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Introduction: This study aimed to develop an automated approach for assessing 
upper limb (UL) motor impairment severity in stroke patients using a deep 
learning framework applied to resting-state functional magnetic resonance 
imaging (rs-fMRI).
Methods: Dynamic functional connectivity (dFC) was computed with the 
ipsilesional primary motor cortex (M1) as a seed and extracted from rs-fMRI data 
of 69 stroke patients. These dFC features were used to train a three-dimensional 
convolutional neural network (3D-CNN) for automatic classification of UL motor 
impairment severity. Patients were divided into two groups according to UL 
Fugl-Meyer Assessment (UL-FMA) scores: mild-to-moderate impairment (UL-
FMA > 20; n = 29, maximum = 66) and severe impairment (0 ≤ UL-FMA ≤ 20; 
n = 40). UL-FMA scores served as labels for supervised learning.
Results: The model achieved a balanced accuracy of 99.8% ± 0.2%, with a specificity 
of 99.9% ± 0.2% and a sensitivity of 99.7% ± 0.3%. Several brain regions—including 
the angular gyrus, medial orbitofrontal cortex, dorsolateral superior frontal gyrus, 
superior parietal lobule, supplementary motor area, thalamus, cerebellum, and 
middle temporal gyrus—were linked to UL motor impairment severity.
Discussion: These findings demonstrate that a 3D deep learning framework 
based on dFC features from rs-fMRI enables highly accurate and objective 
classification of UL motor impairment in stroke patients. This approach may 
provide a valuable alternative to manual UL-FMA scoring, particularly in clinical 
settings with limited access to experienced evaluators.
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1 Introduction

Stroke is a leading cause of long-term disability, with upper limb (UL) motor dysfunction 
among the most prevalent and debilitating outcomes (1). Such impairments substantially 
reduce quality of life (2). Although the mechanisms linking stroke lesions to persistent motor 
deficits remain incompletely understood, neuroimaging studies consistently implicate both 
structural and functional brain alterations (3–5). Given the heterogeneity of stroke, treatment 
strategies vary widely and depend critically on the severity of impairment. Accurate assessment 
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of UL motor dysfunction is therefore essential for guiding clinical 
decision-making, tailoring rehabilitation, and setting realistic recovery 
expectations for patients and caregivers (6, 7).

The Fugl-Meyer Assessment (FMA) is widely regarded as a 
reliable and validated tool for evaluating post-stroke motor 
function (8). It evaluates five domains—motor function, sensation, 
balance, joint range of motion, and joint pain—with the motor 
domain most commonly applied to quantify impairment and 
recovery (9). The UL-FMA specifically examines motor function 
in the shoulder-arm, wrist, hand, and coordination/speed 
subsections, progressing from proximal to distal and from 
synergistic to isolated voluntary movements (9). Each of the 33 
items is scored from 0 (absent) to 2 (normal), yielding a maximum 
of 66 points that reflects full functional capacity (10). Despite its 
clinical value, the UL-FMA has several limitations: it requires 
trained therapists, depends on patient cooperation, and is 
vulnerable to inter-rater variability (9–11). It may also exhibit 
ceiling effects in higher-functioning patients and is challenging to 
administer in resource-limited settings or with uncooperative 
individuals (12, 13). These limitations highlight the need for an 
objective, automated method of assessing UL motor 
impairment severity.

Resting-state functional magnetic resonance imaging (rs-fMRI) 
offers a complementary neuroimaging approach to evaluate post-
stroke motor dysfunction, particularly through analyses of functional 
connectivity (FC) within motor-related regions. Prior work has 
demonstrated post-stroke FC reorganization involving the ipsilesional 
primary M1 and regions such as the thalamus, SMA, middle frontal 
gyrus, and cerebellum (3, 14–17). Interhemispheric M1 connectivity 
has also been positively correlated with motor performance during 
the subacute phase of stroke (12, 18), suggesting that ipsilesional M1 
FC may represent a biomarker of motor impairment. Traditional 
rs-fMRI analyses, however, often assume that FC remains stable 
during the scanning. Emerging evidence indicates that brain 
connectivity is inherently dynamic (19–21). Dynamic FC (DFC) 
captures temporal fluctuations in FC, providing a richer 
characterization of brain activity than static approaches (21). For 
example, dFC between the ipsilesional M1 and contralesional 
precentral gyrus has been negatively correlated with FMA scores in 
stroke patients (22). Using sliding time-window methods, dFC 
generates time-resolved connectivity matrices that can be clustered 
to identify distinct connectivity states and their temporal 
properties (23).

