioRender.com.

post-TBI, and TNF-a mRNA was significantly upregulated at 4
and 24 h post-TBI when compared to control mice (128). In brain
tissue samples from 21 human TBI patients, both IL-1p and
TNEF-a were significantly overexpressed as well, suggesting that
FPI captures immunologic responses that resemble clinical TBI in
certain respects (129).

Several innate and adaptive pathways differ between rodents
and humans. For instance, mice exclusively express the membrane-
attack-complex inhibitor, CD59b, exclusively in their testis, as
opposed to ubiquitous expression in humans, predisposing mice to
heightened complement-mediated inflammation following TBI
(130). Furthermore, mouse macrophage and dendritic cells express
TLR11/12, absent in humans, which leads to heightened IFN- y
secretion (131). Given that this isoform of TLR is not functionally
expressed by humans, this contributes an additional immune
mechanism of M1 macrophage polarization that differs between
mice and humans. In the adaptive compartment, C57BL/6 mice
mount a rapid V(8.1/8.2 T-cell expansion driving IL-17 production,
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whereas human TCR repertoires show delayed, polyclonal
activation (132). These discrepancies may underlie the failure of
IL-17 blockade and complement inhibitors to replicate rodent
efficacy in phase II trials.

Given the limitations of traditional models like CCI and FPI in
replicating complex secondary injuries such as hypoxia, there has
been a shift towards more sophisticated models. These advanced
models are designed to include these secondary neurological insults,
providing a better model which can recreate the complex realities
of human TBI. The TBI + Hypoxia model, in particular, shows
notable potential for translational application. A study by Davies
and colleagues induced hypoxia in mice 1 day following TBI, and
found this led to deficits in memory and learning along with
increased astrocytic response when compared to TBI mice which
did not undergo hypoxia (133). Other studies incorporating hypoxia
as a secondary insult have shown elevated pro-inflammatory
cytokines TNFa, IL1-f and IL-6 (134, 135). By incorporating
secondary insults into these TBI models, the subsequent
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neuroinflammatory cascades more closely resemble human TBI
patients, providing a promising direction for clinically translational
TBI models. Given the critical role of neuroinflammation in
secondary injury, emerging immunomodulatory therapies aim to
mitigate these effects, offering new avenues for intervention. Table 3
provides an overview of fundamental mechanisms of resistance in
emergent TBI therapeutics.

Targeted immunologic therapy

TBI elicits a complex immunopathological cascade characterized
by microglial activation, peripheral leukocyte recruitment, and
elevated pro-inflammatory cytokines. Initial neuroprotective
responses can transition to detrimental inflammation, exacerbating
neuronal damage and impeding recovery. Advances in
neuroimmunology have delineated the molecular and cellular
mechanisms underpinning post-traumatic neuroinflammation,
identifying targeted interventions such as cytokine antagonism,
complement inhibition, and T cell modulation. These strategies aim
to reduce secondary injury and enhance neurofunctional outcomes in
TBI management.

Cytokine modulation has emerged as a potent therapeutic
strategy for TBI, targeting the reduction of neuroinflammation and
edema through the neutralization of pro-inflammatory cytokines.
Among these, interleukin-1 receptor antagonists (IL-1ra) and
TNF-a inhibitors have shown significant promise. Inhibition of
NLRP3, an upstream inflammasome of IL-1p, in mice has been
shown to attenuate neurological deficits in spatial learning and
memory recovery after TBI (136, 137). Furthermore, brain edema
and cortical lesion size were significantly reduced following
inhibition of NLRP3 in mice. Anakinra, a recombinant form of the
human IL-1ra, has been approved in humans for rheumatologic
conditions and is now being trialed in humans for TBI (138).
Another target for cytokine modulation is TNF-a, and anti-TNF-«

agents, such as infliximab, are currently being explored as therapies

TABLE 3 Therapeutic strategies and their challenges.

Therapeutic domain

Current strategies

10.3389/fneur.2025.1668480

for TBI, particularly for their ability to ameliorate endothelial
dysfunction in the setting of TBI (139, 140).

