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Assessment of functional decline
In stroke patients using 3D deep
learning and dynamic functional
connectivity based on
resting-state fMRI

Yingying Gao?, Guojun Xu?, Jie Peng?, Chengbin Han,

Shifei Wu?, Minmin Wang?, Hewei Wang** and Zhiyong Zhao?*
The First Hospital of Xinjiang Production and Construction Group, Aksu, Xinjiang, China, 2Department
of Biomedical Engineering, Children’s Hospital, Zhejiang University School of Medicine, National

Clinical Research Center for Child Health, Zhejiang University, Hangzhou, China, *Department of
Rehabilitation, Huashan Hospital, Fudan University, Shanghai, China

Introduction: This study aimed to develop an automated approach for assessing
upper limb (UL) motor impairment severity in stroke patients using a deep
learning framework applied to resting-state functional magnetic resonance
imaging (rs-fMRI).

Methods: Dynamic functional connectivity (dFC) was computed with the
ipsilesional primary motor cortex (M1) as a seed and extracted from rs-fMRI data
of 69 stroke patients. These dFC features were used to train a three-dimensional
convolutional neural network (3D-CNN) for automatic classification of UL motor
impairment severity. Patients were divided into two groups according to UL
Fugl-Meyer Assessment (UL-FMA) scores: mild-to-moderate impairment (UL-
FMA > 20; n = 29, maximum = 66) and severe impairment (0 < UL-FMA < 20;
n = 40). UL-FMA scores served as labels for supervised learning.

Results: The modelachievedabalancedaccuracy of 99.8% + 0.2%, with aspecificity
0of 99.9% + 0.2% and a sensitivity of 99.7% + 0.3%. Several brain regions—including
the angular gyrus, medial orbitofrontal cortex, dorsolateral superior frontal gyrus,
superior parietal lobule, supplementary motor area, thalamus, cerebellum, and
middle temporal gyrus—were linked to UL motor impairment severity.
Discussion: These findings demonstrate that a 3D deep learning framework
based on dFC features from rs-fMRI enables highly accurate and objective
classification of UL motor impairment in stroke patients. This approach may
provide a valuable alternative to manual UL-FMA scoring, particularly in clinical
settings with limited access to experienced evaluators.

KEYWORDS
stroke, resting-state functional magnetic resonance imaging, dynamic functional

connectivity, ipsilesional primary motor cortex, three-dimensional convolutional
neural network

1 Introduction

Stroke is a leading cause of long-term disability, with upper limb (UL) motor dysfunction
among the most prevalent and debilitating outcomes (1). Such impairments substantially
reduce quality of life (2). Although the mechanisms linking stroke lesions to persistent motor
deficits remain incompletely understood, neuroimaging studies consistently implicate both
structural and functional brain alterations (3-5). Given the heterogeneity of stroke, treatment
strategies vary widely and depend critically on the severity of impairment. Accurate assessment
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of UL motor dysfunction is therefore essential for guiding clinical
decision-making, tailoring rehabilitation, and setting realistic recovery
expectations for patients and caregivers (6, 7).

The Fugl-Meyer Assessment (FMA) is widely regarded as a
reliable and validated tool for evaluating post-stroke motor
function (8). It evaluates five domains—motor function, sensation,
balance, joint range of motion, and joint pain—with the motor
domain most commonly applied to quantify impairment and
recovery (9). The UL-FMA specifically examines motor function
in the shoulder-arm, wrist, hand, and coordination/speed
subsections, progressing from proximal to distal and from
synergistic to isolated voluntary movements (9). Each of the 33
items is scored from 0 (absent) to 2 (normal), yielding a maximum
of 66 points that reflects full functional capacity (10). Despite its
clinical value, the UL-FMA has several limitations: it requires
trained therapists, depends on patient cooperation, and is
vulnerable to inter-rater variability (9-11). It may also exhibit
ceiling effects in higher-functioning patients and is challenging to
administer in resource-limited settings or with uncooperative
individuals (12, 13). These limitations highlight the need for an
objective, automated method of assessing UL motor
impairment severity.