Deep learning has become a powerful tool in medical image 
analysis, offering automated feature extraction and classification 
capabilities that surpass traditional approaches (24, 25). In stroke 
research, deep learning holds promise for minimizing reliance on 
expert evaluation in the classification of motor impairment severity 
(26, 27). Unlike conventional algorithms that require manual 
feature engineering and operate on one-dimensional data, deep 
learning models—particularly three-dimensional convolutional 
neural networks (3D-CNNs)—can directly process volumetric 
neuroimaging data (28, 29). 3D-CNNs have shown strong 
performance in various medical imaging tasks, excelling in 
classification and pattern recognition within supervised 
frameworks (24, 26, 30). Although their application to brain 
imaging remains relatively limited due to computational demands, 
dFC-derived features from the ipsilesional M1 can reduce data 

dimensionality while retaining spatiotemporal patterns relevant to 
stroke severity.

In this study, we  propose a novel framework for automated 
dichotomous classification of UL motor impairment (mild/
moderate vs. severe) in stroke patients. We hypothesize that dFC 
features derived from rs-fMRI, particularly those involving the 
ipsilesional M1, can serve as effective biomarkers of motor 
impairment severity. By leveraging a 3D-CNN architecture, our goal 
is to enable accurate, objective classification and provide a viable 
alternative to conventional clinical assessment tools such as 
the UL-FMA.

2 Methods

2.1 Subjects

A total of 69 patients in the chronic phase of subcortical stroke 
were recruited from Huashan Hospital and underwent 
neuroimaging at the Shanghai Key Laboratory of Magnetic 
Resonance. Inclusion criteria were: (1) first-ever subcortical stroke; 
(2) duration of illness > 3 months; (3) Montreal Cognitive 
Assessment (MoCA) score > 23, indicating preserved global 
cognition; and (4) right-handedness. Exclusion criteria were: (1) 
contraindications to MRI; (2) bilateral stroke lesions; and (3) 
comorbid neurological or psychiatric disorders unrelated to stroke. 
Cognitive function was assessed using the MoCA, administered by 
an experienced therapist at admission. UL motor function was 
evaluated using the UL-FMA scale. The study was conducted in 
accordance with the Declaration of Helsinki, approved by the 
Review Board of Ethics Committee of Huashan Hospital, and 
registered at the Chinese Clinical Trial Registry 
(ChiCTR-TRC-08003005). Written informed consent was obtained 
from all participants.

To investigate resting-state functional connectivity alterations 
associated with UL motor impairment severity, patients were 
categorized into two groups based on their UL-FMA scores: those 
scoring > 20 were classified as having mild-to-moderate 
impairment (Mild/Moderate Stroke Patients, MSP; n = 29), and 
those with scores ≤ 20 as having severe impairment (Severe Stroke 
Patients, SSP; n = 40) (9, 13, 31). Demographic comparisons 
between groups were performed using SPSS version 23.0 
for Windows.