Complement inhibition may serve as another potential therapy
for TBI, preventing synaptic loss and neurotoxicity. Inhibition of C3
activation has been shown to reduce chronic neuroinflammation and
neurodegeneration in mice following CCI (117). C5 deficient mice
showed reduced brain lesion size when treated with C1-Inh and
CR2-Crry and improved cognitive function following CCI when
compared to control mice (141). Currently, anti-C5 antibodies such
as eculizumab are being trialed for safety and efficacy in subarachnoid
hemorrhage patients, but no trials have been conducted in the setting
of patients with TBI (142).

T cell modulation has been seen as another potential
therapeutic target for TBI patients. Various T cell subsets, namely
Vyl and Vy4 y8 T cell subsets, play distinct roles in TBI
pathophysiology. The former is responsible for activation of
microglia and induction of neuroinflammation by secretion of
IFN-y and IL-17, and the latter dampens TBI and maintains
microglial homeostasis through TGF-f secretion (143). CD8 + T
cells have also been implicated in TBI pathophysiology, causing
chronic neurological impairment through increased expression of
GrB in activated CD8 + T cells, upregulating the GrB/perforin
cytolytic pathway (144). Mice which were pharmacologically
depleted of CD8 + T cells showed improved neurological
outcomes following CCI.

Other emerging therapies which have shown promise but have
not yet progressed to clinical trials include exosome therapy,
immune checkpoint inhibitors, and precision immunology
approaches. Exosome therapy works by utilizing engineered
nanoparticles to deliver anti-inflammatory miRNAs or cytokine
inhibitors. In one study of human adipose mesenchymal stem cell-
derived exosomes (hADSC-ex) in TBI rats, the exosome therapy
facilitated inhibited
neuroinflammation, reduced neuronal apoptosis, and promoted

sensorimotor  functional  recovery,
hippocampal neurogenesis (145). Immune checkpoint inhibitors,

namely the PD-1/PD-L1 pathway, have also been studied for their

Primary insults Injury prevention (seatbelts, helmets).

Emerging approaches Challenges and limitations

Advanced neuroprotective gear Limited therapeutic intervention post-

incorporating rotational force impact; relies on behavioral adherence.

dissipation (181).

Secondary insults ICP monitoring, CPP optimization,

hypothermia therapy.

BBB-permeable neuroprotective agents, | Heterogeneity of TBI pathology

biomarker-driven interventions (182). complicates standardized treatment;
failure of neuroprotective agents in large-

scale trials.

Risk of infection, exacerbation of

Surgical interventions

Clot evacuation, decompressive

craniectomy, CSF drainage.

Minimally invasive procedures,
neuroimaging-guided interventions

(183, 184).

neuroinflammation, need for

individualized treatment strategies.

Pharmacological interventions

Anticonvulsants, anticoagulants, anti-

inflammatory drugs.

Targeted cytokine inhibition,
nanoparticle-mediated drug delivery

(185, 186).

Poor penetration across the BBB; systemic

toxicity concerns.

Experimental models and research

FPI, CCI, TBI + polytrauma models.

Integration of multi-insult models,
organoid-based TBI modeling (187,
188).