Resting-state functional magnetic resonance imaging (rs-fMRI)
offers a complementary neuroimaging approach to evaluate post-
stroke motor dysfunction, particularly through analyses of functional
connectivity (FC) within motor-related regions. Prior work has
demonstrated post-stroke FC reorganization involving the ipsilesional
primary M1 and regions such as the thalamus, SMA, middle frontal
gyrus, and cerebellum (3, 14-17). Interhemispheric M1 connectivity
has also been positively correlated with motor performance during
the subacute phase of stroke (12, 18), suggesting that ipsilesional M1
FC may represent a biomarker of motor impairment. Traditional
rs-fMRI analyses, however, often assume that FC remains stable
during the scanning. Emerging evidence indicates that brain
connectivity is inherently dynamic (19-21). Dynamic FC (DFC)
captures temporal fluctuations in FC, providing a richer
characterization of brain activity than static approaches (21). For
example, dFC between the ipsilesional M1 and contralesional
precentral gyrus has been negatively correlated with FMA scores in
stroke patients (22). Using sliding time-window methods, dFC
generates time-resolved connectivity matrices that can be clustered
to identify distinct connectivity states and their temporal
properties (23).

Deep learning has become a powerful tool in medical image
analysis, offering automated feature extraction and classification
capabilities that surpass traditional approaches (24, 25). In stroke
research, deep learning holds promise for minimizing reliance on
expert evaluation in the classification of motor impairment severity
(26, 27). Unlike conventional algorithms that require manual
feature engineering and operate on one-dimensional data, deep
learning models—particularly three-dimensional convolutional
neural networks (3D-CNNs)—can directly process volumetric
neuroimaging data (28, 29). 3D-CNNs have shown strong
performance in various medical imaging tasks, excelling in
classification and pattern recognition within supervised
frameworks (24, 26, 30). Although their application to brain
imaging remains relatively limited due to computational demands,
dFC-derived features from the ipsilesional M1 can reduce data
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dimensionality while retaining spatiotemporal patterns relevant to
stroke severity.

In this study, we propose a novel framework for automated
dichotomous classification of UL motor impairment (mild/
moderate vs. severe) in stroke patients. We hypothesize that dFC
features derived from rs-fMRI, particularly those involving the
ipsilesional M1, can serve as effective biomarkers of motor
impairment severity. By leveraging a 3D-CNN architecture, our goal
is to enable accurate, objective classification and provide a viable
alternative to conventional clinical assessment tools such as
the UL-FMA.

2 Methods
2.1 Subjects

A total of 69 patients in the chronic phase of subcortical stroke
were recruited from Huashan Hospital and underwent
neuroimaging at the Shanghai Key Laboratory of Magnetic
Resonance. Inclusion criteria were: (1) first-ever subcortical stroke;
(2) duration of illness > 3 months; (3) Montreal Cognitive
Assessment (MoCA) score > 23, indicating preserved global
cognition; and (4) right-handedness. Exclusion criteria were: (1)
contraindications to MRI; (2) bilateral stroke lesions; and (3)
comorbid neurological or psychiatric disorders unrelated to stroke.
Cognitive function was assessed using the MoCA, administered by
an experienced therapist at admission. UL motor function was
evaluated using the UL-FMA scale. The study was conducted in
accordance with the Declaration of Helsinki, approved by the
Review Board of Ethics Committee of Huashan Hospital, and
registered at the Chinese Clinical Trial Registry
(ChiCTR-TRC-08003005). Written informed consent was obtained
from all participants.

To investigate resting-state functional connectivity alterations
associated with UL motor impairment severity, patients were
categorized into two groups based on their UL-FMA scores: those
scoring > 20 were classified as having mild-to-moderate
impairment (Mild/Moderate Stroke Patients, MSP; #n = 29), and
those with scores < 20 as having severe impairment (Severe Stroke
Patients, SSP; n =40) (9, 13, 31). Demographic comparisons
between groups were performed using SPSS version 23.0
for Windows.