2.2 MRI data acquisition

All imaging was conducted on a 3.0-T Siemens MRI scanner 
(Erlangen, Germany) at the Shanghai Key Laboratory of Magnetic 
Resonance. High-resolution T1-weighted structural images were 
acquired using a magnetization-prepared rapid gradient echo 
(MPRAGE) sequence with 192 sagittal slices and the following 
parameters: repetition time (TR) = 1900 ms; echo time 
(TE) = 3.42 ms; inversion time (TI) = 900 ms; flip angle = 9°; field of 
view (FOV) = 240 × 240 mm2; matrix = 256 × 256; slice thickness/
gap = 1/0.5 mm. T2-weighted images for lesion localization were 
obtained with a turbo spin-echo sequence (30 axial slices; 
TR = 6,000 ms; TE = 93 ms; FOV = 220 × 220 mm2; flip 
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angle = 120°; matrix = 320 × 320; slice thickness/gap = 5/0 mm). 
Rs-fMRI data were collected using an echo-planar imaging (EPI) 
sequence (30 axial slices; TR = 2000 ms; TE = 30 ms; flip angle = 90°; 
FOV = 220 × 220 mm2; matrix = 64 × 64; slice thickness/
gap = 4/0.8 mm; 240 volumes). The total acquisition time was 8 min 
6 s, including a 6-s dummy scan to ensure magnetization 
equilibrium. During rs-fMRI scanning, participants were instructed 
to remain still, keep their eyes closed, stay awake, and avoid 
focused thought.

2.3 Lesion analysis

Lesion volumes were manually delineated on T1- and 
T2-weighted images by two experienced radiologists using MRIcron 
software1. Lesions were outlined slice by slice for each patient, with 
T1-weighted images used for primary outlining and T2-weighted 
images used for validation. To standardize lesion laterality, all images 
were mirrored so that lesions were represented on the left 
hemisphere (Figure 1). The resulting lesion masks were used for 
visualization, lesion volume calculation, and exclusion of intra-
lesion voxels during dFC analysis. Notably, lesion volume was not 
significantly correlated with UL motor function, as measured by 
UL-FMA scores (Pearson’s r = −0.208, p = 0.087), suggesting that 
stroke size alone did not account for impairment severity in 
this cohort.

2.4 fMRI data preprocessing

Image preprocessing and analysis were performed using 
Statistical Parametric Mapping (SPM122) and the Data Processing 
Assistant for RS-fMRI (DPABI3). For patients with right-hemisphere 
lesions, images were flipped along the midsagittal plane to 
standardize orientation, designating the left hemisphere as 

1  www.mricro.com

2  http://www.fil.ion.ucl.ac.uk/spm

3  http://rfmri.org/dpabi

ipsilesional and the right as contralesional for all participants. 
Preprocessing steps were as follows: (1) The first 10 volumes of each 
functional scan were discarded to allow for magnetization 
equilibrium and participant adaptation. The remaining 230 volumes 
were corrected for slice timing, and head motion. No subject was 
excluded, as none exceeded the motion threshold of 2.0 mm 
translation or 2.0° rotation; (2) Linear trends, mean white matter and 
cerebrospinal fluid (CSF) signals, and 24 motion parameters 
(translations, rotations, their temporal derivatives, and quadratic 
terms) were regressed out of each voxel time series. Global signal 
regression was not applied to preserve correlation matrix structure, 
particularly for sliding-window analyses (32, 33); (3) Functional 
images were spatially normalized to Montreal Neurological Institute 
(MNI) space using each patient’s lesion mask and the DARTEL 
(Diffeomorphic Anatomical Registration Through Exponentiated Lie 
Algebra) algorithm (34). Images were resampled to 3 × 3 × 3 mm3 
voxels using the DARTEL-derived deformation fields; (4) Time-
series data were spatially smoothed with a 6 mm full-width at half-
maximum (FWHM) Gaussian kernel, linearly detrended, and band-
pass filtered (0.01–0.1 Hz) to reduce physiological and 
low-frequency noise.