Limited translational success due to
species differences; high experimental

costs.
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application in TBI. Following surgical brain injury in mice,
administration of PD-L1, the ligand for PD-1, significantly reduced
cerebral edema, and PD-L1 blockade exacerbated cell death in vivo
(146). Furthermore, blockade of PD-L1 in post-TBI mice which
underwent CCI led to increased cavity size of the injured cortex
along with motor and emotion dysfunction, further highlighting
that inhibiting T cells through PD-1 interaction may play a
protective role in TBI (147). Given the possibility of overactivation
of the immune system and subsequent non-specific inflammation,
future studies involving immune checkpoint inhibition will need
dose-escalation trials to satisfy safety requirements. While PD-1/
PD-L1 modulation has been found to be potentially effective at
reducing edema and inhibiting T-cell-mediated damage after TBI,
the overall risk remains that of immune overdrive within the
already inflamed and compromised environment of the CNS (146,
147). Excessive checkpoint blockade can potentially increase BBB
disruption, amplify Th1/Th17-mediated cytokine cascades, and
induce autoantibody formation against CNS antigens such as GFAP
and MBP, thereby accelerating chronic neurodegeneration. Such
concerns are further instantiated in GBM, where PD-1 blockade
reveals CNS autoimmunity despite therapeutic response in patient
populations (60, 148). Thus, new approaches must include
biomarker-directed, time-limited checkpoint modulation, possibly
in addition to adjuncts such as exosome delivery platforms or
microbiome-directed approaches, to maximize the balance between
protective immunity and pathologic inflammation.

Gut-brain axis modulation, a precision immunological approach,
works by restoring microbiota through probiotics or fecal microbiota
transplantation to reduce systemic inflammation and has been
explored in mental health, inflammatory bowel disease, multiple
sclerosis, and rheumatoid arthritis (148-150). Recent efforts have
characterized the gut-brain axis as a therapeutic target for TBI as well
(151). Table 4 provides an overview of emergent immunotherapeutic
strategies in this venture.

TABLE 4 Immunological therapeutic targets in TBI.

10.3389/fneur.2025.1668480

Integration with clinical strategies

Integration of these immunological therapies with clinical
strategies is essential for clinical relevance in TBI patients. Utilizing
immunological biomarkers for patient stratification is one potential
avenue by which we can create more targeted immunological therapies
to treat TBI patients. Translationally relevant biomarkers must
be consistent between CCI rodent models and human TBI patients
(43, 123). One study showed correlational similarity between post-TBI
rodent and humans for cytokines IL-1p, IL-6, G-CSE, CCL3, CCL5,
and TNF-a, which were also associated with white matter integrity
preservation (152). Targeting these specific cytokines may allow for
more targeted immunological therapies in the future.

Future immune-based therapies must also complement existing
TBI management strategies. Current TBI management focuses on
prevention of secondary insults by avoiding hypotension and hypoxia
through maintenance of cerebral perfusion pressure and cerebral
blood flow. Continual monitoring of intracranial pressure and
utilization of bedside maneuvers, hyperosmolar therapy, CSF drainage,
pentobarbital coma, and decompressive craniectomy when
appropriate are necessary as well (133, 153). Immune-based therapies
are focused on reducing neuroinflammation and enhancing functional
recovery. This strategy is suited for complementing current therapies
focused on therapeutic interventional windows for secondary insults,
limiting future complications such as risk of death and long-term
neurological and cognitive damage.

Future directions for research and
clinical translation

Advancement in TBI research requires closing the translational
gap between animal models and human disease. CCI and FPI remain
of use but due to their poor ability to emulate diffuse injury, secondary

Target

Cytokine modulation

Mechanism of action

Blocks pro-inflammatory
cytokines to prevent

neuroinflammation.

Therapeutic examples
IL-1f antagonists (anakinra),
TNF-a inhibitors (infliximab)
(140, 185).

Stage of development

Preclinical and early-phase trials.

Challenges

Systemic immunosuppression,

narrow therapeutic window.

Microglial polarization

Shifts microglia from M1
(neurotoxic) to M2

(neuroprotective) phenotype.

PPAR-y agonists (pioglitazone),
TGF-p modulators (176, 189,
190).

Preclinical studies.

Risk of impairing microglial
surveillance; limited in vivo

specificity.

Complement Inhibition

Blocks C3a/C5a signaling to

prevent neurotoxicity.

Anti-C5 antibodies
(eculizumab) (142, 191).

Early-phase clinical trials.

BBB penetration challenges;

increased infection risk.

Chemokine signaling
blockade

Inhibits immune cell infiltration
by targeting chemokine

receptors.

CCR2 inhibitors, CXCR4
antagonists (192, 193).

Preclinical studies.