2.2 MRI data acquisition

All imaging was conducted on a 3.0-T Siemens MRI scanner
(Erlangen, Germany) at the Shanghai Key Laboratory of Magnetic
Resonance. High-resolution T1-weighted structural images were
acquired using a magnetization-prepared rapid gradient echo
(MPRAGE) sequence with 192 sagittal slices and the following
parameters: repetition time (TR)=1900ms; echo time
(TE) = 3.42 ms; inversion time (TT) = 900 ms; flip angle = 9°; field of
view (FOV) = 240 x 240 mm?; matrix = 256 x 256; slice thickness/
gap = 1/0.5 mm. T2-weighted images for lesion localization were
obtained with a turbo spin-echo sequence (30 axial slices;
TR = 6,000 ms; TE = 93 ms; FOV =220 x 220 mm?; flip
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FIGURE 1

L, left).

Overlap map of stroke lesions across all participants. Color intensity indicates the number of patients with overlapping lesions at each voxel. Axial slices
are displayed along the z-axis from slice 7 to slice 47 in Montreal Neurological Institute (MNI) space (MNI, Montreal Neurological Institute; R, right;

angle = 120°; matrix = 320 x 320; slice thickness/gap = 5/0 mm).
Rs-fMRI data were collected using an echo-planar imaging (EPI)
sequence (30 axial slices; TR = 2000 ms; TE = 30 ms; flip angle = 90°;
FOV =220 x 220 mm?  matrix = 64 x 64; thickness/
gap = 4/0.8 mm; 240 volumes). The total acquisition time was 8 min

slice

65, including a 6-s dummy scan to ensure magnetization
equilibrium. During rs-fMRI scanning, participants were instructed
to remain still, keep their eyes closed, stay awake, and avoid
focused thought.

2.3 Lesion analysis

Lesion volumes were manually delineated on T1- and
T2-weighted images by two experienced radiologists using MRIcron
software'. Lesions were outlined slice by slice for each patient, with
T1-weighted images used for primary outlining and T2-weighted
images used for validation. To standardize lesion laterality, all images
were mirrored so that lesions were represented on the left
hemisphere (Figure 1). The resulting lesion masks were used for
visualization, lesion volume calculation, and exclusion of intra-
lesion voxels during dFC analysis. Notably, lesion volume was not
significantly correlated with UL motor function, as measured by
UL-FMA scores (Pearson’s r = —0.208, p = 0.087), suggesting that
stroke size alone did not account for impairment severity in
this cohort.

2.4 fMRI data preprocessing

Image preprocessing and analysis were performed using
Statistical Parametric Mapping (SPM12?) and the Data Processing
Assistant for RS-fMRI (DPABP?). For patients with right-hemisphere
lesions, images were flipped along the midsagittal plane to
standardize orientation, designating the left hemisphere as

1 www.mricro.com
2 http://www filion.ucl.ac.uk/spm

3 http://rfmri.org/dpabi
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ipsilesional and the right as contralesional for all participants.
Preprocessing steps were as follows: (1) The first 10 volumes of each
functional scan were discarded to allow for magnetization
equilibrium and participant adaptation. The remaining 230 volumes
were corrected for slice timing, and head motion. No subject was
excluded, as none exceeded the motion threshold of 2.0 mm
translation or 2.0° rotation; (2) Linear trends, mean white matter and
cerebrospinal fluid (CSF) signals, and 24 motion parameters
(translations, rotations, their temporal derivatives, and quadratic
terms) were regressed out of each voxel time series. Global signal
regression was not applied to preserve correlation matrix structure,
particularly for sliding-window analyses (32, 33); (3) Functional
images were spatially normalized to Montreal Neurological Institute
(MNI) space using each patient’s lesion mask and the DARTEL
(Diffeomorphic Anatomical Registration Through Exponentiated Lie
Algebra) algorithm (34). Images were resampled to 3 x 3 x 3 mm’
voxels using the DARTEL-derived deformation fields; (4) Time-
series data were spatially smoothed with a 6 mm full-width at half-
maximum (FWHM) Gaussian kernel, linearly detrended, and band-
filtered (0.01-0.1 Hz) to
low-frequency noise.