2.5 Dynamic functional connectivity

DFC analysis was conducted using the Temporal Dynamic 
Analysis (TDA) module within the DPABI toolbox (35). A sliding-
window approach was applied to capture temporal fluctuations in 
connectivity between the left primary M1 and all other brain voxels 
(36). The left M1 seed was defined at MNI coordinates (−38, −22, 56), 
consistent with prior studies implicating this region in UL motor 
function after stroke (3, 12, 16, 37, 38). Each sliding window covered 
22 TRs (44 s) and shifted by 1 TR (2 s), enabling fine-grained tracking 
of temporal dynamics (19). This window length was selected according 
to the lower limit of the frequency spectrum (<0.5/flower = 50 s; here, 
flower = 0.01 Hz), ensuring reliable estimation while preserving 
sensitivity to short-term fluctuations (39). A 22-TR window therefore 
represents a balance between temporal resolution and estimation 
stability, consistent with prior literature (16, 19, 39). From the 230 
rs-fMRI volumes, each participant contributed 209 overlapping 

FIGURE 1

Overlap map of stroke lesions across all participants. Color intensity indicates the number of patients with overlapping lesions at each voxel. Axial slices 
are displayed along the z-axis from slice 7 to slice 47 in Montreal Neurological Institute (MNI) space (MNI, Montreal Neurological Institute; R, right; 
L, left).
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FIGURE 3

VGG-Net-based 3D-CNN architecture. SSP, severely stroke patients; MSP, mild stroke patients; dFC, dynamic functional connectivity.

sliding windows. Within each window, Pearson correlation coefficients 
were calculated between the left M1 time series and all other brain 
voxels, generating a dynamic series of whole-brain correlation maps 
(Figure 2). Fisher’s r-to-z transformation was then applied to improve 
normality of the correlation values (40).

2.6 Feature extraction

The 3D volumetric functional connectivity maps were used as 
inputs to a 3D-CNN to classify participants into either the MSP or SSP 
group. Consistent with prior neuroimaging studies, no standard data 
augmentation techniques were applied, as introducing synthetic data 
could bias the training process. Rs-fMRI signals are particularly 
sensitive; even a 3 mm spatial shift can substantially alter their 
interpretation. For this reason, conventional augmentation strategies 
are generally discouraged in the neuroimaging community (24, 
26, 28).

2.7 Deep learning and 3D-CNN framework

A 3D-CNN–based deep learning framework was developed for 
participant classification. The model was implemented in MATLAB 
2019b with GPU acceleration on an NVIDIA Quadro RTX 5000. 
Training employed the Adam optimizer (41) with an initial learning 
rate of 0.001, which was reduced by half every 10 epochs. Each epoch 

consisted of 32-sample mini-batches over 50 epochs in total. An 
epsilon value of 0.001 was applied, and cross-entropy loss was used as 
the cost function. To mitigate overfitting, 10-fold cross-validation was 
performed to estimate mean classification accuracy at the dFC level. 
For each fold, 10% of the dFC maps were reserved for testing, while 
the remaining data were split into training (80%) and validation (10%) 
sets. The network was based on a modified VGG-Net architecture 
(42), incorporating batch normalization in convolutional layers and 
Rectified Linear Unit (ReLU) activation functions. A dropout rate of 
0.7 was applied to the fully connected layers to enhance generalization. 
Weight initialization followed the method proposed by He et al. (43), 
using a zero-mean Gaussian distribution with a standard deviation 
scaled to network depth. Hyperparameters—including learning rate, 
epsilon, dropout rate, batch size, and number of epochs—were 
optimized based on prior work (24, 26). Specifically, epsilon was tuned 
in the range [0.1:0.05:1], learning rate across a logarithmic scale [1, 
0.1, 0.01, 0.001, 0.0001, 0.00001], and dropout rate between 
[0.1:0.05:1]. Batch size was optimized using the maximum available 
GPU memory, while the number of epochs was tuned within 
[10:1:200]. The complete 3D-CNN architecture is shown in Figure 3 
and detailed in Table 1.