Risk of off-target immune

suppression.

Exosome therapy

Delivers neuroprotective agents

via engineered vesicles.

MSC-derived exosomes with
ncRNAs modulate
neuroinflammation and promote

repair (194)

Preclinical research.

Efficiency of BBB crossing;

manufacturing scalability.

Gut-brain axis

modulation

Alters microbiota composition to

regulate systemic inflammation.

Probiotics, fecal microbiota
transplantation (FMT) (195,
196).

Early-stage research.

Individual variability in

microbiota responses.
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insults, and chronic effects (sleep-wake disturbance, vestibular failure,
and headache) predictability is compromised. Next-generation models
are required to pair TBI with systemic stressors such as hypoxia or
polytrauma, use humanized immune systems or brain organoids to
address species differences, and standardized injury severities and
readouts across laboratories. Essential endpoints to harmonize include
blood-brain barrier integrity, cytokine and complement signaling
(IL-1B, TNF-a, IL-6, IL-23/IL-17, C3/C5), immune cell phenotyping,
and autoantibody tracking (anti-GFAP, MBP, MAG) that can
be directly compared with human biospecimens.

Clinically, enriched longitudinal cohorts supplemented by
biomarkers and imaging readouts would need to be developed in
order to align immune signatures with recovery trajectories. This
platform would permit patient stratification by biomarkers for
adaptive trials instead of the one-size-fits-all approach that has
unraveled previous therapeutic efforts. Near-term objectives include
careful testing of cytokine and inflammasome blockade, complement
inhibition, and T-cell modulation, alongside concomitant efforts to
confirm pharmacodynamic biomarkers of target engagement. Optimal
treatment windows of TBI inflammation must also be addressed by
trials given the biphasic development of TBI inflammation.

Other than these main approaches, adjunctive therapies should
be examined in well-characterized subgroups. Exosome therapy,
modulation of the gut-brain axis, and orexin-targeted therapy for
sleep disturbance due to TBI are only a few promising options. Multi-
omics and spatial transcriptomics combined with clinical phenotyping
will be needed in order to make the leap to precision immunotherapy,
as the therapy will be adapted to the individual’s specific immune
make-up. By combining preclinical rigor with biomarker-informed,
mechanism-based clinical trials, the emergent research can shift
towards precision therapies that substantially improve long-term
neurological and cognitive outcomes.

Concluding remarks

Recent advances in experimental TBI models have enabled more
accurate replication of human secondary injury cascades, including
dysregulated cerebral blood flow, neuroinflammation, and diffuse axonal
injury (154). Unlike earlier models, which emphasized focal insults, new
paradigms emphasize the systemic and dynamic nature of secondary
damage. Multifactorial models, including the addition of hypotension,
radiation, or polytrauma, more closely replicate clinical presentation and
may more validly predict treatment response. Immunopathologically,
TBI progresses in a biphasic manner: an acute microglial activation,
neutrophil invasion, and DAMP-mediated breakdown of the BBB
pro-inflammatory process, and a chronic maladaptive immunity
subsequently characterized by persistent M1 macrophage activation,
oxidative stress, and excitotoxicity. Adaptive immune processes such as
Th1/Th17-mediated damage and Th2/Treg-mediated modulation also
determine long-term outcome, while autoantibodies to CNS antigens
such as GFAP and MBP contribute to progressive neurodegeneration.

Moving forward, precision-targeted immunomodulation offers a
compelling therapeutic avenue. IL-1p, TNF-a, and C5a inhibitors have
all shown a potential to reduce secondary injury, and novel approaches,
including exosome-mediated cytokine delivery and microbiota
introduction  of

modulation, are emerging ventures. The

immunophenotyping and biomarker-based stratification into the clinic
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will be instrumental in advancing beyond generalized neuroprotection.
Lastly, the integration of multi-omics and spatial transcriptomics with
patient-specific immune profiling has the potential to shift the field
toward personalized, mechanism-driven therapies that more effectively
address the heterogeneity of human TBL
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