pass reduce physiological and

2.5 Dynamic functional connectivity

DFC analysis was conducted using the Temporal Dynamic
Analysis (TDA) module within the DPABI toolbox (35). A sliding-
window approach was applied to capture temporal fluctuations in
connectivity between the left primary M1 and all other brain voxels
(36). The left M1 seed was defined at MNI coordinates (—38, —22, 56),
consistent with prior studies implicating this region in UL motor
function after stroke (3, 12, 16, 37, 38). Each sliding window covered
22 TRs (44 s) and shifted by 1 TR (2 s), enabling fine-grained tracking
of temporal dynamics (19). This window length was selected according
to the lower limit of the frequency spectrum (<0.5/fiower = 50 s; here,
fiower = 0.01 Hz), ensuring reliable estimation while preserving
sensitivity to short-term fluctuations (39). A 22-TR window therefore
represents a balance between temporal resolution and estimation
stability, consistent with prior literature (16, 19, 39). From the 230
rs-fMRI volumes, each participant contributed 209 overlapping
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sliding windows. Within each window, Pearson correlation coefficients
were calculated between the left M1 time series and all other brain
voxels, generating a dynamic series of whole-brain correlation maps
(Figure 2). Fisher’s r-to-z transformation was then applied to improve
normality of the correlation values (40).

2.6 Feature extraction

The 3D volumetric functional connectivity maps were used as
inputs to a 3D-CNN to classify participants into either the MSP or SSP
group. Consistent with prior neuroimaging studies, no standard data
augmentation techniques were applied, as introducing synthetic data
could bias the training process. Rs-fMRI signals are particularly
sensitive; even a 3 mm spatial shift can substantially alter their
interpretation. For this reason, conventional augmentation strategies
are generally discouraged in the neuroimaging community (24,
26, 28).

2.7 Deep learning and 3D-CNN framework

A 3D-CNN-based deep learning framework was developed for
participant classification. The model was implemented in MATLAB
2019b with GPU acceleration on an NVIDIA Quadro RTX 5000.
Training employed the Adam optimizer (41) with an initial learning
rate of 0.001, which was reduced by half every 10 epochs. Each epoch

10.3389/fneur.2025.1666991

consisted of 32-sample mini-batches over 50 epochs in total. An
epsilon value of 0.001 was applied, and cross-entropy loss was used as
the cost function. To mitigate overfitting, 10-fold cross-validation was
performed to estimate mean classification accuracy at the dFC level.
For each fold, 10% of the dFC maps were reserved for testing, while
the remaining data were split into training (80%) and validation (10%)
sets. The network was based on a modified VGG-Net architecture
(42), incorporating batch normalization in convolutional layers and
Rectified Linear Unit (ReLU) activation functions. A dropout rate of
0.7 was applied to the fully connected layers to enhance generalization.
Weight initialization followed the method proposed by He et al. (43),
using a zero-mean Gaussian distribution with a standard deviation
scaled to network depth. Hyperparameters—including learning rate,
epsilon, dropout rate, batch size, and number of epochs—were
optimized based on prior work (24, 26). Specifically, epsilon was tuned
in the range [0.1:0.05:1], learning rate across a logarithmic scale [1,
0.1, 0.01, 0.001, 0.0001, 0.00001], and dropout rate between
[0.1:0.05:1]. Batch size was optimized using the maximum available
GPU memory, while the number of epochs was tuned within
[10:1:200]. The complete 3D-CNN architecture is shown in Figure 3
and detailed in Table 1.

2.8 Dynamic states and clustering

To examine the contribution of common functional
connectivity to deep learning classification and to better

3.0456

FIGURE 2

DFC maps across different sliding windows for a representative participant. Each map illustrates the time-varying connectivity between the left primary
motor cortex (M1) and other brain regions. The color bar denotes Fisher's Z-transformed correlation coefficients (T, time; W, window).
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FIGURE 3
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VGG-Net-based 3D-CNN architecture. SSP, severely stroke patients; MSP, mild stroke patients; dFC, dynamic functional connectivity.
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TABLE 1 Details of the three-dimensional convolutional neural network (3D-CNN) architecture.