2.8 Dynamic states and clustering

To examine the contribution of common functional 
connectivity to deep learning classification and to better 

FIGURE 2

DFC maps across different sliding windows for a representative participant. Each map illustrates the time-varying connectivity between the left primary 
motor cortex (M1) and other brain regions. The color bar denotes Fisher’s Z-transformed correlation coefficients (T, time; W, window).
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understand how deep neural networks iteratively optimize 
classification weights (24), we  analyzed dFC between the 
ipsilesional M1 and other brain regions across individual sliding 
windows. Because multiple pairwise comparisons can introduce 
statistical bias, we applied a k-means clustering algorithm to dFC 
maps from all participants to identify distinct connectivity states 
at rest and to assess intra-individual variability. Following previous 
studies (44), L1 distance was chosen as the similarity metric due to 
its robustness in high-dimensional data. The clustering procedure 
consisted of two main steps. First, exemplar datasets were selected 
based on local maxima in functional connectivity variance across 
windows, consistent with prior work (19, 23). Second, rather than 
relying on conventional criteria such as the elbow method or 
Silhouette index—which may not guarantee that each participant 
is represented across multiple states—we determined the optimal 
number of clusters (k) by evaluating the participation rate (PR) of 
subjects across candidate solutions (19, 23). Cluster solutions were 
examined for k values ranging from 2 to 8. A three-cluster solution 
(k = 3) was selected because it yielded an adequate distribution of 
subject participation (state 1: PR = 1/69; state 2: PR = 68/69; state 
3: PR = 69/69). States 2 and 3 were retained for further analysis, 
while state 1 was excluded due to insufficient subject representation, 
which precluded statistically meaningful comparisons.

2.9 Significance testing

To evaluate the statistical significance of our results, we performed a 
permutation test on the 3D-CNN classification accuracies, followed by a 
two-sample t-test to assess between-group differences. For the 
classification analysis, test data labels were randomly shuffled 1,000 times 
within each of the 10 cross-validation folds to estimate the probability of 
achieving an accuracy greater than that obtained with the true labels. 
Between-group differences in dFC (MSP vs. SSP) were tested using 
two-sample t-tests, with age, sex, and duration of illness included as 
covariates. A significance threshold of uncorrected p < 0.05 was adopted.

3 Results

3.1 Demographic characteristics

No significant differences were observed between the MSP and SSP 
groups in age (MSP: 54.3 ± 11.95 years; SSP: 51.28 ± 10.73 years; 
p = 0.392, two-sample t-test), sex distribution (MSP: 32 males; SSP: 24 
males; p = 0.513, χ2 test), duration of illness (MSP: 8.01 ± 6.5 months; 
SSP: 9.40 ± 7.10 months; p = 0.410, two-sample t-test), or lesion volume 
(MSP: 6.7 ± 4.73 mL; SSP: 4.97 ± 4.70 mL; p = 0.513, two-sample t-test). 

TABLE 1  Details of the three-dimensional convolutional neural network (3D-CNN) architecture.

Layer Feature map Stride Kernel Activation structure

3D Input 61 × 73 × 61

Convolution 64 1x1x1 3x3x3 Conv

Convolution 64 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Maxpool 2x2x2 2x2x2

Convolution 128 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Convolution 128 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Maxpool 2x2x2 2x2x2

Convolution 256 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Convolution 256 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Convolution 256 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Maxpool 2x2x2 2x2x2

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Maxpool 2x2x2 2x2x2

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv

Maxpool 1x1x1 2x2x2

Fully Connected 4,096 Dropout Rate o.7 ReLU

Fully Connected 4,096 Dropout Rate o.7 ReLU

Output

Fully Connected 2 ReLU

Softmax

Classification Layer Argmax
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As expected, UL-FMA scores were significantly different, with higher 
scores in the MSP group compared to the SSP group (31.4 ± 7.84 vs. 
8.85 ± 4.49; p < 0.0001). Detailed demographic and clinical 
characteristics for all participants, including healthy controls (HCs), are 
presented in Table 2.

3.2 Classification

The 3D-CNN achieved high classification performance under 
10-fold cross-validation. To mitigate potential bias from class 
imbalance, balanced accuracy was reported alongside other 
evaluation metrics. The mean performance across folds was as 
follows: training accuracy = 99.23%, test accuracy = 99.80%, 
specificity = 99.86%, sensitivity = 99.74%, F-score = 99.78%, and 
balanced accuracy = 99.80% (Table 3).

Statistical significance was confirmed using permutation testing. A 
threshold of p = 0.001 was applied across all folds, and permutation tests 
consistently yielded p < 0.001, indicating that the observed classification 
performance was highly unlikely to arise by chance. Fold-wise 
permutation-derived p-values are presented in Table 3.

3.3 Clinical significance

Discriminative brain regions contributing to the deep 
learning framework were identified using two-sample t-tests 

across dynamic states 2 and 3. Significant regions included the 
angular gyrus (Angular), MOF, SFG, SPL, SMA, superior 
temporal pole (STP), thalamus, cerebellum, gyrus rectus, middle 
temporal gyrus (MTG), and precuneus. Uncorrected t-values 
indicated group differences in functional connectivity: indices 
A-E corresponded to state 2 (t = 2.64–3.37), and indices F-M 
corresponded to state 3 (t = 2.88–3.75) (Table 4 and Figure 4). In 
Figure  4, red shading denotes regions where functional 
connectivity was higher in the MSP group compared to the SSP 
group, while blue shading indicates higher connectivity in SSP 
relative to MSP.

4 Discussion

Using the 3D-CNN framework, we achieved high classification 
performance, with a mean balanced accuracy of 99.80%, specificity 
of 99.86%, and sensitivity of 99.74%. Accurate assessment of UL 
motor impairment in stroke is critical for guiding treatment 
decisions, highlighting the clinical relevance of automated 
classification methods. To identify features driving classification, 
we examined state-specific alterations in resting-state dFC of the 
ipsilesional primary M1. Comparisons between MSP and SSP groups 
across two connectivity states revealed several discriminative 
regions—including the angular gyrus, MOF, SFG, SPL, SMA, STP, 
thalamus, cerebellum, gyrus rectus, and MTG—which were 
subsequently integrated into the deep learning framework. These 

TABLE 2  Demographic, clinical and structural MRI data of the participants.

SSP (n = 40)
Mean ± std

MSP (n = 29)
Mean ± std

SSP vs. MSP
p-value

Age (years)a 54.03 ± 11.95 51.28 ± 10.73 0.392

Sex (male: female) 8/32 5/24 0.513

Lesion volume (ml)a 6.7 ± 4.73 4.97 ± 4.70 0.137

Duration of illness (month)a 8.01 ± 6.52 9.40 ± 7.10 0.410

Lesion side (left: right) 22/18 15/14 0.490

UL-FMAa 8.85 ± 4.49 31.4 ± 7.84 0.0001

aIndependent t-test. UL-FMA, up limb Fugl-Meyer assessment; SSP, severely stroke patients; MSP, mild/moderate stroke patients.

TABLE 3  Classification accuracy using 10-fold cross-validation.

Fold Train ACC (%) Test ACC (%) p-value AUC Spec (%) Sen (%) F-score (%) BAC (%)

1 99.72 99.45 <0.001 0.9994 99.4 99.51 99.34 99.45

2 99.96 99.65 <0.001 0.9999 99.88 99.34 99.59 99.61

3 99.72 99.69 <0.001 0.9999 99.76 99.67 99.67 99.71

4 100 99.93 <0.001 1 99.88 100 99.91 99.94

5 100 100 <0.001 1 100 100 100 100

6 99.99 99.86 <0.001 1 99.88 99.84 99.84 99.86

7 99.95 100 <0.001 1 100 100 100 100

8 99.92 99.51 <0.001 0.9999 99.76 99.17 99.42 99.47

9 100 99.93 <0.001 1 100 99.83 99.92 99.92

10 99.97 100 <0.001 1 100 100 100 100

Mean ± SD 99.23 ± 0.10 99.80 ± 0.20 0.9999 ± 0.0002 99.86 ± 0.18 99.74 ± 0.29 99.78 ± 0.24 99.80 ± 0.21

Test ACC, test accuracy; Train ACC, train accuracy; Spec, specificity; Sen, sensitivity; BAC, balanced accuracy.
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findings support our hypothesis that ipsilesional M1-derived dFC can 
serve as a functional biomarker for classifying UL motor impairment 
severity using 3D-CNN.