Layer Feature map Stride Kernel Activation structure
3D Input 61 x 73 x 61

Convolution 64 1x1x1 3x3x3 Conv

Convolution 64 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Maxpool 2x2x2 2x2x2

Convolution 128 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Convolution 128 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Maxpool 2x2x2 2x2x2

Convolution 256 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Convolution 256 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Convolution 256 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Maxpool 2x2x2 2x2x2

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Convolution 512 1xIx1 3x3x3 Batchnorm + ReLU + Conv
Convolution 512 Ix1x1 3x3x3 Batchnorm + ReLU + Conv
Maxpool 2x2x2 2x2x2

Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Convolution 512 Ix1x1 3x3x3 Batchnorm + ReLU + Conv
Convolution 512 1x1x1 3x3x3 Batchnorm + ReLU + Conv
Maxpool 1xIx1 2x2x2

Fully Connected 4,096 Dropout Rate 0.7 ReLU

Fully Connected 4,096 Dropout Rate 0.7 ReLU

Output

Fully Connected 2 ReLU

Softmax

Classification Layer Argmax

understand how deep neural networks iteratively optimize
classification weights (24), we analyzed dFC between the
ipsilesional M1 and other brain regions across individual sliding
windows. Because multiple pairwise comparisons can introduce
statistical bias, we applied a k-means clustering algorithm to dFC
maps from all participants to identify distinct connectivity states
at rest and to assess intra-individual variability. Following previous
studies (44), L1 distance was chosen as the similarity metric due to
its robustness in high-dimensional data. The clustering procedure
consisted of two main steps. First, exemplar datasets were selected
based on local maxima in functional connectivity variance across
windows, consistent with prior work (19, 23). Second, rather than
relying on conventional criteria such as the elbow method or
Silhouette index—which may not guarantee that each participant
is represented across multiple states—we determined the optimal
number of clusters (k) by evaluating the participation rate (PR) of
subjects across candidate solutions (19, 23). Cluster solutions were
examined for k values ranging from 2 to 8. A three-cluster solution
(k = 3) was selected because it yielded an adequate distribution of
subject participation (state 1: PR = 1/69; state 2: PR = 68/69; state
3: PR = 69/69). States 2 and 3 were retained for further analysis,
while state 1 was excluded due to insufficient subject representation,
which precluded statistically meaningful comparisons.
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2.9 Significance testing

To evaluate the statistical significance of our results, we performed a
permutation test on the 3D-CNN classification accuracies, followed by a
two-sample f-test to assess between-group differences. For the
classification analysis, test data labels were randomly shuffled 1,000 times
within each of the 10 cross-validation folds to estimate the probability of
achieving an accuracy greater than that obtained with the true labels.
Between-group differences in dFC (MSP vs. SSP) were tested using
two-sample t-tests, with age, sex, and duration of illness included as
covariates. A significance threshold of uncorrected p < 0.05 was adopted.

3 Results
3.1 Demographic characteristics

No significant differences were observed between the MSP and SSP
groups in age (MSP: 54.3 +11.95 years; SSP: 51.28 + 10.73 years;
p =0.392, two-sample t-test), sex distribution (MSP: 32 males; SSP: 24
males; p = 0.513, y test), duration of illness (MSP: 8.01 + 6.5 months;
SSP: 9.40 + 7.10 months; p = 0.410, two-sample ¢-test), or lesion volume
(MSP: 6.7 + 4.73 mL; SSP: 4.97 + 4.70 mL; p = 0.513, two-sample t-test).
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As expected, UL-FMA scores were significantly different, with higher
scores in the MSP group compared to the SSP group (31.4 +7.84 vs.
8.85+4.49; p<0.0001).
characteristics for all participants, including healthy controls (HCs), are

Detailed demographic and clinical

presented in Table 2.

3.2 Classification

The 3D-CNN achieved high classification performance under
10-fold cross-validation. To mitigate potential bias from class
imbalance, balanced accuracy was reported alongside other
evaluation metrics. The mean performance across folds was as
follows: training accuracy = 99.23%, test accuracy = 99.80%,
specificity = 99.86%, sensitivity = 99.74%, F-score = 99.78%, and
balanced accuracy = 99.80% (Table 3).