Previous studies have demonstrated the feasibility of using 
machine learning with multimodal neuroimaging data, including 
structural MRI and clinical assessments, for automated classification 

TABLE 4  Statistical analysis of each state.

Index State Group 
comparisons

Brain 
regions 
(AAL)

Peak MNI coordinates Cluster 
voxels

Peak T 
values

X Y Z

A 2 MSP > SSP Angular. R 60 −66 21 52 2.9

B 2 MSP > SSP MOF. R 6 33 −12 161 3.37

C 2 MSP > SSP SFG. R 30 60 6 86 3.01

D 2 MSP > SSP SFG. R 18 33 39 58 2.64

E 2 MSP > SSP SPL. L −36 −66 57 103 2.92

F 3 MSP > SSP SMA. L −3 0 69 50 2.89

G 3 MSP > SSP STP. L −42 −6 −15 127 3.136

H 3 MSP > SSP Thalamus. L 3 −6 15 126 3.15

I 3 MSP < SSP Angular. L −39 −63 42 471 3.75

J 3 MSP < SSP Cerebellum 3 −45 −24 77 2.88

K 3 MSP < SSP Rectus. R 9 39 −12 77 3.31

L 3 MSP < SSP MTG. R 60 −63 18 129 3.52

M 3 MSP < SSP Pre. L −3 −63 36 102 3.25

L, left; R, right; Angular, angular gyrus; MOF, medial orbitofrontal cortex; SFG, dorsolateral superior frontal gyrus; SPL, superior parietal lobule; SMA, supplementary motor area; STP, 
superior temporal pole; Thalamus, thalamus; Cerebellum, cerebellum; Rectus, gyrus rectus; MTG, middle temporal gyrus; Pre, precuneus; MNI, Montreal Neurological Institute. Two-tailed 
two-sample t-test, p < 0.05 (|T| > 2.0), cluster size ≥ 50, uncorrected.

FIGURE 4

Discriminative features of selected states. (A–E) correspond to state 2, and (F–M) correspond to state 3, respectively. L, left; R, right; Angular, angular 
gyrus; MOF, medial orbitofrontal cortex; SFG, dorsolateral superior frontal gyrus; SPL, superior parietal lobule; SMA, supplementary motor area; STP, 
superior temporal pole; Thalamus, thalamus; cerebellum, cerebellum; Rectus, gyrus rectus; MTG, middle temporal gyrus; Pre, precuneus; MNI, 
Montreal Neurological Institute. Two-tailed two-sample t-test, p < 0.05 (|T| > 2.0), cluster size ≥ 50, uncorrected. Red indicates regions where 
functional connectivity was higher in MSP than in SSP; blue indicates the opposite (MSP, mild stroke patients; SSP, severe stroke patients).

https://doi.org/10.3389/fneur.2025.1666991
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Gao et al.� 10.3389/fneur.2025.1666991

Frontiers in Neurology 08 frontiersin.org

and outcome prediction in stroke (24, 26, 28, 29, 45–48). Several 
studies successfully predicted UL motor impairment using these 
approaches (45–48). While structural MRI can distinguish MSP from 
SSP, it is often limited by inter-individual variability and may fail to 
capture subtle changes, particularly when lesion volume, shape, or 
corticospinal tract damage exceeds certain thresholds (47). In contrast, 
rs-fMRI provides a dynamic and individualized assessment, with 
shorter acquisition times that enhance clinical efficiency.

Prior research has shown that interventions such as repetitive 
transcranial magnetic stimulation can improve FMA scores in patients 
with severe UL impairment by increasing excitability in the ipsilesional 
M1 (7). Additionally, dFC between the ipsilesional M1 and 
contralesional precentral and middle frontal gyri has been negatively 
correlated with FMA scores (22), supporting the potential of 
M1-derived dFC as a predictor of motor impairment severity. To our 
knowledge, this study is the first to use dFC maps in combination with 
a 3D-CNN framework to classify stroke patients into mild/moderate 
versus severe UL-FMA groups, representing a novel contribution to 
automated stroke severity assessment.

In our 10-fold cross-validation, the 3D-CNN achieved a mean test 
accuracy of 99.80%. Although deep neural networks iteratively 
optimize classification weights (24–26, 28), ranking the contribution 
of individual dFC features remains challenging without feature 
selection. To address this, we analyzed dFC differences between MSP 
and SSP across states using k-means clustering. Statistical analysis 
revealed significant connectivity differences between the ipsilesional 
M1 and 13 other regions (p < 0.05, cluster size ≥ 50, uncorrected). 
Prior work has implicated the contralesional cerebellum (46), SMA 
(49), and contralesional parietal cortex (50) in motor recovery or stroke 
severity. Our findings are largely consistent with these reports, while 
also revealing increased connectivity in the ipsilesional SMA and SPL, 
which may reflect specific resting-state configurations rather than 
averaged connectivity patterns (22). Notably, significant connectivity 
differences were observed in the contralesional angular gyrus, MOF, 
SFG, gyrus rectus, MTG, as well as the ipsilesional STP, thalamus, 
angular gyrus, precuneus, and cerebellum, consistent with widespread 
functional plasticity following stroke (12, 23, 37). These regions likely 
contributed substantially to classifier performance, although additional 
regions may also play roles through subtle, weighted patterns learned 
by the network.

Consistent with previous findings, reduced connectivity between 
the ipsilesional M1 and contralesional hemisphere is observed after 
unilateral motor network damage (12). Conversely, increased 
connectivity within ipsilesional regions may reflect compensatory 
plasticity. In state 2, MSP patients exhibited higher connectivity in the 
contralesional angular gyrus, MOF, SFG, and ipsilesional SPL, 
suggesting better preservation of interhemispheric integration relative 
to SSP. State 3 revealed more complex patterns: MSP patients showed 
higher connectivity in the ipsilesional SMA, STP, and thalamus, but 
lower connectivity in the ipsilesional angular gyrus, precuneus, and 
contralesional gyrus rectus, MTG, and cerebellum. These results 
suggest greater network reorganization and motor adaptation in MSP 
during this state (4), demonstrating a meaningful relationship between 
dFC patterns and UL-FMA scores (51).

Our study introduces several innovations by integrating 
rs-fMRI-derived dFC with deep learning for stroke severity 
classification. However, it has limitations. Despite augmenting 
sample diversity through the sliding window approach (209 time 

points per subject), the overall dataset remains modest, limiting 
the application of end-to-end learning approaches, static 
functional connectivity-based 3D-CNN classification, and 
regression models for predicting actual UL-FMA scores. External 
validation is also lacking. Future studies should expand sample 
sizes and replicate findings in independent cohorts. Additionally, 
deep learning models inherently reduce interpretability. Although 
k-means clustering helped identify salient dFC differences between 
MSP and SSP, it does not fully reveal how individual features 
contribute to network decisions. Explainable deep learning 
techniques should be  employed in future work to visualize 
influential 3D dFC features. Furthermore, our study focused 
exclusively on dFC; complementary approaches-such as joint time-
frequency analysis and dynamic graph theory-may provide 
additional insights into time-varying connectivity patterns (20, 
52). Future research should integrate these methods to build multi-
modal representations and improve classification accuracy. 
Although the 3D-CNN provides an end-to-end approach without 
additional feature extraction, comparisons with conventional 
machine learning remain important once feature extraction 
methods are fully developed.

In conclusion, rs-fMRI-derived dFC combined with 3D-CNN 
offers a reliable, objective tool for assessing UL motor impairment 
severity in stroke. This approach may complement clinical scales such 
as the UL-FMA, particularly in settings with limited access to 
experienced rehabilitation specialists. In the future, our framework 
may provide a practical means to explore functional connectivity 
patterns associated with motor impairment severity under specific 
resting-state configurations.
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