Statistical significance was confirmed using permutation testing. A
threshold of p = 0.001 was applied across all folds, and permutation tests
consistently yielded p < 0.001, indicating that the observed classification
performance was highly unlikely to arise by chance. Fold-wise
permutation-derived p-values are presented in Table 3.

3.3 Clinical significance

Discriminative brain regions contributing to the deep
learning framework were identified using two-sample t-tests

TABLE 2 Demographic, clinical and structural MRI data of the participants.

10.3389/fneur.2025.1666991

across dynamic states 2 and 3. Significant regions included the
angular gyrus (Angular), MOF, SFG, SPL, SMA, superior
temporal pole (STP), thalamus, cerebellum, gyrus rectus, middle
temporal gyrus (MTG), and precuneus. Uncorrected t-values
indicated group differences in functional connectivity: indices
A-E corresponded to state 2 (t = 2.64-3.37), and indices F-M
corresponded to state 3 (¢ = 2.88-3.75) (Table 4 and Figure 4). In
Figure 4, red shading denotes regions where functional
connectivity was higher in the MSP group compared to the SSP
group, while blue shading indicates higher connectivity in SSP
relative to MSP.

4 Discussion

Using the 3D-CNN framework, we achieved high classification
performance, with a mean balanced accuracy of 99.80%, specificity
of 99.86%, and sensitivity of 99.74%. Accurate assessment of UL
motor impairment in stroke is critical for guiding treatment
decisions, highlighting the clinical relevance of automated
classification methods. To identify features driving classification,
we examined state-specific alterations in resting-state dFC of the
ipsilesional primary M1. Comparisons between MSP and SSP groups
across two connectivity states revealed several discriminative
regions—including the angular gyrus, MOEF, SFG, SPL, SMA, STP,
thalamus, cerebellum, gyrus rectus, and MTG—which were
subsequently integrated into the deep learning framework. These

SN IR 0)) MSP (n = 29) SSP vs. MSP

Mean + std Mean + std p-value
Age (years)* 54.03 +11.95 51.28 +10.73 0.392
Sex (male: female) 8/32 5/24 0.513
Lesion volume (ml)* 6.7 £4.73 497 £4.70 0.137
Duration of illness (month)* 8.01 +6.52 9.40 +7.10 0.410
Lesion side (left: right) 22/18 15/14 0.490
UL-FMA* 8.85+£4.49 314+7.84 0.0001

“‘Independent ¢-test. UL-FMA, up limb Fugl-Meyer assessment; SSP, severely stroke patients; MSP, mild/moderate stroke patients.

TABLE 3 Classification accuracy using 10-fold cross-validation.

Fold Train ACC (%) Test ACC (%) p-value AUC Spec (%) Sen (%) F-score (%) BAC (%)
1 99.72 99.45 <0.001 0.9994 99.4 99.51 99.34 99.45

2 99.96 99.65 <0.001 0.9999 99.88 99.34 99.59 99,61

3 99.72 99.69 <0.001 0.9999 99.76 99.67 99.67 99.71

4 100 99.93 <0.001 1 99.88 100 99.91 99.94

5 100 100 <0.001 1 100 100 100 100

6 99.99 99.86 <0.001 1 99.88 99.84 99.84 99.86

7 99.95 100 <0.001 1 100 100 100 100

8 99.92 99.51 <0.001 0.9999 99.76 99.17 99.42 99.47

9 100 99.93 <0.001 1 100 99.83 99.92 99.92

10 99.97 100 <0.001 1 100 100 100 100
Mean + SD 99.23+0.10 99.80 +0.20 0999900002 = 99.86+0.18 | 99.74+0.29 99.78 +0.24 99.80 +0.21

Test ACC, test accuracy; Train ACC, train accuracy; Spec, specificity; Sen, sensitivity; BAC, balanced accuracy.
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TABLE 4 Statistical analysis of each state.

Group Brain Peak MNI coordinates Cluster Peak T
comparisons regions Yy 1 v T -5 voxels values
(AAL)

A 2 MSP > SSP Angular. R 60 —66 21 52 29

B 2 MSP > SSP MOF. R 6 33 -12 161 337

C 2 MSP > SSP SFG.R 30 60 6 86 3.01

D 2 MSP > SSP SFG. R 18 33 39 58 2.64

E 2 MSP > SSP SPL. L -36 —66 57 103 292

F 3 MSP > SSP SMA. L -3 0 69 50 2.89

G 3 MSP > SSP STP.L —42 -6 -15 127 3.136

H 3 MSP > SSP Thalamus. L 3 -6 15 126 3.15

1 3 MSP < SSP Angular. L -39 —63 42 471 3.75

] 3 MSP < SSP Cerebellum 3 —45 —24 77 2.88

K 3 MSP < SSP Rectus. R 9 39 -12 77 331

L 3 MSP < SSP MTG. R 60 -63 18 129 3.52

M 3 MSP < SSP Pre. L -3 -63 36 102 325

L, left; R, right; Angular, angular gyrus; MOF, medial orbitofrontal cortex; SFG, dorsolateral superior frontal gyrus; SPL, superior parietal lobule; SMA, supplementary motor area; STP,
superior temporal pole; Thalamus, thalamus; Cerebellum, cerebellum; Rectus, gyrus rectus; MTG, middle temporal gyrus; Pre, precuneus; MNI, Montreal Neurological Institute. Two-tailed
two-sample t-test, p < 0.05 (|T| > 2.0), cluster size > 50, uncorrected.

State 2: M1.L-SPL.L
Peak MNI(60,-66,21)

State 2: MI.L-MOF.R
Peak MNI(6,33,-12)

State 2: MLL-SFG.R
Peak MNI(30,60,6)

State 2: MI.L-SFG.R
Peak MNI(18,33,39)

State 2: M1.L-Angular.R
Peak MNI(60,-66,21)

State 3: M1.L-Cerebellum
Peak MNI(60,-66,21)

State 3: M1.L-SMA.L ! State 3: M1.L-STP.L
Peak MNK(-3,0,69) " Peak MNI(42,-6,-15)

State 3: M1.L-Angular.L
Peak MNI(-39,-63,42)

3. 0.00
State 3: M1.L-Pre.R
Peak MNI(3,-63,36)
0.00
FIGURE 4

Discriminative features of selected states. (A—E) correspond to state 2, and (F—=M) correspond to state 3, respectively. L, left; R, right; Angular, angular
gyrus; MOF, medial orbitofrontal cortex; SFG, dorsolateral superior frontal gyrus; SPL, superior parietal lobule; SMA, supplementary motor area; STP,
superior temporal pole; Thalamus, thalamus; cerebellum, cerebellum; Rectus, gyrus rectus; MTG, middle temporal gyrus; Pre, precuneus; MNI,
Montreal Neurological Institute. Two-tailed two-sample t-test, p < 0.05 (|T| > 2.0), cluster size > 50, uncorrected. Red indicates regions where
functional connectivity was higher in MSP than in SSP; blue indicates the opposite (MSP, mild stroke patients; SSP, severe stroke patients).

State 3: M1.L-Rectus.R State 3: MI.LL-MTG.R
Peak MNI(9,39,-12) Peak MNI(60,-63,18)

findings support our hypothesis that ipsilesional M1-derived dFC can Previous studies have demonstrated the feasibility of using
serve as a functional biomarker for classifying UL motor impairment ~ machine learning with multimodal neuroimaging data, including
severity using 3D-CNN. structural MRI and clinical assessments, for automated classification

Frontiers in Neurology 07 frontiersin.org


https://doi.org/10.3389/fneur.2025.1666991
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org

Gao etal.

and outcome prediction in stroke (24, 26, 28, 29, 45-48). Several
studies successfully predicted UL motor impairment using these
approaches (45-48). While structural MRI can distinguish MSP from
SSP, it is often limited by inter-individual variability and may fail to
capture subtle changes, particularly when lesion volume, shape, or
corticospinal tract damage exceeds certain thresholds (47). In contrast,
rs-fMRI provides a dynamic and individualized assessment, with
shorter acquisition times that enhance clinical efficiency.

Prior research has shown that interventions such as repetitive
transcranial magnetic stimulation can improve FMA scores in patients
with severe UL impairment by increasing excitability in the ipsilesional
M1 (7). Additionally, dFC between the ipsilesional M1 and
contralesional precentral and middle frontal gyri has been negatively
correlated with FMA scores (22), supporting the potential of
M1-derived dFC as a predictor of motor impairment severity. To our
knowledge, this study is the first to use dFC maps in combination with
a 3D-CNN framework to classify stroke patients into mild/moderate
versus severe UL-FMA groups, representing a novel contribution to
automated stroke severity assessment.

In our 10-fold cross-validation, the 3D-CNN achieved a mean test
accuracy of 99.80%. Although deep neural networks iteratively
optimize classification weights (24-26, 28), ranking the contribution
of individual dFC features remains challenging without feature
selection. To address this, we analyzed dFC differences between MSP
and SSP across states using k-means clustering. Statistical analysis
revealed significant connectivity differences between the ipsilesional
MI and 13 other regions (p < 0.05, cluster size > 50, uncorrected).
Prior work has implicated the contralesional cerebellum (46), SMA
(49), and contralesional parietal cortex (50) in motor recovery or stroke
severity. Our findings are largely consistent with these reports, while
also revealing increased connectivity in the ipsilesional SMA and SPL,
which may reflect specific resting-state configurations rather than
averaged connectivity patterns (22). Notably, significant connectivity
differences were observed in the contralesional angular gyrus, MOF,
SEG, gyrus rectus, MTG, as well as the ipsilesional STP, thalamus,
angular gyrus, precuneus, and cerebellum, consistent with widespread
functional plasticity following stroke (12, 23, 37). These regions likely
contributed substantially to classifier performance, although additional
regions may also play roles through subtle, weighted patterns learned
by the network.

Consistent with previous findings, reduced connectivity between
the ipsilesional M1 and contralesional hemisphere is observed after
unilateral motor network damage (12). Conversely, increased
connectivity within ipsilesional regions may reflect compensatory
plasticity. In state 2, MSP patients exhibited higher connectivity in the
contralesional angular gyrus, MOF, SFG, and ipsilesional SPL,
suggesting better preservation of interhemispheric integration relative
to SSP. State 3 revealed more complex patterns: MSP patients showed
higher connectivity in the ipsilesional SMA, STP, and thalamus, but
lower connectivity in the ipsilesional angular gyrus, precuneus, and
contralesional gyrus rectus, MTG, and cerebellum. These results
suggest greater network reorganization and motor adaptation in MSP
during this state (4), demonstrating a meaningful relationship between
dFC patterns and UL-FMA scores (51).

Our study introduces several innovations by integrating
rs-fMRI-derived dFC with deep learning for stroke severity
classification. However, it has limitations. Despite augmenting
sample diversity through the sliding window approach (209 time
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points per subject), the overall dataset remains modest, limiting
the application of end-to-end learning approaches, static
functional connectivity-based 3D-CNN classification, and
regression models for predicting actual UL-FMA scores. External
validation is also lacking. Future studies should expand sample
sizes and replicate findings in independent cohorts. Additionally,
deep learning models inherently reduce interpretability. Although
k-means clustering helped identify salient dFC differences between
MSP and SSP, it does not fully reveal how individual features
contribute to network decisions. Explainable deep learning
techniques should be employed in future work to visualize
influential 3D dFC features. Furthermore, our study focused
exclusively on dFC; complementary approaches-such as joint time-
frequency analysis and dynamic graph theory-may provide
additional insights into time-varying connectivity patterns (20,
52). Future research should integrate these methods to build multi-
modal representations and improve classification accuracy.
Although the 3D-CNN provides an end-to-end approach without
additional feature extraction, comparisons with conventional
machine learning remain important once feature extraction
methods are fully developed.

In conclusion, rs-fMRI-derived dFC combined with 3D-CNN
offers a reliable, objective tool for assessing UL motor impairment
severity in stroke. This approach may complement clinical scales such
as the UL-FMA, particularly in settings with limited access to
experienced rehabilitation specialists. In the future, our framework
may provide a practical means to explore functional connectivity
patterns associated with motor impairment severity under specific
resting-state configurations.
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